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1

Introduction

1.1 Background

The Internet has become an indispensable infrastructure in the modern information society,

and the convenience of our lives has greatly improved. On the other hand, the threat of cyber

attacks targeting important services and confidential information on the Internet is increasing.

Many cyber-attacks are caused by the attacker infecting the target device with malicious

software (malware). The attacker illegally manipulates the device infected with malware,

obtains or falsifies data, and performs new cyber-attacks using that device as a stepping-stone.

When the attacker performs cyber-attacks, communication on the Internet always occurs.

For example, a device infected with malware called “Bot” communicates with a command

and control (C&C) server and performs cyber-attacks upon receiving a command from an

attacker. Similarly, both spams to direct users to malicious sites and brute-force attacks to

decrypt user account/password information communicate with target devices and servers. In

other words, it is important to analyze communication data on the Internet when considering

effective countermeasures against cyber-attacks.

In this thesis, we focus on domain names and IP addresses (that is, address information),

which are the most basic and essential identifiers of communication data on the Internet. Here,

the domain name and IP address abused by the attacker are called the malicious domain name

and malicious IP address, respectively. By collecting malicious domain names and malicious

IP addresses, we can detect and block malicious communications.

On the other hand, attackers are making cyber-attacks more sophisticated every day, and

malicious domain names and malicious IP addresses are changing accordingly. In other words,

the above countermeasure is effective temporarily but not permanently. The purpose of this

thesis is to take more effective countermeasures against cyber-attacks by analyzing the details
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1 INTRODUCTION

of malicious domain names and malicious IP addresses and extracting their characteristics.

Specifically, we propose a machine learning model that can detect malicious domain names

with high accuracy by learning only a small amount of training data. Moreover, we conducted

a large-scale analysis of the actual status of cyber-attacks that abuse cloud services.

1.2 Outline

The rest of this thesis is organized as follows. In Chapter 2, we propose a machine learning

model that can detect malicious domain names with high accuracy by learning only a small

amount of training data. In the conventional method, to detect malicious domain names with

high accuracy, a large number of labeled benign/malicious domain names data is required.

However, the enormous cost of correctly labeling a large number of domain names is a problem.

Therefore, we proposed a labeling method based on active learning. Active learning is a

machine-learning approach to select and label domain names that are expected to improve

classification accuracy. As a result of the evaluation experiment using real domain names data,

we realized the highly accurate detection of malicious domain names by labeling and learning

a much smaller number of domain names than the conventional method. In Chapter 3, we

conduct a large-scale analysis of the actual status of cyber-attacks that abuse cloud services.

In the cloud service, IP addresses of the cloud service provider are shared between users. In

this situation, there is a risk that legitimate users will be subjected to various restrictions

if IP addresses blacklisted for malicious activity in the past are assigned to the servers they

use. As a result, there is also a risk that the reputation of the cloud service provider will

decrease. Therefore, we conducted the first large-scale analysis for revealing the actual status

of cloud service abuse and discussing effective countermeasures. For this analysis, we require

a large-scale observation point for various cyber-attacks that abuse cloud services. Our idea is

to indirectly observe such attacks by using many different types of blacklists in combination.

Our study showed some attack trends using cloud services such as attack types, regions, and

anti-abuse actions.
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Efficient Labeling for Detecting

Malicious Domain Names

2.1 Indroduction

Security technologies related to the Internet along with the domain names and DNS (Domain

Name System) that support it are indispensable for realizing a “Sustainable Social Informa-

tion Infrastructure”. While some domain names are used normally, others, known as malicious

domain names, are abused by attackers. Malicious domain names are used as attack infras-

tructures in various cyber-attacks. According to Cisco reports, in 2015, 91.3% of cyber-attacks

used a malicious domain name [1]. In addition, attackers employ sophisticated techniques to

avoid general countermeasures against the use of malicious domain names. For example, they

generate a large number of malicious domain names that are effective only for a short period

of time using a method known as the Domain Generation Algorithm (DGA), or they reac-

quire benign domain names that were originally used for different purposes and abuse them [2,

3]. This suggests that there is a strong need for a technology to effectively classify malicious

domain names to prevent cyber-attacks using these domain names as infrastructure.

In the situation where attackers use and throw away a large number of malicious domain

names in a short period of time, the conventional countermeasure of creating a blacklist of

malicious domain names has become ineffective because the size of the blacklist grows unnec-

essarily, and most domain names in it are not used already. Therefore, a system to classify

the malicious domain names using supervised machine learning has been proposed as a new

countermeasure technique. In this paper, such a system is called a malicious domain name

detection system.

Many malicious domain name detection systems using supervised machine learning have been
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2 EFFICIENT LABELING FOR DETECTING MALICIOUS DOMAIN NAMES

previously proposed [4, 5, 6, 2, 7, 3, 8]. Some of them are used as commercial services. For

example, Notos [4] has been proposed by Manos et al. and DomainProfiler [8] has been proposed

by Chiba et al. Generally, in order to apply supervised machine learning to the classification

problem and obtain sufficient classification accuracy, it is necessary to prepare a large amount

of data with exact class labels as training data. For example, DomainProfiler, proposed by

Chiba et al., realizes its high classification accuracy by using approximately 170,000 domain

names, carefully labeled as training data by specialized technicians.

Apart from paying attention to the amount of training data, it is also necessary to consider

the imbalance of class labels in the training data. This is because if the labels included in the

training data are extremely biased, a classifier with low classification accuracy for a minority

class may be trained. In general, because there are few malicious domain names compared to

benign domain names, it is necessary to take measures against such an imbalance to improve

the accuracy of classifying a malicious domain name. For example, in DomainProfiler, the

proportion of benign domain names to malicious domain names in the training data was

adjusted to be substantially equal.

However, an examination of the labels of domain names randomly chosen from all real

domain names indicates that the probability of a domain name being malicious is extremely

low. Therefore, the collection of a large number of malicious domain names that can guarantee

sufficient classification accuracy in a malicious domain name detection system using supervised

machine learning has a large labeling cost. Moreover, most of the benign domain names

collected as a by-product of collecting malicious domain names cannot be used as training

data. Reducing the labeling costs under these circumstances can be said to be a common

problem of malicious domain name detection systems using supervised learning. Moreover,

this problem cannot be ignored in actual operations because it is necessary to continuously

update the training data used to retrain the malicious domain name detection system during

operation to maintain the classification accuracy for new domain names generated on a daily

basis.

In this paper, we propose a labeling method based on active learning. Active learning is a

machine-learning approach that implements the process of selecting the domain names to be

labeled to improve the classification accuracy. Labeling only those domain names that would

be useful as training data can sufficiently improve the classification accuracy of the classifier

with a small amount of training data. This would also greatly reduce the cost of labeling

domain names, which is defined as the number of domain names to be labeled in this paper.

Accordingly, the method proposed in this paper is expected to be useful when updating a

currently operating classifier by adding new training data and in the initial stages of training

8



2 EFFICIENT LABELING FOR DETECTING MALICIOUS DOMAIN NAMES

a new classifier when less training data are available.

Furthermore, when training a classifier with a small amount of training data, the result

overly fits only those training data, with the problem that the ability to classify unknown

data could not be guaranteed. In this study, we solve this problem by introducing the idea of

ensemble learning, namely we take the weighted average of the prediction results of multiple

classifiers.

The contribution of this paper is as follows.

• A classifier with sufficient classification accuracy can be acquired after greatly reducing

the absolute number of domain names that humans need to label.

• A classifier with sufficient classification accuracy can be acquired even for domain name

data in which the proportion of benign and malicious is biased.

• The classification accuracy can be maintained even under conditions where the property

of the domain name continues changing.

The structure of this paper is as follows. Section 2.2 explains the application of active

learning and ensemble learning proposed in this paper to a malicious domain name detection

system. In Section 2.3, we describe the evaluation experiment conducted by using data of

actually observed domain names, and discuss the result in Section 2.4. Section 2.5 discusses

the limitation and practicality of the proposed method. Section 2.6 summarizes related work,

and Section 2.7 concludes this paper.

2.2 Proposed Method

2.2.1 Motivation

As described above, improving the classification accuracy of malicious domain names by

supervised machine learning generally requires two conditions to be established. In other

words, (1) a large amount of data with accurate class labels must be prepared as training

data and (2) the imbalance of class labels in the training data needs to be adjusted. Solving

the problem described in (1) requires us to determine how to reduce the cost of labeling the

domain name. This is necessary because of the excessive cost associated with labeling each

domain name, for which there are two main reasons. The first is that the number of domain

names continues to increase day by day regardless of whether they are benign or malicious.

The second is that it is not easy to correctly determine whether the domain name is actually
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being used in an attack, because this would require classification by a security device and

analysis by a skillful technician. Solving the problem described in (2) requires undersampling

of the majority of labeled data, oversampling of the minority of labeled data, customization of

the objective function in learning, or a combination thereof as a conceivable standard method.

However, these countermeasures are possible when the labeled data are provided. In other

words, when a label is not provided, techniques such as undersampling, oversampling, and

customization of the objective function cannot be applied.

This motivated us to propose a step-by-step method to select a domain name to be labeled

based on the certainty of whether revealing the label of the selected domain name would

contribute to the improvement of the classification accuracy of the current classifier. By

using this method, we can select a domain name to be labeled without overly biasing the

benign domain name. In addition, we propose a method to integrate the classifiers trained

using training data labeled at each stage. The use of these methods is expected to enable

a classifier with sufficient classification accuracy and generalization ability to be acquired

with a small amount of training data. In addition, this approach is expected to realize high

classification accuracy regardless of the proportion of malicious and benign domain names in

the training data. That is, we expect it to be possible to reduce the cost of labeling and

overcome the imbalance in the proportion of class labels simultaneously. Thus, it should be

noted that the issue of this paper is “Proposing the labeling method to reduce the labeling cost

while maintaining classification accuracy”. Our proposed method uses active learning to select

domain names to be labeled, and ensemble learning for the integration of multiple classifiers.

The above idea can be applied universally to a system for classifying malicious domain

names by using supervised machine learning. However, in order to improve the classification

accuracy by implementing it concretely, it is necessary to adjust according to the characteristics

of individual systems. Therefore, this paper does not compare the classification accuracy

between multiple systems but compares multiple labeling methods for one specific system. This

is because the viewpoint of evaluation in this study is the extent of reduction of labeling cost.

We selected DomainProfiler proposed by Chiba et al. in this paper because it has the highest

classification accuracy for malicious domain names between the existing systems. This system

has the ability to classify malicious domain names with an accuracy of 99% by performing

feature design focusing on the time series variation of a domain name usage situation. Another

reason for choosing it is that DomainProfiler is one of the few systems whose training data,

features, and algorithm have been clarified through papers. In addition to DomainProfiler,

Notos [4] proposed by Manos et al. is also one of such systems. However, all features used in

Notos are also used in DomainProfiler. In other words, DomainProfiler is upward compatible

10
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Fig 2.2: Procedure of the proposed method

with Notos and the classification accuracy is greatly improved by DomainProfiler. There are

many commercial malicious domain name detection systems but most of them do not reveal

the technical details as described above. We consider a method to expand DomainProfiler

such that it can be applied to unlabeled data. This approach reduces the labeling cost and

improves classification accuracy and stability.

The relationship between the proposed method and the conventional method is illustrated

in Fig. 2.1. In addition, the procedure of the proposed method is shown in Fig. 2.2. The

proposed method consists of two elements: (1) a method for labeling domain names by active

learning, and (2) a method for integrating multiple classifiers by ensemble learning. Further,

in the conventional system typified by DomainProfiler, labeled domain name data are given as

input, whereas in the proposed method domain name data without labels are used as input. In

addition, the output of the conventional method is a single classifier, whereas the output of the

proposed method is a model integrating multiple classifiers. The proposed method therefore

extends and improves the conventional method. We explain the application of active learning

(1) in Section 2.2.2, and the application of ensemble learning (2) in Section 2.2.3.
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2.2.2 Selection of Training Data to be Labeled by Active Learning

Our proposed method introduces the idea of active learning, which is used as the domain

name labeling method. Through active learning, a series of processes is performed in which

unlabeled domain names are selected to be labeled. They are then labeled, added as new train-

ing data, and the classifier is retrained. Active learning entails selecting only data considered

to contribute to the improvement of the classification accuracy of the classifier at that time in

stages and labeling these data. Therefore, it is possible to improve the classification accuracy

of the classifier while suppressing the cost of acquiring the labeled training data.

Many methods for selecting data to be labeled have been proposed, depending on the method

for evaluating the degree to which it is expected to contribute to improving the classification

accuracy of the classifier [9]. Among them, uncertainty sampling is the simplest and most

commonly used method. Uncertainty sampling includes margin sampling that selects the data

with the smallest difference between the largest class membership probability and the next

largest, least confident, which selects the data of which the largest class membership probability

is the smallest, and entropy-based sampling that selects the data of which the entropy of the

class membership probability is the largest. Because these methods are all equivalent if they are

used in two-class classification problems, we used margin sampling for preliminary verification

in our study. The preliminary verification results confirmed that margin sampling is performed

fast and is also able to effectively solve the problem of domain name classification with which

this research is concerned. Therefore, margin sampling was adopted in our study.

Fig. 2.3 illustrates the concept of active learning using margin sampling. This figure explains

the way in which the decision boundary of classification of the classifier is updated by margin

sampling. The points depicted in the figure represent data, here comprising both labeled and

unlabeled data. In active learning using margin sampling, when classifying with the most

recently trained classifier (hereinafter referred to as the “Latest Classifier”), data located in

the vicinity of the decision boundary (i.e., gray area) of classification are selected and labeled

by an oracle (The term “oracle” refers to an expert or annotator). This method is based

on the concept that, if the label of the data that cannot be reliably classified by the Latest

Classifier is known, the possibility of improving the classification accuracy of the classifier is

high. This concept is the most important foundation on which to determine which domain

name to label in a situation in which the label is not known. If there is no dedicated labeling

method, a domain name must be selected to be labeled randomly. The labels of randomly

selected domain names will be extremely biased to benign because the proportion of malicious

domain names in the actual domain names is very small. In general, such biased domain

12
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Confidently classified as Benign

Confidently classified as Malicious

Classification is difficult
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Fig 2.3: Conceptual diagram of active learning.

names cannot contribute to the improvement of accuracy of the classifier. Consequently, the

labeling cost is wasted. In contrast, active learning enables us to select the domain name that

can contribute to the improvement of accuracy of the classifier, thereby labeling a sufficient

number of malicious domain names. The specific procedure of margin sampling is as follows.

Labels to be provided to malicious and benign domain names are {+1,−1}, respectively.
The Latest Classifier M predicts the label, yi ∈ {+1,−1}, of the unlabeled domain name,

xi ∈ D. At this time, the probability that xi is predicted to be malicious by the Latest

Classifier M is defined as Pi,+1 and the probability that xi is predicted to be benign is defined

as Pi,−1. Then, among domain names in D, K domain names are selected in ascending order

of the difference between the probability of being predicted to be malicious and the probability

of being predicted to be benign, |Pi,+1−Pi,−1|. Finally, we label the selected K domain names,

add it as new training data, and retrain the classifier. Through a series of flows, the decision

boundary of the Latest Classifier is updated from the dotted line to the solid line in Fig. 2.3.

2.2.3 Integration of Classifiers by Ensemble Learning

In the method described in Section 2.2.2, classification is performed using only the Latest

Classifier. At this time, because the Latest Classifier is trained with a small amount of training

data, the classification ability for unknown data is not guaranteed and this becomes a problem.

This led us to propose a method to integrate all the classifiers that are trained sequentially

by active learning each time training data are added, by introducing the concept of ensemble

13
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learning. Reflection of the prediction results of previously trained classifiers in the prediction

result of the Latest Classifier is expected to enable a prediction result with higher generalization

ability to be obtained as output. Typical methods based on ensemble learning include Random

Forest [10], Bagging [11] and Boosting [12], and many other methods derived from these

methods have been proposed. Below, we explain the application of ensemble learning to this

work.

Assume that T classifiers have been trained thus far. Let Mt be the classifier created for

the t th time and Nt the number of training data used to train Mt. Here, Nt = Nt−1 + K.

Further, define the prediction function by Mt as ht(x) → {+1,−1}. In this work, we integrate

the output of ht(x) based on a weighted average, where the weight, αt, is set to be proportional

to Nt, as follows.

αt =
Nt∑T
t=1Nt

(2.1)

Considering the fact that the characteristics of domain names continue changing on a daily

basis, it is reasonable to focus on the prediction results of classifiers trained using training data

that contain many newly generated domain names. The weight defined in (2.1) is designed by

taking this into consideration.

Finally, the final prediction function H(x) is defined as follows, and the label y of data x of

a certain domain name is predicted as:

H(x) =
T∑
t=1

αtht(x), y =

{
+1 (H(x) ≥ 0)

−1 (H(x) < 0)
(2.2)

2.3 Experimental Setup

2.3.1 Domain Name Data to Use

We verified the effectiveness of the proposed method by creating a data set of domain names

by designing a feature based on the same definition as DomainProfiler by Chiba et al. [8].

The features used in this study can be divided into three types. The first is obtained from

the time-series change of the domain name, the second is obtained from the IP address of the

domain name, and the third is obtained from the string of the domain name. The specific

definition of the features is presented in Table 2 of the paper on DomainProfiler [8]. The

number of features belonging to each type and the corresponding type names used in the

paper on DomainProfiler are listed in Table 2.1 in this paper. However, it should be noted

that this study uses some additional features as well. For example, this study uses the various
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Table 2.1: Details of features.

Type Time series change IP address Domain names

Number of features 80 18 17

Corresponding names TVP rIP rDomain

observation periods of the feature in DomainProfiler: “whether it was on the public blacklist

during the observation period”. The data set contains both malicious and benign domain

names. As the malicious domain names, as of May 29, 2018, we used those posted on the

public blacklist hpHosts [13]. This blacklist includes malicious domain names confirmed to be

used as attack sites, malware distribution sites, and phishing sites. On the other hand, as the

benign domain names, as of May 29, 2018, we used the top 100,000 domain names listed on

Alexa Top Sites [14], which provides a list of web sites ranked by traffic volume. However,

Alexa Top Sites only contains the second-level domain (e.g., example.com) and often does not

provide the IP address information corresponding to the domain name, which is a necessary

feature of DomainProfiler. Therefore, we used the search engine to extract and use the FQDN,

which has the IP address under the second-level domain (e.g., www.example.com). To as much

as possible eliminate the possibility of mistakenly including a benign domain name in the set

of malicious domain names and vice versa, at the time of evaluation, we adopted only domain

names verified by VirusTotal [15] and multiple commercial security data.

Hereinafter, the set of domain names that can be added as training data is referred to as the

“data pool”. In this study, we evaluate the versatility of the proposed method by conducting

experiments not only on the data pool that are adjusted beforehand such that the proportion

of class labels is not biased, but also on the data pool that contains a more realistic proportion

of class labels. To this end, we prepared two types of data pools, the first with a sufficient

proportion of malicious domain names and the other with extremely few malicious domain

names in proportion. The data sets with the former and the latter as their data pools are

termed data pool I and data pool II, respectively. Table 2.2 shows the number of training

data for each label, feature dimension, and creation date of each data set. In the evaluation

experiments using both data pools I and II, a total of 20,000 domain names including 10,000

benign and malicious domain names are used as test data. These 20,000 domain names are

common regardless of whether we use data pool I or data pool II for the evaluation experiments.

The domain name to be added as training data is always selected from the domain name in

the data pool, and once selected the domain name is excluded from the data pool. Furthermore,
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Table 2.2: Details of the created data set.

Data pool I Data pool II

Number of malicious training data 125,720 815

Number of benign training data 81,563 81,563

Total number of data pools 207,283 82,378

Feature dimension 115 115

Creation date May 29, 2018 May 29, 2018

originally, the domain name included in the data pool is not labeled, and it is not known

whether it is benign or malicious. However, in this study, all domain names are labeled in

advance of creating the data set. Therefore, we hide the label of domain names included in the

data pool, and process all domain names as though their labels are unknown. Our proposed

method regards restoring hidden true labels as a new labeling operation in our evaluation

experiments. In actual operations, it is necessary for an oracle to label a domain name that

has been earmarked for addition as training data.

2.3.2 Selection of Machine-Learning Algorithm

We selected to use Random Forest as a machine-learning algorithm to train a classifier

using given training data. Random Forest is also the machine-learning algorithm that was

adopted for DomainProfiler. Random Forest, which determines the final prediction result by

integrating the prediction results of multiple decision trees trained using randomly selected

data from the training data set, is based on ensemble learning, as described in Section 2.2.3.

Thus, the proposed method uses Random Forest to train the classifier using the newly labeled

training data, and subsequently uses ensemble learning when integrating the previously created

classifiers. It is also possible to use machine-learning algorithms other than Random Forest to

train the classifier.

2.3.3 Metric and Viewpoint of Evaluation

We use Accuracy, as defined by (2.3), as a metric to evaluate the classification accuracy of

the classifier. Here, in (2.3), true positive (TP) is the number of times the malicious domain

name is correctly predicted as malicious, true negative (TN) is the number of times the benign

domain name is correctly predicted as benign, false negative (FN) is the number of times

16



2 EFFICIENT LABELING FOR DETECTING MALICIOUS DOMAIN NAMES

a malicious domain name is erroneously predicted as benign, and false positive (FP) is the

number of times a benign domain name is erroneously predicted as malicious.

Accuracy =
TP + TN

TP + FP + FN + TN
(2.3)

Accuracy is an index to judge the degree to which the classification result corresponds to the

true label. Accuracy takes a value between 0 and 1, and as the value approaches 1, it indicates

that the classification accuracy of classifier is high. The value of Accuracy is an incomplete

indication when the labels of the test data are biased. For example, if all the test data consist

of malicious domain names, the value of Accuracy will be 1.0 when any domain name is simply

classified as malicious. Therefore, the test data set used in the evaluation experiment was

constructed such that it included the same number of benign and malicious domain names.

This ensures that Accuracy is a reasonable metric for evaluating the classification accuracy in

our evaluation experiments.

The effectiveness of the proposed method was verified by conducting an evaluation experi-

ment based on the following viewpoint. The method we selected with which to compare and

evaluate the active learning method randomly selected domain names from the data pool to

be added as training data. Hereafter this method is referred to as random sampling.

• Comparison of the Accuracy for selecting training data to add when using random sam-

pling or active learning.

• Comparison of the Accuracy when only the Latest Classifier’s prediction results are used

and when we integrate the prediction results of past classifiers by using ensemble learning.

2.3.4 Setting the Experimental Parameters

The number of domain names that were randomly extracted from the data pool for use as

initial training data is 500. The number of training data to be added at a time is 25, and the

classifier is iteratively trained until the total number of training data reaches 5,000 in data pool

I and 2,500 in data pool II. We trained the classifier using Random Forest with 10 decision

trees. Every time the classifier is trained, the performance is evaluated by using a test data set

containing 10,000 malicious and benign domain names. The number of initial training data,

the number of training data to be added at once, and the total number of training data were

determined as being suitable for verifying the effectiveness of the proposed method based on

the results of the preliminary verification. Note that the set of test data is fixed with the above
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Table 2.3: Details of experimental parameters.

Data pool I Data pool II

Number of initial training data 500 500

Number of training data added at once 25 25

Total number of training data 5,000 2,500

Number of malicious test data 10,000 10,000

Number of benign test data 10,000 10,000

20,000 domain names, regardless of the data pool used for training. The above parameters are

summarized in Table 2.3.

Active learning is greatly affected by the initial classifier trained by the initial training

data, and the domain names selected as training data are expected to change. Therefore,

the proposed method was applied to 100 kinds of initial training data that were created by

changing the seed value of the random number in random sampling. That is, for each data

set, the proposed method is executed 100 times during which the fluctuation of the execution

result is observed. This makes it possible to evaluate the stability of the classifier trained by

the proposed method in terms of the fluctuation of the classification accuracy.

2.4 Experimental Results

The proposed method was evaluated based on the settings in Section 2.3. The structure

of this section is as follows. Section 2.4.1 presents the evaluation of the effectiveness of the

proposed method. Specifically, we describe the effectiveness of active learning in Section 2.4.1,

the effectiveness of ensemble learning in Section 2.4.1, and evaluate the contribution of the

proposed method in Section 2.4.1.

In Section 2.4.2, we analyze the behavior of the proposed method. We consider the reason

why active learning was effective in Section 2.4.2. In addition, we discuss variations in the

classification results when focusing on individual domain names in Section 2.4.2.
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Fig 2.4: Variation of Accuracy when each method is applied (data pool I)

2.4.1 Performance Evaluation

Effectiveness of Active Learning

We conducted experiments to compare and assess the effectiveness of the two methods,

random sampling and active learning, for selecting the training data to be added. Figs. 2.4

and 2.5 show the results of the experiments using data pools I and II, respectively. The vertical

and horizontal axes show the Accuracy and the total number of training data used for training

the classifier, respectively. Incidentally, in each of the following figures including these figures,

the scattering of the execution results for 100 kinds of initial training data is represented by

the quantile of the box-and-whisker plot.

Figs. 2.4(a) and 2.5(a) show that, even if the training data used for training the classifier

are added by the random sampling method, the value of Accuracy in the case of data pool I

remains approximately 0.994, and in the case of data pool II it remains approximately 0.986,

indicating that the classification accuracy of the classifier does not improve. Data pool II has
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Fig 2.5: Variation of Accuracy when each method is applied (data pool II)

Table 2.4: Breakdown of benign and malicious domain names added to the set of training

data.

Applied method Benign number Malicious number

Random sampling (data pool I) 1,768 2,732

Active learning (data pool I) 1,541 2,959

Random sampling (data pool II) 1,985 15

Active learning (data pool II) 1,893 107

lower classification accuracy than data pool I. The reason is the consequence of the proportion

of malicious domain names in training data remaining low even if the total number of training

data increases.

Table 2.4 presents the breakdown of benign and malicious domain names when 4,500 training

data are added from data pool I and 2,000 training data are added from data pool II. The
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results in this table show that, when training data are added from data pool II using random

sampling, only 15 malicious domain names are included in the set containing 2,000 training

data. Therefore, when the random sampling method is used to randomly select a domain name

to be added as training data, it is impossible to appropriately select data that contribute to

improving the classification accuracy of the Latest Classifier; hence, high-cost labeling does

not improve the classification accuracy.

On the other hand, as shown in Figs. 2.4(b) and 2.5(b), when the active learning method

is used to select domain names to be added as training data, the classification accuracy is

improved as the number of training data increases and converges to a nearly constant value.

The results in Table 2.4 confirm that the use of active learning on both data pools I and II

leads to the addition of a greater number of malicious domain names as training data than

the original proportion in the data pool. In fact, the number of malicious domain names

that were added from data pool II was approximately seven times more than when using

random sampling. That is, the number of malicious domain names selected by the proposed

method has increased from 15 to 107. Here, it is important to focus on the fact that the

classification accuracy of the classifier improves when trained with the domain names selected

by our proposed method. This indicates that the degree of increase in the number of malicious

domain names selected by our proposed method is effective for improving the classification

accuracy. Figs. 2.4(b) and 2.5(b) confirm that the domain name selected by our proposed

method was effective in improving the classification accuracy. This is an effective approach

to select domain names to be added to the training data, because it is based on criteria that

enable us to evaluate whether revealing the label of the domain name can contribute to improve

the classification accuracy of the current classifier.

Next, the number of training data required to improve the classification accuracy of the

classifier was investigated for random sampling. Fig. 2.6 shows the variation in the value

of Accuracy when random sampling reaches 200,000 domain names of training data on data

pool I. In addition, Fig. 2.7 shows the variation in the value of Accuracy when random sam-

pling reaches 80,000 domain names of training data on data pool II. We compare Figs. 2.4(b)

and 2.6, and Figs. 2.5(b) and 2.7, respectively. The classification accuracy of the classifier

trained by using 200,000 and 80,000 domain names randomly selected from data pool I and

II, respectively, can be equaled by using the classifier trained using active learning with only

approximately 2,000 domain names. The above results show that appropriately selecting train-

ing data by active learning enables the classification accuracy of the Latest Classifier to be

improved with a small amount of training data regardless of the proportion of benign and

malicious domain names in the data pool. Thus, the above results indicates that the issue
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Fig 2.6: Variation of Accuracy by random sampling (data pool I)
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Fig 2.7: Variation of Accuracy by random sampling (data pool II)

of this paper: “Proposing the labeling method to reduce the labeling cost while maintaining

classification accuracy” has been achieved by the proposed method.

Effectiveness of Ensemble Learning

We also evaluated the extent to which the use of ensemble learning can improve the gen-

eralization ability of the prediction results. This was achieved by comparing the prediction

results obtained by using only the Latest Classifier with those obtained when integrating mul-

tiple classifiers using ensemble learning. In the results shown in Figs. 2.4(a), 2.4(b), 2.5(a),

and 2.5(b), each time the classifier is retrained, the previous classifier was discarded and only

the prediction of the Latest Classifier was used. On the other hand, for the results shown in

Figs. 2.4(c) and 2.5(c), rather than discarding the previous classifier trained by active learning,
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Fig 2.8: Variation of standard deviation of Accuracy

it was integrated with the Latest Classifier using the ensemble learning method. These results

were obtained by the full set of methods (conventional, active learning, and ensemble learning)

shown in Fig. 2.1. By comparing Figs. 2.4(b) and 2.4(c), Figs. 2.5(b) and 2.5(c), respectively,

by using ensemble learning, when the number of training data in data pool I is 2,000 or more,

the median of Accuracy stabilizes at approximately 0.996, and when the number of training

data in data pool II is 1,500 or more, Accuracy stabilizes at 0.988 or more. For example,

when the active learning method was used, the classification accuracy sometimes decreased

or the fluctuation increased despite the addition of training data (Fig. 2.4(b): 3,000 to 3,500,

Fig. 2.5(b): 2,000 to 2,250). In addition, for each experiment using data pool I and data

pool II, we show the graph with the standard deviation of Accuracy calculated using a total

of 100 experiments on the vertical axis and the number of training data on the horizontal

axis in Fig. 2.8. Fig. 2.8 compares the results of using only active learning and combining

active learning and ensemble learning (proposed method). From Fig.2.8, we can confirm that

the above problem of fluctuation was overcome by using ensemble learning. This means that

the generalization ability can be improved by using ensemble learning even when training the

classifier with a small amount of training data.

Improvement of Classification Accuracy

Based on the above discussion, it was found that the classification accuracy can be improved

by combining active learning and ensemble learning, regardless of the proportion of class labels

in the data pool. This was confirmed by calculating the statistical information for the values
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Table 2.5: Accuracy for 5,000 training data (data pool I)

Applied method Minimum Median Maximum Standard deviation

Random 0.9932 0.9944 0.9951 0.000339

Active 0.9952 0.9957 0.9962 0.000215

Active & Ensemble 0.9956 0.9960 0.9962 0.000115

Table 2.6: Accuracy for 2,500 training data (data pool II)

Applied method Minimum Median Maximum Standard deviation

Random 0.9850 0.9860 0.9915 0.001215

Active 0.9866 0.9904 0.9916 0.000951

Active & Ensemble 0.9885 0.9904 0.9915 0.000707

Table 2.7: Rate of change compared to random sampling [%].

Applied method Minimum Median Maximum Standard deviation

Active (I) 0.20 0.13 0.11 -37

Active & Ensemble (I) 0.24 0.16 0.11 -66

Active (II) 0.16 0.45 0.01 -22

Active & Ensemble (II) 0.36 0.45 0.00 -42

of Accuracy when each method was applied to data pool I and data pool II, respectively. The

results are provided in Table 2.5, Table 2.6, and Table 2.7. The results in Table 2.5 indicate

that, by using active learning and ensemble learning on data pool I, the median of Accuracy

when the number of training data is 5,000 is increased by approximately 0.16% compared

to the use of random sampling only. This number is a very small and seemingly low value.

However, the median of Accuracy for random sampling is 0.9944, meaning that improving

0.0016 out of the remaining 1 − 0.9944 = 0.0056 is significant. Additionally, Table 2.7 shows

the improvement of the minimum, median, maximum, and standard deviation of Accuracy of

the proposed method in comparison to those of random sampling when the number of training

data is 5,000 in data pool I and 2,500 in data pool II. In Table 2.7, data pool I is abbreviated

as I and data pool II is abbreviated as II. Table 2.5 also shows that the minimum value of

Accuracy increases by approximately 0.24% and the standard deviation of Accuracy decreases

by approximately 66% when the number of training data is 5,000 in data pool I. The results
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in Table 2.6 confirms that the minimum value of Accuracy increases by approximately 0.36%

and the standard deviation of Accuracy decreases by approximately 42% when the number

of data is 2,500 in data pool II. In this way, the proposed method combining active learning

and ensemble learning enables us to acquire a classifier with classification accuracy equal to or

higher than that of the classifier trained by the conventional method by using a small amount

of training data regardless of the data pool used for training.

This seemingly small numerical improvement in Accuracy is very important in actual oper-

ation. VERISIGN shows that more than 300 million domain names were registered in the first

quarter of 2019. It also shows that the number of registered domain names has increased by

3.1 million (0.9%) in comparison to the fourth quarter of 2018 [16]. Thus, it is evident that a

very large number of domain names are already registered, and this number is increasing year

by year. In addition, the malicious/benign classification of a domain name must be repeated

many times because the use of domain names changes over time, and the people who use them

change owing to expiration or re-registration. Therefore, even if the domain name is the same,

the result of classification at a certain point is not always correct in the future and cannot be

used continuously. In other words, for example, if the number of new domain names increases

by 3.1 million, it is necessary to classify 3.1 million in addition to all the previously classified

domain names (not just 3.1 million). Thus, because the number of domain names classified by

commercial security services becomes enormous, the number of correctly classified malicious

domain names also greatly increases even if the improvement of classification accuracy is small.

Moreover, organizations are known to spend an average of 395 hours per week to address the

problems associated with misclassification of malware infections, costing approximately $1.2

million per year [17]. Similarly, to effectively respond to security incidents, spending valuable

resources such as skilled human resources and budgets on false positive response is highly

inefficient [18]. In other words, a system designed to detect malicious domains, such as that

described in this paper, would be beneficial even if it were able to reduce misclassification by

one case. Considering that 20,000 domain names were used as the test data this time, the

increase of 0.16% in the median of Accuracy in data pool I, for example, corresponds to a

decrease in the number of false detections of approximately 32.

In addition, Figs. 2.9(a) and 2.9(b) show the variation in the number of FPs and FNs for

the method that uses only random sampling (RS in the figure) and the method that uses both

active learning and ensemble learning (AL+EL in the figure). The number of training data

used to produce this figure is 5,000 in data pool I and 2,500 in data pool II. The results in

Figs. 2.9(a) and 2.9(b) confirm that both FP and FN for data pool I and FN for data pool II

are improved by combining active learning and ensemble learning, respectively. Under actual
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Fig 2.9: Difference in the number of FPs and FNs.

operating conditions, because more domain names are classified by the system, the number

of misclassifications increases proportionally. This suggests that the contribution to actual

operations by improving Accuracy realized by the proposed method is extremely large.

Here we consider the reason why the number of FPs for data pool II is almost 0 regardless

of the method. In data pool II, the proportion of malicious labels to benign labels in the

training data is extremely small. Therefore, training a benign domain name is considered to

advance more than training a malicious domain name, and the trained classifier is more likely

to classify a domain name as being benign than to classify a domain name as being malicious.

Even though FP is almost 0, not all domain names are classified as benign. Indeed, in data

pool II, the mean of 100 experimental values of TP for 2,500 training data is approximately

9,720 in the case of random sampling, whereas when active learning and ensemble learning are

combined it is approximately 9,810. Thus, malicious domain names were successfully detected.

In addition, we consider the reason why the proposed method is more effective in data pool

II than in data pool I. In data pool II, the ratio of malicious domain names in the data pool

is very low. Therefore, random sampling cannot sample enough malicious domain names. In

contrast, active learning preferentially samples the domain names that can contribute to the

improvement of classification accuracy of the classifier. Consequently, the malicious domain

names can be selectively sampled irrespective of their ratio in the data pool, and the clas-

sification accuracy of the classifier can be improved with a small amount of training data.

Therefore, the proposed method is more effective in the case of data pool II where the number

of malicious domain names is significantly smaller than that of benign domain names, which
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is an advantage of the proposed method.

2.4.2 Detailed Analysis of the Proposed Method

Analysis of Training Data Added by Active Learning

In this section, we discuss the reasons as to why active learning is effective in selecting

domain names to be labeled and added to training data. Here, we suppose that the state

in which the domain name is included in the training data, has various features, is ideal for

training the classifier with high classification accuracy. In this state, the features of domain

names in the training data are not similar to each other. Therefore, we analyzed the similarity

between domain names added to the training data in detail. The similarity between domain

names is analyzed by clustering. We investigate the similarity of each of the 4,500 domain

names added by active learning and those added by random sampling.

We use DBSCAN [19] as a clustering method. DBSCAN is a density-based clustering

method, which does not assume that clusters are spherical and does not determine the num-

ber of clusters in advance. Furthermore, not all data belongs to any particular cluster, and

data that does not form a cluster is regarded as a noise point. Therefore, by using DBSCAN

clustering, if there are many domain names forming a cluster, it can be assumed that there are

multiple similar domain names added as training data, and if there are few domains forming

cluster, then there are multiple non-similar domain names. In this paper, the feature used in

DBSCAN is the 115-dimensional feature shown in Table 2.2, and Euclidean distance is used

for distance calculation in clustering.

Fig. 2.10 shows a conceptual diagram of clustering domain names added as training data by

DBSCAN. In Fig. 2.10, N clusters are formed, and domain names not included in any cluster

are shown as noise points. Here, domain names included in the same cluster have similar

features. On the other hand, domain names do not have similar features if they are not in the

same cluster but in different clusters or at different noise points. Furthermore, the numbers

in parentheses attached to the domain name indicates the number of rounds after which the

domain name is added to the training data. Hence, domain names with the same number

in parentheses are simultaneously added to training data, and domain names with different

numbers in the parentheses are added to training data with different rounds.

Table 2.8 shows the results of DBSACN clustering of each of the 4,500 domain names

added to training data, by two methods. Each value shown in Table 2.8 is the average of

100 experiments using different initial training data. According to Table 2.8, the number
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Fig 2.10: Overview of clustering domain names.

Table 2.8: Analysis of domain names added as training data (data pool I)

Random Sampling Active Learning

Domain names forming clusters 1,224.82 125.90

Formed clusters 90.30 16.83

Domain names per cluster (Avg.) 13.60 7.46

Difference additional rounds (Avg.) 13.16 1.89

of clusters formed by DBSCAN and the number of domain names forming clusters among

the 4,500 domain names are significantly smaller when using active learning than when using

random sampling. This means that the features of domain names added by active learning

are less similar compared to those when using random sampling. Consequently, in the case

of active learning, domain names with various features became training data, and a classifier

with high classification accuracy could be learned.

Next, we focus on the timing when the domain name included in each cluster is added to the

training data. As proposed in this paper, in active learning, the process of labeling K domain

names selected from the data pool, adding to the training data and training a classifier is

repeated. In the experiments using data pool I, the number of initial training data is 500, the

number of training data added at one time is 25 (= K), and the addition of training data

is repeated until the total number of training data reaches 5,000. Therefore, the addition of

training data will be performed for 180 (5, 000 = 500 + 25 × 180) rounds. Here, we examine

the difference in the number of rounds in which domain names were added to training data.

28



2 EFFICIENT LABELING FOR DETECTING MALICIOUS DOMAIN NAMES

Table 2.8 shows the average number of domain names included in one cluster and the average

difference of additional rounds of domain names included in one cluster. If these values are

equal, it can be said that all domain names included in the cluster are added to training data in

different rounds. According to Table 2.8, in the case of random sampling, the average number

of domain names and the average difference of additional rounds are almost equal, but in the

case of active learning, the average difference of additional rounds is significantly less than the

average number of domain names. This means that in random sampling, domain names that

are similar to domain names added in past rounds are added again in subsequent rounds, but

in active learning, domain names that are similar to domain names added in past rounds, are

not to be added again later. Hence, in active learning, domain names which have features that

are not similar to those of domain names in the training data at that time are selected and

newly added to the training data. This behavior is similar to what we expected because it

leads to the addition of domain names with various features in the training data.

To summarize, when using active learning, domain names with various features are added to

the training data, and domain names with similar features are not added in different rounds.

We consider that such characteristics of active learning are factors that can improve the clas-

sification accuracy of training models by using a small amount of training data.

Time Series Variation of Individual Domain Names

Up to this point, the classification accuracy of the classifier for the entire set of test data has

been quantitatively evaluated using Accuracy. In this section, we focus on each domain name

in the test data and analyze how the classification result for the domain name varies with

the addition of training data. The domain name to be analyzed is one that was misclassified

at least once among 20,000 test data by using random sampling, active learning, and the

method combining active learning and ensemble learning. The number of the misclassified

domain names was approximately 320 on average of the experiments carried out by changing

100 initial training data.

In order to characterize the classification result, we define “Malicious Score” as a metric to

evaluate the confidence of the classification of the target domain name. In random sampling

and active learning, the Malicious Score is defined as (Pi,+1 − 0.5)÷2 based on the probability

Pi,+1 that an unlabeled domain name is predicted as malicious by a classifier. For ensemble

learning, H(x) in (2.2) is defined as the Malicious Score. This score indicates that the target

domain name is malicious when the score is 0 or more, and benign when the score is smaller

than 0.
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Fig 2.11: Variation of Malicious Score of certain domain name in the test data.
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Figs. 2.11(a) to 2.11(c) visualize the changes in the Malicious Score of a certain domain

name in the test data. The horizontal and vertical axes represent the additional round of

training data and the Malicious Score calculated by the classifier trained in each additional

round, respectively. The “True Label” shown at the top of the figure is the true label provided

to its domain name, which is +1 for malicious and -1 for benign. Therefore, when the sign

of the Malicious Score matches the sign of the true label, it indicates that the domain name

can be correctly classified by the classifier. On the other hand, if the sign of the Malicious

Score continues to change or does not correspond to the true label throughout the round, it

means that the classifier cannot correctly classify the target domain name. Fig. 2.11(a) shows

an example in which a malicious domain name can be correctly classified by active learning,

Fig. 2.11(b) shows an example in which a benign domain name can be correctly classified

by active learning, and Fig. 2.11(c) shows an example of a domain name which cannot be

correctly classified regardless of which method we use to add training data. Considering the

results in Fig. 2.11(a) and Fig. 2.11(b), the sign of the Malicious Score calculated by the

classifier trained by random sampling either does not correspond to the sign of the true label

or continues to change throughout the round. On the other hand, the sign of the Malicious

Score calculated by the classifier trained by active learning differs from the sign of the true

label at the beginning of the round, but as the round progresses, it corresponds to the sign of

the true label. This indicates that domain names that cannot be correctly classified regardless

of the amount of training data added during random sampling can be correctly classified by

adding a small amount of training data by active learning. However, in the case of active

learning, the Malicious Score fluctuates considerably with the addition of training data, and

the classification result may differ from that of the previous round. However, these fluctuations

in the Malicious Score can be overcome by ensemble learning, and the classification accuracy

is stable.

In addition, as shown in Fig. 2.11(c), the existence of a domain name that cannot be classified

even by adding training data by any method was confirmed. A characteristic of these domain

names is that, despite being benign, it was posted on public blacklists such as Hphosts in

the past, or even though it is a malicious domain name, it appears on Alexa Top Sites. In

such a case, the feature of the domain name and the label provided to the domain name are

inconsistent. This seems to be the reason for the continuous miss-classification.
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2.5 Discussion

First, we discuss the two limitations of the proposed method. As indicated in 2.4.2, the

classifier was found unable to correctly classify a particular domain name, regardless of the

number of training data used for training. Therefore, for example, when an attacker creates a

malicious web site and intentionally earns the number of web accesses to make it seem to be

a popular site, the classifier may classify the domain name of the malicious web site as being

benign. Domain names such as these are difficult to correctly classify by supervised machine

learning. It may therefore be effective to create a whitelist and blacklist for each of these

domain names and take countermeasures.

The second limitation is that the active learning method proposed in this paper is based on

the premise that domain names are classified into two classes, and cannot be used for multi-class

classification. Therefore, multi-class classification, i.e., to classify more than two types of labels

other than malicious and benign, is impossible at present. In multi-class classification, margin

sampling, least confident, and entropy-based sampling of uncertainty sampling adopted in this

work are non-equivalent. Therefore, when attempting to align active learning, as proposed

in this paper, to multi-class classification, it would be necessary to verify in advance which

method is most effective and whether uncertainty sampling is effective.

Next, we consider the practicality of the proposed method. In this paper, all domain names

in our data sets are labeled in advance for the convenience of evaluating the proposed method,

i.e., the active learning in our experiments regards the operation of restoring hidden labels as

a pseudo-human labeling operation. In other words, we do not carefully examine the time and

labor required to actually label a domain name. However, by applying the proposed method

involving both active learning and ensemble learning, it is shown that the number of domain

names to be labeled by humans can be reduced to approximately one hundredth. Therefore, a

simple calculation shows that the time required for human labeling is reduced by one hundred

times, and the burden due to labeling is obviously reduced.

In addition, when using the proposed ensemble learning method, it is necessary to train a

total of T classifiers and to predict the labels of the domain names to be classified in all the

classifiers trained. Therefore, compared with the case where the detection system is operated

with one classifier, the time required for training the classifier and the time required for the

classifier to classify the domain name to be classified are T times. Therefore, we measured the

time taken for such classifier training and the time taken for domain name classification by

the classifier. The experiments were conducted on a Linux server with Intel Xeon E 5-2660

v3 CPU and 128 GB memory. The measurement results indicated that the time required for
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training one classifier was 0.04 seconds on average, which was a very short time. Furthermore,

the average time required for one classifier to classify 20,000 domain names, i.e., the test data,

was 0.018 seconds. Therefore, the time required for classification per domain name is only

0.018[s]÷ 20, 000 = 0.9[µs]. Thus, we confirmed that the classifier training time and the time

it takes for the classifier to classify a domain name do not constitute a bottleneck.

2.6 Related Work

2.6.1 Malicious Domain Name Detection System Using Supervised

Machine Learning

Many systems based on supervised machine learning have been proposed to detect malicious

domain names used in cyber-attacks. In this section, we describe representative systems.

Notos [4] is the earliest malicious domain name detection system that was proposed. Notos

extracts a feature from the network characteristics of IP addresses used by past malicious

domain names and the character string characteristics of the domain names themselves, and

classifies malicious and benign domain names using a decision tree. Exposure [5] is a system

that extracts the time change of DNS query traffic from a large-scale user as a feature and

uses this for the early detection of a malicious domain name using a decision tree. Kopis [6] is

a system that uses a Random Forest to classify a malicious domain name by using the query

behavior from the user to the domain name observed on the authoritative DNS server of the top

level domain (TLD) as a feature. Pleiades [2] uses the characteristics of abnormal DNS queries

for domain names that do not exist on the caching DNS server as a feature and uses decision

trees and Hidden Markov Model (HMM) to classify the malicious domain name generated by

DGA. Segugio [7] is a system that focuses on the DNS traffic patterns of malware infected users

in a large-scale network typified by ISP and specifies malicious domain names similar to known

malicious domain names. Predator [3] monitors the registration information of the domain

name on the registry of a certain TLD, extracts the registered information characteristic similar

to the past malicious domain name as a feature, and classifies new malicious domain names

by using the Convex Polytope Machine (CPM), which is an ensemble of linear discriminators.

DomainProfiler [8] applies a Random Forest using both a feature based on time series changes

of usage forms of past malicious and benign domain names and a feature obtained from IP

addresses used by each domain name to classify the malicious domain name early.

In our work, we showed that the classification accuracy is improved by applying active

learning and ensemble learning to DomainProfiler. However, these two learning approaches
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can be applied to methods other than DomainProfiler as well, and it would be expected to also

be effective for methods using supervised machine learning requiring labeled data as shown in

this section.

2.6.2 Application of Active Learning to Security Problems

A few examples in which active learning was applied to security problems were also reported.

Moskovitch et al. [20] used active learning as a method for efficiently adding unknown mali-

cious code to training data to train a classifier that identifies malicious code. Zhao et al. [21]

proposed cost-sensitive online active learning (CSOAL), which takes into consideration both

malicious-benign-imbalance problems and constraints on the number of training data that can

be labeled in malicious URL detection. However, the disadvantage of CSOAL is that the

classifier is required to be a linear regression model. Beaugnon et al. [22] proposed ILAB,

a strategy for constructing a malware intrusion detection system using active learning. By

using class information in addition to benign and malicious label information, ILAB not only

labels data near the classification decision boundary but also data included in the rare cate-

gory. Specifically, when classifying with the Latest Classifier, data that are near the decision

boundary of classification, that are ambiguous in terms of class information located near the

boundary line between classes, and that are clear in terms of class information located near

the center point of the class, are selected and labeled.

As mentioned above, although active learning has previously been applied to security prob-

lems, as far as the authors know, active learning has not yet been applied to malicious domain

name detection. This paper is the first to propose active learning as a method for selecting a

domain name to be labeled and to propose a practical method for constructing and operating

a malicious domain name detection system. Furthermore, this work is the first to use ensem-

ble learning in combination to avoid deterioration of the generalization ability of the classifier

concerned with active learning.

2.7 Conclusion

When operating a system that detects malicious domain names using supervised machine

learning, it is necessary to label new domain names of which the status (malicious or benign)

is unknown and to acquire new training data. In this paper, we proposed a method that uses

active learning to label domain names close to the classification decision boundary between

benign and malicious. In addition, we proposed a method based on ensemble learning that

34



2 EFFICIENT LABELING FOR DETECTING MALICIOUS DOMAIN NAMES

integrates each new classifier that is trained using sequentially added training data with clas-

sifiers that have previously been trained using earlier training data and then outputs the final

prediction results. We applied these proposed methods to actual domain name data based on a

feature defined by the malicious domain name detection system DomainProfiler and evaluated

its effectiveness.

Our experiments to evaluate the proposed method (compared to the existing method, which

labels randomly selected data) showed that the classification accuracy can be improved by using

a very small amount of training data and that the fluctuation in the classification accuracy is

reduced and stabilized. As a result, we acquired a classifier with high classification accuracy

and generalization ability, while reducing the high cost of labeling.

We also analyzed training data added by active learning and confirmed that domain names

with various feature were added in equal amount as training data. We consider that this is

the reason why active learning is effective.

Furthermore, apart from evaluating the classification accuracy of the entire set of test data,

the variation of the classification result of each domain name in the test data was also investi-

gated. This enabled us to clarify the domain names the proposed method is able to effectively

classify and those that are difficult to classify by machine learning.
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Large-scale Analysis of Cloud Service

Abuse

3.1 Introduction

A cloud service is an infrastructure that is designed to provide users with a required amount

of computing resources such as servers, storage, and applications, which are owned by the

cloud service provider and lent as needed. Due to the considerable convenience, the global

market for cloud services continues to expand rapidly. It has been shown that the size of the

global market for cloud services increased by 37.6% to $26.3 billion in the second quarter of

2019 from $19.1 billion in the previous year. However, cloud services can also be abused as an

infrastructure for cyber-attacks. For example, a large number of cloud servers were used for a

brute-force attack to hijack Instagram accounts, where the servers on the cloud were used as

a command and control (C&C) server [23, 24]. In this paper, we refer to cyber-attacks that

abuse cloud services as “cloud service abuse.”

Cloud service abuse poses risks for both legitimate users and cloud service providers. For

example, in the cloud-based email-sending service Amazon simple email service (SES), a legiti-

mate user could not send emails because the IP address assigned to the user was blacklisted [25].

This is because the IP address was shared between multiple users in the cloud service and some

of the users might be involved in cyber-attacks. Thus, there is a risk that users will be sub-

jected to various restrictions if IP addresses that have been blacklisted for malicious activity

in the past are assigned to the servers that they use. As a result, there is also the risk that the

reputation of cloud service providers will decrease. However, the actual status of cloud service

abuse has not yet been clarified.

Therefore, to the best of our knowledge, this study represents the first large-scale analysis
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revealing the actual situation of cloud service abuse and discussion of effective countermeasures.

To conduct this analysis, we required a method for large-scale observation of cloud service abuse

that involves various types of cyber-attacks. To perform this, we focused on using different

types of blacklists in combination. Then, we conducted a large-scale analysis of cloud service

abuse for four typical cloud services: Amazon Web Service Elastic Compute Cloud (AWS),

Microsoft Azure (Azure), Google Cloud Platform (GCP), and Oracle Cloud (Oracle). In our

analysis, using 45 blacklists for 81 days, a total of 32,743 blacklisted IP addresses from cloud

service providers were observed.

We also discovered five different aspects of cloud service abuse: (1) changes in the number of

blacklisted cloud IP addresses over time, (2) the types of attacks involved in cloud service abuse,

(3) trends regarding IP address regions, (4) differences in on-list duration of the blacklisted

IP addresses depending on the attack type and cloud service provider, and (5) the status

of deregistration of blacklisted cloud IP addresses. These findings suggest that cloud service

providers need to detect abuse of their services early and take appropriate countermeasures.

The contributions of this study are as follows.

(1) We conducted the first large-scale analysis of cloud service abuse.

(2) We proposed an observational method for cloud service abuse using many diverse black-

lists.

(3) We revealed the actual status of cloud service abuse.

(4) We discussed countermeasures against cloud service abuse for cloud service users, cloud

service providers, and blacklist providers.

3.2 Cloud Services and Blacklists

Figure 3.1 shows the relationship between cloud service users, cloud service providers, and

blacklist providers in a situation where cloud service abuse occurs. As shown in Fig. 3.1, when

an attacker abuses the cloud service, the cloud IP addresses involved in the attack may be

blacklisted, which causes false restrictions on legitimate users. In this section, we describe the

cloud service (Section 3.2.1) and the blacklists (Section 3.2.2).
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Fig 3.1: Stakeholders of cloud service abuse.

3.2.1 Cloud Services

With cloud services, users can reduce the initial investment, maintenance, and operational

costs associated with physical hardware. In general, cloud service providers have data centers

in multiple regions around the world. When using cloud services, the user can select the region

where they want the computing resources to be located. The prices and range of IP addresses

assigned to the server vary depending on the selected region. IP addresses in cloud services

are shared between users. Thus, the IP address assigned to the server is released when the

server is shut down and it is assigned to another server.

There are many cloud service providers. In this study, we focused on AWS, Azure, GCP,

and Oracle for our measurements. There are two reasons for selecting these four cloud ser-

vices. First, these are typical/popular cloud services and are considered to be abused by more

attackers. Second, in these cloud services, the range of public IP addresses assigned to the

server is available to the public [26, 27, 28, 29]. This allowed us to determine whether a given

IP address was used by a cloud service.

3.2.2 Blacklists

A blacklist is a list of IP addresses that have been found to be involved in malicious activity.

Blacklists are used to identify communications that use the blacklisted IP addresses as the
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source or destination. Blacklists are not static but are updated regularly by the blacklist

provider. However, the update time and interval differ for each blacklist. In addition, the

period for which a blacklisted IP address remains on the blacklist differs for each blacklist.

This is because the listing policies of blacklist providers are different.

Some blacklists allow third parties to apply for the deregistration of blacklisted IP addresses.

There are two main reasons why this is possible. One is that the IP addresses of users who

did not originally perform malicious activities may be falsely blacklisted. Another reason is

that the blacklisted IP address may have already stopped performing malicious activities due

to subsequent countermeasures.

3.3 Measurement Method

We conducted a large-scale analysis of cloud service abuse for four typical cloud services:

AWS, Azure, GCP, and Oracle. For this analysis, it was necessary to have an environment

where large-scale, continuous, and direct observation of cloud service abuse involving various

types of attacks was possible. However, it is extremely difficult to prepare such an environment

for observing attacks directly. For example, honeypots and darknets could be potential obser-

vation methods for cloud service abuse. However, these are restricted by limited observation

ranges, and the types of attacks are constrained to brute-force attacks and scans.

In this study, we focused on blacklists of IP addresses to solve this problem. By integrating

different types of blacklists, both the observation range and types of observable attacks were

increased. In addition, as blacklists are updated regularly, it is easy to conduct a time series

analysis. Conventional studies on blacklists [30, 31, 32] have focused on the accuracy and char-

acteristics of blacklists themselves. We used multiple blacklists as the practical method for

extensively observing cloud service abuse without direct observation. This is a significant dif-

ference versus conventional studies on blacklists and it also represents the technical importance

of our measurement method.

3.3.1 Observation of Cloud Service Abuse

This section describes the observation method for cloud service abuse using blacklists. The

method consists of three steps: acquiring blacklists, classifying blacklists according to attack

type, and extracting the IP addresses of cloud service providers.

Acquiring Blacklists. A total of 45 public blacklists were acquired from 22 different blacklist

providers once per day at the same time. As a result of investigating the update frequency of
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Table 3.1: Provider name, number of blacklists from each provider, and total number of unique

blacklisted IP addresses.

# Provider Name # Lists # IP Addresses

1 Badips 11 646,370

2 Fail2ban 7 316,499

3 Normshield 6 174,514

4 ProjectHoneyPot 3 9,277

5 AlienVault 1 228,799

6 Bambenek 1 2,817

7 BinaryDefense 1 19,639

8 BotScout 1 52,158

9 CleanTalk 1 451,070

10 CyberCrime 1 1,645

11 Dangerrulez 1 4,082

12 DShield 1 43,706

13 Feodo 1 1,235

14 Haley 1 59,041

15 LashBack 1 989,571

16 MyIP 1 5,119

17 NixSpam 1 250,166

18 Nothink 1 31,806

19 Sblam 1 35,083

20 StopForumSpam 1 178,415

21 Talos 1 2,620

22 VoIPBL 1 90,009

each blacklist, we decided to acquire blacklists once a day. The acquisition period lasted 81

days from June 30, 2019 to September 18, 2019. The blacklists acquired in this study were

also used in [32, 33], which compared and analyzed the characteristics of multiple IP address

blacklists. We selected blacklists that were continuously updated during the acquisition period.

For the acquired blacklists, Table 3.1 summarizes the names of the blacklist providers, the

number of blacklists from each provider, and the total number of unique blacklisted IP ad-

dresses. Note that four blacklist providers created multiple blacklists, where the remaining

providers each created one blacklist.
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Table 3.2: Attack type, number of corresponding blacklists, and total number of unique black-

listed IP addresses.

Attack Type # Lists # IP Addrs

Scan 5 110,465

Brute-force 10 514,735

Malware 3 5,697

Exploit 10 249,628

Botnet 7 151,204

Spam 10 2,135,486

Total 45 3,167,215

Classifying Blacklists by Attack Type. Next, we describe the procedure for classifying

the acquired blacklists according to attack type. The 45 acquired blacklists were classified into

6 attack types based on explanations from the blacklist providers: Scan, Brute-force, Malware,

Exploit, Botnet, and Spam. These six attack types are defined in [32]. This categorization

enabled us to conduct an analysis that considers what type of attack each blacklisted IP ad-

dress performed. Here, hosts performing port or vulnerability scans are classified as Scan, hosts

making brute-force login attempts are classified as Brute-force, malware C&C and distribution

servers are classified as Malware, hosts attempting to remotely exploit vulnerabilities are clas-

sified as Exploit, compromised hosts belonging to a botnet are classified as Botnet, and hosts

sending spam are classified as Spam. For example, a blacklist with the explanation “IP address

confirmed to have a brute-force attack in a honeypot” is classified as Brute-force, whereas a

blacklist with the explanation “IP address confirmed to be the sender of spam” is classified as

Spam. Table 3.2 lists the number of blacklists classified into each attack type and the total

number of unique blacklisted IP addresses from all classified blacklists for each attack type.

Extracting the IP Addresses of Cloud Service Providers. Finally, we describe the

procedure for extracting the IP addresses of cloud service providers from the blacklisted IP

addresses. As explained in Section 3.2.1, each of the four cloud services selected in this study

releases a range of public IP addresses that can be assigned to servers lent to users [26, 27, 28,

29]. Note that we obtained GCP public IP addresses range from the DNS record associated

with cloud-netblocks[1,2,3,4,5].googleusercontent.com as of September 18, 2019. We compared

and matched the blacklisted IP addresses and the above range of public IP addresses. As a

result, the blacklisted IP addresses of the cloud service providers were extracted. By observing

the blacklisted cloud IP addresses, it was possible to indirectly observe the occurrence of cloud
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service abuse. In this study, we investigated only IPv4 addresses. This is because the blacklists

acquired in this study contained a very small number of IPv6 addresses. The total number of

unique blacklisted IPv6 Addresses was 714 (approximately 0.023% of the total).

3.3.2 Analysis of Trends in Cloud Service Abuse

In this section, we describe the technique for analyzing trends in cloud service abuse using

blacklists. We integrated the 45 blacklists acquired on the same day into one list. The IP

addresses in the integrated list were blacklisted in at least one of 45 blacklists that was used

for integration. As the blacklists were acquired for 81 days, 81 integrated lists were created.

Using these 81 integrated lists, we investigated when and which cloud IP address was blacklisted

and the attack type of the blacklists in which it was registered. This integrated list is useful

for identifying the daily trends of cloud service abuse.

We analyzed cloud service abuse from the following six viewpoints.

• How many IP addresses are abused per day and how do they change over time? (Sec-

tion 3.4.1)

• Is there a difference in the number of abused IP addresses depending on the cloud service

provider and type of attack? (Section 3.4.1 and 3.4.2)

• Are there any regional characteristics of the abused IP addresses? (Section 3.4.3)

• How long do abused IP addresses appear on the blacklist? (Section 3.4.4)

• Can we observe applications from cloud service providers or users for the deletion of IP

addresses from blacklists? (Section 3.4.5)

• Did the IP addresses observed in the blacklists actually perform cyber-attacks? (Sec-

tion 3.4.6)

3.4 Measurement Results

3.4.1 Number and Changes of Blacklisted IP Addresses

For each cloud service provider, we investigated the number of IP addresses registered in

at least one of the 45 acquired blacklists. Approximately 7,137 AWS, 2,733 Azure, 1,660

GCP, and 337 Oracle IP addresses were blacklisted daily. Moreover, approximately 397 AWS,
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Fig 3.2: Change in the number of daily blacklisted IP addresses.

100 Azure, 66 GCP, and 13 Oracle IP addresses were replaced per day. In other words,

approximately 12,000 cloud IP addresses were blacklisted and about 5% were replaced per

day. Figure 3.2 shows a graph of date versus the number of cloud IP addresses registered in

the blacklists acquired on that date. The change in the number of blacklisted IP addresses

over time differs for each cloud service provider. The number of AWS IP addresses decreased

from the observation start date of June 30 to the end of August, then increased after August.

Additionally, throughout the observation period, the number of blacklisted Azure IP addresses

increased slowly, and the number of blacklisted GCP and Oracle IP addresses remained almost

unchanged. The total number of unique blacklisted IP addresses over the observation period

was 22,122 for AWS, 5,753 for Azure, 4,121 for GCP, and 747 for Oracle.

3.4.2 Type of Attack

Next, we conducted an analysis of blacklisted IP addresses based on the type of attack. In

Section 3.4.1, all 45 blacklists were integrated without considering the attack type. However,

for the results discussed in this section, the blacklists were integrated according to attack type.

We investigated the number of unique blacklisted IP addresses for each attack type and the

proportion of these numbers with respect to the total number for all attack types. The results

are listed in Table 3.3. Many IP addresses from each cloud service provider were registered as

Brute-force and Spam, which accounted for 75% to 87% of the total blacklisted IP addresses.

This suggests that brute-force attacks and spam-sending are often involved in cloud service

abuse. On the other hand, each cloud service provider differed in terms of the proportions
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Table 3.3: Number of blacklisted IP addresses for each attack type.

Attack Type # AWS Azure GCP Oracle

Scan 5 386 (1.7%) 78 (1.3%) 89 (2.0%) 13 (1.7%)

Brute-force 10 6,723 (30%) 2,686 (45%) 1,451 (33%) 256 (33%)

Malware 3 174 (0.77%) 60 (1.0%) 39 (0.88%) 1 (0.13%)

Exploit 10 1,939 (8.6%) 971 (16%) 368 (8.3%) 77 (9.9%)

Botnet 7 1.312 (5.8%) 352 (5.9%) 606 (14%) 11 (1.4%)

Spam 10 12,063 (53%) 1,817 (30%) 1,901 (43%) 420 (54%)

Total 45 22,597 (100%) 5,964 (100%) 4,454 (100%) 778 (100%)

of each attack type. For example, the proportions of IP addresses used for Brute-force and

Exploit in Azure and Botnet in GCP are larger than in the other cloud services.

The total number of blacklisted IP addresses in Table 3.3 does not coincide with the total

number of unique blacklisted IP addresses shown in Section 3.4.1. This is because some IP

addresses were registered in blacklists corresponding to 2 or more attack types. These IP

addresses are considered to be associated with multiple types of cyber-attacks. Many such IP

addresses were registered in Spam blacklists and other blacklists such as Exploit and Brute-

force. This suggests that cloud service abuse involving multiple types of cyber-attacks tends

to exploit vulnerabilities remotely or perform brute-force attacks in addition to spam-sending.

3.4.3 IP Address Regions

In this section, we investigate the regions of blacklisted IP addresses from cloud service

providers. We selected AWS and Azure as cloud service providers to analyze regions because

these two providers publish information linking IP addresses and regions and have a sufficient

number of both. We investigated 22,122 AWS and 5,753 Azure IP addresses, the total number

of unique blacklisted IP addresses over the observation period clarified in Section 3.4.1. In

addition to the number of blacklisted IP addresses for each region, we investigated the pro-

portion of these numbers to the total number of IP addresses in each region. In this paper,

this proportion is called the IP address “abuse rate” for each region. The total number of IP

addresses in each region was derived based on the following procedure. First, we expanded the

IP address range (CIDR notation) in each region by IP address, excluding the network address

and broadcast address. However, in the case of /31 as an exception, the network address and

broadcast address were also included. Then, we calculated the total number of deployed IP

addresses.
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Fig 3.3: Number of unique blacklisted IP addresses and abuse rate for each region.

Figure 3.3 shows the graphs of region versus number of unique blacklisted IP addresses and

abuse rate for AWS and Azure. Both AWS and Azure have a bias in the number of unique

blacklisted IP addresses among regions. In AWS, US regions, except for us-west1, have low

prices and fast communication speeds [34]. Therefore, it is highly likely that attackers selected

inexpensive regions, like general users. Similarly, in Azure, there are many blacklisted IP

addresses in US regions with low prices. However, the number of blacklisted IP addresses

associated with europewest, which has a relatively high price, is also large. That is, the regions

are not selected based only on price. Here, we referred to [35] for the price of each region in

Azure.

Similar to the number of blacklisted IP addresses, there is also a bias in the abuse rate
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for each region. In addition, the abuse rates of regions with many blacklisted IP addresses

are not necessarily high. To quantitatively evaluate this observation, we use Spearman’s rank

correlation coefficient, which calculates the correlation between the rank of the number of

blacklisted IP addresses and the rank of the abuse rate. The calculated Spearman’s rank

correlation coefficient is approximately 0.41 for AWS and 0.14 for Azure. This shows that

the number of blacklisted IP addresses and the abuse rate have a slightly positive correlation

for AWS and little correlation for Azure. Examples of regions where the rank of the abuse

rate is higher than that of the number of blacklisted IP addresses are ap-south-1 (India) and

eu-west-3 (France) for AWS and koreacentral and koreasouth (Korea), francec (France), and

indiacentral and indiasouth (India) for Azure. In particular, the India and France regions have

high abuse rates for both AWS and Azure, which suggests that the proportion of IP addresses

that have been abused by cyber-attackers tends to be large in these regions.

3.4.4 Probability that IP Address Continues to be Blacklisted

In this section, we define the probability that an IP address continues to be on a blacklist for

N days after first being listed as “on-list duration probability for N days.” We analyzed the

on-list duration probability using the Kaplan–Meier method [36]. In this study, the observation

period was limited to 81 days. Therefore, some IP addresses continue to be blacklisted even

on the observation end date. Using the Kaplan–Meier method, we can calculate the on-list

duration probability even under this condition. We calculated the on-list duration probability

for each type of cyber-attack and for each cloud service provider.

The six graphs in Fig. 3.4 show the results of the Kaplan–Meier analysis. For each graph, the

vertical axis indicates the on-list duration probability (complementary cumulative distribution)

and the horizontal axis indicates the elapsed days since the IP address was first blacklisted. If

the on-list duration probability remains high as time passes, the cloud service abuse continued

for a long time, which means that the cloud service provider is not adequately addressing the

abuse.

From Fig. 3.4, we can confirm that the on-list duration probability is different for each type

of cyber-attack and each cloud service provider. For example, the on-list duration probability

of (a) Scan, decreases steadily, where those of (c) Malware and (e) Botnet decrease slowly

and converge to a high lower limit, and those of (b) Brute-force, (d) Exploit, and (f) Spam

decrease significantly after 30 days. Especially, for (b) Brute-force, AWS and GCP have lower

on-list duration probabilities than Azure and Oracle, and for (c) Malware, only AWS has a

lower on-list duration probability compared with the other cloud service providers.
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Fig 3.4: On-list duration probability of blacklisted IP address for each attack type and cloud

service provider.
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Here, we analyzed why the on-list duration probability significantly decreases for (b) Brute-

force, (d) Exploit, and (f) Spam for elapsed times greater than 30 days. Many of the blacklists

classified into these attack types specify a policy wherein IP addresses remain on the black-

list for at least 30 days after the final observation. In other words, cyber-attacks were not

observed after the first blacklisting, and many IP addresses were removed from the blacklists

immediately, once the blacklisting period exceeded 30 days according to this policy. If the

attack is observed again N (N ≤ 30) days after the first blacklisting, the blacklisting period

will continue for at least 30 +N days.

3.4.5 Deregistration of Blacklisted Cloud IP Addresses

We also investigated the deregistration of blacklisted cloud IP addresses. The legitimate user

or cloud service provider can apply the deregistration of the blacklisted cloud IP address that

are no longer involved in cloud service abuse. By investigating the status of deregistration of

blacklisted cloud IP addresses, we can estimate the current status of countermeasures against

cloud service abuse. If the blacklisted IP address is removed before the policy-defined period

(e.g., 30 days), there was considered to be an application for deregistration from a third party.

As a result of the investigation, we identified the cloud IP addresses that were considered to

be removed according to an application for deregistration. Specifically, in a blacklist with

a policy of on-list duration of 30 days, 361 IP addresses were deleted within 30 days. For

ethical considerations, we do not mention this blacklist provider’s name. This is less than 5%

of the total number of unique cloud IP addresses in the blacklist. This means that most of

the blacklisted IP addresses were continuously used for cyber-attacks or that there was no

application for the deregistration of blacklisted IP addresses that were no longer being used

for cyber-attacks.

3.4.6 Observation of Cloud Service Abuse Using Darknet

To evaluate the reliability of the results of our analysis, it was necessary to verify whether the

blacklisted cloud IP addresses were actually involved in cyber-attacks. To this end, we needed

to observe cloud service abuse using methods other than blacklists. In this study, we used the

darknet. The darknet is a space of reachable and unused IP addresses on the Internet, and

almost all packets arriving at the darknet can be regarded as malicious [37]. In this section, we

discuss the source IP addresses of packets arriving at the darknet and investigate how many
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Table 3.4: Number and coverage of blacklisted IP addresses observed in darknet.

AWS Azure GCP Oracle

# Blacklisted IP Addresses 269 71 83 18

# Observed in Darknet 202 60 80 18

Coverage 75% 85% 96% 100%

are cloud IP addresses. We focus on Scan, which is the only attack type that the darknet can

observe.

The darknet used in this study was the UCSD network telescope [37]. This darknet is an

/8 network that has over 16 million IP addresses. We investigated the packets arriving at

this darknet for 32 days from August 7 to September 7, 2019. The number of unique packet

source IP addresses observed during this period was 109,127,891. These IP addresses included

120,170 AWS, 13,156 Azure, 8,014 GCP, and 621 Oracle IP addresses.

Next, we compared these IP addresses and the unique IP addresses registered in blacklists

classified as Scan during the same period. By this matching, we verified whether the blacklisted

IP addresses actually conducted the scan. The matching results are shown in Table 3.4, where

coverage means the proportion of blacklisted IP addresses that were observed in the darknet.

The results show that the lowest coverage was 75% for AWS. In other words, many of the

blacklisted cloud IP addresses were observed in the darknet in the same period. This shows

that many cloud IP addresses that were registered in the blacklists of Scan were involved in

cyber-attacks.

3.5 Discussion and Limitations

3.5.1 Discussion

From the discussion in Section 3.4, we confirmed that the seriousness of cloud service abuse

cannot be ignored and that effective countermeasures are necessary. In this section, we make

the following suggestions for cloud service users, cloud service providers, and blacklist providers.

Cloud Service Users. When using a cloud service, users should check whether the assigned

IP address is blacklisted. If the assigned IP address was previously used for cloud service

abuse, the IP address could still be blacklisted, and the communication could be blocked.

For example, using the web service IPVoid [38], we can compare against a total of over 100

blacklists just by entering the IP address we want to check in the browser. If the IP address is
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blacklisted, users can take measures such as receiving a different IP address by stopping and

restarting the server.

Cloud Service Providers. In situations where cloud service abuse occurs constantly, if

an abused IP address is released and immediately assigned to another user, there are various

restrictions on that user’s service. Therefore, cloud service providers should detect and manage

cloud service abuse at an early stage to minimize cyber-attacks using their services to provide

users with highly available cloud services. To achieve this, cloud service providers can use the

measurement method conducted in this study. That is, collect multiple IP address blacklists,

find their blacklisted IP addresses, and take action to warn or suspend the corresponding

malicious user.

Blacklist Providers. Blacklist providers need to reduce false positives as much as possible

when creating blacklists. In Section 3.4.4, we showed that many IP addresses continue to be

blacklisted for 30 days according to policy but are considered to have conducted no attacks

after the first blacklisting. Because the IP addresses of cloud service providers are shared

among users, it is not desirable to keep such IP addresses blacklisted for a long time. Using

the measurement method in this study, blacklist providers can identify cloud IP addresses and

treat them differently than other IP addresses. For example, when an attack from a cloud IP

address is observed, not only blacklisting but also informing the cloud service provider may

lead to a faster response.

3.5.2 Limitations

There are two main limitations to this study. One is that the observation range of cloud ser-

vice abuse is limited to the observation range of blacklist providers. As shown in Section 3.4.6,

there are a large number of IP addresses that were observed in the darknet but were not black-

listed. Because it is impossible to observe all possible attacks on the Internet, it is not easy to

completely solve this limitation. However, in the future, we would like to conduct an analysis

that is as comprehensive as possible by increasing the number of acquired blacklists and days

of investigation. The other is that the accuracy of the measurement method used in this study

depends on the accuracy of the information provided by the blacklist provider. However, as

shown in Section 3.4.6, we confirmed that highly accurate information was provided at least

by the blacklists classified as Scan. Additionally, we will strive to improve the accuracy by

combining as many types of blacklists as possible.
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3.6 Related Work

IP addresses are the most basic and essential identifier on the Internet, and therefore many

related studies have been conducted. In this section, we summarize related works that are

roughly divided into studies that focused on malicious IP addresses used for attacks and

studies that focused on changes in IP addresses themselves.

Malicious IP Addresses. Ramachandran et al. [39] analyzed the characteristics of the source

IP addresses of a large amount of spam mail collected by spam traps from 2004 to 2005 and

showed that the source addresses of spam mail were biased to a specific IP address range.

Moreover, they showed that commercial IP blacklists for spam mail countermeasures cannot

identify more than 30% of spam mail source IP addresses, and such source IP addresses are

not blacklisted for more than one month [30]. Metcalf et al. [31] showed that there are many

unique malicious IP addresses for each blacklist and that there is less duplication of IP addresses

among blacklists by collecting and investigating multiple blacklists that registered malicious IP

addresses. In 2019, Li et al. [32] collected a large number of public and commercial IP address

blacklists and proposed objective evaluation indicators. Based on the indicators, they proved

that the current IP blacklist was still insufficient for protecting users and organizations.

Our study is based on multiple malicious IP addresses or IP blacklists, which is similar to the

above studies. However, there are two major differences. First, in our study, the investigated

type of attack was not limited to spam emails but instead considers the more general current

trend of cyber-attacks. Second, we focused on the IP addresses of cloud service providers and

revealed the actual status of abuse specific to cloud services.

Changes in IP Addresses. Liu et al. [40] defined a DNS record that remains even though

the DNS record reference resource (e.g., domain name or IP address) has not been used and is

invalidated as a dangling DNS record (Dare). This was the first study to identify the security

risks of Dare. They clarified that when a Dare reference destination is an IP address from a

cloud service, a third party can obtain it after it is released. Pariwono et al. [41] verified the

same problem as [40] by focusing on the domain name and IP addresses referenced from an

Android application and revealed its risks. Nakamori et al. [42] emphasized that the same IP

address is not always assigned to the same user when a dynamic IP address is assigned by an

ISP or when an IP address is assigned by a cloud service provider. They proposed a method

to identify such changeable IP address regions from the continuity of PTR records.

Considering the nature and actual status of changes to the owners of cloud IP addresses or

dynamic IP addresses as shown in the above studies, we used 45 blacklists and analyzed the

changes in malicious cloud IP addresses. We clarified the characteristics of malicious cloud IP
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addresses that continue to be blacklisted and the attack trends unique to cloud services for

the first time.

3.7 Conclusion

In this paper, we conducted the first large-scale analysis of cloud service abuse. The main

idea of our study was to use large and diverse blacklists for observing cloud service abuse

without direct observation. Our analysis of four typical/popular cloud services using 45 black-

lists over 81 days revealed the actual status of cloud service abuse: changes in the number

of blacklisted cloud IP addresses over time, the types of attacks, trends regarding IP address

regions, on-list duration of the blacklisted IP addresses, and the status of deregistration. The

findings of this study provide a foothold for cloud service users, cloud service providers, and

blacklist providers to effectively manage cloud service abuse.
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Conclusion

When considering effective countermeasures against cyber-attacks, it is important to analyze

communication data on the Internet. In this thesis, we focused on “address information” such

as malicious domain names and malicious IP addresses used by attackers. By analyzing them

in detail and extracting their features, we proposed and discussed effective countermeasures

against evolving cyber-attacks. In Chapter 2, we introduced the concepts of active learning and

ensemble learning to realize highly accurate detection of malicious domain names with only a

small amount of training data. Active learning selects domain names that are considered useful

for improving classification accuracy and labels only them, which leads to reducing labeling

cost. Ensemble learning integrates the prediction results of multiple classifiers to improve

classification accuracy and stability. As a result of the evaluation experiment, we revealed

that our proposed method can achieve higher classification accuracy and stability with a much

smaller number of training data than the conventional method. In Chapter 3, we conducted

a large-scale analysis of cyber-attacks that abuse cloud services. We proposed a method for

indirectly observing various cyber-attacks by combining many different types of IP Address

blacklists. Our analysis of four typical/popular cloud services revealed the actual status of

cloud service abuse: changes in the number of blacklisted cloud IP addresses over time, the

types of attacks, trends regarding IP address regions, on-list duration of the blacklisted IP

addresses, and the status of deregistration. As described above, the contributions of this thesis

are to provide effective countermeasures and valuable insights for evolving cyber-attacks.

53



Acknowledgement

First, I am deeply grateful to Prof. Masato Uchida of Waseda University, School of Fun-

damental Science and Engineering, for instructing and supporting writing this thesis. Next,

I truly feel grateful to Dr. Daiki Chiba and Dr. Mitsuaki Akiyama of NTT Secure Platform

Laboratories, for their suggestive advice on the research and writing this thesis. Finally, I

would also like to thank the members of Uchida laboratory who have assisted the research.

54



Bibliography

[1] Cisco. Cisco 2016 Annual Security Report. http://mkto.cisco.com/rs/564-whv-

323/images/cisco-asr-2016.pdf. [Online; accessed 24-January-2020]. 2016

[2] Manos Antonakakis et al. “From Throw-Away Traffic to Bots: Detecting the Rise of

DGA-Based Malware”. In: Proc. USENIX Security Symposium. 2012, pp. 491–506.

[3] Shuang Hao et al. “PREDATOR: Proactive Recognition and Elimination of Domain

Abuse at Time-Of-Registration”. In: Proc. ACM SIGSAC Conference on Computer and

Communications Security (CCS). 2016, pp. 1568–1579.

[4] Manos Antonakakis et al. “Building a Dynamic Reputation System for DNS”. In: Proc.

USENIX Security Symposium. 2010, pp. 273–290.

[5] Leyla Bilge et al. “EXPOSURE: Finding Malicious Domains Using Passive DNS Anal-

ysis”. In: Proc. Network and Distributed System Security Symposium (NDSS). 2011.

[6] Manos Antonakakis et al. “Detecting Malware Domains at the Upper DNS Hierarchy”.

In: Proc. USENIX Security Symposium. 2011.

[7] Babak Rahbarinia, Roberto Perdisci, and Manos Antonakakis. “Segugio: Efficient Behavior-

Based Tracking of Malware-Control Domains in Large ISP Networks”. In: Proc. IEEE/I-

FIP International Conference on Dependable Systems and Networks (DSN). 2015, pp. 403–

414.

[8] Daiki Chiba et al. “DomainProfiler: Discovering Domain Names Abused in Future”.

In: Proc. IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). 2016, pp. 491–502.

[9] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report

1648. University of Wisconsin–Madison, 2009.

[10] L. Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32.

[11] L. Breiman. “Bagging Predictors”. In: Machine Learning 24.2 (Aug. 1996), pp. 123–140.

[12] R. E. Schapire. “The Strength of Weak Learnability”. In: Machine Learning 5.2 (June

1990), pp. 197–227.

55



BIBLIOGRAPHY

[13] hpHosts. http://www.hosts-file.net/. [Online; accessed 24-January-2020]

[14] Alexa Top Sites. http://www.alexa.com/topsites. [Online; accessed 24-January-2020]

[15] VirusTotal. https://www.virustotal.com/. [Online; accessed 24-January-2020]

[16] VERISIGN. THE DOMAIN NAME INDUSTRY BRIEF. https://www.verisign.com/

assets/domain-name-report-Q12019.pdf. [Online; accessed 24-January-2020]. 2019

[17] Ponemon Institute. The cost of malware containment. http://www.ponemon.org/

library/the- cost- of- malware- containment. [Online; accessed 24-January-2020].

2015

[18] SECURITYWEEK. How to Reduce False Positives and Move Faster on What Matters.

https://www.securityweek.com/how-reduce-false-positives-and-move-faster-

what-matters. [Online; accessed 24-January-2020]. 2018

[19] Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise”. In: Proc. ACM Knowledge Discovery and Data Mining (KDD).

1996, pp. 226–231.

[20] Robert Moskovitch, Nir Nissim, and Yuval Elovici. “Malicious Code Detection Using Ac-

tive Learning”. In: Proc. Privacy, Security, and Trust in KDD (PinKDD). 2008, pp. 74–

91.

[21] Peilin Zhao and Steven C. H. Hoi. “Cost-sensitive online active learning with application

to malicious URL detection”. In: Proc. ACM Knowledge Discovery and Data Mining

(KDD). 2013, pp. 919–927.
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