

T.C.

HASAN KALYONCU UNIVERSITY

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

NETWORK MONITORING SYSTEM USING MACHINE
LEARNING

COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK TRAFFIC

MONITORING

M. Sc. THESIS

IN

ELECTRONICS AND COMPUTER ENGINEERING

BAYRAM KOTAN

SEPTEMBER 2019

M
.Sc. in E

lectronics and C
om

puter E
ngineering

SE
PT

E
M

B
E

R
 2019

B
A

Y
R

A
M

 K
O

T
A

N

i

Network Monitoring System Using Machine Learning

Comparative Analysis of Classification Techniques for
Network Traffic Monitoring

M. Sc. THESIS

IN

ELECTRONICS AND COMPUTER ENGINEERING

HASAN KALYONCU UNIVERSITY

Supervisor

Assistant Professor Mohammed K. M. MADI

Bayram KOTAN

SEPTEMBER 2019

ii

©2019 [Bayram KOTAN].

v

ABSTRACT
NETWORK MONITORING SYSTEM USING MACHINE

LEARNING COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK TRAFFIC MONITORING

KOTAN, BAYRAM

M.Sc. in Electronics and Computer Engineering
Supervisor: Assistant Professor Mohammed K. M. MADI

September 2019
124 pages

Online network traffic classification continues to be the focus of long-term interest.

Network traffic monitoring and analysis can be done for many different reasons. Generally, it

provides raw data input for network monitoring, Quality of Service (QoS) and intrusion

detection. Specifically, network traffic monitoring enables the network analyst to understand

network resources use and identify network performance. With this information, network

analyst may adjust QoS policies to control and manage network resources. This aim is

achieved by setting priorities for specific types of data in the network and logging the traffic

to comply with the regulations. Network traffic monitoring can be used to create models for

academic research. In this thesis, a machine-learning approach that accurately classifies

network traffic using Decision Tree Algorithm (DT) is presented and implementing the

Principal Component Analysis (PCA) Algorithm for reduction, side by side, to reach the best

optimization. Machine learning technology will generate better solutions to monitor and

classify network traffic as a result of highly accurate data mining technics and advanced

statistics. The purpose of this thesis is to build a Network Monitoring System (NMS) using

modern machine learning technologies that works in both online and offline modes. DT

algorithm; one of the available data mining algorithms; is used to build the classifier of

network. The experiment’s results showed that NMS based system has 97.7486 % accuracy

(ACC) in successfully classifying the network traffic.

Keywords: Machine Learning, Artificial Intelligence, Traffic Classification, Decision Tree

Algorithm, Principal Component Analysis Algorithm, KDD CUP99 dataset.

vi

ÖZET
NETWORK MONITORING SYSTEM USING MACHINE

LEARNING COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK TRAFFIC MONITORING

KOTAN, BAYRAM

Yüksek Lisans Tezi, Elektronik Bilgisayar Müh. Bölümü
Tez Yöneticisi: Assistant Professor Mohammed K. M. MADI

Eylül 2019
124 sayfa

Çevrimiçi ağ trafiği sınıflandırması, uzun vadeli ilginin odak noktası olmaya devam

ediyor. Ağ trafiğini izleme ve Ağ trafiği analizi birçok farklı yoldan yapılabilir. Genellikle, ağ

trafiğini izleme, hizmet kalitesi (QoS) ve izinsiz giriş tespiti için ham veri girişi sağla.

Özellikle, ağ trafiğini izleme, ağ analistine ağ kaynaklarını nasıl kullandığını anlama ve ağ

performansını belirleme olanağı sağlar. Bu bilgi ile ağ analisti, ağ kaynaklarını kontrol etmek

ve yönetmek için QoS politikalarını ayarlayabilir. Bu amaca, ağdaki belirli veri tipleri için

önceliklerin ayarlanması ve trafiğin yönetmeliklere uyması için günlüğe kaydedilmesi ile

ulaşılmaktadır. Ağ trafiğinin izlenmesi akademik araştırma için modeller oluşturmak için

kullanılabilir. Bu tezde, en yakın optimizasyona ulaşmak için Karar Ağacı Algoritmasını

(DT) kullanarak ve Temel Bileşen Analizi (PCA) Algoritmasını kullanarak ağ trafiğini doğru

şekilde sınıflandıran bir makine öğrenme yaklaşımı sunulmaktadır. Makine öğrenimi

teknolojisi, yüksek doğrulukta veri madenciliği teknikleri ve ileri istatistiklerin bir sonucu

olarak ağ trafiğini izlemek ve sınıflandırmak için daha iyi çözümler üretecektir. Bu tezin

amacı, hem çevrimiçi hem de çevrimdışı olarak çalışan modern makine öğrenme

teknolojilerini kullanarak bir Ağ İzleme Sistemi (NMS) inşa etmektir. DT algoritması

(mevcut veri madenciliği algoritmalarından biri) ağın sınıflandırıcısını oluşturmak için

kullanılır. Deney sonuçları, NMS tabanlı sistemin ağ trafiğini başarılı bir şekilde

sınıflandırmada %97,7486 doğruluğa (ACC) sahip olduğunu göstermiştir.

Anahtar Kelimeler: Makine Öğrenmesi, Yapay Zekâ, Trafik Sınıflandırması, K-En Yakın

Komşular Algoritması, Temel Bileşen Analizi Algoritması, KDD CUP99 veri seti.

vii

I dedicate this research to my family, my parents and teachers for their endless

support and encouragement in completing this thesis.

viii

I would like to express my sincere gratitude and deep appreciations to my major

professor, Assistant Professor Mohammed K. M. MADI, who showed an extreme

engagement with my work, guided me through the uphill of research, and always pointing the

right direction to reach my objectives.

ix

TABLE OF CONTENTS

ABSTRACT .. v
ÖZET .. vi
TABLE OF CONTENTS .. ix
LIST OF TABLES .. xi
LIST OF FIGURES ... xii
LIST OF ABBREVIATIONS .. xvi

CHAPTER 1
INTRODUCTION

1.1 Introduction ... 1
1.2 Statement of the Problem .. 2
1.3 Specific objectives .. 2
1.4 Significance of the Study .. 3
1.5 Organization of Thesis .. 3

CHAPTER 2
BACKGROUND AND RELATED WORKS

2.1 Introduction ... 4
2.2 Literature Review ... 4
2.2.1 Port based classification... 5
2.2.2 Payload based classification .. 6
2.2.3 Flow feature-based classification... 7
2.3 Related Works... 8
2.4 Support Vector Machine Classification Algorithm .. 9
2.5 Decision Tree Classification Algorithm ... 11
2.6 Logistic Regression Classification Algorithm .. 12
2.7 Deep Learning... 13
2.8 Gaussian Naïve Bayes (GNB) .. 14
2.9 Principal Component Analysis (PCA) Algorithm .. 16
2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description 17

CHAPTER 3
METHODOLOGY

3.1 Machine Learning Workflow.. 18
3.1.1 Gathering Data ... 18
3.1.2 Data Preparation .. 20
3.1.3 Train Model (Classification) .. 24
3.1.4 Test Data (Prediction) .. 24
3.1.5 Improve .. 25
3.2 System Architecture .. 25

x

3.3 The Proposed System.. 26
CHAPTER 4

NMS SYSTEM IMPLEMENTATION AND RESULTS
4.1 Introduction ... 29
4.2 System Architecture .. 29
4.3 Performance Metrics ... 30
4.3.1 Confusion Matrix (CM) ... 30
4.4 Experiments and Results ... 32
4.5 Discussion ... 68
4.5.1 System Accuracy Results... 68
4.5.2 Classification Speed Results .. 69
4.5.3 Memory Allocation Results ... 70
4.5.3 Other Algorithms Results .. 71

CHAPTER 5
CONCLUSION

5.1 Result .. 74
REFERENCES ... 75
APPENDICES .. 78

Appendix: A .. 78
Appendix: B .. 81
Appendix: C .. 83
Appendix: D .. 86
Appendix: E .. 90
Appendix: F .. 94
Appendix: G .. 98
Appendix: H .. 103

xi

LIST OF TABLES

Table 2.1: Network Classes (Auld et al., 2007; Li & Moore, 2007) 4

Table 3.1: Illustration of OSI Layers ... 20

Table 3.2: NMS Training Dataset ... 22

Table 3.3: NMS Test Dataset ... 23

Table 4.1: Confusion Matrix (CM) (Tavallaee et al., 2009) 31

Table 4.2: An Example CM for NMS (Stallings, 2003) ... 31

Table 4.3: First Scenario of 1st Experiment ... 33

Table 4.4: 2nd Experiment of First Scenario .. 36

Table 4.5: 3rd Experiment of First Scenario ... 39

Table 4.6: 4th Experiment of First Scenario ... 42

Table 4.7: 5th Experiment of First Scenario ... 45

Table 4.8: Scalability Experiments for Support Vector Machine Algorithm 48

Table 4.9: Scalability Experiments for Decision Tree Algorithm 50

Table 4.10: Scalability Experiments for Logistic Regression Algorithm 52

Table 4.11: Scalability Experiments for DL Algorithm ... 54

Table 4.12: Scalability Experiments for GNB Algorithm .. 56

Table 4.13: Standard Scaler Experiments for SVM Algorithm 58

Table 4.14: Standard Scaler Experiments for Decision Tree Algorithm 60

Table 4.15: Standard Scaler Experiments for Logistic Regression Algorithm 62

Table 4.16: Standard Scaler Experiments for DL Algorithm 64

Table 4.17: Standard Scaler Experiments for GNB Algorithm 66

xii

LIST OF FIGURES

Figure 2.1: TCP Segment and UDP Datagram Header Format (Degermark, 1999) 6

Figure 2.2: Traffic Classification Process by Machine Learning (Zhou et al., 2007) ... 9

Figure 2.3: Support Vector Machine Classification ... 10

Figure 2.4: Pseudo code of Support Vector Machine Algorithm 11

Figure 2.5: A Decision Tree Classification Algorithm Example 12

Figure 2.6: A Logistic Regression Classification Algorithm Example 12

Figure 2.7: Neural Network Illustration ... 13

Figure 2.8: Deep Learning Illustration ... 14

Figure 2.9: Illustration of GNB Classification Algorithm .. 15

Figure 2.10: A PCA Algorithm Example ... 16

Figure 3.1: The Machine Learning Workflow .. 18

Figure 3.2: Captured and converted network packets by Wireshark 19

Figure 3.3: Wireshark is capturing the packets in real time .. 19

Figure 3.4: Phases for package decoding (Wolpert & Macready, 1997) 20

Figure 3.5: The phase of pre-processing data (Wolpert & Macready, 1997) 21

Figure 3.6: Sample vectors of NMS’s KDD dataset ... 23

Figure 3.7: A General architecture of an NMS ... 25

Figure 3.8: Training Phase’s Block Diagram ... 27

Figure 3.9: Testing Phase’s Block Diagram ... 28

Figure 4.1: NMS system architecture ... 30

Figure 4.2: DR & ACC Comparison for the 1st Experiment 33

Figure 4.3: Training and Testing Time Comparison for the 1st Experiment 34

Figure 4.4: Memory Consume Comparison for the 1st Experiment 34

Figure 4.5: Screenshot of 1st Experiment ... 35

Figure 4.6: Outputs for the 1st Experiment .. 35

xiii

Figure 4.7: DR & ACC Comparison for the 2nd Experiment 36

Figure 4.8: Training and Testing Time Comparison for the 2nd Experiment 37

Figure 4.9: Memory Consume Comparison for the 2nd Experiment.......................... 37

Figure 4.10: Outputs for 2nd Experiment ... 38

Figure 4.11: DR & ACC Comparison for the 3rd Experiment 39

Figure 4.12: Training and Testing Time Comparison for the 3rd Experiment 40

Figure 4.13: Memory Consume Comparison for the 3rd Experiment 40

Figure 4.14: Outputs for 3rd Experiment ... 41

Figure 4.15: DR & ACC Comparison for the 4th Experiment 42

Figure 4.16: Training and Testing Time Comparison for the 4th Experiment............ 43

Figure 4.17: Memory Consume Comparison for the 4th Experiment 43

Figure 4.18: Output for 4th Experiment ... 44

Figure 4.19: DR & ACC Comparison for the 5th Experiment 45

Figure 4.20: Training and Testing Time Comparison for the 5th Experiment............ 46

Figure 4.21: Memory Consume Comparison for the 5th Experiment 46

Figure 4.22: Output for 5th Experiment ... 47

Figure 4.23: DR & ACC Comparison for SVM Algorithm.. 48

Figure 4.24: Training and Testing Time Comparison for SVM Algorithm 49

Figure 4.25: Memory Consume Comparison for SVM Algorithm 49

Figure 4.26: DR & ACC Comparison for DT Algorithm ... 50

Figure 4.27: Training and Testing Time Comparison for DT Algorithm 51

Figure 4.28: Memory Consume Comparison for DT Algorithm 51

Figure 4.29: DR & ACC Comparison for LR Algorithm ... 52

Figure 4.30: Training and Testing Time Comparison for LR Algorithm 53

Figure 4.31: Memory Consume Comparison for LR Algorithm 53

Figure 4.32: DR & ACC Comparison for DL Algorithm ... 54

xiv

Figure 4.33: Training and Testing Time Comparison for DL Algorithm 55

Figure 4.34: Memory Consume Comparison for DL Algorithm 55

Figure 4.35: DR & ACC Comparison for GNB Algorithm .. 56

Figure 4.36: Training and Testing Time Comparison for GNB Algorithm 57

Figure 4.37: Memory Consume Comparison for GNB Algorithm 57

Figure 4.38: DR & ACC Comparison for SVM Algorithm.. 58

Figure 4.39: Training and Testing Time Comparison for SVM Algorithm 59

Figure 4.40: Memory Consume Comparison for SVM Algorithm 59

Figure 4.41: DR & ACC Comparison for DT Algorithm ... 60

Figure 4.42: Training and Testing Time Comparison for DT Algorithm 61

Figure 4.43: Memory Consume Comparison for DT Algorithm 61

Figure 4.44: DR & ACC Comparison for LR Algorithm ... 62

Figure 4.45: Training and Testing Time Comparison for LR Algorithm 63

Figure 4.46: Memory Consume Comparison for LR Algorithm 63

Figure 4.47: DR & ACC Comparison for DL Algorithm ... 64

Figure 4.48: Training and Testing Time Comparison for DL Algorithm 65

Figure 4.49: Memory Consume Comparison for DL Algorithm 65

Figure 4.50: DR & ACC Comparison for GNB Algorithm .. 66

Figure 4.51: Training and Testing Time Comparison for GNB Algorithm 67

Figure 4.52: Memory Consume Comparison for GNB Algorithm 67

Figure 4.53: K-Fold Cross Validation .. 68

Figure 4.54: Number of Features versus Detection Rate .. 69

Figure 4.55: Number of Features versus Accuracy Rate .. 69

Figure 4.56: Number of Features versus Training Time ... 70

Figure 4.57: Number of Features versus Testing Time .. 70

Figure 4.58: Features versus Memory Allocation .. 71

xv

Figure 4.59: Experiment of Support Vector Machine Classification Algorithm 72

Figure 4.60: Experiment of Logistic Regression Classification Algorithm 72

Figure 4.61: Experiment of Deep Learning Algorithm .. 73

Figure 4.62: Experiment of Gaussian Naïve Bayes Algorithm 73

xvi

LIST OF ABBREVIATIONS

ACC : Accuracy Rate

CM : Confusion Matrix

CPU : Central Processing Unit

DARPA : Defense Advanced Research Project Agency

DL : Deep Learning

DPI : Deep Packet Inspection

DR : Detection Rate

DT : Decision Tree

FN : False Negative

FP : False Positive

FTP : File Transferring Protocol

GNB : Gaussian Naïve Bayes

IANA : Internet Assigned Numbers Authority

IP : Internet Protocol

IDS : Intrusion Detection System

KDD : Knowledge Discovery and Data

KDD CUP99 : Knowledge Discovery and Data Mining CUP1999

LAN : Local Area Network

LR : Logistic Regression

MAC : Media Address Control

NAT : Network Address Translation

NMS : Network Monitoring System

PCA : Principal Component Analysis

P2P : Peer to peer

PSP : Percentage of Successful Prediction

xvii

QoS : Quality of Service

RBF : Radial Basis Function

SVM : Support Vector Machine

SYN : Synchronize

TN : True Negative

TP : True Positive

TPR : True Positive Rate

TCP : Transmission Control Protocol

TCP/IP : Transmission Control Protocol/Internet Protocol

UDP : User Datagram Protocol

Npcap : Packet Capture Library for Windows

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Internet is evolving to a tremendous and ubiquitous network of networks, containing

increasingly huge data and digital media communication, and generating enormous revenues

every day to all businesses worldwide. Data transmission is managed by simple protocols;

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP); without

monitoring, inspection and intelligent control over the traffic built in functionality (Cerf &

Kahn, 1974). Businesses and governments need applications to classify and monitor network

traffic, manage its resources and detect possible anomalies to protect their investments and

interests. In general, the Internet traffic is the product of a complex system containing

diverse of networks, hosts, applications and different clients interacting with each other.

Network traffic classification (monitoring) has attracted great attention nowadays

(Karagiannis, Papagiannaki, & Faloutsos, 2005; Kim et al., 2008; Lim et al., 2010; Nguyen,

Armitage, & Tutorials, 2008; Wu, Min, Li, & Javadi, 2009). Classification of traffic flows

according to production applications has very important part in security and network

management, like QoS control, intrusion detection and lawful interception (Xiang, Zhou,

Guo, & Systems, 2008). Our days, billions of devices use Internet resources. Every device

sends requests for connection to other devices and exchange data over the Internet. As a

result, huge amount of traffic will be generated, so classification is necessary; not only for

QoS or for maintaining availability of resources; but also, for efficient processing of

information.

Manual labeling of data samples is mostly tiring, time wasting and costly. This

complexity is continuously increasing by wide range of network applications are produced

every day. Therefore, we need a system that can learn and apply. In this context, it will be

more useful to apply machine learning.

Network monitoring can be succeeded through port-based traffic classification

methods (Ioffe & Szegedy, 2015), payload-based classification methods (Deep packet

inspection) (Ioffe & Szegedy, 2015) and flow features-based classification methods (Machine

learning and statistical feature) (Ioffe & Szegedy, 2015). Many classification methods have

been suggested (Auld, Moore, & Gull, 2007; Crotti, Gringoli, Pelosato, & Salgarelli, 2006),

as interest in traffic classification increases. Port based method is known as one of the best

 2

techniques for network traffic classification (Namdev, Agrawal, & Silkari, 2015). This

method uses network ports that are firstly registered in Internet Assigned Numbers Authority

(IANA). However, this method has failed in correctly classifying Point to Point (P2P)

applications, which use unregistered network port number and uses dynamic port numbering

(Karagiannis, Broido, & Faloutsos, 2004). Payload based methods gives better classification

results (Karagiannis et al., 2004). Yet, this method fails to classify encrypted traffic. Note

that many network applications use encryption to protect data from detection (Haffner, Sen,

Spatscheck, & Wang, 2005; Sen, Spatscheck, & Wang, 2004). Many network classification

methods have been proposed using machine learning to monitor network traffic. We will

propose a technique for classifying network traffic based on ML. Machine Learning Method

gives very accurate results in traffic classification (Namdev et al., 2015). This Method uses

training and testing data sets to classify unknown traffic classes.

1.2 Statement of the Problem

Network specialists work day in and day out attempting to sift through incredible

amounts of data from network (server logs, network packets and network controllers).

Nowadays billions of devices use internet resources. Every device sends requests for

connection to other devices and exchange data over the internet. As a result, huge amount of

traffic will be generated in network, so classification is necessary for network management

(Park, Tyan, & Kuo, 2006).

In addition, to monitor all the packets traffic simultaneously on a network will be not

easy. (A. Moore, Hall, Kreibich, Harris, & Pratt, 2003). Protocols overlapping or protocol

layering complicate the fast monitoring and extraction of the features. To overcome these

challenges, machine learning technology is one of the best solutions.

1.3 Specific objectives

The primary purpose of this study is to apply the machine learning methods in the

network traffic classification and to evaluate the results. To achieve this goal, the following

goals should be considered:

• To examine the methods available for classifying network traffic using ML.

• To draft the methods taxonomy identified and provide the advantage, the

disadvantages and weakness.

• To evaluate the performance of the identified method and compare it with

other methods.

 3

1.4 Significance of the Study

This thesis aims at building a network monitoring system that use Machine Learning

for classifications of network packets. This can be achieved by using fast machine learning

algorithms that can process and analyze network traffic. In a short description, we will

accurately define traffic classes by maximizing the Detection Rate (DR), determining the

class of any packet recorded on the basis of recognized classification patterns. During the

training stage, these classification patterns are produced to raise the detection rate. The

significance of this study lies in describing and analyzing the best method of Network

Monitoring that can be used for Machine Learning.

1.5 Organization of Thesis

The thesis is comprised of five chapters. Chapter two provides theoretical background

consisting of a general NMS, a short overview of NMS methods, the definition of Knowledge

Discovery Data Mining (KDD CUP99 data set), DT and PCA algorithms. Chapter 3 provides

the methodology, architecture of the system and the system suggested. Chapter 4 provides the

implementation and outcomes of the suggested system. Chapter 5 provides findings for

conclusion and suggestions for the next researchers.

 4

CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Introduction

Before the implementation of the proposed system, an adequate research has been

conducted on the published literature on this subject. In this section, a summary of the

mentioned research and investigation will be discussed.

2.2 Literature Review

From security monitoring to QoS measurements, in network management traffic

classification (monitoring) has extensive applications. Researchers mostly apply machine

learning techniques to flow statistical feature-based classification methods recently.

Network Monitoring can be achieved through the following methods (Ioffe &

Szegedy, 2015):

• Port based traffic classification

• Payload based classification (Deep packet inspection)

• Flow features-based (Machine learning and statistical feature)

Before discussing those classifications methods, we have to know what these classes

are. Table 2.1 shows network classes.

Table 2.1: Network Classes (Auld et al., 2007; Li & Moore, 2007)

 5

2.2.1 Port based classification

This is the oldest way of performing traffic classification. Its assumption is

application servers use well known ports for client to initiate communication. Such ports are

registered in the IANA list of registered ports (Schneider, 1996):

80: HTTP

22: SSH

20, 21: FTP

25: SMTP

53: DNS

143: IMAP

161, 162: SNMP

It is enough to intercept the TCP/UDP packet header to infer the server-side

application. For TCP flows, the SYN (synchronize) packet is enough.

Port based classification is very simple and fast to implement. There is no need to

inspect payload but checking the packet headers will be sufficient. It is often used on

firewalls and access control lists. Nevertheless, many applications have not ports registered

with IANA. Even if they have well known ports, they may use others like they may hide

behind port 80. Ports are randomly/dynamically allocated in some cases, and port-based

classification fails on NAT (Network Address Translator) and IP (Internet Protocol) tunnels.

TCP Segment and UDP Datagram Header Format (Degermark, 1999) is shown Figure

2.1.

 6

Figure 2.1: TCP Segment and UDP Datagram Header Format (Degermark, 1999)

For network traffic classification port-based method is a perfect. This method

implicates ports that are firstly registered in IANA. However, this method has failed owing to

increase of P2P applications, that use unregistered number (dynamic port numbers) with

IANA (Karagiannis, Broido, Brownlee, Claffy, & Faloutsos, 2003; A. W. Moore &

Papagiannaki, 2005).

2.2.2 Payload based classification

It is such methods that inspects the TCP or UDP payloads of captured packets looking

for:

• Known protocol behaviors (protocol decoding)

• Specific - application data (pattern matching)

They are also called as Deep Packet Inspection (DPI) methods as they inspect the

content of the payload (Porter, 2005). Payload based classification can identify many

protocols that port-based classification cannot do, and it has higher accuracy rate. In payload-

based classification first eight packets will be sufficient for the process. Real-time application

is possible as it can classify traffic in short time. As this method inspects payload, it fails to

classify encrypted communication. This method generates high processing loads on CPU

(Central Processing Unit). Protocol decoding is a very complex operation as it requires deep

information of the all protocols. It is used for only given popular protocol types and it is hard

to keep such decoders up to date.

 7

Payload Based methods give definitive results in classification. However, many

network applications, called encrypted data network applications, use encryption to protect

their data from detection so payload-based methods cannot classify them, and fail

(Karagiannis et al., 2004).

2.2.3 Flow feature-based classification

Flow feature based classification methods are capable of overcoming the problems of

payload-based and port-based classification techniques. It uses statistical properties of the

characteristics (features) of each flow to judge the protocol/application type. That is why,

those methods are also known as statistical methods or machine learning methods. In general,

there are two machine learning methods.

1-Supervized classification: In supervised methods, the machine is trained by using

data which is well "labeled." It indicates that with the correct answer some data is tagged. It

can be contrasted with learning in the presence of a supervisor or teacher. A supervised

learning algorithm draws on labeled training data and helps guess unexpected results. It

requires time and technical knowledge from a team of extremely qualified information

researchers to successfully build, scale, and deploy precise monitored machine learning

models. In addition, data scientists need to reconstruct models to ensure that their insights

remain true until their data modifications. Supervised classifications make traffic recognition

(one versus all classification) especially attractive. Training on all classes that are expected to

be seen is important for multi-classification (Kotsiantis, Zaharakis, & Pintelas, 2007).

2- Unsupervised classification: Unsupervised methods such as clustering may reveal

naturally different classes or even new applications. Clusters need to be labeled, for example

they can be labeled directly by human. Clusters may not map to applications one to one. One

application may dominate multiple clusters, or vice versa. It may be very hard to map back

from a single cluster to a source application(Hinton, Sejnowski, & Poggio, 1999).

Preparing data for machine learning initiatives can be accomplished by following the

six critical phases below:

1-Data (flows) acquisition (input): This aspect concerns the capture of packets

passing through the entire network.

2-Feature extraction: After data capture and (possibly) sampling, both supervised

and unsupervised techniques extract flow features. Some works use up to 250 features per

flows. Example features:

 8

- Flow duration in seconds

- Data volume per flow

- Number of packets per flow

- TCP port

- Packet inter arrival time (mean, variance, etc.)

- Payload size (mean, variance)

3-Feature selection: Feature Selection is a process of selection a subset of relevant

features from all features, which is used to make model building.

4-Training: Training is the most crucial phase, so how well the system performs on

the data provided to the system depends on the algorithms used. At this phase, the system is

trained with previously provided training data to ensure that it recognizes the patterns in the

data.

5-Validation: In this phase of validation, the algorithm used to train the machine is

better accurate and efficient.

6-Testing (output): The test data is used in this phase to see how well the machine can

predict on the basis of its training new answers.

2.3 Related Works

In this thesis, machine learning and statistical feature method which is flow feature-

based classification will be used to implement NMS.

For the authors in (Zhou, Li, & Yang, 2007), in generic, four stages of traffic

classification with ML algorithms are shown in Figure 2.2. Network packets that captured

online by packet sniffing are first inputs, but these inputs can be prepared offline too. Then

packets are classified into vectors according to protocols, source port, source IP address,

destination port and destination IP address. In the second stage vector features are calculated

which is features extraction. When dataset is huge, for decreasing search space of machine

learning algorithm, in order to get a subset of the vector features (decreasing vector

dimensions) data sampling can be performed. These features are used in features selection

(filtering) stage. In this stage, unnecessary features are filtered, and important and necessary

features are selected. Finally, on the last step machine learning algorithm is done (Zhou et al.,

2007).

 9

Figure 2.2: Traffic Classification Process by Machine Learning (Zhou et al., 2007)

The most important part of machine learning based network monitoring is algorithm

which is used for classifications.

2.4 Support Vector Machine Classification Algorithm

SVM algorithm is similar with Logistic Regression (LR). The both algorithms try to

find the best line separating the two classes. The algorithm allows the line to be drawn from

the most distant places in two classes of the line(Cortes & Vapnik, 1995). It is a classifier that

is non-parametric. SVM may also classify linear and nonlinear information, but typically

attempt to classify information as linear. There are numerous of kernels that can be used in

SVM classification algorithm like sigmoid, polynomial, linear and radial basis function

(RBF) (Scholkopf et al., 1997).

 10

Pros of SVM is:

• With clear margin of separation, it operates really well.

• It is efficient in spaces of high dimensions.

• It is efficient if the number of samples exceeds the number of dimensions.

• It uses in the decision function a subset of training points (called support

vectors), so it is also efficient in memory.

Cons of SVM is:

• • If the data set is big, it does not perform well because the necessary training

time in this case is greater.

• When the data set has more noise, it does not perform very well because the

target classes overlap.

• SVM does not provide direct probability estimates, they are computed using a

costly five-fold cross-validation.

Figure 2.3: Support Vector Machine Classification

 11

Figure 2.4: Pseudo code of Support Vector Machine Algorithm

2.5 Decision Tree Classification Algorithm

Decision Tree (DT) Classifier is widely used classification method. It poses a series of

definite answered questions about the attributes of the test data. After it receive an answer

each time, another question is asked until a decision about the class label of each data is

reached (Shalev-Shwartz & Ben-David, 2014).

Pros of DT is:

• It is easy to understand and interpret, perfect for visual representation.

• It can work with numerical and categorical features.

• It requires little data preprocessing.

• It is fast for inference.

Cons of DT is:

• It tends to over fit.

 12

Figure 2.5: A Decision Tree Classification Algorithm Example

2.6 Logistic Regression Classification Algorithm

LR classifier assigns a discrete set of classes to observations. By using the logistic

sigmoid function, , LR transforms its output into a probability value that

can be mapped to two or more separate classes (Hosmer & Lemeshow, 2000).

Figure 2.6: A Logistic Regression Classification Algorithm Example

 13

Pros of LR is:

• It is very efficient and highly interpretable.

• LR doesn’t require too many computational resources.

• It doesn’t require input features to be scaled.

Cons of LR is:

• It doesn’t perform well when feature space is too large

• It doesn’t handle large number of categorical features/variables well

• Non-linear problems cannot be solved by LR so it needs transformations for

non-linear features.

• It relies on entire data.

• LR can only predict a categorical outcome.

• It is vulnerable to overfitting.

2.7 Deep Learning

Deep learning (DL) is primarily neural networks and is usually tailored to machine

learning. Most deep learning methods use neural network architectures. That is why they are

often referred to as deep neural networks. It teaches computers to do what comes naturally to

humans and it learns from example. DL classifier contains 3 type of layers: input, output and

hidden. Each layer contains at least one interconnected node. In data set, classifier detects

complex structure, and it changes its internal parameters to calculate the prior layers (LeCun,

Bengio, & Hinton, 2015; Schmidhuber, 2015).

Figure 2.7: Neural Network Illustration

 14

Figure 2.8: Deep Learning Illustration

Pros of DL is:

• DL has very high performance.

• DL lowers the need for engineering features.

• DL is an architecture that can comparatively readily tailored to fresh issues.

Cons of DL is:

• Large amounts of data are required

• DL is extremely costly to train computationally.

• It has little to do with a powerful theoretical basis.

2.8 Gaussian Naïve Bayes (GNB)

GNB Classifier is modeled on the Bayesian Theorem (Webb, Boughton, & Wang,

2005). Bayesian theorem allows us to use the naïve independence assumption to indicate the

conditional probability as follows:

The following rule is used to classify the sample since P(X) is continuous for a specified

example:

 15

Estimation of maximum a posteriori (MAP) is generally utilized to estimate the

parameters in the naïve Bayes model, inclusive of P(y) and P(xi|y); the preceding is the

frequency of samples in the training set with class y. In addition, Gaussian naïve Bayes uses

the classification by assuming the probability of Gaussian characteristics:

where the maximum probability is estimated for the parameters σy and µy. Because of

its simplicity and extreme speed compared to more advanced methods (Lou et al., 2014).

Illustration of GNB classifier is show in Figure 2.9.

Figure 2.9: Illustration of GNB Classification Algorithm

 16

Pros of GNB is:

• GNB is simple and quick to predict class of test data set.

• GNB operates well in multi class prediction.

Cons of GNB is:

• If categorical variable has a category that was not observed in training data

set, then GNB cannot make a prediction.

• It is bad estimator.

2.9 Principal Component Analysis (PCA) Algorithm

PCA is reducing the dimensionality of a data set consisting of many variables

correlated with each other while keeping the variation present in the dataset, up to the

maximum extent.

Figure 2.10: A PCA Algorithm Example

The proposed system will use PCA algorithm to reduce features.

 17

2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description

KDD CUP99 is based on data captured by Stolfo et al in the DARPA'98 IDS

evaluation program. Since 1999, it has used anomaly detection techniques for assessment. It

has been using widely popular. DARPA'98 is about 4 gigabytes data. This data is 7 weeks of

network traffic and it is compressed raw “binary” TCP dump. There are 5 million connection

records in this data. As a row, every connection of this data called a vector. Each vector is

about 100 bytes. Test data is about fortnight of network traffic and includes about 2 million

vectors. Training data includes about 5 million vectors. Each vector includes 41 features.

 18

CHAPTER 3

METHODOLOGY

3.1 Machine Learning Workflow

In this chapter, the theoretical description of the system will be presented following

the Machine Learning Workflow methodology. PCA algorithm will be used in Data pre-

processing step and DT algorithm will be used for classification and regression predictive

problems in the Train Model step and Test Data step.

Machine Learning Workflow consists of five main stages of a project and it defines

tasks in every stages and relationships between them. These steps are illustrated below:

Figure 3.1: The Machine Learning Workflow

When we construct NMS, we will apply the steps of the machine learning workflow

in our machine learning system.

3.1.1 Gathering Data

In the first stage of NMS, packets that passed through the entire network are being

grabbed and any packet that targeted to any node of the network can be grabbed by

Wireshark network application which contains packet decoder. Wireshark is a free and open-

source packet analyzer. Wireshark can convert network packets into other file types. In

addition to capturing all features, Wireshark also catches data and time fields and display them

in this stage. Typical packets information gathered by Wireshark illustrated in Figure 3.2. All

packets that have been captured will be processed in the next stage for analyzing.

 19

Figure 3.2: Captured and converted network packets by Wireshark

As shown in the Figure 3.3, the client can capture Wireshark packets and convert

them to a csv file containing vectors of features in each row of the file shown in Figure 3.6.

Figure 3.3: Wireshark is capturing the packets in real time

As shown in Figure 3.4, the packet decoder takes packets from the network interface

via the Npcap library, and identifies which protocol is in use for a grabbed packet. Npcap is

used to grab packets from the network, it is library, which works under windows operating

system. Data acquisition is also referred to as data acquisition using the Npcap library.

Wireshark will be used in the NMS to capture packets using the Npcap library and for

processing step their format will be converted.

The packets stored in the dataset will then be sent for pre-processing (Wolpert & Macready,
1997).

 20

Table 3.1: Illustration of OSI Layers

Figure 3.4: Phases for package decoding (Wolpert & Macready, 1997)

3.1.2 Data Preparation

Figure 3.5 demonstrates the pre-processing steps of the data before the Train model,

which includes the training process. Generally, pre-processing data is necessary for all tasks

of machine learning. Pre-processing of data is based on extracting information from header

and load for the packages. Then new statistical features will be created from the header and

the load. Pre-processing generally consists of dataset creation, data cleaning, integration, and

feature construction, feature selection, reduction, and normalization. The most related steps

for NMS are briefly explained below (Tavallaee, Bagheri, Lu, & Ghorbani, 2009).

 21

Figure 3.5: The phase of pre-processing data (Wolpert & Macready, 1997)

Dataset Creation: For classification and prediction, it is representative network

traffic. The KDD dataset that is used for NMS, were composed from some normal network

logs through weeks. The dataset is compressed raw binary TCP dump. There are 5 million

connection records in this data. As a row, every connection of this data called a vector. Each

vector is about 100 bytes. Each vector contains 41 features.

The table below shows the part of the data set of the KDD Cup utilized in the

suggested NMS.

 22

Table 3.2: NMS Training Dataset

 23

Table 3.3: NMS Test Dataset

Figure 3.6: Sample vectors of NMS’s KDD dataset

 24

Features Extraction: Classification of packets relies on the network connection

feature values. Extraction of features requires the captured network packets as an input and

extracts features from these packets as output. In port-based classification, basic features are

extracted from the header of packets (protocol type, service, flag etc.). In payload

classification, content features are extracted from payload of packets (logged in, etc.).

Statistical features (count, srv_count, etc.) manually are computed.

Feature Scaling: This stage is a method for standardizing the range of independent

variables or dataset features. Since the range of values of raw data varies widely, objective

functions will not work properly without normalization in some machine learning algorithms.

There are two types of feature scaling (Ioffe & Szegedy, 2015):

Standardization: Data standardization is the process of rescaling one or more features

so that features have 0 mean value and a standard deviation of 1. Standardization assumes

that data has a Gaussian distribution. This does not strictly have to be true, but the technique

is more effective if features distribution is Gaussian.

Normalization: Normalization is the process of rescaling one or more features to the

range of 0 to 1. This means that the largest value for each feature is 1 and the smallest value

is 0.

 After feature scaling, vectors are suitable as input to machine learning algorithms.

Reduction: This is utilized to reduce the dimensions (count) of features by dismissing

any excessive or irrelevant features.

3.1.3 Train Model (Classification)

Classification is a method by which classifier specifies which group belongs to a

particular observation, such as when biologists categorize crops, animals and other life forms

into separate taxonomies. It is one of the main uses of information science and machine

learning.

Then algorithms classify the train data and train data train the system. In the final

stage, the trained system estimates vectors to determine if the data is normal or not.

3.1.4 Test Data (Prediction)

The machine learning value is realized in this step. The trained model is used in this

phase to forecast the result and it labels packets with the class name it belongs to. This step is

the phase of deciding which class the package belongs to.

 25

3.1.5 Improve

It covers the evaluation of the results from the technical point of view according to the

test values, arranging and sending of the observing and support model and arranging process.

Selecting the most efficient model by looking at the test results enters this stage. Improve step

of methodology will be discussed in chapter five which is the last chapter of this thesis.

3.2 System Architecture

The NMS includes data gathering, data pre-processing, classification, prediction and

response stages. In data gathering stage, Wireshark captures data from network and then data

is used in the classification and prediction stages to train and test the NMS. In NMS, KDD

CUP99 provides train data and pre-processing data controls the data to assure an effective

configuration of the classification system. DT classification algorithm is used by PCA

algorithm and Wireshark network monitoring application to build the suggested NMS and

classify network traffic in online and offline mode. The last NMS phase response shows

important data and tells the network administrator to take appropriate action.

In Figure 3.7 a general NMS architecture is illustrated. It shows a general

architecture of an NMS.

Figure 3.7: A General architecture of an NMS

 26

The most considerable part of the NMS is to classify network packets by service

types, then dispatch a copy of the record to the network administrator. As a result, the

network administrator takes proper action by updating the monitoring systems on the

network.

3.3 The Proposed System

NMS has two phases as follows:

I. Training.

II. Testing.

Training phase which is shown in Figure 3.8, consists of three steps and those steps

are listed below:

• Input dataset.

• Train the system by dataset.

• DT algorithm classifies and PCA algorithm deducts dimensions, and NMS

classifies the packets by classes that determined in feature extraction phase.

Output of this phase is trained system.

 27

Figure 3.8: Training Phase’s Block Diagram

In Figure 3.9 the testing stage is illustrated. It consists of 3 steps and those steps can

be described as bellow:

• Input trained system.

• Learning machine (trained system) classifies network traffic (testing file in

offline mode).

• Generate monitoring report as output. It is the last phase in the suggested

system NMS. Important information is displayed, and system informs the

network administrator for further actions

 28

Figure 3.9: Testing Phase’s Block Diagram

 29

CHAPTER 4

NMS SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction

The application of the suggested NMS will be presented in this section by using the

DT and PCA algorithms. Then we will compare DT algorithm of the NMS with other

algorithms. This chapter provides a comparison of the test results of NMS with the different

codes given in the Appendix. NMS is designed as it is in a LAN network with a WAN

connection. It is programmed in Python language and implementation of the code is highly

suitable for the most of networks types.

4.2 System Architecture

In Figure 4.1 the suggested NMS system is illustrated. It is comprised of the below

components:

• Router which will be used for routing network packages.

• Switch for receiving, processing and forwarding the packets.

• PC, which runs NMS.

• Network Administrator is to monitor the network.

• LAN with five clients, one firewall, one switch, one router and two access

point.

 30

Figure 4.1: NMS system architecture

4.3 Performance Metrics

4.3.1 Confusion Matrix (CM)

CM is a measure of efficiency. It is utilized for problems where there can be at least

two output classes. It is shown as a table with four cells. Columns are actual values and rows

are predicted values, and it is showed in Table 4.1.

True Positive (TP): Actual value is positive, and prediction is positive

True Negative (TN): Actual value is positive, and prediction is negative

False Positive (FP): Actual value is negative, and prediction is positive

False Negative (FN): Actual value is negative, and prediction is negative

 31

Table 4.1: Confusion Matrix (CM) (Tavallaee et al., 2009)

A confusion matrix for binary class problem is show in Table 4.1. and a confusion

matrix for multiclass problem is shown in Table 4.2.

Table 4.2: An Example CM for NMS (Stallings, 2003)
 PREDICTED VALUES
 WWW MAIL OTHER INTERACTIVE BULK SERVICE MEDIA

A
C

T
U

A
L

 V
A

L
U

E
S

WWW 475767 1036 59 22 35 10 0

MAIL 804 49996 204 110 119 3 0

OTHER 133 205 38163 66 111 1312 9

INTERACTIVE 67 250 146 691 34 0 1

BULK 24 116 107 22 21423 1 0

SERVICE 0 1 939 0 3 3780 0

MEDIA 2 1 5 12 3 0 6

Standard metrics are shown below for evaluating network monitoring. The most

commonly used evaluation metrics are the detection rate (DR) and the accuracy rate. As

shown in Equation (4.1), DR is calculated as the ratio of the number of correctly classified

vectors to the total number of class vectors and as shown in as in Equation (4.2), Accuracy is

the ratio of number of correct predictions to the total number of input samples (Tavallaee et

al., 2009).

PREDICTED VALUES

Positive Negative
A

C
T

U
A

L

V
A

L
U

E
S Positive TP FN

Negative FP TN

 32

Sensitivity-Detection Rate (DR) or True Positive Rate (TPR): It is a ratio of the total

number of positive examples that are correctly classified divide into the total number of

positive examples. High recall shows that the class is identified correctly (Tavallaee et al.,

2009).

Accuracy: It is the ratio of the correctly labeled examples to the whole pool of example

(Tavallaee et al., 2009).

4.4 Experiments and Results

There will be four scenarios that contains experiments to classify network traffic over

KDDCUP99 data set by using DT, LG, SVM, DL and GNB algorithms in NMS in this

section.

Scenario 1: 5 experiments were performed on KDD CUP99 dataset by using SVM,

DT, LR, GNB and DL classification algorithms individually. These experiments’ requirements

described as below:

Experiment 1: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however all forty-one features are chosen.

Experiment 2: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only thirty features are chosen.

Experiment 3: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only twenty features are chosen.

Experiment 4: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only ten features are chosen.

Experiment 5: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only five features are chosen.

Scenario 2: To test scalability of NMS, there will tree different size of KDD data set.

Scenario 3: In this scenario standard non-scalar algorithms were applied and compared

to each other to see the outcome of feature scaling on the classification.

Scenario 4: To avoid impact of unbalanced data on classification.

 33

Scenario 1:

The 1st experimental outcome showed that the DT classifier reached the largest DR

rate of 79.8813% compared to other classifiers. The maximum ACC rate is 98.9923 % that

reached by DL classifier. The maximum value of DR rate for network classes was reached

by DT classifier. Although the training time is long, DL classifier reached by a high DR rate.

The minimum time taken to train is 0.156394 seconds that reached by GNB classifier and

minimum time taken to test is 0.12333 seconds achieved by DT classifier. Moreover, the

minimum memory usage is 0.741154 GB that reached by DT classifier.

Table 4.3: First Scenario of 1st Experiment
 EXPERIMETNS

 SVM DT LR DL GNB
DR (%) 51.1479 79.8813 56.0539 78.8496 51.4787
ACC (%) 96.2793 97.7486 96.1568 98.9923 84.0907
DR for WWW (%) 99.7406 99.8135 99.6165 99.6575 95.4771
DR for MAIL (%) 82.7367 83.6521 84.9207 90.6064 49.8243
DR for OTHER (%) 96.7149 94.6473 92.5823 96.3380 26.0731
DR for INTERACTIVE (%) 1.1774 63.9192 11.5222 0 46.7619

DR for BULK (%) 77.6656 96.5887 72.0186 97.4803 20.9560
DR for SERVICE (%) 0 82.6169 31.7171 68.0890 97.1204

DR for MEDIA (%) 0 37.9310 0 99.7761 24.1379
MEAN OF CROSS V. (%) 96.0249 97.9379 95.7114 98.9900 75.5659
TRAINING TIME(SECOND) 45.529160 5.581684 7.594568 122.242404 0.156394
TESTING TIME(SECOND) 335.489777 0.12333 0.102367 32.621607 2.362087
MEMORY(GB) 0.743065 0.741154 0.813011 0.977589 0.758854

Figure 4.2: DR & ACC Comparison for the 1st Experiment

 34

Figure 4.3: Training and Testing Time Comparison for the 1st Experiment

Figure 4.4: Memory Consume Comparison for the 1st Experiment

 35

Figure 4.5: Screenshot of 1st Experiment

Figure 4.6: Outputs for the 1st Experiment

 36

The 2nd result showed that DT classifier reached a DR rate of 75.8523 % as

maximum value compared with other classifiers. The maximum ACC rate is 98.8568 % that

reached by DL classifier. The maximum DR rate for network classes was reached by DT

classifier. Although the training time is long, DL classifier reached a high DR rate. The

minimum time taken to train is 0.13955 seconds that reached by GNB classifier and

minimum time taken to test is 0.088197 seconds reached by LR classifier. Moreover, the

minimum memory usage is 0.685406 GB that reached by Support Vector Machine classifier.

Table 4.4: 2nd Experiment of First Scenario
 EXPERIMETNS
 SVM DT LR DL GNB
DR (%) 51.6828 75.8523 56.0486 74.3756 55.0105
ACC (%) 96.3691 97.5658 96.1539 98.8568 86.6332
DR for WWW (%) 99.7381 99.8775 996160 98.5109 95.1472
DR for MAIL (%) 83.6306 80.7244 84.8973 60.0671 51.4228
DR for OTHER (%) 96.7249 94.8773 92.5823 96.6456 71.4717
DR for INTERACTIVE (%) 2.8595 57.6955 11.5222 0 38.2674

DR for BULK (%) 77.7255 96.7685 72.0047 97.1703 11.9946
DR for SERVICE (%) 1.1009 83.7814 31.7171 68.5300 92.6318

DR for MEDIA (%) 0 17.2413 0 99.7057 24.1379
MEAN OF CROSS V. (%) 96.1174 97.5987 95.7083 98.9100 82.9959
TRAINING TIME(SECOND) 34.305190 3.192578 6.628949 120.981310 0.139555
TESTING TIME(SECOND) 257.928970 0.097885 0.088197 30.250127 1.819185
MEMORY(GB) 0.685406 0.698105 0.799507 0.985912 0.740261

Figure 4.7: DR & ACC Comparison for the 2nd Experiment

 37

Figure 4.8: Training and Testing Time Comparison for the 2nd Experiment

Figure 4.9: Memory Consume Comparison for the 2nd Experiment

 38

Figure 4.10: Outputs for 2nd Experiment

The 3rd experimental result showed that DT classifier reached a DR rate of 76.6766

% as maximum value compared with other classifiers. The maximum ACC rate is 98.8694

% that reached by DL classifier. The maximum DR rate for network classes was reached by

DT classifier. Although the training time is long, DL classifier reached a high DR rate. The

minimum time taken to train is 0.121520 seconds that reached by GNB classifier and the

minimum time taken to test is 0.074805 second reached by LR classifier. Moreover, the

minimum memory usage is 0.513020 GB that reached by SVM classifier.

 39

Table 4.5: 3rd Experiment of First Scenario
 EXPERIMETNS
 SVM DT LR DL GNB
DR (%) 56.8923 76.6766 55.5178 73.9691 60.4801
ACC (%) 96.6302 98.7969 96.1393 98.8694 90.2403
DR for WWW (%) 99.7343 99.7605 99.6135 97.7406 95.1244
DR for MAIL (%) 85.1881 96.6683 84.8368 58.2278 61.3143
DR for OTHER (%) 93.0723 94.4548 92.5798 96.1108 83.9420
DR for INTERACTIVE (%) 3.3641 53.4903 7.9058 0 30.3616

DR for BULK (%) 80.2793 96.9898 72.0140 97.3861 72.0278
DR for SERVICE (%) 36.6080 81.5795 31.6747 68.5345 63.3495

DR for MEDIA (%) 0 13.7931 0 99.7839 17.2413
MEAN OF CROSS V. (%) 96.2161 97.6234 95.6980 98.8300 87.7698
TRAINING TIME(SECOND) 64.876303 2.557625 5.147132 118.425041 0.121520
TESTING TIME(SECOND) 181.408424 0.085482 0.074805 34.845944 1.351757
MEMORY(GB) 0.513020 0.646824 0.628727 0.877766 0.712097

Figure 4.11: DR & ACC Comparison for the 3rd Experiment

 40

Figure 4.12: Training and Testing Time Comparison for the 3rd Experiment

Figure 4.13: Memory Consume Comparison for the 3rd Experiment

 41

Figure 4.14: Outputs for 3rd Experiment

The 4th experimental result showed that DT classifier reached by a DR rate of

98.6031 % as maximum compared with other classifiers. The maximum ACC rate is

98.5930 % that reached by DL classifier. The maximum DR rate for network classes was

reached by DT classifier. The minimum time taken to train is 0.099856 seconds that reached

by GNB classifier and minimum time taken to test is 0.063542 second reached by LR

classifier. Moreover, minimum memory usage is 0.595535 GB that reached by DT classifier.

 42

Table 4.6: 4th Experiment of First Scenario
 EXPERIMETNS
 SVM DT LR DL GNB
DR (%) 58.9431 98.6031 53.9965 73.8632 64.4817
ACC (%) 97.3076 76.3247 95.9443 98.5930 91.6638
DR for WWW (%) 99.6966 99.6125 99.5991 96.6327 95.4873
DR for MAIL (%) 87.0130 95.6105 83.4081 60.0000 72.5544
DR for OTHER (%) 93.2948 946473 92.9448 97.1305 86.8871
DR for INTERACTIVE (%) 0 52.6492 0.2523 0 54.3313

DR for BULK (%) 94.9522 96.3124 70.0963 94.7365 72.1707
DR for SERVICE (%) 37.6455 80.6478 31.6747 69.0048 52.6995

DR for MEDIA (%) 0 13.7931 0 99.5379 17.2413
MEAN OF CROSS V. (%) 97.1300 97.3664 95.4338 98.5400 90.4417
TRAINING TIME(SECOND) 13.486251 1.229930 2.607169 122.421115 0.099856
TESTING TIME(SECOND) 121.162376 0.070930 0.063542 40.892389 0.720488
MEMORY(GB) 0.736279 0.595535 0.699520 0.845486 0.692577

Figure 4.15: DR & ACC Comparison for the 4th Experiment

 43

Figure 4.16: Training and Testing Time Comparison for the 4th Experiment

Figure 4.17: Memory Consume Comparison for the 4th Experiment

 44

Figure 4.18: Output for 4th Experiment

The fifth experimental result showed that DT classifier reached a DR rate of 74.2333

% as maximum value compared with other classifiers. The maximum ACC rate is 97.6861

% that reached by DT classifier. The maximum DR rate for network classes was reached by

DT classifier. The minimum time taken to train is 0.090653 seconds that reached by GNB

classifier and the minimum time taken to test is 0.056931 seconds reached by LR classifier.

Moreover, the minimum memory usage is 0.543766 GB that reached by SVM classifier.

 45

Table 4.7: 5th Experiment of First Scenario
 EXPERIMETNS
 SVM DT LR DL GNB
DR (%) 51.0742 74.2333 46.0962 65.5014 60.2825
ACC (%) 94.9800 97.6861 93.1589 97.5127 92.1700
DR for WWW (%) 98.1749 99.1493 98.5924 91.5607 96.5625
DR for MAIL (%) 83.8746 91.9626 68.1649 13.3333 70.4582
DR for OTHER (%) 96.1374 93.5248 95.4598 90.5986 88.1997
DR for INTERACTIVE (%) 0.8410 38.0151 0.1682 0 0.5046

DR for BULK (%) 73.7703 94.2285 52.2426 95.3255 66.6897
DR for SERVICE (%) 4.7215 78.6152 8.0457 68.6417 58.1833

DR for MEDIA (%) 0 24.1379 0 99.0499 41.3793
MEAN OF CROSS V. (%) 94.7029 96.5276 92.5555 97.2300 90.9701
TRAINING TIME(SECOND) 14.668287 0.515767 1.083124 121.528057 0.090653
TESTING TIME(SECOND) 136.944998 0.062312 0.056931 37.436296 0.464589
MEMORY(GB) 0.543766 0.569656 0.683208 0.838245 0.689236

Figure 4.19: DR & ACC Comparison for the 5th Experiment

 46

Figure 4.20: Training and Testing Time Comparison for the 5th Experiment

Figure 4.21: Memory Consume Comparison for the 5th Experiment

 47

Figure 4.22: Output for 5th Experiment

Scenario 2: Three experiments were carried out to see the scalability of NMS as

fallow:

1- We have used 125,793 vector of KDD dataset to train NMS and 595,798 rows for testing.

2- We have used 494,021 vector of KDD dataset to train NMS and 595,798 rows for testing.

3- We have used 1,000,000 vector of KDD dataset to train NMS and 595,798 rows for testing.

Outcomes are illustrated as follows.

Experimental result showed that SVM classifier reached highest DR rate in first and

second experiments and DT classifier achieved highest DR rate in third experiment

compared with other classifiers. SVM classifier achieved highest ACC rate in all

experiments compared with other classifiers. Highest DR rate for network classes was

achieved by SVM classifier.

 48

Table 4.8: Scalability Experiments for Support Vector Machine Algorithm
 1.Experiment 2.Experiment 3.Experiment
DR (%) 42.2910 40.1904 43.8707
ACC (%) 96.1984 96.1737 97.0856
DR for WWW (%) 99.7536 98.7353 99.7483
DR for MAIL (%) 81.2358 82.2468 85.4379
DR for OTHER (%) 96.9249 96.7174 93.1648
DR for INTERACTIVE (%) 25.7359 7.3170 17.5777

DR for BULK (%) 76.9695 75.6972 98.9074
DR for SERVICE (%) 0 0 0
DR for REMOTE (%) 0 0 0
DR for DATABASE (%) 0 0 0
DR for MEDIA (%) 0 0 0
MEAN OF CROSS V. (%) 80.5173 98.2594 95.1001
TRAINING TIME(SECOND) 941.402687 3509.292585 18861.513270
TESTING TIME(SECOND) 1504.380082 686.375096 2062.129607
MEMORY(GB) 0.605934 0.366829 0.970428

Figure 4.23: DR & ACC Comparison for SVM Algorithm

 49

Figure 4.24: Training and Testing Time Comparison for SVM Algorithm

Figure 4.25: Memory Consume Comparison for SVM Algorithm

 50

Table 4.9: Scalability Experiments for Decision Tree Algorithm
 1.Experiment 2.Experiment 3.Experiment
DR (%) 34.0963 32.7188 52.4999
ACC (%) 60.2649 89.8068 92.6321
DR for WWW (%) 63.0867 98.6618 97.8930
DR for MAIL (%) 25.4274 69.1993 79.3933
DR for OTHER (%) 77.8519 54.8838 82.0395
DR for INTERACTIVE (%) 11.9428 23.4650 74.0958

DR for BULK (%) 56.4329 27.7877 90.1673
DR for SERVICE (%) 34.1943 17.0230 12.9790

DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 37.9310 3.4482 37.9310
MEAN OF CROSS V. (%) 80.1712 95.4338 95.2322
TRAINING TIME(SECOND) 8.857297 20.935107 55.359079
TESTING TIME(SECOND) 0.115061 0.139380 0.137375
MEMORY(GB) 0.870491 1.029617 1.368744

Figure 4.26: DR & ACC Comparison for DT Algorithm

 51

Figure 4.27: Training and Testing Time Comparison for DT Algorithm

Figure 4.28: Memory Consume Comparison for DT Algorithm

 52

Table 4.10: Scalability Experiments for Logistic Regression Algorithm
 1.Experiment 2.Experiment 3.Experiment

DR (%) 28.3212 33.0188 31.3164
ACC (%) 90.4110 91.2449 77.6468
DR for WWW (%) 99.4093 98.0661 78.0004
DR for MAIL (%) 44.4218 77.8300 97.0899
DR for OTHER (%) 96.7049 81.9445 96.7874
DR for INTERACTIVE (%) 0 0 0

DR for BULK (%) 14.3548 8.3529 9.9064
DR for SERVICE (%) 0 30.9760 0.0635

DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 0 0 0
MEAN OF CROSS V. (%) 79.1297 98.0784 95.2067
TRAINING TIME(SECOND) 3.236786 10.060068 19.838131
TESTING TIME(SECOND) 0.067650 0.071333 0.066887
MEMORY(GB) 0.722469 0.867374 1.019993

Figure 4.29: DR & ACC Comparison for LR Algorithm

 53

Figure 4.30: Training and Testing Time Comparison for LR Algorithm

Figure 4.31: Memory Consume Comparison for LR Algorithm

 54

Table 4.11: Scalability Experiments for DL Algorithm
 1.Experiment 2.Experiment 3.Experiment
DR (%) 20.5481 17.7597 12.6341
ACC (%) 2.28902 3.6543 3.3543
DR for WWW (%) 47.4525 99.5948 99.9396
DR for MAIL (%) 40.0000 0 0
DR for OTHER (%) 0 54.5995 7.5688
DR for INTERACTIVE (%) 6.7200 0 0.0049

DR for BULK (%) 90.7609 0 0
DR for SERVICE (%) 0 5.6533 6.1942

DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 0 0 0
MEAN OF CROSS V. (%) 83.8800 98.7800 98.5800
TRAINING TIME(SECOND) 164.890413 657.273461 1354.568521
TESTING TIME(SECOND) 46.122825 43.937499 44.832119
MEMORY(GB) 1.136715 1.256710 1.273716

Figure 4.32: DR & ACC Comparison for DL Algorithm

 55

Figure 4.33: Training and Testing Time Comparison for DL Algorithm

Figure 4.34: Memory Consume Comparison for DL Algorithm

 56

Table 4.12: Scalability Experiments for GNB Algorithm
 1.Experiment 2.Experiment 3.Experiment
DR (%) 30.0925 37.2135 37.9236
ACC (%) 57.7956 85.0720 61.5967
DR for WWW (%) 68.5697 92.3539 61.5412
DR for MAIL (%) 14.9933 44.6834 60.9805
DR for OTHER (%) 2.8275 94.6448 89.7972
DR for INTERACTIVE (%) 27.5862 30.6980 36.4171

DR for BULK (%) 15.9636 24.2658 27.0594
DR for SERVICE (%) 99.5130 0 0

DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 41.3793 48.2758 65.5172
MEAN OF CROSS V. (%) 39.8331 75.6497 69.2628
TRAINING TIME(SECOND) 0.220978 0.865924 1.784725
TESTING TIME(SECOND) 3.015205 3.018600 3.043701
MEMORY(GB) 1.014290 1.455036 1.349602

Figure 4.35: DR & ACC Comparison for GNB Algorithm

 57

Figure 4.36: Training and Testing Time Comparison for GNB Algorithm

Figure 4.37: Memory Consume Comparison for GNB Algorithm

Scenario 3:

In order to see the impact of feature scaling, an experiment without feature scaling

(standard scaler) was implemented to all classifiers and the experimental outcome showed that

DT classifier reached the largest DR percentage of 84,9629 percent compared to other

algorithms. Maximum ACC rate is 99.4449 % that reached by DT classifier. Maximum DR

rate for network classes was reached by DT classifier. The minimum time taken to train is

 58

6.371368 seconds that reached by DT classifier and the minimum time taken to test is

0.059934 second reached by LR classifier. Moreover, the minimum memory usage is

0.285355 GB that reached by SVM classifier.

Table 4.13: Standard Scaler Experiments for SVM Algorithm
 With Standard

Scaler
Without Standard

Scaler
DR (%) 51.1479 43.2610
ACC (%) 96.2793 87.0701
DR for WWW (%) 99.7406 99.9997
DR for MAIL (%) 82.7367 11.2889
DR for OTHER (%) 96.7149 70.2692
DR for INTERACTIVE (%) 1.1774 9.5878

DR for BULK (%) 77.6656 16.9593
DR for SERVICE (%) 0 87.8255

DR for MEDIA (%) 0 6.8965
MEAN OF CROSS V. (%) 96.0249
TRAINING TIME(SECOND) 45.529160 10286.497473
TESTING TIME(SECOND) 335.489777 4208.674068
MEMORY(GB) 0.743065 0.285355

Figure 4.38: DR & ACC Comparison for SVM Algorithm

 59

Figure 4.39: Training and Testing Time Comparison for SVM Algorithm

Figure 4.40: Memory Consume Comparison for SVM Algorithm

 60

Table 4.14: Standard Scaler Experiments for Decision Tree Algorithm
 With Standard

Scaler
Without Standard

Scaler
DR (%) 79.8813 84.9649
ACC (%) 97.7486 99.4449
DR for WWW (%) 99.8135 99.9201
DR for MAIL (%) 83.6521 99.1607
DR for OTHER (%) 94.6473 96.6574
DR for INTERACTIVE (%) 63.9192 83.2632

DR for BULK (%) 96.5887 98.7138
DR for SERVICE (%) 82.6169 86.0046

DR for MEDIA (%) 37.9310 31.0344
MEAN OF CROSS V. (%) 97.9379 98.4581
TRAINING TIME(SECOND) 5.581684 6.371368
TESTING TIME(SECOND) 0.12333 0.132308
MEMORY(GB) 0.741154 0.761307

Figure 4.41: DR & ACC Comparison for DT Algorithm

 61

Figure 4.42: Training and Testing Time Comparison for DT Algorithm

Figure 4.43: Memory Consume Comparison for DT Algorithm

 62

Table 4.15: Standard Scaler Experiments for Logistic Regression Algorithm
 With Standard

Scaler
Without Standard

Scaler
DR (%) 56.0539 26.6159
ACC (%) 96.1568 82.0567
DR for WWW (%) 99.6165 97.7371
DR for MAIL (%) 84.9207 10.8751
DR for OTHER (%) 92.5823 28.6382
DR for INTERACTIVE (%) 11.5222 23.9697

DR for BULK (%) 72.0186 25.0910
DR for SERVICE (%) 31.7171 0

DR for MEDIA (%) 0 0
MEAN OF CROSS V. (%) 95.7114 75.0696
TRAINING TIME(SECOND) 7.594568 9.285133
TESTING TIME(SECOND) 0.102367 0.059934
MEMORY(GB) 0.813011 0.683086

Figure 4.44: DR & ACC Comparison for LR Algorithm

 63

Figure 4.45: Training and Testing Time Comparison for LR Algorithm

Figure 4.46: Memory Consume Comparison for LR Algorithm

 64

Table 4.16: Standard Scaler Experiments for DL Algorithm
 With Standard

Scaler
Without Standard

Scaler
DR (%) 78.8496 0.5201
ACC (%) 98.9923 0.036410
DR for WWW (%) 99.6575 3.6409
DR for MAIL (%) 90.6064 0
DR for OTHER (%) 96.3380 0
DR for INTERACTIVE (%) 0 0

DR for BULK (%) 97.4803 0
DR for SERVICE (%) 68.0890 0

DR for MEDIA (%) 99.7761 0
MEAN OF CROSS V. (%) 98.9900 31.0300
TRAINING TIME(SECOND) 122.242404 127.661013
TESTING TIME(SECOND) 32.621607 37.999987
MEMORY(GB) 0.977589 1.094322

Figure 4.47: DR & ACC Comparison for DL Algorithm

 65

Figure 4.48: Training and Testing Time Comparison for DL Algorithm

Figure 4.49: Memory Consume Comparison for DL Algorithm

 66

Table 4.17: Standard Scaler Experiments for GNB Algorithm
 With Standard

Scaler
Without Standard

Scaler
DR (%) 51.4787 51.6904
ACC (%) 84.0907 67.7983
DR for WWW (%) 95.4771 69.1700
DR for MAIL (%) 49.8243 98.8250
DR for OTHER (%) 26.0731 38.4234
DR for INTERACTIVE (%) 46.7619 33.7258

DR for BULK (%) 20.9560 13.8846
DR for SERVICE (%) 97.1204 97.4592

DR for MEDIA (%) 24.1379 10.3448
MEAN OF CROSS V. (%) 75.5659 69.3296
TRAINING TIME(SECOND) 0.156394 0.156402
TESTING TIME(SECOND) 2.362087 2.348045
MEMORY(GB) 0.758854 0.846127

Figure 4.50: DR & ACC Comparison for GNB Algorithm

 67

Figure 4.51: Training and Testing Time Comparison for GNB Algorithm

Figure 4.52: Memory Consume Comparison for GNB Algorithm

Scenario 4:

K-fold cross validation is applied to the algorithm to understand the impact of data

unbalance and each class accuracy is calculated in each experiment.

Model performance is evaluated in machine learning based on an error metric to

determine the model's accuracy. This evaluation is not very accurate since the accuracy

acquired for one test set may vary greatly from the accuracy acquired for another test set. K-

 68

fold cross validation solves evaluation problem by dividing the dataset into folds and making

sure that each fold is used as a testing set at some point. Figure 4.53 shows the K-fold cross

validation algorithm:

1. Divide the dataset into k equal parts.

2. Use k-1 parts for training and 1 part for testing.

3. Repeat the procedure k times, rotating the test dataset.

4. Determine a performance metric for all iterations.

Figure 4.53: K-Fold Cross Validation

4.5 Discussion

Specifically, the following parameters are discussed in terms of memory allocation,

classification speed and system accuracy to explain the outcomes of the experiment.

4.5.1 System Accuracy Results

The DT algorithm has greater efficiency compared to other algorithms, where its

classification accuracy is 97.6861 %. The aim of our research is to classify network packets

while enhancing the generation of DR rate and ACC rate. Moreover, Figure 4.54 shows that

our system can classify data set vectors at an elevated average DR rate of 74.2333%.

 69

Figure 4.54: Number of Features versus Detection Rate

Figure 4.55: Number of Features versus Accuracy Rate

4.5.2 Classification Speed Results

Figure 4.56 indicates the duration of the training versus the number of features. DT

algorithm second lowest training duration and DT is one of the algorithms that has lowest

testing duration that was shown in Figure 4.57.

 70

Figure 4.56: Number of Features versus Training Time

Figure 4.57: Number of Features versus Testing Time

4.5.3 Memory Allocation Results

The memory usage versus number of features is indicated in Figure 4.52. The DT

algorithm utilizes 5 features that uses 0.569656 GB, while it uses 41 features using time

0.741154.

 71

Figure 4.58: Features versus Memory Allocation

The number of instances is an effective factor on the percentage of the classification

accuracy and the training and testing time. In terms of training time, the suggested NMS

using the DT algorithm outperforms all algorithms as it has the minimum time.

The suggested NMS using the DT algorithm outperforms all other algorithms with

regard to DR 79.8813 percent results and it has the largest speed in the comparison lists.

The proposed NMS using the DT algorithm has the second highest ACC rate of

97.7486 %. The proposed NMS achieves best performance in terms of ACC rate, DR rate

and highest speed.

4.5.3 Other Algorithms Results

Screenshots of experiments for SVM, LR, DL and GNB are shown Figure 4.59,

Figure 4.60, Figure 4.61 and Figure 4.62. It can be seen that DL gives closest results to the DT

algorithm.

 72

Figure 4.59: Experiment of Support Vector Machine Classification Algorithm

Figure 4.60: Experiment of Logistic Regression Classification Algorithm

 73

Figure 4.61: Experiment of Deep Learning Algorithm

Figure 4.62: Experiment of Gaussian Naïve Bayes Algorithm

 74

CHAPTER 5

CONCLUSION
5.1 Result

Network monitoring addresses all level of network operation from basic connectivity

to application throughput. The aim of this paper is to suggest a Network Monitoring System

using Machine Learning that assists to classify network packages. The proposed NMS

utilizes the DT algorithm for classification and PCA algorithm for dimension (feature)

reduction, and it classifies connections by network classes.

Experimental results suggested that using the DT and PCA algorithms, the suggested

NMS system reached a high classification ACC rate of 97,7486 %. Compared to all other

algorithms, it is the best performance.

The DT algorithm exceeds all other training algorithms as it has the minimum time for

execution. But it was not possible to check how will the data behaves on a larger network and

some service types are classified as 'other' due to they were belong to many classes. As a

future study, the suggested NMS system can also be analyzed using other classification

algorithms or proposed NMS system can be modified to capture network packets without

cooperation of Wireshark and Npcap Library or other data sets can be experimented with the

suggested NMS system.

 75

REFERENCES

Auld, T., Moore, A. W., & Gull, S. F. J. I. T. o. n. n. (2007). Bayesian neural networks for
internet traffic classification. 18(1), 223-239.

Cerf, V., & Kahn, R. J. I. T. o. c. (1974). A protocol for packet network intercommunication.
22(5), 637-648.

Cortes, C., & Vapnik, V. J. M. l. (1995). Support-vector networks. 20(3), 273-297.

Crotti, M., Gringoli, F., Pelosato, P., & Salgarelli, L. (2006). A statistical approach to IP-level
classification of network traffic. Paper presented at the 2006 IEEE International Conference
on Communications.

Degermark, M. (1999). IP header compression.

Haffner, P., Sen, S., Spatscheck, O., & Wang, D. (2005). ACAS: automated construction of
application signatures. Paper presented at the Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data.

Hinton, G. E., Sejnowski, T. J., & Poggio, T. A. (1999). Unsupervised learning: foundations
of neural computation: MIT press.

Hosmer, D., & Lemeshow, S. J. N. Y., NY, US. (2000). Applied logistic regression. 2nd
edWiley.

Ioffe, S., & Szegedy, C. J. a. p. a. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift.

Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., & Faloutsos, M. J. U. o. C., Riverside,
USA, Tech. Rep. (2003). File-sharing in the Internet: A characterization of P2P traffic in the
backbone.

Karagiannis, T., Broido, A., & Faloutsos, M. (2004). Transport layer identification of P2P
traffic. Paper presented at the Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement.

Karagiannis, T., Papagiannaki, K., & Faloutsos, M. (2005). BLINC: multilevel traffic
classification in the dark. Paper presented at the ACM SIGCOMM computer communication
review.

Kim, H., Claffy, K. C., Fomenkov, M., Barman, D., Faloutsos, M., & Lee, K. (2008). Internet
traffic classification demystified: myths, caveats, and the best practices. Paper presented at
the Proceedings of the 2008 ACM CoNEXT conference.

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. J. E. a. i. a. i. c. e. (2007). Supervised machine
learning: A review of classification techniques. 160, 3-24.

LeCun, Y., Bengio, Y., & Hinton, G. J. n. (2015). Deep learning. 521(7553), 436.

Li, W., & Moore, A. W. (2007). A machine learning approach for efficient traffic
classification. Paper presented at the 2007 15th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems.

 76

Lim, Y.-s., Kim, H.-c., Jeong, J., Kim, C.-k., Kwon, T. T., & Choi, Y. (2010). Internet traffic
classification demystified: on the sources of the discriminative power. Paper presented at the
Proceedings of the 6th International COnference.

Lou, W., Wang, X., Chen, F., Chen, Y., Jiang, B., & Zhang, H. J. P. o. (2014). Sequence
based prediction of DNA-binding proteins based on hybrid feature selection using random
forest and Gaussian naive Bayes. 9(1), e86703.

Moore, A., Hall, J., Kreibich, C., Harris, E., & Pratt, I. (2003). Architecture of a network
monitor. Paper presented at the Passive & Active Measurement Workshop.

Moore, A. W., & Papagiannaki, K. (2005). Toward the accurate identification of network
applications. Paper presented at the International Workshop on Passive and Active Network
Measurement.

Namdev, N., Agrawal, S., & Silkari, S. J. P. C. S. (2015). Recent advancement in machine
learning based internet traffic classification. 60, 784-791.

Nguyen, T. T., Armitage, G. J. J. I. C. S., & Tutorials. (2008). A survey of techniques for
internet traffic classification using machine learning. 10(1-4), 56-76.

Park, J., Tyan, H.-R., & Kuo, C.-C. J. (2006). Internet traffic classification for scalable qos
provision. Paper presented at the 2006 IEEE International Conference on Multimedia and
Expo.

Porter, T. J. S. F. (2005). The perils of deep packet inspection. 6.

Schmidhuber, J. J. N. n. (2015). Deep learning in neural networks: An overview. 61, 85-117.

Schneider, P. J. D. O. A. S., Cambridge, MA. (1996). TCP/IP traffic Classification Based on
port numbers. 2138(5).

Scholkopf, B., Sung, K.-K., Burges, C. J., Girosi, F., Niyogi, P., Poggio, T., & Vapnik, V. J.
I. t. o. S. P. (1997). Comparing support vector machines with Gaussian kernels to radial basis
function classifiers. 45(11), 2758-2765.

Sen, S., Spatscheck, O., & Wang, D. (2004). Accurate, scalable in-network identification of
p2p traffic using application signatures. Paper presented at the Proceedings of the 13th
international conference on World Wide Web.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory
to algorithms: Cambridge university press.

Stallings, W. J. U. S. R., New Jersey, USA. (2003). Network Security Essentials-Applications
and Standards Pearson Education.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the
KDD CUP 99 data set. Paper presented at the 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications.

Webb, G. I., Boughton, J. R., & Wang, Z. J. M. l. (2005). Not so naive Bayes: aggregating
one-dependence estimators. 58(1), 5-24.

Wolpert, D. H., & Macready, W. G. J. I. t. o. e. c. (1997). No free lunch theorems for
optimization. 1(1), 67-82.

 77

Wu, Y., Min, G., Li, K., & Javadi, B. (2009). Performance analysis of communication
networks in multi-cluster systems under bursty traffic with communication locality. Paper
presented at the GLOBECOM 2009-2009 IEEE Global Telecommunications Conference.

Xiang, Y., Zhou, W., Guo, M. J. I. T. o. P., & Systems, D. (2008). Flexible deterministic
packet marking: An ip traceback system to find the real source of attacks. 20(4), 567-580.

Zhou, Z.-H., Li, H., & Yang, Q. (2007). Advances in Knowledge Discovery and Data
Mining: 11th Pacific-Asia Conference, PAKDD 2007, Nanjing, China, May 22-25, 2007,
Proceedings (Vol. 4426): Springer.

 78

 APPENDICES

Appendix: A

Attributes description of KDD CUP 99 dataset.

 79

 80

 81

Appendix: B

Content of Field Names.csv file.

 82

 83

Appendix: C

Content of Service Types.csv file.

 84

 85

 86

Appendix: D

Python Code of Support Vector Machine Algorithm

 87

 88

 89

 90

Appendix: E

Python Code of Decision Tree Algorithm

 91

 92

 93

 94

Appendix: F

Python Code of Logistic Regression Algorithm

 95

 96

 97

 98

Appendix: G

Python Code of Deep Learning Algorithm

 99

 100

 101

 102

 103

Appendix: H

Gaussian Naïve Bayes

 104

 105

 106

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN

	doc01251720190920123218
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Scan44
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	ABSTRACT
	ÖZET
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF FIGURES

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1 Introduction
	1.2 Statement of the Problem
	1.3 Specific objectives
	1.4 Significance of the Study
	1.4 Significance of the Study
	1.5 Organization of Thesis

	CHAPTER 2
	CHAPTER 2
	BACKGROUND AND RELATED WORKS
	2.1 Introduction
	2.2 Literature Review
	Table 2.1: Network Classes (Auld et al., 2007; Li & Moore, 2007)
	2.2.1 Port based classification

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	BACKGROUND AND RELATED WORKS
	2.2 Literature Review
	2.2.1 Port based classification
	Figure 2.1: TCP Segment and UDP Datagram Header Format (Degermark, 1999)

	2.2.2 Payload based classification
	2.2.3 Flow feature-based classification

	2.3 Related Works
	Figure 2.2: Traffic Classification Process by Machine Learning (Zhou et al., 2007)

	2.4 Support Vector Machine Classification Algorithm
	Figure 2.3: Support Vector Machine Classification
	Figure 2.4: Pseudo code of Support Vector Machine Algorithm

	2.5 Decision Tree Classification Algorithm
	Figure 2.5: A Decision Tree Classification Algorithm Example

	2.6 Logistic Regression Classification Algorithm
	Figure 2.6: A Logistic Regression Classification Algorithm Example

	2.7 Deep Learning
	Figure 2.7: Neural Network Illustration
	Figure 2.8: Deep Learning Illustration

	2.8 Gaussian Naïve Bayes (GNB)
	Figure 2.9: Illustration of GNB Classification Algorithm

	2.9 Principal Component Analysis (PCA) Algorithm
	Figure 2.10: A PCA Algorithm Example

	2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description
	2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description

	CHAPTER 3
	METHODOLOGY
	3.1 Machine Learning Workflow
	Figure 3.1: The Machine Learning Workflow
	3.1.1 Gathering Data
	Figure 3.2: Captured and converted network packets by Wireshark
	Figure 3.3: Wireshark is capturing the packets in real time
	Table 3.1: Illustration of OSI Layers
	Table 3.1: Illustration of OSI Layers
	Figure 3.4: Phases for package decoding (Wolpert & Macready, 1997)

	3.1.2 Data Preparation
	Figure 3.5: The phase of pre-processing data (Wolpert & Macready, 1997)
	Table 3.2: NMS Training Dataset
	Table 3.2: NMS Training Dataset
	Table 3.3: NMS Test Dataset

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	METHODOLOGY
	3.1 Machine Learning Workflow
	3.1.2 Data Preparation
	Table 3.3: NMS Test Dataset
	Figure 3.6: Sample vectors of NMS’s KDD dataset

	3.1.3 Train Model (Classification)
	3.1.4 Test Data (Prediction)
	3.1.5 Improve
	3.1.5 Improve

	3.2 System Architecture
	Figure 3.7: A General architecture of an NMS

	3.3 The Proposed System
	Figure 3.8: Training Phase’s Block Diagram
	Figure 3.9: Testing Phase’s Block Diagram

	CHAPTER 4
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.1 Introduction
	4.2 System Architecture
	Figure 4.1: NMS system architecture

	4.3 Performance Metrics
	4.3.1 Confusion Matrix (CM)
	Table 4.1: Confusion Matrix (CM) (Tavallaee et al., 2009)
	Table 4.2: An Example CM for NMS (Stallings, 2003)

	4.4 Experiments and Results
	Table 4.3: First Scenario of 1st Experiment
	Figure 4.2: DR & ACC Comparison for the 1st Experiment
	Figure 4.3: Training and Testing Time Comparison for the 1st Experiment
	Figure 4.4: Memory Consume Comparison for the 1st Experiment
	Figure 4.5: Screenshot of 1st Experiment
	Figure 4.6: Outputs for the 1st Experiment

	Table 4.4: 2nd Experiment of First Scenario
	Figure 4.7: DR & ACC Comparison for the 2nd Experiment
	Figure 4.8: Training and Testing Time Comparison for the 2nd Experiment
	Figure 4.9: Memory Consume Comparison for the 2nd Experiment
	Figure 4.10: Outputs for 2nd Experiment

	Table 4.5: 3rd Experiment of First Scenario
	Figure 4.11: DR & ACC Comparison for the 3rd Experiment
	Figure 4.12: Training and Testing Time Comparison for the 3rd Experiment
	Figure 4.13: Memory Consume Comparison for the 3rd Experiment

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.4 Experiments and Results
	Table 4.5: 3rd Experiment of First Scenario
	Figure 4.14: Outputs for 3rd Experiment

	Table 4.6: 4th Experiment of First Scenario
	Figure 4.15: DR & ACC Comparison for the 4th Experiment
	Figure 4.16: Training and Testing Time Comparison for the 4th Experiment
	Figure 4.17: Memory Consume Comparison for the 4th Experiment
	Figure 4.18: Output for 4th Experiment

	Table 4.7: 5th Experiment of First Scenario
	Figure 4.19: DR & ACC Comparison for the 5th Experiment
	Figure 4.20: Training and Testing Time Comparison for the 5th Experiment
	Figure 4.21: Memory Consume Comparison for the 5th Experiment
	Figure 4.22: Output for 5th Experiment

	Table 4.8: Scalability Experiments for Support Vector Machine Algorithm
	Figure 4.23: DR & ACC Comparison for SVM Algorithm
	Figure 4.24: Training and Testing Time Comparison for SVM Algorithm
	Figure 4.25: Memory Consume Comparison for SVM Algorithm

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.4 Experiments and Results
	Table 4.9: Scalability Experiments for Decision Tree Algorithm
	Figure 4.26: DR & ACC Comparison for DT Algorithm
	Figure 4.27: Training and Testing Time Comparison for DT Algorithm
	Figure 4.28: Memory Consume Comparison for DT Algorithm

	Table 4.10: Scalability Experiments for Logistic Regression Algorithm
	Table 4.10: Scalability Experiments for Logistic Regression Algorithm
	Figure 4.29: DR & ACC Comparison for LR Algorithm
	Figure 4.30: Training and Testing Time Comparison for LR Algorithm
	Figure 4.31: Memory Consume Comparison for LR Algorithm

	Table 4.11: Scalability Experiments for DL Algorithm
	Figure 4.32: DR & ACC Comparison for DL Algorithm
	Figure 4.33: Training and Testing Time Comparison for DL Algorithm
	Figure 4.34: Memory Consume Comparison for DL Algorithm

	Table 4.12: Scalability Experiments for GNB Algorithm
	Table 4.12: Scalability Experiments for GNB Algorithm
	Figure 4.35: DR & ACC Comparison for GNB Algorithm
	Figure 4.36: Training and Testing Time Comparison for GNB Algorithm
	Figure 4.37: Memory Consume Comparison for GNB Algorithm

	Table 4.13: Standard Scaler Experiments for SVM Algorithm
	Figure 4.38: DR & ACC Comparison for SVM Algorithm
	Figure 4.39: Training and Testing Time Comparison for SVM Algorithm
	Figure 4.40: Memory Consume Comparison for SVM Algorithm

	Table 4.14: Standard Scaler Experiments for Decision Tree Algorithm
	Figure 4.41: DR & ACC Comparison for DT Algorithm
	Figure 4.42: Training and Testing Time Comparison for DT Algorithm
	Figure 4.43: Memory Consume Comparison for DT Algorithm

	Table 4.15: Standard Scaler Experiments for Logistic Regression Algorithm
	Figure 4.44: DR & ACC Comparison for LR Algorithm
	Figure 4.45: Training and Testing Time Comparison for LR Algorithm
	Figure 4.46: Memory Consume Comparison for LR Algorithm

	Table 4.16: Standard Scaler Experiments for DL Algorithm
	Figure 4.47: DR & ACC Comparison for DL Algorithm
	Figure 4.48: Training and Testing Time Comparison for DL Algorithm
	Figure 4.49: Memory Consume Comparison for DL Algorithm

	Table 4.17: Standard Scaler Experiments for GNB Algorithm
	Table 4.17: Standard Scaler Experiments for GNB Algorithm
	Figure 4.50: DR & ACC Comparison for GNB Algorithm
	Figure 4.51: Training and Testing Time Comparison for GNB Algorithm
	Figure 4.52: Memory Consume Comparison for GNB Algorithm

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.4 Experiments and Results
	Table 4.17: Standard Scaler Experiments for GNB Algorithm
	Figure 4.53: K-Fold Cross Validation

	4.5 Discussion
	4.5.1 System Accuracy Results
	Figure 4.54: Number of Features versus Detection Rate
	Figure 4.55: Number of Features versus Accuracy Rate

	4.5.2 Classification Speed Results
	Figure 4.56: Number of Features versus Training Time
	Figure 4.57: Number of Features versus Testing Time

	4.5.3 Memory Allocation Results
	Figure 4.58: Features versus Memory Allocation

	4.5.3 Other Algorithms Results
	Figure 4.59: Experiment of Support Vector Machine Classification Algorithm
	Figure 4.60: Experiment of Logistic Regression Classification Algorithm
	Figure 4.61: Experiment of Deep Learning Algorithm
	Figure 4.62: Experiment of Gaussian Naïve Bayes Algorithm

	CHAPTER 5
	CHAPTER 5
	CONCLUSION
	5.1 Result

	REFERENCES
	REFERENCES

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	APPENDICES
	APPENDICES
	Appendix: A
	Appendix: B
	Appendix: B
	Appendix: C
	Appendix: C
	Appendix: D
	Appendix: D

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	APPENDICES
	Appendix: E
	Appendix: E
	Appendix: F
	Appendix: F
	Appendix: G
	Appendix: G
	Appendix: H
	Appendix: H

