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ABSTRACT 
Taxi demand is closely linked to human travel habits. Accurately forecasting taxi 
demand is very important for passengers, drivers, ride platforms and city managers, 
but is very difficult in three aspects: 
I. Diversity of ST correlations. Diversity of such spatio-temporal correlations, 

which vary from location to location and depend on the surrounding 
geographical information, e.g., land use and road networks. 

II. Long-term periodic dependency. In generally, traffic data show a strong daily 
and weekly periodicity and the dependency based on such periodicity can be 
useful for prediction. However, one challenge is that the traffic data are not 
strictly periodic. 

III. Sudden demand changes. Spatio-temporal sudden demand changes, which is 
temporary increasing or decreasing demand due to weather condition, e.g., rain 
and snow, traffic conditions, e.g., accident delays, and large event, e.g., 
concerts and sports games. 

To tackle these challenges, we use a deep-meta-learning based model, named ST-
MetaNet method [1]. To the best of our knowledge, this study is the first to study the 
inherent relationship between geographical information and ST correlations by 
applying meta learning on the related application, i.e., urban traffic prediction. This 
research is the state-of-art traffic demand prediction method, to collectively predict 
traffic in all location at once. ST-MetaNet leverages the meta knowledge extracted 
from geo-graph attributes to generate the parameter weights of a graph attention 
network and a recurrent network within sequence-to-sequence architecture. Geo-
graph attributes are consist of node attributes and edge attributes. As a result, it can 
capture the inherent relation between geo-graph attributes and diverse types of ST 
correlations, these solve first and second challenging aspects. On the other hand, this 
research is NOT considered spatio-temporal sudden demand changes which is third 
aspect. So, in order to solve this problem, we added contextualized dynamic spatio-
temporal data by expanding ST-MetaNet method. Dynamic contextual factors of 
demand include such as weather condition, large events occurrence. Experiments 
were conducted based on two kind of real-world datasets from NYC TLC Trip 
Record to illustrate the high accuracy taxi demand prediction. 
 
Keywords: Taxi demand prediction, Spatio-temporal data, Meta-knowledge learning,  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction and Background 
The transport system is in the city, as the blood tissue is in the human body, which is the key to 
urban construction. In the future, it will play an integral role in building smart cities. With the 
development of Uber and Lyft, online car healing has become a travel habit for people. Therefore, 
extensive data on taxi demand have been collected for research. For example, as of February 1, the 
New York City Taxi and Limousine Commission (TLC) is requiring all High-Volume For-Hire 
Services (HVFHS) – including Uber, Lyft, Via and Juno – to pay drivers at least the minimum per-
trip payment amount, as per the TLC's new Driver Pay Rules. Accurate taxi demand forecasting 
helps passengers avoid hot spots rationally and save waiting time. It also helps drivers to 
reasonably select hot spots and improve the balance between benefits and efficiency. With an 
online car healing platform, you can better plan, pre-allocate resources and maximize profits. For 
city managers, we can provide reference suggestions for infrastructure construction and 
transportation planning. Therefore, accurately predicting future taxi demand in different parts of 
the city based on historical data is a hot area of research. 

1.2 Purpose and Motivation 

Urban Traffic Prediction. The urban traffic prediction is a typical spatio-temporal forecasting 
problem, whose main factors include spatial and temporal correlations that are implicitly affected 
by the characteristics of nodes (locations) and edges (the mutual relation between two 
nodes) .Intuitively, the characteristic of a node is influenced by its attributes, like GPS locations 
and nearby POIs. Likewise, the characteristic of an edge depends on its attributes, e.g., road 
connectivity and the distance between locations. In a typical traffic forecasting setup, it is 
necessary to evenly forecast the traffic in the next time slot, taking into account past traffic data. 
Many researchers have studied traffic forecasts for decades. In the time-series community, 
autoregressive integrated moving average (ARIMA) and Kalman filtering are widely applied to 
traffic prediction problems. Recent studies have begun to consider spatial information (eg, adding 
regularization of model similarity for nearby places) and external contextual information (eg, 
adding venue information, weather conditions, local event capabilities) [2],[3]. In addition, spatial 
information has also been explicitly modeled in recent studies. For example, Deng et al. [4] used 
matrix factorization on road networks to learn the latent space between road connected regions for 
predicting traffic volume. However, these approaches are still based on traditional time series or 
machine learning models and do not capture complex nonlinear spatiotemporal dependencies.  
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Figure 1: The Architecture of DMVST-Net proposed from Yao et al (2018) Cited from [7]. 

Deep Learning for Spatio-Temporal Prediction. Recently, deep learning has been a great 
success for many challenging learning tasks. This success has stimulated several studies applying 
deep learning techniques to traffic prediction problems. For example, several studies [5] modeled 
city-wide traffic as heatmap images and used convolutional neural networks (CNN) to model 
nonlinear spatial dependencies. To model non-linear time dependence, researchers have proposed 
using a recurrent neural network RNN-based framework from Yu et al (2017) [6]. Yao further 
proposes a way to model both spatial and temporal dependencies by integrating CNN with long-
term short-term memory (LSTM) [7] as shown in Figure 1. Although deep learning of traffic 
prediction takes into account both spatial dependence and temporal dynamics, existing methods 
have three major limitations. 

1. Diversity of ST correlations. First, the spatial dependence between locations depends only on 
the historical traffic similarity [5], and the model learns static spatial dependencies. However, 
dependencies between locations can change over time. For example, in the morning, the 
dependency between residential areas and business centers may be stronger. On the other hand, 
in the evening, the relationship between these two places may be very weak. However, while 
work on urban traffic forecasting and similar ST forecasting tasks has increased significantly, 
the aforementioned problems have not yet been fully resolved. First, some works [8], [9]. focus 
on modeling ST correlations with a single model of all locations. However, these methods 
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cannot explicitly model the inherent relationship between geographic graph attributes and 
various types of ST correlations as shown in Figure 2. 

2. Long-term periodic dependency. A second limitation is that many existing studies ignore 
long-term cyclical dependency shifts. Traffic data shows strong daily and weekly periodicities, 
and dependencies based on such periodicities are useful for forecasting. One challenge, 
however, is that traffic data is not strictly periodic. For example, weekday peak times typically 
occur late in the afternoon, but can vary from 4:30 pm to 6:00 pm on some days. Previous 
studies [5] consider periodicity, but do not consider the sequential dependence of the 
periodicity and the time shift. 

3. Sudden demand changes. The third limitation is that in many existing studies, ignore extreme 
in short-term demand due to weather conditions such as rain and snow, traffic conditions such 
as accident delays, and large events such as concerts, parades, and sports games. Most existing 
work focuses on predicting taxi demand in the near future by learning patterns from historical 
data. However, events with unusually high demands are non-repetitive and will fail to capture 
unusual events because they violate common assumptions, such as how smoothly the demand 
changes over time. 

 

 
Figure 2: Composition of ST correlations. 

 
To tackle the above challenges, we use ST-MetaNet [1] as a spatio-temporal prediction method 
based on deep learning using geographic feature and dynamic feature to predict taxi demand. 
Based on these insights, ST-MetaNet first extracts the meta knowledge (i.e. characteristics) of 
nodes and edges from their attributes, respectively. The meta knowledge is then used to model the 
spatio-temporal correlations, namely, generating weights of the prediction networks. And by 
adding dynamic features to ST-MetaNet, ST-MetaNet can consider both spatio-temporal 
correlation and dynamic changes. The main intuition is drawn in Figure 2. The contributions of 
our work are three folds: 
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l We use a novel deep meta learning based model, named ST-MetaNet, to predict urban yellow 
taxi and HVFHV in New York city. ST-MetaNet leverages the meta knowledge extracted 
from geo-graph attributes to generate the parameter weights of a graph attention network and 
a recurrent network within sequence -to-sequence architecture. As a result, it can capture the 
inherent relation between geo-graph attributes and diverse types of ST correlations. 

l Then we add the dynamic features such as weather, event data of NYC and time information. 
And embedded them into RNN layer to capture extreme short-term and periodic long-term 
components for demand prediction. 

l We evaluate ST-MetaNet on two datasets: yellow taxi and HVFHV demand prediction. The 
experiment results verify that ST- MetaNet can significantly improve taxi demand prediction, 
and learn better traffic-related knowledge from geo-graph attributes and temporal dynamic 
features. 

 
Figure 3: Insight of the framework. 

1.3 Structure of Thesis 
The rest of this paper is organized as follows: Chapter 2 describes the investigation of the spatio-
temporal prediction method. Chapter 3 describes the details of the data, how to process the data, 
and how to draw the results of the data processing using maps. Chapter 4 provides definitions and 
problem descriptions and describes the method in detail. Chapter 5 describes the experimental 
conditions and the results of the prediction model and evaluates the prediction results for each 
baseline. Finally, the paper concludes with Chapter 6 which discusses future work. An appendix 
is attached at the end to support the reproducibility of the results of this paper. 
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CHAPTER 2: RELATED WORK 
Machine learning is widely used in a variety of areas, including recommendation systems, service 
computing, prediction problems, and edge computing. In this 10 years, deep learning became also 
widely used for many areas to deal with multi-tasking learning to improve application performance. 
In recent years, deep learning has been widely used in many research fields, with great success in 
computer vision and natural language processing. The traffic data forecasting problem using deep 
learning is one of the hot topic problem. This is because deep learning-based prediction models 
can extract more complex spatiotemporal features than previous machine learning models. The 
traffic data forecasting problem (our problem), which consists of traffic volume, traffic speed, 
travel time, and taxi demand. These approaches can be divided into two groups: traditional 
approaches, deep learning approaches and Meta Learning for Neural Networks' Weight Generation. 
2.1 Traditional Approach 

Time series algorithms are first introduced into predicting traffic data in an ARIMA-like model. 
Hamed et al. [10] developed an ARIMA model to predict the traffic volume on urban 
arterials.From here on, to improve prediction performance, researchers applied many variants of 
ARIMA for traffic prediction. On the other hand, machine learning algorithms are also widely 
used in this filed. Wu et al. [11] applied support vector regression for travel-time prediction, K-
nearest neighbor model to predict the duration of traffic accidents. k-NN models are also widely 
applied in predicting traffic speeds and volume due to its simple nature [12]. These methods focus 
on the temporal correlation of traffic data and ignore spatial correlation. However, the traffic 
conditions in the current area are affected not only by neighboring areas but also by distant areas. 
For example, a traffic accident at an intersection can cause roads to become impassable, resulting 
in a dramatic increase in traffic at remote transportation hubs. 

2.2 Deep Learning Approach  

In recent years, many researchers have widely used deep learning techniques to predict traffic data. 
CNN has proven to be effective in extracting features from images. Therefore, by treating the 
traffic situation of the entire city as an image, many researchers have adopted CNN for predicting 
traffic data. Deng et al. [4] divided the city into many tiny grids, converting city traffic speed into 
images and use CNN for predicting traffic speed. Zhang et al. [5] employed CNN modeling 
temporal dependent and spatial dependent for predicting traffic flow, rent/return of bikes and 
traffic flow. Later, Zhang et al. [5] used a residual neural network, a parametric-matrix-based 
fusion mechanism, and external information to improve the performance in predicting crowd flows. 
These studies focus more on the spatial correlation of traffic data. On the contrary, in modeling 
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time correlation, CNN is a simple fusion function extracted through a neural network and does not 
make full use of time correlation. On the other hand, the success of RNNs and their variants in 
continuous learning tasks [7], long-term short-term memory (LSTM) and gated repetitive units 
(GRU), has led many researchers to predict traffic data based on them. became. . However, it does 
not make full use of spatial correlation. To maximize the use of spatio-temporal correlation, many 
researchers have combined CNN and RNN structures for traffic prediction, such as graph 
convolution [13] and graph attention [14]. In these studies, similarities between regions are based 
on static distance or road structure. They also overlook long-term periodic effects and time shifts 
in time series forecasting. Very recent studies [8], [9] show that attention mechanisms enable 
RNNs to capture dynamic spatiotemporal correlations of geosensory data. 

2.3 Meta Learning for Neural Networks' Weight Generation 

[15] proposed a dynamic filter network that generates a convolution filter conditioned on input. 
[16] The learner was used to predict pupil network parameters from a single sample. [17] We used 
hyper networks to generate large network weights. This can be considered as weight sharing 
between layers. Recently [18] proposed meta-multitask learning of NLP tasks. [19] suggested that 
to amortize the cost of neural architecture search, embed a neural architecture and employ a 
hypernetwork to generate its weights. Unlike the above works, we aim to model various ST 
correlations. To our knowledge, [1] first studies the unique relationship between geographic 
information and ST correlation, and applies meta-learning to a related application: urban traffic 
forecasting. 
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CHAPTER 3: DATA DESCRIPTION AND PROCESSING 
In this chapter, we descript 5 kinds of data used for out dataset. And then we introduce data 
processing of each data. All original data are public released and Taxi data, Load usage data, 
Road data and Event data can be download from NYC OpenData [22]. Weather data can be 
downloaded from Data Transmission Network and Dataline website [23]. Links are attached 
below. 

3.1 Taxi Demand Data  
NYC Taxi & Limousine Commission (TLC) [24] has released public datasets from January 2009 
that contain data for taxi trips in NYC, including timestamps, pickup & drop-off from 263 taxi 
zones as shown in Figure 3, number of passengers and so on. We regard one taxi zone as one node. 
TLC provide the yellow taxi, green taxi, For-Hire Vehicle (“FHV”) and High Volume FHV trip 
records. We use yellow taxi and High Volume FHV (HVFHV) trip records as datasets which are 
relatively large volume data. Yellow taxi and HVFHV data dictionary are shown in appendix 
section. Please refer to appendix. The data processing is conducted by counting the number of pick 
up and drop off taxi every 10 minutes in each 263 zones. Pickup value is used as target variable of 
each node. As a result, the amount of yellow taxi pickup is 36,721,325 and the amount of HVFHV 
pickup is 109,089,532 from 1st on Feb. to 31st June in 2019 all taxi zones. Figure 4 show the color 
map of taxi pickups of yellow taxi and HVFHV data in each taxi zone. 

3.2 Land Use Data 
New York City's Department of City Planning keep a geospatial database of tax lots and their 
associated records that goes by the name of PLUTO (Primary Land Use Tax Output) [25]. It 
includes polygons for the city's 870,000+ tax lots, and over 80 attribute columns including 
assessments, easements, number of units, number of floors, zoning status, etc. The Department of 
City Planning The Department of City Planning has created 11 land use categories and assigns 
each BUILDING CLASS to the most appropriate land use category (LUs) and provide the area of 
each land use category. We summarize the value description of LUs category in Table 1. Figure 5 
shows map f 11 land use categories area. Data processing is conducted using LUs to extract each 
node features by calculating the area of the 11 land use categories included every 263 taxi zones 
and used them as node attributes. Comparing Figure 4 with Figure 5, it can be found that there is 
correlation between taxi demand and LUs. 



 13/60 

Figure 4: Taxi zone map (drawn by author using [24]). 

 
Figure 5: Mapped amount of taxi pickups of yellow taxi and HVFHV data (drawn by 

author using [24]). 

Yellow Taxi HVFHV Taxi 
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Figure 6: Map of 11 land use categories area (drawn by author using [25]). 
 

 
 
 
 
 
 
 



 15/60 

Table 1:  The value description of LUs category in PLUTO data. 
Value Description 
01 One & Two Family Buildings 
02 Multi-Family Walk-Up Buildings 
03 Multi-Family Elevator Buildings 
04 Mixed Residential & Commercial Buildings 
05 Commercial & Office Buildings 
06 Industrial & Manufacturing 
07 Transportation & Utility 
08 Public Facilities & Institutions 
09 Open Space & Outdoor Recreation 
10 Parking Facilities 
11 Vacant Land 

3.3 Road Data 
The NYC Street Centerline (CSCL) is a road-bed representation of New York City streets 
containing address ranges and other information such as traffic directions, road types, segment 
types, it is called LION file. We extract node attributes from roadway type as shown in Table 2 
by counting the number of roads contained in every 263 taxi zones per each road type as shown 
in Figure 6. And we also count the number of connected road between each taxi zone per road 
type, which is used for edge attributes. There are 14 roadway types but 10 of 14 type contain in 
road network data as shown in Table 2. In this study, we conduct prediction using edge-meta-
knowledge learning. Almost ST deep-learning method can consider the connectivity of nodes, 
but it cannot consider edge-meta-knowledge such as roadway type. On the other hand, ST-
MetaNet can consider not only the neighborhoods of node importance, but also the edge type 
between neighborhoods. It should be advantage, for example, as shown in Figure 6, in the case 
of highway, highway network connects major area for efficient transportation. Thus, it can be 
assumed that the place connected by highway would have high correlation even if the places 
connected by highway is not close. In this way, ST-Meta-Net is empowered to grasp higher ST-
correlation than any others. 
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Figure 7: NYC road network (drawn by author using [22]). 
 

Table 2: The value description of roadway type in LION files. 
Value Description 
1 Street 
2 Highway 
3 Bridge 
4 Tunnel 
5 Boardwalk 
6 Path/Trail 
7 Step Street 
8 Driveway 
9 Ramp 
10 Alley 
13 U-Turn 
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3.4 Event Data 
Office of Citywide Event Coordination and Management (CECM) provides past and future High-
impact events information held in NYC from 2008. This list contains information on approved 
event applications that will occur within the next month. Data processing is conducted by adding 
the coordinate of event place using geo-scrapping from address because of lack of coordinate 
and by weighting the effect of event each taxi zone using simple way. Firstly, we extract the 
events whose open time within 6 hours. Then in order to take into account of the effect of events, 
adding the number to timestamp sequence filled with zero as follow: +1 before 20 minutes, +2 
before 10 minutes, +3 on the end time, +4 after 10 minutes, +3 after 20 minute, +2 after 30 
minutes and +1 after 40 minutes from end time of event. That is because people are most likely 
to use a taxi well after the start of the event. To understand easily, please show Figure 7 as 
example how we weight the number to timestamps for event effect.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: The example how to weight the effect of event. 
 

Table 3 show the summary of event type and the number of events held from 1st Feb to 30th 
Jun in 2019. In order to understand the frequency of event per taxi zone, Figure 8 shows color 
map of event occurrence count average per month from 1st Feb to 30th June in taxi zones. As 
shown in Figure 8, it can be seen that there are places where the event is held frequently and 
places where it is not. While it is difficult to predict sudden demand in areas where events are 
infrequent, it is easier to predict areas where frequent events occur, such as the dark areas such 
as # 43 at Central Park in Figure 8. You can see that the event is held about 10 times a day on 
average. Figure 9 show the weighted number of Special Event occurrence from 1st Feb to 30th 
June at Central Park (#43). Figure 9 indicates that the periodicity of the event varies depending 
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on middle term such as a month duration. Therefore, it is likely that seasonal trends need to be 
factored in to predict these events. 
 

Table 3: The summary of event type and the number of events. 
Index Event type # events held 
1 Special Event 7374 
2 Parade 387 
3 Street Event 163 
4 Block Party 110 
5 Construction 79 
6 Production Event 61 
7 Plaza Event 42 
8 Religious Event 34 
9 Plaza Partner Event 30 
10 Athletic Race / Tour 30 
11 Health Fair 18 
12 Weekend Walk 18 
13 Miscellaneous 17 
14 Clean-Up 15 
15 Single Block Festival 10 
16 Press Conference 5 
17 Rally 4 
18 Street Festival 4 
19 Stationary Demonstration 2 
20 Athletic 1 
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Figure 9: The color map of all event occurrence count average per month (drawn by 

author using [22]). 

 

Figure 10: The weighted number of Special Event occurrence. 
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3.5 Weather Data 
We collect historical hourly weather data at EWR airport located near to central NYC. Because 
time interval of taxi demand is 10 minutes in spite of hourly weather data observation, we 
interpolate it linearly. We use precipitation amount, temperature and wind speed as dynamic 
spatio-temporal features for all of taxi zone. The feature name and of weather data is summarized 
in Table 4. Figure 10 show the plotted value of all features in weather data from st Feb to 30th June 
at EWR airport. 

Table 4: The summary of weather feature 

 

 
Figure 11: Plot of features of weather data at EWR airport in NYC. 

3.6 Others 
We add geometric features such as latitude, longitude, shape length, area. And finally add the 
number of stations belong to each taxi zone. 

Table 5: The summary of Others features 
Index Name Description 
1 Latitude Latitude of the barycentric coordinates of the node. 
2 Longitude Longitude of the barycentric coordinates of the node. 
3 Shape length Shape length of the barycentric coordinates of the node. 
4 Area Area of the barycentric coordinates of the node. 
5 Station count Number of stations belong to each taxi zone 

Name Description 
FeelsLikeC The "feels like" temperature is a measurement of how hot or cold 

it really feels like outside. The “Feels Like” temperature relies on 
environmental data including the ambient air temperature, relative 
humidity, and wind speed to determine how weather conditions 
feel to bare skin. (unit: ℃) 

windspeedKmph Wind speed (unit: Km/ph) 
precipMM Precipation (unit: mm) 

Datetime 
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CHAPTER 4: METHODOLOGIES 

 
Figure 12: Overview of ST-MetaNet cited from [1]. 

 
In this chapter, we describe the architecture of ST-MetaNet for traffic prediction, as shown in 
Figure 11 (a). Following the sequence-to-sequence (Seq2Seq) architecture [20], ST-MetaNet is 
composed of two separate modules: the encoder and the decoder .The former one is used to 
encode the sequence of input, i.e., historical information of taxi demand {𝑋!"##$	%	&, . . . , 𝑋!}, 
producing the hidden states {𝐻'(( , 𝐻)*!+"'((}, which are used as the initial states of the 
decoder that further predicts the output sequence {𝑌*!%&, … , 𝑌*!%#,-.}. 

More specifically, the encoder and the decoder have the same network structures, consisting 
of four components: 
1) RNN (recurrent neural network). We employ RNN to embed the sequence of not only 

historical taxi demand but also weather condition and event occurrence to capture dynamic 
spatio-temporal feature, capable of learning long range temporal dependencies. 

2) Meta-knowledge learner. A shown in Figure 11 (b), we use two fully connected networks 
(FCNs), named node-meta-knowledge learner (NMK-Learner) and edge-meta-knowledge 
learner (EMK- Learner) , to respectively learn the meta-knowledge of nodes (NMK) and edges 
(EMK) from node attributes (e.g., Land use and Road density) and edge attributes (e.g., road 
connectivity and road type). Then the learned meta knowledge is further used to learn the 
weights of another two networks, i.e., graph attention network (GAT) [21] and RNN. Taking 
a certain node as an example, the attributes of the node are fed into the NMK-Learner, and it 
outputs a vector, representing the meta knowledge of that node. 

3) Meta-GAT (meta graph attention network) is comprised of a meta learner and a GAT, as 
shown in Figure 11 (c). Author propose employing a FCN as the meta learner, whose inputs 
are meta knowledge of all nodes and edges, and outputs are the weights of GAT.Meta-GAT 
can capture diverse spatial correlations by individually broadcasting locations’ hidden states 
along edges. 

4) Meta-RNN (meta recurrent neural network) is comprised of a meta learner and a RNN. The 
meta learner here is a typical FCN whose inputs are meta knowledge of all nodes and outputs 
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are the weights of RNN for each location. Meta-RNN can capture diverse temporal correlations 
associated with the geographical information of locations.  

4.1 Preliminaries 
In this chapter, we introduce the definitions and the problem statement a. For brevity, we present 
a table of notations in Table 6nd detail of metholorogies. 

Suppose there are 𝑁, , locations, which report 𝐷! , types of traffic information on 𝑁! , 
timestamps respectively. 

Table 6: Notations. 
Notations Description 

𝑁,, 𝑁! Number of locations/timestamps. 
𝜏-., 𝜏/0! The number of timestamps for historical/future traffic. 
𝜒 = {𝑋!} The traffic readings at all timestamps. 
𝒱 = {𝑣(-2)} The node attributes of location 𝑖. 
ℰ = {𝑒(-2)} The edge attributes between location 𝑖. 

𝒩- Neighborhoods of location 𝑖. 
NMK(⋅) The function to learn meta knowledge of node. 
EMK(⋅) The function to learn meta knowledge of edge 
ℊ4(⋅) The function to generate weights of parameter 𝜃. 

 
DEFFINITION 1. Urban traffic. The urban traffic is denoted as a tensor 𝜒 = C𝑋&, … , 𝑋(.	E ∈

ℝ(.×(H×6., where 	𝑋! 	= I𝑥!
(&), … , 𝑥!

((H)K denotes all locations’ traffic information at timestamp t. 

DEFFINITION 2. Geo-graph attribute. Geo-graph attributes rep- resent locations’ surrounding 
environment and their mutual relations, which corresponds to node attributes and edge attributes 
respectively. Formally, let 𝒢 = {𝒱, ℰ} represent a directed graph, where 𝒱 = M𝑣(&), … , 𝑣((.)N 
and ℰ = {𝑒(-2)|1 ≤ 𝑖, 𝑗 ≤ 𝑁,} are lists of vectors denoting the geographical features of locations 
and relations between locations, respectively. Moreover, we use 𝒩- = {𝑗|𝑒(-2) ∈ ℰ} to denotes 
the neighbors of node i.  
PROBLEM 1. Given previous 𝜏-.  trafficinformation  {𝑋!"##$	%	&, . . . , 𝑋!} , and the geograph 
attributes 𝒢, predict the traffic information for all locations in the next τout timestamps, denoted 
as{𝑌*!%&, … , 𝑌*!%#,-.}.  
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4.2 Recurrent Neural Network  

To encode the temporal dynamics of urban traffic, we employ a RNN layer as the first layer of 
Seq2Seq architecture. There are various types of RNN implementation for time series analysis. 
Among them, as gated recurrent unit (GRU) [9] is a simple but effective structure, we introduce 
GRU as a concrete example to illustrate ST-MetaNet. Formally, a GRU is defined as:  
ℎ! = GRU(𝑍! , ℎ!"&|𝑊7, 𝑈7, 𝑏7), 

where 𝑧! ∈ ℝ6  and ℎ! ∈ ℝ6\  are the input vector and the encoding state at timestamp t, 
respectively. 𝑊7 ∈ ℝ6\×6  and 𝑈7 ∈ ℝ6\×6\  are weight matrices. 	𝑏7 ∈ ℝ  are biases (Ω ∈
{𝑢, 𝑟, ℎ}). GRU derives the vector representations of a hidden state, which is expressed as:  

𝑢 = 𝜎(𝑊8𝑧! + 𝑈0ℎ!"& + 𝑏0) 
𝑟 = 𝜎(𝑊9𝑧! + 𝑈:ℎ!"& + 𝑏:) 

ℎ! = 𝑢 ∘ ℎ!"& + (1 − 𝑢) ∘ 𝜙(𝑊!𝑧! + 𝑈!(𝑟 ∘ ℎ!"&) + 𝑏;), 

where ∘ is the element-wise multiplication, 𝜎(⋅) is sigmoid function, and 𝜙(⋅) is tanh function. 
In urban traffic prediction, we collectively encode the traffic of all nodes (locations). To make 
nodes’ encoding states in the same latent embedding space such that we can quantify the relations 
between them, RNN networks for all nodes share the same parameters. Suppose the input is 
 𝑍! 	= I𝑧!

(&), … , 𝑧!
((.)K where 𝑧!

(-)is the input of node i at timestamp t , we obtain hidden states for 

all nodes, denoted as, by the following formula:  

𝐻! 	= Iℎ!
(&), … , ℎ!

((H)K 

ℎ!
(-) = GRUI𝑧!

(-), ℎ!"&
(-) e𝑊7, 𝑈7, 𝑏7K, ∀𝑖 ∈ {1, … , 𝑁,}, 

More specifically, in ST-MetaNet the inputs of RNNs in the encoder and decoder are 
{𝑋!"##$	%	&, . . . , 𝑋!},and {𝑌*!%&, … , 𝑌*!%#,-.}, respectively, as shown in Figure 11 (a).  

4.3 Meta-Knowledge Learner 

In urban area, characteristics of locations and their mutual relation- ship are diverse, depending on 
geographical information, e.g., LUs and RNs. Such diverse characteristics bring about various 
types of ST correlations within urban traffic. Hence, we propose two meta-knowledge learners to 
learn traffic-related embeddings (meta knowledge) from geographical information, i.e., NMK-
Learner and EMK-Learner. As shown in Figure 11 (b), two meta-knowledge learn- ers respectively 
employ different FCNs, in which input is the at- tribute of a node or an edge, and the corresponding 
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output is the embedding (vector representation) of that node or edge. Since such embeddings are 
used for generating weights of GAT and RNN to capture ST correlations of urban traffic, the 
learned embeddings can reflect traffic-related characteristics of nodes and edges. For simplicity, 
we use	NMK(𝑣(-)) and EMK(𝑒(-2)) to denote the learned meta knowledge (embedding) of a node 
and an edge, respectively.  

4.4 Meta Graph Attention  

 

Figure 13: Structure of meta graph attention network cited from [1]. 

Urban traffic has spatial correlations that some locations are mutu- ally affected and such impact 
is highly dynamic. In addition, spatial correlations between two nodes are related to their 
geographical information, and such correlations are diverse from node to node and edge to edge. 
Inspired by graph attention network (GAT) [21], we propose employing attention mechanism into 
the framework to capture dynamic spatial correlations between nodes. However, it is inappropriate 
to directly apply GAT because all nodes and edges would use the same attention mechanism, 
ignoring the relationship between geographical information and spatial correlations. 

To capture diverse spatial correlations, we propose a meta graph attention network (Meta-
GAT) as shown in Figure 12, which employs attention network whose weights are generated from 
the meta knowledge (embeddings) by the meta learner. Consequently, the networks for spatial 
correlation modeling are different from node to node and edge to edge. Formally, suppose the 
inputs of meta graph attention network are 𝐻 = Cℎ(&), … , ℎ((H)E ∈ ℝ(H×6g (i.e.,outputs of RNN a 
teach timestamp) and geo-graph attributes 𝐺	 = 	 {𝒱, ℰ}, while the output is 𝐻i = Cℎj(&), … , ℎj((H)E ∈
ℝ(H×6g,where 𝐷; is the dimension of nodes’ hidden states. The meta graph attention mechanism 
for each node mainly contains 2 steps: 1) attention score calculating for each edge; and 2) hidden 
state aggregation. As shown in Figure 12, we give an example to show Meta-GAT, that calculates 
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the impact to the red node from its neighborhoods (the purple, orange, and green node) along edges. 
The details of Meta-GAT are as follows:  

l Attention score calculation. The score of edge ij is related to the hidden states of node i and 
node j, as well as the meta knowledge of nodes and edge learned from geographical 
information. As shown in Figure 12, for edge ij, the first step is fetching the hidden states of 
nodes by index, i.e., ℎ(-) and ℎ(2) and meta knowledge MK(-2), which is a composition of 
meta knowledge of nodes and edge:  

MK(-2) = MK(𝑣(-)) ∥ MK(𝑣(2)) ∥ EMK(𝑒(-2)) 
where ∥ is the concatenation operator. Then we apply a function to calculate the attention 
score, denoted as: 

𝑤(-2) = 𝑎Cℎ(-), ℎ(2), MK(-2)E ∈ ℝ6g	
where 𝑤(-2) 𝐷; dimension vector, denoting the importance of how ℎ(-) impacts ℎ(-) at each 
channel. Like GAT [21] shown in Figure 12 (c), we employ a single fully connected layer to 
calculate function a(⋅) . However, different pairs of nodes have different node and edge 
attributes, resulting in different patterns of edge attention given the nodes’ states. To model such 
diversity, we employ an edge- wise fully connected layer, followed by an activation of 
LeakyRelu:  

𝑎Cℎ(-), ℎ(2), MK(-2)E = LeakyRelu(W(-2)vℎ(-) ∥ ℎ(2)w + 𝑏(-2)) 

whereW(-2) ∈ ℝ6g×<6g, 	𝑏(-2) ∈ ℝ are edge-wise parameters of the fully connected layer. In 
particular, these parameters are generated by the meta learner from the meta knowledge as 
shown in Figure 12 (b). Formally, let ℊ= and ℊ> be FCNs within the meta learner to generate 
W(-2) and 	𝑏(-2) respectively, then for any edge (i,j):  

W(xy) = ℊzCMK(xy)E ∈ ℝ{g×}{g 

𝑏(xy) = ℊ~CMK(xy)E ∈ ℝ 

Note that the output of a FCN is a vector, so we need to reshape the output to the corresponding 
parameter shape. 

l Hidden state aggregation. Like GAT, we firstly normalize the attention score for a node across 
all its neighborhoods by softmax:  
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𝑎(-2) =
exp	(𝑤(-2))

∑ exp	(𝑤(-2))2∈(#
	

Then for each node, we calculate the overall impact of neighbohoods by linear combinations 
of the hidden states corresponding to the normalized weights and apply a nonlinearity 
function σ (e.g., ReLU), which is expressed as 𝜎C∑ 𝑎(-2)ℎ(2)2∈(# E. After that, let 𝜆(-2) ∈ (0, 
1) be a trainable parameter denoting the weights of neighborhoods’ impact to node i. And 
finally, the hidden state for node i with consideration of spatial correlations is expressed as:  

ℎj(-) = C1 − 𝜆(-)Eℎ(2) + 𝜆(-)𝜎 �� 𝑎(-2)ℎ(2)

2∈(#

� 

Since we extract meta knowledge from features of locations and edges, and use such 
information to generate the weights of graph attention network, Meta-GAT can model the inherent 
relationship between geo-graph attributes and diverse spatial correlations.  

4.5 Meta Recurrent Neural Network 
Since temporal correlations of urban traffic vary from location to location, a simple shared RNN 
(like Eq. 3) is not sufficient to capture diverse temporal correlations. To model such diversity, we 
adopt the similar idea of Meta-GAT to generate the weights of RNN from node embeddings, which 
is learned by NMK-Learner from node attributes (e.g., LUs and RNs).  
   Here we introduce Meta-GRU as a concrete example of Meta- RNN. It adopts the node-wise 
parameters within GRU. Formally, we define Meta-GRU as:  

𝐻! = Meta-GRU(𝑍! , 𝐻!"&, 𝒱), 
Where 𝑍! = (𝑧(&), … , 𝑧((H)) and 𝐻! = (ℎ(&), … , ℎ((H)) are the inputs and the hidden states at 
timestamp t, respectively, and	𝒱 = (𝑣(&), … , 𝑣((H)) is the node attributes. Then for any node i, the 
current hidden states can be calculated by: 

𝑊7
(-) = ℊ@�CNMK(𝑣

(&))E 

𝑈7
(-) = ℊA�CNMK(𝑣

(&))E 

𝑏7
(-) = ℊ>�CNMK(𝑣

(&))E 
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ℎ!
(-) = GRUI𝑧!

(-), ℎ!"&
(-) e𝑊7, 𝑈7, 𝑏7K, 

where𝑊7
(-) ,	𝑈7

(-) and 𝑏7
(-)arenode-wise parameters generated from 𝑣(&) by a meta learner which 

consists of three types of FCNs ℊ@� , ℊA�,	ℊ>� (Ω ∈ {𝑢, 𝑟, ℎ}). As a result, all nodes have their 
individual RNNs respectively, and the models represent the temporal correlations related to the 
node attributes. In ST-MetaNet, we take the outputs of Meta-GAT as the inputs of Meta-RNN (i.e., 
𝑍! ), accordingly, both diverse spatial and temporal correlations are captured.  

4.6 Algorithm of Optimization 

Suppose the loss function for framework training is ℒ!:+-. , which measures the difference 
between the prediction values and the ground truth. We can train ST-MetaNet end-to-end by 
backpropagation. In specific, there are two types of trainable parameters. Let 𝜔&  denote the 
trainable parameters in common neural networks (Chaper 5.1), 𝜔< denote all trainable parameters 
in the meta-knowledge learners (Chaper 5.2), and meta learners (Chaper 5.3 and Chaper 5.4). For 
parameter 𝜔& in common neural networks, the gradient of it is ∇𝜔&ℒ!:+-. As for parameter 𝜔< 
in meta-knowledge learner and meta learner which generates parameter 𝜃 , the gradient of 𝜔< 
can be calculated by chain rule because both meta-knowledge learner and meta learner are 
differentiable neural networks:  

∇𝜔&ℒ!:+-. = ∇𝜔&ℒ!:+-.∇𝜔<𝜃. 

Algorithm 1 outlines the training process of ST-MetaNet. We first construct training data (Lines 
1-5). Then we iteratively optimizer ST-MetaNet by gradient descent (Lines 7-12) until the stopping 
criteria is met.  Algorithm 1 outlines the training process of ST-MetaNet. We first construct 
training data (Lines 1-5). Then we iteratively optimizer ST-MetaNet by gradient descent (Lines 7-
12) until the stopping criteria is met.  
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CHAPTER 5: EVALUATION 

5.1 Experimental Settings 
Task Description. We illustrate the details of experimental setting is shown in Table 7. In this 
task, we use previous 2-hour dynamic data to predict up to the next 30-minute taxi demand. We 
partition the data on the time axis into nonoverlapping training, evaluation, and test data, by the 
ratio of 8: 1:1. The details of the datasets in taxi demand prediction is shown in Table 8.  
 

Table 7: Details of dataset. (Inside of () show # features included in each dataset.) 

Task Taxi demand prediction 
Kinds of datasets Yellow taxi, HVFHV 
Prediction target The number of pick up taxi 

Timespan 5/1/2019 – 6/30/2019 
Time interval 10 minutes 
# timestamps 8784 

Dataset split ratio  
(Train:Eval:Test) 

8:1:1 

Input length (ML model / DL model) 1 / 12 (Previous 2 hours) 
Output length 1 / 3 (up to the next 30-minute) 

Metrics MAE, RMSE, R< 
# nodes 263 (# Taxi zones) 
# edges 665 (# Connected roads) 

# node attributes 26 (Road(10) + LUs(11) + Others(5)) 
# edge attributes 10 (Road(10)) 

# dynamic features 67 (Taxi(2) + Time(42) + Event(20) +Weather(3)) 

ML: Machine Learning, DL: Deep Learning 
 
Scaling. All categorical numeric are scaled by dummy conversion and all quantitative numeric 
are scaled by z-score. 
Metrics. We use mean absolute error (MAE), rooted mean square error (RMSE) and coefficient 
of determination (R<) to evaluate prediction model. 

MAE =
1
𝑛�

|𝑦- − 𝑦B�|
.

-C&

, RMSE = �
1
𝑛�(𝑦- − 𝑦B�)<

.

-C&

, R< = 1 −
∑ (𝑦- − 𝑦B�)<.
-C&
∑ (𝑦- − 𝑦j)<.
-C&
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Table 8: Details of the datasets in taxi demand prediction. 

Datasets Name Property Value 

Taxi 

Attribute type Dynamic 

# features 2 

Features Name Pickup, Dropoff 

Time 

Attribute type Dynamic 

# features 42 

Features Name 

The categorical data of month (5 to 6), number of 
weekday (0 to 6), holiday or not (0 or 1), hour (0 to 
23) and minute index (0, 10, 20, 30, 40, 50). And 
repeated number of the day period (0 to 143).  

Land Use 

Attribute type Node 

# features 11 

Features Name Shown in Table1 

Road 

Attribute type Node and Edge 

# features 10 

Features Name Shown in Table 2 

Event 

Attribute type Dynamic 

# features 20 

Features Name Shown in Table 3 

Weather 

Attribute type Dynamic 

# features 3 

Features Name Shown in Table 4 

Others 

Attribute type Node 

# features 5 

Features Name Shown in Table 5 
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Baselines.  
l HA (Historical average). We model the urban traffic as the seasonal process, where the 

period is one day. In our research, the period is 144 (6 periods per 24 hours) per one day. 
We use the average values of the train dataset. 

l Lasso / XGBoost (XGB) / Multiple Perceptron Layer (MLP). These are basic regression 
models. For each future step (next 30 minutes), we train a single model, and predict the taxi 
demand, where the input consists of timeseries sequence of previous 2-hour taxi pickup and 
drop off demand, node attributes, dynamic features every 263 taxi zones. The code is 
implemented by scikit-learn which is a python library for machine learning. The parameter 
of Lasso, 𝛼  is set as 1.0. The parameter of XGB is set as follow: {n_estimators 500, 
min_child_weight: 2, max_depth: 25, subsample: 0.3, learning_rate: 0.1, gamma: 0.15, 
num_boost_round: 1000, early_stopping_rounds: 5}. The parameter of MLP is set as follow: 
{activation: relu, solver: adam, early_stopping: True, validation_fraction: 877/(7015+877), 
alpha: 0.0001, hidden_layer_sizes: (256,128,64)}. 

l Seq2Seq [20]. We implement a two-layer sequence-to-sequence model for urban traffic 
prediction, where GRU is chosen as the RNN implementation. It contains 2 layers of GRU, 
each of which has 128 hidden units. The features of nodes, i.e., node attributes and dynamic 
features are firstly embedded by a two-layer FCN with hidden units [32,32]. Then the outputs 
of FCN fuse with the outputs of the decoder in Seq2Seq. Finally, the fused vectors are linearly 
projected into two-dimensional vectors, as the predictions of pickup and drop off value.  

l GAT-Seq2Seq [21]. We employ graph attention network and Seq2Seq to model spatial and 
temporal correlations, respectively. It applies the similar structure as ST-MetaNet, which 
consists of a GRU layer, a GAT layer, and a GRU layer. All these layers have 128 hidden 
units, respectively. Like Seq2Seq, we also embed the node attributes and dynamic features by 
a two-layer FCN with hidden units [32,32], and fuse the embeddings with the outputs of 
decoder. Finally, the fused vectors are linearly projected into two-dimensional vectors, as the 
predictions of pickup and drop off value.  

Settings of ST-MetaNet. The structure of ST-MetaNet for taxi flow prediction is as follow:  
l RNN. We adopt GRU as the implementation of RNN, in which the dimension of hidden state 

is 64.  
l NMK-Learner. It is a two-layer FCN with hidden units [32, 32].  
l EMK-Learner. It is a two-layer FCN with hidden units [32, 32].  
l Meta-GAT. The meta learner to generate the weights of GAT is a FCN with hidden units [16, 

2, n], where n is the dimension of the target parameters. The Meta-GAT outputs a 64 
dimensional hidden states for each node.  
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l Meta-RNN. We adopt Meta-GRU as Meta-RNN implementation, in which the dimension of 
hidden state is 64. The meta learner to generate the weights of GRU is a FCN with hidden 
units [16, 2,n], where n is the dimension of the target parameters.  
The Framework is trained by Adam optimizer with learning rate decay. The initial learning 

rate is 1e-2, and it is divided by 10 every 20 epochs. We also apply gradient clipping before 
updating the parameters, where the maximum norm of the gradient is set as 5. To tackle the 
discrepancy between training and inference in Seq2Seqarchitecture, we employ inverse sigmoid 
decay for schedule sampling in the training phase: 

𝜖- =
𝑘

𝑘 + exp	(𝑖/𝑘) 

where we set k = 2000. The batch size for taxi flow prediction is set as 16. 
Environment. Our implementation is based on MXNet 1.5.1 2, and DGL 0.1.3 3, tested on Ubuntu 
16.04 with a Gefrase GTX 1080. Machine spec is Intel (R) Core (TM) i7-7700K CPU @ 4.20GHz 

5.2 Performance Results 

The performance of the competing baselines and ST-MetaNet in the case of yellow taxi and 
HVFHV dataset are shown in Table 9 and Table 10. For deep models, we train and test each of 
them five times, and present results as the format: "mean ± standard deviation".  

As a result, it is shown that the most accurate model for prediction up to 30 minutes ahead is 
ST-MetaNet using all types of data. On the other hand, ST-MetaNet using dynamic data of only 
taxi data has the highest accuracy in the case of 10 minutes ahead prediction. As shown in Table 
9 and 10, ST- MetaNet outperforms all the baselines on both metrics. Specifically, ST-MetaNet 
shows about 9.0% and 9.4% improvements in the case of yellow taxi dataset and over 8.4% and 
8.1% improvements in the case of HVFHV dataset on overall MAE and RMSE beyond other 
baselines respectively for prediction up to future 30 minutes. Compared with GAT-Seq2Seq, ST-
MetaNet also achieves significant improvement, because it explicitly models the inherent 
relationship between geo-graphical information and ST correlations. Seq2Seq does not con-sider 
spatial correlations and diversity of temporal correlations, so it gets much larger error compared 
with other deep models. Conventive methods, i.e., Lasso, XGB and MLP are also good model of 
urban traffic. However, due to the limitation of model expressiveness and the incapability to fully 
leverage geographical information, the error become large compare with ST-MetaNet. 
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Table 9: Performance results on yellow taxi demand prediction. 

Models HA 
Lasso 

(All) 

XGB 

(All) 

MLP 

(All) 

Seq2Seq 

(All) 

GAT- 

Seq2Se2 (All) 

ST-MetaNet 

(All) 

ST-MetaNet 

(Taxi) 

All 

𝐑𝟐 0.8515 0.9397 0.9482 0.9562±0.0003 0.9455±0.0000 0.9473±0.0000 0.9616±𝟎. 𝟎𝟎𝟎𝟎 0.9614±0.0000 

𝐑𝐌𝐒𝐄 6.441 4.105 3.804 3.499±0.013 3.603±0.000 3.558±0.000 3.186±0.000 3.181±𝟎. 𝟎𝟎𝟎 

𝐌𝐒𝐄 1.960 1.693 1.334 1.236±0.015 1.213±0.000 1.200±0.000 1.087±0.000 1.081±𝟎. 𝟎𝟎𝟎 

Next 10 

min 

𝐑𝟐 0.8518 0.9512 0.9558 0.9624±0.0004 0.9590±0.0000 0.9604±0.000 0.9697±0.0000 0.9704±𝟎. 𝟎𝟎𝟎𝟎 

𝐑𝐌𝐒𝐄 6.438 3.695 3.516 3.243±0.019 3.168±0.000 3.129±0.000 2.845±0.000 2.806±𝟎. 𝟎𝟎𝟎 

𝐌𝐒𝐄 1.959 1.553 1.261 1.170±0.011 1.085±0.000 1.076±0.000 0.983±0.000 0.963±𝟎. 𝟎𝟎𝟎 

Next 20 

min 

𝐑𝟐 0.8515 0.9399 0.9498 0.9572±0.0009 0.9456±0.0000 0.9475±0.0000 0.9611±𝟎. 𝟎𝟎𝟎𝟎 0.9608±0.0000 

𝐑𝐌𝐒𝐄 6.441 4.096 3.746 3.456 ±0.035 3.595±0.000 3.551±0.000 3.203±𝟎. 𝟎𝟎𝟎 3.204±0.000 

𝐌𝐒𝐄 1.960 1.693 1.316 1.236±0.005 1.219±0.000 1.205±0.000 1.100±𝟎. 𝟎𝟎𝟎 1.101±0.000 

Next 30 

min 

𝐑𝟐 0.8512 0.9279 0.9445 0.9529±0.013 0.9312±0.0000 0.9332±0.0000 0.9540±𝟎. 𝟎𝟎𝟎𝟎 0.9528±0.0000 

𝐑𝐌𝐒𝐄 6.444 4.486 3.936 3.626±0.048 3.997±0.000 3.946±0.000 3.478±𝟎. 𝟎𝟎𝟎 3.500±0.000 

𝐌𝐒𝐄 1.961 1.832 1.366 1.287±0.022 1.336±0.000 1.319±0.000 1.179±𝟎. 𝟎𝟎𝟎 1.182±0.000 

# features 1 378 378 378 93 93 93 2 

# params - - - 138,619 351,682 419,780 261,248 236,672 

Inside of () show kind of dynamic feature used in dataset. The best for each metric is indicated by bold face. 
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Table 10: Performance results on HVFHV taxi demand prediction. 

Models HA 
Lasso 

(All) 

XGB 

(All) 

MLP 

(All) 

Seq2Seq 

(All) 

GAT- 

Seq2Se2 (All) 

ST-MetaNet 

(All) 

ST-MetaNet 

(Taxi) 

All 

𝐑𝟐 0.7942 0.9156 0.9278 0.9340±0.0014 0.9206±0.0000 0.9186±0.0000 0.9375±𝟎. 𝟎𝟎𝟎𝟎 0.9354±0.0000 

𝐑𝐌𝐒𝐄 10.029 6.422 5.941 5.682±0.060 5.616±0.000 5.653±0.000 5.144±𝟎. 𝟎𝟎𝟎 5.178±0.000 

𝐌𝐒𝐄 5.432 4.151 5.731 3.577±0.040 3.546±0.000 3.558±0.000 3.258±𝟎. 𝟎𝟎𝟎 3.281±0.000 

Next 10 

min 

𝐑𝟐 0.7944 0.9314 0.9353 0.9412±0.0017 0.9353±0.0000 0.9338±0.000 0.9484±𝟎. 𝟎𝟎𝟎𝟎 0.9479±0.0000 

𝐑𝐌𝐒𝐄 10.027 5.791 5.623 5.363±0.076 5.112±0.000 5.145±0.000 4.679±0.000 4.674±𝟎. 𝟎𝟎𝟎 

𝐌𝐒𝐄 5.432 3.848 3.624 3.460±0.044 3.272±0.000 3.287±0.000 2.990±0.000 2.981±𝟎. 𝟎𝟎𝟎 

Next 20 

min 

𝐑𝟐 0.7943 0.9156 0.9270 0.9312±0.0013 0.9218±0.0000 0.9205±0.0000 0.9373±𝟎. 𝟎𝟎𝟎𝟎 0.9351±0.0000 

𝐑𝐌𝐒𝐄 10.029 6.423 5.972 5.800 ±0.054 5.576±0.000 5.609±0.000 5.147±𝟎. 𝟎𝟎𝟎 5.186±0.000 

𝐌𝐒𝐄 5.433 4.156 3.741 3.606±0.033 3.538±0.000 3.548±0.000 3.278±𝟎. 𝟎𝟎𝟎 3.306±0.000 

Next 30 

min 

𝐑𝟐 0.7940 0.8999 0.9210 0.9198±0.045 0.9042±0.0000 0.9007±0.0000 0.9265±𝟎. 𝟎𝟎𝟎𝟎 0.9229±0.0000 

𝐑𝐌𝐒𝐄 10.032 6.995 6.213 3.257±0.175 6.114±0.000 6.158±0.000 5.569±𝟎. 𝟎𝟎𝟎 5.630±0.000 

𝐌𝐒𝐄 5.433 4.451 3.826 3.779±0.077 3.828±0.000 3.838±0.000 3.506±𝟎. 𝟎𝟎𝟎 3.554±0.000 

# features 1 378 378 378 93 93 93 38 

# params - - - 138,619 351,682 419,780 261,248 2366,72 

Inside of () show kind of dynamic feature used in dataset. The best for each metric is indicated by bold face 

 

5.3 Consideration 
This section discusses the results of the 5.2 evaluation. First, in order to extract feature values 

with high importance from many feature values, the top 50 feature values were plotted using gain, 
which is an evaluation index of the degree of improvement of feature values in a tree-based 
model. Figure from 13 to 18 show plot of top 50 feature importance by gain in XGB model for 
10, 20 and 30 minutes ahead prediction using Yellow Taxi data and HVFHV. From these 6 
figures, you can see the following three things mainly. The first is that the value of pickup, which 
is the closest to the prediction, is significantly most important. Second, following the past value 
of the pick-up value, the importance of the feature value of the event is high. In other words, this 
figure shows that more accurate forecasts can be calculated by adding the event information of 
future events to the features in advance. And finally, the third shows that geographic features 
such as nodes and edge features do not exist at the top. As described earlier, this is probably 
because the machine learning model represented by XGB cannot take geographic correlation into 
account. 
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Figure 14: Figure 12: Plot of top 50 feature importance by gain in XGB model for 10 

minutes ahead prediction using Yellow Taxi data. 
 

 
Figure 15: Plot of top 50 feature importance by gain in XGB model for 20 minutes ahead 

prediction using Yellow Taxi data. 
 

 
Figure 16:Figure 14: Plot of top 50 feature importance by gain in XGB model for 30 

minutes ahead prediction using Yellow Taxi data. 
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Figure 17: Plot of top 50 feature importance by gain in XGB model for 10 minutes ahead 
prediction using FHVFV data. 

 

Figure 18: Plot of top 50 feature importance by gain in XGB model for 20 minutes ahead 
prediction using FHVFV data. 

 

Figure 19: Plot of top 50 feature importance by gain in XGB model for 30 minutes ahead 
prediction using FHVFV data. 
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Figure 19, 20 and 21 show observation value, predicted value by MLP and ST-MetaNet (All) 
at the node number of 79, 138 and 132 for 10 minutes ahead prediction. The place whose node 
number 79 is center of manhattan near Wall street. The place whose node number 138 is LGA 
airport. The place whose node number 138 is JFK airport. These places are highest taxi demand 
places in all taxi zones. From these figures, it can be seen that the predicted value by ST-MetaNet 
fits the observed value better than the predicted value of MLP, which is the most accurate model 
among the baselines. This is probably because ST-MetaNet captures the correlation between 
various complex spatial features and temporal features. 

 

 
Figure 20: Observation value and predicted value by MLP and ST-MetaNet (All) at place 

where node number is 79 (near to Wall St.) for 10 minutes ahead prediction. 
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Figure 21: Observation value and predicted value by MLP and ST-MetaNet (All) at place where node 

number is 138 (LGA airport) for 10 minutes ahead prediction. 
 

 
Figure 22: Observation value and predicted value by MLP and ST-MetaNet (All) at place 

where node number is 138 (JFK airport) for 10 minutes ahead prediction. 
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CHAPTER 6: CONCLUSION AND FUTURE WORKS 
In this study, spatio-temporal prediction of taxi demand is conducted using geographical 
attributes and context data, capable of learning traffic-related embeddings of nodes and edges 
from geo-graph attributes modeling both spatial and temporal correlations. And we also add 
contextual data such as time time series information, weather and event data to capture long-term 
periodicity and short-term rapid change. We evaluated our ST-MetaNet on two real-world tasks, 
achieving performance which significantly outper-forms 6 baselines. And it is found that the 
prediction models capture event features well and less weather features for precise prediction. In 
the future, we will extend our framework to a much broader set of urban ST prediction tasks. 

The main remain work is parameter turning and of ST-MetaNet. Because ST-Meta has many 
components, RNN, EMK-Learner, NMK-Learner, Meta-GAT and Meta-RNN, so it is necessary 
to tune the proper hidden layer size and unit size of each layer. As shown in MAE loss curve 
attached in appendix section, it can be seen that the learning curve is not smooth. The cause of 
inefficient learning would be algorithm of optimization written in Section4 6. Loss function in 
backpropagation may have fallen into a local solution because of non-fit parameters such like 
learning rate. 
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APPENDIX 

A. Data dictionary provided by TLC 
A.1: Yellow taxi data dictionary provided by TLC [24]. 
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A. 2: HVFHV data dictionary provided by TLC 

 

 

 

 

 

B. MAE loss curve by several prediction models 
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B.1: MAE loss curve by XGB model using Yellow Taxi dataset  

for future 10 minutes prediction. 

 
B.2: MAE loss curve by XGB model using Yellow Taxi dataset  

for future 20 minutes prediction. 
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B.3: MAE loss curve by XGB model using Yellow Taxi dataset  
for future 30 minutes prediction. 

 
B.4: MAE loss curve by XGB model using FHVFV dataset  

for future 10 minutes prediction. 
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B.5: MAE loss curve by XGB model using FHVFV dataset  

for future 20 minutes prediction. 

 
B.6: MAE loss curve by XGB model using FHVFV dataset  

for future 30 minutes prediction. 
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B.7: MAE train loss curve by MLP model using Yellow Taxi dataset  

for future 10 minutes prediction for 5 times. 

 
B.8: MAE train loss curve by MLP model using Yellow Taxi dataset  

for future 20 minutes prediction for 5 times. 
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B.9: MAE train loss curve by MLP model using Yellow Taxi dataset  

for future 30 minutes prediction for 5 times. 

 
B.10: MAE train loss curve by MLP model using FHVFV dataset 

for future 10 minutes prediction for 5 times. 
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B.11: MAE train loss curve by MLP model using FHVFV dataset 

for future 20 minutes prediction for 5 times. 

 
B.12: MAE train loss curve by MLP model using FHVFV dataset 

for future 30 minutes prediction for 5 times. 



 52/60 

 

B.413: MAE loss curve by Seq2Seq model using Yellow Taxi dataset 
for future 10 minutes prediction for 5 times. 

 

B.14: MAE loss curve by Seq2Seq model using Yellow Taxi dataset 
for future 20 minutes prediction for 5 times. 
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B.15: MAE loss curve by Seq2Seq model using Yellow Taxi dataset 
for future 30 minutes prediction for 5 times. 

 
B.16: MAE loss curve by GAT-Seq2Seq model using Yellow Taxi dataset 

for future 10 minutes prediction for 5 times. 
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B.17: MAE loss curve by GAT-Seq2Seq model using Yellow Taxi dataset 

for future 20 minutes prediction for 5 times. 
 

 
B.18 MAE loss curve by GAT-Seq2Seq model using Yellow Taxi dataset 

for future 30 minutes prediction for 5 times. 
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B.19: MAE loss curve by ST-MetaNet model using Yellow Taxi dataset 

for future 10 minutes prediction for 5 times. 
 

 
B.20: MAE loss curve by ST-MetaNet model using Yellow Taxi dataset 

for future 20 minutes prediction for 5 times. 
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B.21: MAE loss curve by ST-MetaNet model using Yellow Taxi dataset 

for future 30 minutes prediction for 5 times. 

 

B.22 MAE loss curve by Seq2Seq model using FHVFV dataset 
for future 10 minutes prediction for 5 times. 

 



 57/60 

 

B.23: MAE loss curve by Seq2Seq model using FHVFV dataset 
for future 20 minutes prediction for 5 times. 

 

B.24: MAE loss curve by Seq2Seq model using FHVFV dataset 
for future 30 minutes prediction for 5 times. 
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B.24: MAE loss curve by GAT-Seq2Seq model using FHVFV dataset 

for future 10 minutes prediction for 5 times. 
 

 
B.25: MAE loss curve by GAT-Seq2Seq model using FHVFV dataset 

for future 20 minutes prediction for 5 times. 
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B.26: MAE loss curve by GAT-Seq2Seq model using FHVFV dataset 

for future 30 minutes prediction for 5 times. 
 

 
B.27 MAE loss curve by ST-MetaNet model using FHVFV dataset 

for future 10 minutes prediction for 5 times. 
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B.28: MAE loss curve by ST-MetaNet model using FHVFV dataset 

for future 20 minutes prediction for 5 times. 
 

 
B.29: MAE loss curve by ST-MetaNet model using FHVFV dataset 

for future 30 minutes prediction for 5 times. 


