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DETERMINATION OF THYMIC EPITHELIAL CELL COMPOSITION AND 

PROLIFERATION DURING THE PERINATAL TO ADULT TRANSITION  

Scott Howard Casey, B.A. 

Advisory Professor: Ellen Richie, Ph.D. 

T-cells develop in the thymus based on signaling from multiple stromal cell 

types, particularly thymic epithelial cells (TECs). The thymus develops rapidly 

during the perinatal time period (birth – 10 days in mice) before reaching a 

period of homeostasis (10 days – 6 weeks). The mechanisms that initially 

promote and subsequently limit expansion of the TEC compartment are not 

known. However, previous reports from our lab suggest that the Cyclin D1-RB-

E2F pathway plays a key role in regulating the perinatal to adult transition. We 

have previously shown that inactivation in TEC of retinoblastoma (RB) family 

members through deletion of RB family members or expression of cyclin D1 

maintains perinatal-like TEC proliferation and continued thymus expansion.  

Although both cortical TEC (cTEC) and medullary TEC (mTEC) are  expanded 

in the K5.D1 thymus, FACs analysis revealed a marked increase in a novel 

UEA-1 int Sca-1- TEC subset, which is not readily classified as belonging to 

either the cTEC or mTEC lineage. In addition, low level expression of MHC 

class II and high-level expression of CD24 suggest that the UEA-1 int Sca-1- 

subset contains immature TECs. Cells with this phenotype constitute a small 

subset of TEC in the wildtype thymus. The K5.D1 UEA-1 int Sca-1- subset has a 

higher proliferative index compared to the wildtype subset. 
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Collectively, the data suggest that the UEA-1 int Sca-1- subset contains TEC 

progenitors and that proliferation of these cells in K5.D1 TECs results in 

perinatal-like expansion of the TEC compartment.  
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1 Introduction 

T cells are an essential arm of the immune response that is critical for protection 

from bacteria, parasites, and cancer. T cells are produced in the thymus, a bilobed organ 

located just above the heart. The thymus is organized into two histologically recognized 

regions as shown by staining tissue sections with hematoxylin and eosin (H&E). The 

cortex is the outer region of the thymus and stains intensely due to a high density of 

immature thymocytes. In contrast, the medulla stains lightly due to a smaller number of 

thymocytes that are relatively mature (Fig 1). During fetal development and the perinatal 

period, the thymus rapidly expands to produce T cells that are exported to the 

lymphopenic periphery. This highly proliferative stage then transitions to a brief 

homeostatic stage until the gradual process of age-related involution is initiated at ~7 

weeks of age in the mouse. A similar process occurs in humans. 

1.1 T cell Development 

In order to provide an effective adaptive immune system, T cells must be 

selected for self-restriction and self-tolerance. Self-restriction is achieved by positive 

selection, a process that ensures survival of thymocytes expressing T cell receptors 

(TCRs) with low affinity for self-peptides presented by self-major histocompatibility 

complex (MHC) molecules. Self-tolerance refers to the process by which T cells with 

high affinity TCRs for self-peptides are eliminated by apoptosis or diverted into the T 

regulatory (Treg) lineage. 

T cell development begins with the emigration of circulating bone marrow-derived 

progenitors into the thymus through vessels at the corticomedullary junction (CMJ). 

These progenitors follow a chemokine gradient including CCL19, CCl21, and CCL25 

produced by stromal cells (1-3). It is thought that this gradient attracts progenitors to a 

limited set of thymic stromal niches (4, 5) Once in these niches, developing thymocytes 
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Figure 1: Overview of thymus structure and T-Cell development 

(A) H&E stained thymus section from 6-week-old C57BL6 mouse showing cortex 

(dark stain) and medulla (light stain). (B) Schematic of thymocyte development and 

journey through the thymus. Thymocytes migrate through different 

microenvironmental zones. Each zone is composed of a distinct subset of stromal 

cells. Thymocyte subsets (TSP, DN1 – 4, DP, CD4, CD8, CD4SP, CD8SP, Treg), 

cTECs (green), mTECs (red). (SC) subcapsule, (C) cortex, (CMJ) cortico-medullary 

junction, (M) medulla (EC) endothelial cell. 
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go through several defined stages of development that depend on signals from cells in 

the thymus microenvironment, particularly thymic epithelial cells (TECs). 

The major stages of T cell development are characterized by differential 

expression of several cell surface markers. The most immature thymocytes are negative 

for CD4 and CD8 and are therefore termed double negative (DN) thymocytes. The DN 

thymocytes are further subdivided by their expression of CD117, CD44, and CD25 

molecules (7). The early CD117+CD44+CD25- DN1 cells are not yet committed to the T 

cell lineage, retaining the potential to differentiate into numerous cell types including B 

cells, natural killer (NK), and dendritic cell (DC) lineages (8). Several different signals 

required for T lineage commitment and continued maturation are provided by ligands 

and cytokines expressed by cortical TECs (cTECs). (9). For example, cTECs express 

the Notch ligand Delta-like 4 (DLL4) (10, 11) that activates Notch receptors leading to 

expression of several transcription factors which progressively commit the cell to the T 

cell lineage (3, 12). Notch signaling inhibits commitment to other cell fates, Loss or 

inactivation of the Notch signaling pathway permits  DN1 thymocytes to respond to 

signals that mediate B-cell lineage commitment (13-15).  

During the CD117+CD44+CD25+ DN2 stage, thymocytes commit to T cell lineage 

and start the process of TCRβ rearrangement. While these cells can still be diverted 

from the T cell lineage, particularly to that of DC or NK cells, productive rearrangement 

of the TCRβ or TCRγ chain genes restricts the cell fate potential. The germ line 

rearrangement of the TCR genes is driven by recombinase-activating genes (RAG). This 

allows the limited number of germline TCR chain genes to create a nearly unlimited 

array of unique receptor sequences to provide a broad diversity of antigen specificity 

(12, 16). 

In the CD117-CD44-CD25+ DN3 stage, cells that have undergone productive 

TCRβ rearrangement pair the TCRβ chain with the invariant pre-TCRα (pTα) chain to 
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form what is known as a pre-TCR. Expression of pre-TCR on the surface of the 

thymocyte rescues cells from programmed cell death (17, 18). The successfully 

expressed pre-TCR also provides intracellular signals that allow maturation to the 

transient CD117-CD44-CD25- DN4 stage. This stage is marked by 8-9 rounds of 

proliferation and the initiation of CD4 and CD8 expression. Thymocytes that express 

both CD4 and CD8 are referred to as double positive (DP) (19).  

Thymocytes that mature to the DP stage initiate another round of RAG-

dependent gene rearrangement, this time to rearrange the TCR α-chain. Productive 

rearrangement of the TCRα gene is required to generate functional TCRα polypeptides 

that pair with TCRβ polypeptides to form a functional αβTCR.  DP thymocytes undergo 

this rearrangement until either positive selection signals are received, which stop 

rearrangement, or α-chain rearrangement possibilities are exhausted. DP thymocytes 

have a short half-life of ~3 days and undergo apoptosis if they are not rescued from cell 

death. Thymocytes that fail to express αβTCRs or that express αβTCRs that do not 

recognize self-peptide/MHC undergo apoptosis (20). The vast majority of DP thymocytes 

undergo one of these two fates. DP thymocytes that express αβTCRs with low affinity for 

self-peptide/MHC complexes presented by cTECs are rescued from cell death by 

positive selection. and continue to differentiate (21). This stringent positive selection 

process ensures that thymocytes that proceed to further stages of development will only 

react to antigen presented by the organism’s own cells. Positive selection results in 

downregulation of either CD4 or CD8 to become either CD4+ or CD8+ single positive 

(SP) thymocytes (21, 22) and upregulation of chemokine receptors such as CCR7, 

allowing SP cells to migrate into the medulla in response to chemokines produced by 

medullary TECs (mTECs) and dendritic cells (DCs). 

In the medulla, thymocytes interact with mTECs and DCs to establish central 

tolerance, a process that either purges T cells that have autoreactive potential or 
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generates T cells that can suppress autoreactivity. The mTEC subset has the unique 

ability to express a wide array of tissue restricted antigens (TRAs). SP thymocytes with 

high affinity TCRs for TRAs expressed in the context of self-MHC by mTECs are deleted 

by apoptosis. In addition, mTECs transfer TRAs to DCs for cross-presentation to 

thymocytes, leading to additional deletion of highly autoreactive SP thymocytes.  (23, 

24). This negative selection process removes most, but not all, potentially autoreactive 

thymocytes (20). If SP thymocytes express TCRs that recognize TRAs with moderate 

affinity, they may not undergo apoptosis, but instead may be diverted into the T 

regulatory (Treg) lineage (25). Tregs in the periphery inhibit autoreactive T cells and aid 

in restricting the immunological response to foreign antigens providing an additional 

safe-guard against autoimmunity (26). SP thymocytes that escape negative selection are 

then ready to emigrate from the thymus to the peripheral lymphoid organs. These 

thymocytes follow a gradient of chemokines, such as S1P, to the thymic vasculature, 

where they exit the thymus and enter the peripheral T cell pool (27). 

1.2 Thymic Epithelial Cells 

The previous description of thymocyte development demonstrates that TECs 

provide indispensable signals for T cell development at every stage of maturation. This 

section will summarize cellular and molecular features of TEC subsets in fetal and adult 

thymuses. 

1.2.1 TEC Progenitors 

The thymus develops as an epithelial organ from the ventral domain of the 3rd 

pharyngeal pouch (PP). Fetal TEC progenitors are bipotent for both cTEC and mTEC 

lineages. Commitment to the cTEC or mTEC lineage is the result of complex interactions 

with the mesenchyme and emigrating lymphoid progenitors (28, 29). Whether these 

fetal-derived bipotent progenitors persist in the adult thymus is uncertain. There have 



 7 

K8 K5 K14 

A 

B 

CD80 

M
H

C
II

 

D 

UEA-1 

M
H

C
II

 

C 

Ly51 

M
H

C
II

 



 8 

Figure 2: Identifying TEC subsets. 

(A) Overview of TEC subsets visible by IHC including cTECs (dense green stain in 

cortex), K8-K5+K14+ mTECs (pink cells in medulla), and K8+K5-K14- mTECs (bright 

green cells in medulla). (B, C, and D) FACS separation of TECS based on MHCII 

expression and (B) expression of Ly51, (C) binding of UEA-1, and (D) expression of 

CD80 in 4-week-old WT mouse thymus. 
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been reports from two independent groups of in vivo adult bipotent TEC progenitors; 

however, the populations identified by these two groups do not match each other. The 

Blackburn lab reported an EpCAM+ Ulex Europaeus Agglutinin 1 negative (UEA-1-) 

Ly51+ PLET1+ MHCIIhi TEC population that exhibited bipotent progenitor capability (30). 

In contrast, the Chidgey lab identified an MHCIIlo α6-integrinhi Sca1hi Ly51lo TEC 

population that retained label (Brdu) and exhibited bipotent progenitor activity (31, 32). 

These populations were identified using somewhat different approaches and more 

research is needed to identify the bipotent progenitor population(s). 

In addition to bipotent progenitors, embryonic mTEC lineage restricted 

progenitors have been identified. These cells are marked by their expression of the tight 

junction proteins claudin 3 and 4. They are located in the apical layer of the 3rd PP prior 

to thymus separation and give rise solely to Aire+ mTECs (32, 33). While they do persist 

into adulthood, their progenitor potential is drastically reduced (32, 33). 

1.2.2 cTEC and mTEC subsets 

The cTEC subset has been characterized using a variety of cell surface and 

intracellular markers. cTECs are mostly keratin 8 negative (K8+), keratin 5 negative (K5-

), and keratin 14 negative (K14-). The cTEC subset also expresses CD205, Ly51 (Fig 

2B), and the thymoproteasome subunit β5t. The β5t subunit is the only marker of the 

cTEC subset implicated in their role in positive selection. The β5t subunit is thought to be 

required for the thymoproteasome to produce self-peptides for presentation in the 

context of MHCII during positive selection (34). Finally, cTECs can be identified as 

immature or mature based on their expression of MHCII (FIG 2B). Since all of the known 

cTEC markers are expressed on most cTECs, it has not yet been possible to 

discriminate phenotypically distinct cTEC subsets.  
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In contrast, mTECs can be identified by a variety of markers and separated into 

several phenotypical and functional subpopulations. The majority of mTECs are K8- K5+ 

K14+ (Fig 2A). A smaller population is K8+ K5- K14- UEA1+, is marked by a more 

rounded structure (Fig 2A). Like cTECs, mTECs can be separated by their expression of 

MHCII into canonically mature (MHCIIhi) and immature (MHCIIlo) TECs (Fig 2C). All 

mTECs are positive for UEA-1 by flow cytometric analysis (Fig 2C). The surface protein 

CD80 can also be used to separate mTECs into immature and mature subsets (Fig 2D). 

mTECs can then be further subdivided based on their expression of CD80, which 

positively correlates with MHCII and the mTEC maturity level.  

A subset of mature mTECs has the unique ability to express a wide array of 

antigens that are normally restricted to specific tissues in the periphery. The transcription 

factor autoimmune regulator (AIRE) is essential for this ability (35, 36). In addition to 

expressing TRAs, mTECs transfer them to DCs for cross-presentation Reviewed in (21). 

TRA expression is critical for deleting self-reactive SP thymocytes. Mice and humans 

that lack the ability to express TRAs present with widespread autoimmunity (35, 37). 

There is also a small TEC subset that is not readily identifiable as belonging to 

either the cTEC or mTEC lineage, because it costains for K5 and K8. These cells are 

located in and around the cortico-medullary junction (CMJ) (Fig 2A). 

The majority of the data on TEC subsets has been gathered in young adult 

thymuses. Those studies that examine the make-up of the TEC compartment as a 

function of age typically do so either in the fetal or adult thymus or the aged, involuting 

thymus. This leaves a large gap in our knowledge of the development of the thymus 

where the perinatal thymus is concerned. 

1.3  The RB pathway regulates TEC proliferation in adult thymus. 
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There are some reports that examine the changes in TEC proliferation as a 

function of age from fetal to adult. Fetal and early perinatal mice thymuses have the 

highest proportion of cycling TECs (38). This was reported to fall off sharply with age, 

from ~33% of TECs cycling at the early perinatal stage to ~6% at 4 weeks of age, and 

drops even further to ~2% in a 10-month-old mouse (38). The mechanisms that regulate 

this change from a highly proliferative organ to a homeostatic one are not understood. 

However, our lab has obtained evidence that the Cyclin D1-RB-E2F pathway plays a 

role {Garfin, 2013 #54;Klug, 2000 #55;Robles, 1996 #56}. 

The retinoblastoma protein (RB) is a well-documented cell cycle regulator (39-

41). Unphosphorylated and monophosphorylated RB is bound to the E2F transcription 

factor which targets the promoter regions of target genes (42). Unphosphorylated RB 

recruits permanent repressive machinery to these promoter sites, inhibiting proliferation 

and promoting terminal differentiation (42). Growth factors trigger the upregulation of 

Cyclin D1, which activates and binds to cyclin dependent kinases 4 and 6 (CDK4/6). The 

activated CDK4/6 then monophosphorylates RB, which recruits temporary suppression 

machinery and prevents the cell from exiting the cell cycle (42). Additionally, the 

monophosphorylation primes the RB for hyperphosphorylation by Cyclin E activated 

CDK2 in late G1(42). The hyperphosphorylated RB releases the bound E2F transcription 

factor to drive S-phase entry (42). 

Our lab found that expressing a keratin 5 promoter driven Cyclin D1 transgene in 

the TEC compartment results in continuous thymus growth (43, 44). The transgene is 

expressed only in the TEC compartment, and the sustained thymus growth is not 

because of either thymic lymphoma or thymoma development (43, 44). The K5.D1 

thymus is compartmentalized into cortical and medullary regions and supports T cell 

development, including positive and negative selection. A later study in which we 

collaborated with the Sage lab showed that conditional deletion of the RB family in TECs 
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results in a thymus expansion phenotype similar to that of K5.D1 (45).   Together, these 

findings strongly implicate the Cyclin D1-RB-E2F pathway in regulating TEC proliferation 

and thymus growth. 

1.4 T cells generated in the perinatal period have unique functional properties 

Newborns are uniquely vulnerable to infection, making it essential that perinatal T 

cells provide a strong immune response that is still self-tolerant. To fill this need, T cells 

produced during the perinatal period possess several unique functions. They provide a 

rapid, strong, innate-like response to pathogens, but this response is short-lived (46, 47). 

To ensure that this strong reactivity does not cause autoimmunity, Tregs produced in the 

perinatal thymus are highly suppressive and required to maintain suppression of 

autoreactivity throughout life (48). Recent reports have shown perinatal Tregs to be 

required to prevent peripheral T cells from responding to antigen, a state known as 

anergy (49). This prevents immune reactions against commensal microbes in the skin 

(50).  

 Given that the TECs are not only essential for T cell development, but are also 

critical for selecting a self-restricted and self-tolerant TCR repertoire, it is possible that at 

least some of the functional attributes of perinatal T cells are due to unique functions of 

the perinatal versus adult TEC compartment.  Increased levels of CD5, an indicator of 

the combined affinity for antigen of a T cell’s TCRs, on thymocyte subsets have also 

been reported in neonatal and young mice. This suggests that the perinatal selection 

process favors T cells with TCRs possessing a stronger affinity for self-peptide MHC 

complexes. Additionally, differences in peptide processing have recently been implicated 

in the unique TCR repertoire of perinatal Tregs required for suppression of autoimmunity 

throughout life (48). 
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 However, there is very little information on perinatal TECs because most studies 

on TEC subsets are conducted in the fetal, adult, or involuting thymus. The goals of this 

project were 1) to determine if TEC subset composition and proliferation changes during 

the perinatal to adult transition and, 2) determine if the Cyclin D1-RB-E2F pathway 

affects TEC subset composition and proliferation during this period. 
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2 Materials and Methods 

2.1 Mice 

K5.Cyclin D1 mice were originally generated by C. Conti (44) and were 

maintained on a C57BL6/J background. C57BL6/J mice were purchased from the 

Jackson Laboratory (Bay Harbor, Maine), and crossed with heterozygous K5.Cyclin D1 

transgenic mice. The K5.Cyclin D1 genotype was confirmed using PCR. Mice were 

maintained in a specific pathogen free environment in accordance with all MD Anderson 

Institutional Animal Care and Use Committee policies. Single cell suspensions of mouse 

thymuses were analyzed by flow cytometry at embryonic day 17.5 and day 0, 3, 7, 10, 

14, and 28 days postnatal. 

2.2 Dissociation of Thymus 

 Thymuses were excised from the thoracic cavity, washed with 1x PBS (pH 7.0), 

and then trimmed of excess tissues. Cleaned thymuses were then diced into numerous 

small pieces and digested using a buffer of 0.52 Wunsh Units/mL Liberase TM (Roche) 

and 20 units/mL of DNase I (Roche) in PBS (pH 7.0). Tissues were digested in 2mL in a 

shaker incubator at 37C and 180 RPM for 10 minutes. Supernatant was collected into 

40mL of FACS wash buffer (1x PBS pH7.0, 2% Bovine Calf Serum, 0.05M EDTA), 

leaving undigested tissue in the tube, and process was repeated twice more. Any 

undigested tissue was manually dissociated using a p1000 pipette. Collected 

supernatant was then centrifuged at 1500 RPM for 5 minutes. The Cell pellet was 

resuspended in FACS wash buffer, 5mL for wildtype adult thymuses and 10mL for adult 

K5.Cyclin D1 thymuses. Cell suspensions were filtered using a 0.7 um cell strainer 

(Falcon) and then counted on a hemocytometer using trypan blue for live/dead 

differentiation. 
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2.3 Haematoxylin and Eosin staining 

Fresh frozen sections were thawed to room temperature and fixed using 10% 

neutral buffered formaldehyde. Slides were treated with haematoxylin (Sigma) for 10 

minutes and rinsed briefly in water. Haematoxylin stained slides were then treated with 

1% eosin (Sigma) for 3-10 minutes and rinsed briefly with water. Stained slides were 

dehydrated with ethanol beginning at 70% and ending at 100% before being washed 

with xylene twice for 10 minutes. Cover slips were added and sealed with cytoseal 

(Thermo Scientific) and imaged. 

2.4 Immunohistochemistry 

Serial sections (8-10 μm) from optimal cutting temperature medium (OCT) 

embedded tissue were air dried and fixed in cold acetone at room temperature or -20°C. 

Fixed slides were washed with phosphate buffered saline (PBS) and then incubated with 

rat anti-mouse K8 serum overnight at room temperature. Slides were washed in PBS 

and then stained with optimal concentrations of rabbit anti-mouse Keratin 5 (Covance) 

and chicken anti-mouse Keratin 14 (Biolegend) at room temperature for 1 hour. Slides 

were washed and treated with appropriate secondary antibodies for 30 minutes. Cover 

slips were added and sealed using Prolong Gold (Invitrogen) and imaged using a Leica 

DMI 6000 B fluorescent microscope. Staining with secondary antibodies in the absence 

of primary antibody was used as a negative control. 

2.5 Flow cytometric analysis of thymus 

 Thymus cell suspensions were stained with a panel of antibodies for live or fixed 

staining (Table 1). Antibodies were added to 4x106 cells in 100 μL for 15 minutes in the 

dark at 4C. For fixed analysis, samples were then fixed and permeabilized using a BD 

Biosciences fixation/permabilization kit. Samples were centrifuged at 400 rcf for 3 

minutes, and were brought to 500 μL with FACs wash buffer for analysis using a BD 
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FACs Aria II cell sorter or BD Fortessa cell analyzer. Analysis was conducted on 

collected data using the FlowJo (version 9.4.10 – version 10.5.3) program by FlowJo 

(Ashland, Oregon). 
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Antibody Flurochrome Manufacturer 

UEA-1 FITC Vector 

αCD80 PE eBioscience 

Propidium Iodide   

αCD24 PE/Cy7 eBioscience 

αCD11c Percp/Cy5.5 Tonbo 

αEpCam APC Biolegend 

αIa/Ie APC/Cy7 Biolegend 

αSca-1 Pac Blue Biolegend 

αCD45 BV510 Biolegend 

αLy51 Biotin BD Pharmingen 

Streptavidin Qdot-605 Life Technologies 

Rat IGG2a K Isotype 

Control 
Biotin BD Biosciences 

αIa/Ie PE Tonbo 

αEpCam PE/Cy7 Biolegend 

αSca-1 APC/Cy-7 Biolegend 

Streptavidin Qdot-655 Life Technologies 

αKi67 A700 eBioscience 

Rat IGG2a K Iso Control A700 eBioscience 
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Table 1: Antibodies used for flow cytometry 
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3 Results 

3.1 The Cyclin D1-RB-E2F pathway regulates changes in TEC cellularity and 

proliferation during the perinatal to juvenile transition. 

As discussed in the Introduction, previous studies have implicated the Cyclin D1-

RB-E2F pathway in regulating TEC proliferation (43-45).  In order to determine if this 

pathway regulates proliferation during the perinatal period, we compared thymus and 

TEC cellularity changes in wildtype (WT) versus K5.D1 across the perinatal to adult 

transition. The WT thymus grows exponentially from birth until perinatal day 10-14 (P10-

P14)(Fig 3A) when it enters a homeostatic phase that lasts for the next ~2 months 

(51).The cellularity of the K5.D1 thymus increases at the same exponential rate as the 

WT until ~P10 (Fig 3A). At this point, the K5.D1 thymus does not switch to a 

homeostasis program, but instead maintains exponential growth (Fig 3A). A similar 

pattern is seen in the TEC compartment, except that the shift in growth occurs earlier. In 

the WT thymus, TEC cellularity increases rapidly until ~P3-P7 (Fig 3B). By P7, K5.D1 

TEC cellularity exceeds that of the WT and continues to expand at a faster rate than the 

WT through P28 (Fig 3B). It is important to note that WT and K5.D1 TEC cellularity 

diverges before the total thymus cellularity does, P7 vs P10 (Fig 3A,B). This supports 

TEC expansion as a key driver of thymus growth and suggests that the Cyclin D1-RB-

E2F pathway is a key regulator of the shift between a proliferative program and a 

homeostatic one. 

Based on these data, we generated a model of the regulation of the perinatal to 

juvenile transition. Because the increase in TEC cellularity was approximately identical in 

WT and K5.D1 thymuses until day 7, we propose that in the WT thymus, RB in early 

perinatal TECs is constitutively monophosphorylated. Based on RB’s known functions, 

this would be expected to inhibit terminal differentiation and prime the TECs for 

hyperphosphorylation and entry into s-phase, resulting in a higher proportion of actively  
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Figure 3: Total and TEC cellularity diverge in WT and K5.D1 thymuses during 

the perinatal to juvenile transition 

WT (blue) and K5.D1 (red) total thymus cellularity (A) and TEC compartment 

cellularity (B). N-value of at least 4 mice per time point and genotype. *P<0.05, 

**P<0.01, ***P< 0.0001, and ****P< 0.00001 using an unpaired two-tailed Student T 

test. 
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cycling cells. After the transition between P7-P14, we propose that RB in TECs is no 

longer constitutively monophosphorylated. Based on RB’s function, this would inhibit 

proliferation as fewer TECs are now primed for hyperphosphorylation and a higher 

proportion of them are now programmed for terminal differentiation. (Fig 4). In this model 

expression of the K5.D1 transgene would override the switch in RB phosphorylation 

states. 

A prediction of our model is that the frequency of proliferating TECs would 

decrease around day 7 in the WT thymus, and that the K5.D1 thymus will maintain a 

high frequency of proliferating TECs. To check the model’s predictions about TEC 

proliferation, we quantified the percentage of Ki67 positive WT versus K5.D1 TECs 

across the perinatal to juvenile transition. As predicted by the model, there was a high 

frequency of proliferating WT TECs prior to and immediately after birth (Fig 5). The 

frequency of Ki67 positive TECs decreased by 3 days of age (Fig 5) in the WT thymus. 

In contrast to the decreased proliferation seen in WT TECs, the frequency of cycling 

K5.D1 TECs was identical until day 3, but after this point the K5.D1 TEC compartment 

maintains a high frequency of cycling cells (Fig 5). These results support the model, 

which predicts that constitutive monophosphorylation in TECs by ~P7 in the WT thymus 

to prevent unrestrained thymus growth.  

3.2 Changes in perinatal total thymus and TEC cellularity are not sex dependent. 

There are known sexual dimorphisms in thymus involution with female mice and 

humans displaying a slower involution than males (51). Whether a similar sexual 

dimorphism exists in the perinatal to juvenile transition is currently unknown. When we 

separated the thymus and TEC cellularity by sex, we found no difference in the growth of 

the thymus or the TEC compartment based on sex in either WT or K5.D1 mice (Fig 6). 
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Figure 4: Working Model 

Our proposed model for the regulation of proliferation in TECs. In this model, prior to 

P7 proliferation occurs without RB regulation affecting it. The transition occurs 

between P7 and P14. After the transition, RB regulates proliferation and must be 

hyper-phosphorylated to release E2F transcription factors to drive proliferation and 

differentiation. 
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Figure 5: TEC proliferation in WT and K5.D1 TECs across the perinatal to 

juvenile transition 

Percentage of TECs that are Ki67+. The % Ki67+ TECs declines in WT (blue) after 

P0, but is maintained in the K5.D1 (red). N-value of at least 2 mice per time point and 

genotype. *P<0.05, **P<0.01, ***P< 0.0001, and ****P< 0.00001 using an unpaired 

two-tailed Student T test. 
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Figure 6: Changes in total thymus and TEC cellularity across the perinatal to 

juvenile transition are similar in male and female mice 

(A) Sex specific total thymus cellularity in WT and K5.D1. (B) Sex specific TEC 

compartment Cellularity in WT and K5.D1. N-value of at least 2 mice per time point, 

sex, and genotype. *P<0.05, **P<0.01, ***P< 0.0001, and ****P< 0.00001 using an 

unpaired two-tailed Student T test. 
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3.3 The Cyclin D1-RB-E2F pathway impacts changes in thymus architecture, TEC 

subset composition, and localization during the perinatal to juvenile transition 

The WT thymus undergoes extensive remodeling during the perinatal period, which is 

apparent in H&E stained thymus sections. For example, the medulla initially develops as 

clonally derived islets (52). During the perinatal to juvenile transition these islets 

coalesce into large, central medullary regions in the WT thymus (Fig 7A). In contrast, the 

K5.D1 maintains a large number of small medullary regions across the perinatal to 

juvenile transition (Fig 7B). 

Changes in localization of TEC subsets during the perinatal to juvenile transition 

are apparent by Immunohistochemistry (IHC) analysis of thymus sections stained with 

fluorescence-tagged Abs to keratins. The cTEC compartment is K8+K5-K14-, while the 

major mTEC subset it K8-K5+K14+ (Fig 8A)(53). As with the medullary structure seen by 

histological analysis (Fig7A,B), K8-K5+K14+ mTECs are present throughout the wildtype 

perinatal thymus in small islets (Fig 8A), but are concentrated into cohesive medullary 

regions in the adult thymus (Fig 8B). In the perinatal K5.D1 thymus, these K8-K5+K14+ 

cells are also localized in widespread medullary islets (Fig 8A), and the adult K5.D1 

thymus maintains the widespread distribution of K8-K5+K14+ islets seen in the perinate 

(Fig 8B). There is also a rare subset of putative K8+K5+K14- TEC progenitors that is 

found at the CMJ and sporadically in the cortex of the WT adult thymus (Fig 8B) (53, 54). 

The WT and K5.D1 perinatal thymuses are enriched for this subset (Fig 8A,C). In 

contrast to the distribution of these K8+K5+ cells in the adult WT thymus, the K5.D1 

thymus exhibits a perinatal like distribution and prevalence of this putative progenitor 

population.  

The structural and localization differences between the perinatal and adult WT are 

reflected in the composition of the TEC compartment across the perinatal to juvenile 

transition. At birth mTECs and cTECs number ~1x104 cells (Fig 9A,B). The cTEC 
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Figure 7: The K5.D1 adult thymus maintains perinatal-like thymus structure 

Representative H&E stained thymus sections showing small, dispersed medullary 

islets in P3 WT (A) and K5.D1 (C). Medulla has coalesced by 6 weeks in the WT (B), 

but the 6-week K5.D1 maintains small, dispersed medullary islets. 
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Figure 8: The K5.D1 adult thymus maintains a perinatal-like localization of TEC 

subsets 

Representative fluorescent IHC stained sections of (A) P3 WT and K5.D1 thymuses 

and (B) 6-week WT and K5.D1 Thymuses. K8+K5+K14- TECs are widespread in the 

P3 WT (top of A) and K5.D1 (bottom of A) thymus. K8+K5+K14- TECs become 

mostly restricted to the CMJ in the WT adult thymus (top of B), but remain abundant 

in the adult K5.D1 thymus cortex (bottom of B). (left of A and B) sections co-stained 

for K8, K5, K14. (right of A and B) K8 signal removed to enhance visualization of 

K5+K14- TEC. 
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compartment maintains this cellularity throughout the transition (Fig 9B), but the mTEC 

compartment rapidly expands until P7, when it shifts to a program of homeostasis (Fig 

9A). The K5.D1 thymus replicates the growth pattern of the WT thymus in both the 

mTEC and cTEC compartments until P7-P10. After P7, the K5.D1 mTEC compartment 

maintains an exponential growth (Fig 9A). The K5.D1 cTEC compartment remains 

homeostatic until P10, when it begins its own exponential growth (Fig 9B). These 

exponential growths of the mTEC and cTEC compartments shift the composition of the 

post P10 K5.D1 thymus’ TEC compartment, eventually returning it to the roughly equal 

contribution of the cTEC and mTEC compartments seen at birth (Fig 9C). 

3.4 A phenotypically immature, cycling TEC subset is selectively expanded in the 

juvenile (P28) K5.D1 thymus 

The conventional method of classifying TEC subsets based on their flow 

cytometric profiles of surface markers reveals 4 populations. MHCII levels are higher on 

mature compared to immature cTECs and mTECs (55) (Fig 9D,E). mTECs can be 

distinguished from cTECs by binding of the lectin UEA-1 binds (Fig 9D,E).The cTEC and 

mTEC subsets identified by these conventional markers are heterogenous. This 

heterogeneity is particularly marked in the K5.D1 thymus where there is a shift in the 

UEA-1 binding and MHCII expression which prevents discrete populations from being 

easily identified (Fig 9E). The decrease in expression of MHCII shows that the TECs in 

the adult K5.D1 thymus are generally less mature than those of the WT, while the 

decrease in affinity for UEA-1 indicates that the mTECs are less differentiated as well. 

This decreased maturity and differentiation supports our model, which predicts that the 

K5.D1 will have decreased terminal differentiation in addition to its increased 

proliferation. Because of these difficulties, a strategy that provides finer definition of TEC 

subsets is needed. We found that plotting UEA-1 against Sca-1 gives 5 distinct subsets 
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Figure 9: Both mTEC and cTEC subsets are expanded in the K5.D1 thymus. 

(A, B) Representative dot plots of FACs analysis of canonical TEC subsets at P28 in 

(A) WT and (B) K5.D1 thymuses. Canonical subsets are mature mTECs (MHCIIhi 

UEA-1+), immature mTECs (MHCIIlo UEA-1+), mature cTECs (MHCIIhi UEA-1-), and 

immature cTECs (MHCIIlo UEA-1-). (C, D) Cellularity of total mTEC (C) and cTEC (D) 

populations throughout the perinatal to juvenile transition. (E) Ratio of percentages of 

mTECs to cTECs across the perinatal to Juvenile transition. N-value of at least 4 

mice per time point and genotype. *P<0.05, **P<0.01, ***P< 0.0001, and ****P< 

0.00001 using an unpaired two-tailed Student T test. 
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in the adult WT thymus, which we designate TEC1 – 5 (Fig 10A). The TEC2 subset is a 

minor population in the WT adult thymus, but is highly enriched in the K5.D1 adult  

thymus (Fig 10A,B). 

In order to determine when the TEC2 subset becomes enriched in the K5.D1 

thymus, we conducted FACS analysis of WT and K5.D1 thymuses from a late embryonic 

stage (E17.5) to the juvenile stage (P28), covering the entirety of the perinatal to juvenile 

transition. An increased frequency of the TEC2 subset in K5.D1 compared to WT TECs 

was found to occur by P7 (Fig 10C,D). P7 is the same timepoint at which K5.D1 TEC 

cellularity diverges from that of the WT (Fig 3B). While the TEC2 subset is heterogenous 

as shown, for example by the wide range of UEA-binding levels, the majority of these 

cells express low levels of MHCII and high levels of CD24 (data not shown) indicating 

that they are likely to be immature TECs. The immature phenotype and increased 

frequency of the TEC2 subset suggests that proliferating TEC progenitor cells may be 

preferentially expanded in the K5.D1 thymus.  This concept would be consistent with 

previous studies showing that RB inactivation increases the frequency of precursor cells 

in several other tissues (56). 

If the TEC2 subset contains a proliferating precursor population, such as transit 

amplifying cells, we would expect a high frequency of proliferating cells in this subset. 

We quantified the proportion of Ki67+ in each of the five TEC subsets in WT and K5.D1 

thymuses across the perinatal to juvenile transition (Fig 11A). In order to focus on the 

major findings in this large data set, we calculated the ratio of Ki67+ cells in K5.D1 

versus WT for each of the TEC1 – 5 subsets. The ratio for TEC4 and TEC5 was 

unchanged across the transition, so only TEC1 – 3 are shown (Fig11B). At E17.5 and 

shortly after birth, the ratio was ~1 for all subsets (Fig 11). This early equivalency 

between the K5.D1 and WT fits our model that in the early perinatal stage TEC 

proliferation is RB independent. Starting at day 3 the TEC2 population is selectively 
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Figure 10: A novel UEA-1int Sca-1- TEC subset is enriched in the K5.D1 thymus 

compared to WT thymus. 

FACS plots of EpCAM+ CD45- TEC subsets defined by Sca1 and UEA in WT (A) and 

K5.D1 (B) 4-week-old thymus. TEC1-TEC5 subsets are labeled in red. (C,D) 

Percentage (C) and cellularity (D) of TEC2 in WT (blue) and K5.D1 (red) thymus 

across the perinatal to juvenile transition. N-value of at least 4 mice per time point 

and genotype. *P<0.05, **P<0.01, ***P< 0.0001, and ****P< 0.00001 using an 

unpaired two-tailed Student T test.  
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enriched for proliferating cells (Fig 11). At day 14, the TEC1 subset also becomes 

enriched for proliferating cells (Fig 11), potentially indicating that the TEC2 population is 

preferentially enriched for cTEC dedicated progenitors. 

Our temporal map of the perinatal WT thymus shows that its composition, 

localization, and structure change rapidly and continually throughout the perinatal to 

juvenile transition (Fig 12A,C). The results also demonstrate that K5.D1 TECs maintain 

perinatal-like phenotypic and proliferative characteristics throughout the perinatal to 

juvenile transition and into adulthood (Fig 12B,D). This maintenance of perinatal-like 

characteristics supports our working model that early perinatal TECs are primed for 

proliferation, possibly due to constitutive monophosphorylation of RB, but are primarily 

programmed for terminal differentiation after P7-P10. Additionally, we identified a novel 

TEC subset that is likely to contain cells with progenitor activity based on phenotypic and 

proliferative characteristics.
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Figure 11: K5.D1 TEC2 cells are enriched in cycling cells compared to WT TEC2 

cells 

(A) Percentage of proliferating cells in WT TEC1-3 populations. (B) Ratio of 

percentage of proliferating TECs in K5.D1 compared to WT thymuses for TEC1-3 at 

indicated time points. N-value of at least 4 mice per time point and genotype. N-value 

of at least 2 mice per time point and genotype. 



 43 

Cortical K5+ K8+ TECs 

Perinatal Juvenile 

Proliferation 

Differentiation 

Organization 

A 

WT 

C 

K5.D1 

Proliferation 

Differentiation 

Organization 

Medulla 

Cortical K5+ K8+ TECs 

Islets Large and Cohesive 

Medulla Islets Islets 

B D 



 44 

 

Figure 12: Summary of results. 

(A & B) In both WT and K5.D1 mice, the perinatal TEC compartment is marked by a 

high rate of proliferation, incomplete differentiation, small and frequent medullary islets, 

and widespread K5+ K8+ cortical TECS. (C) By the juvenile stage, the proliferation of  

WT TECs has decreased and cTEC and mTEC differentiation is complete. The juvenile 

thymic medulla is large and cohesive, and there are few K5+ K8+ cortical TECs. (D) The 

juvenile K5.D1 TEC compartment maintains, proliferation, differentiation and 

organizational features that mimic those of the perinatal TEC compartment. 
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4 Discussion 

4.1 A temporal map of changes in the TEC compartment during the perinatal to 

juvenile transition 

The results of this investigation show dramatic changes in the cellularity, 

composition, localization, and proliferation of cortical and medullary TECs during the 

perinatal to juvenile transition. An earlier study showed that total thymus cellularity 

increased throughout the perinatal period, peaking by P28 and entering involution 

between 8 and 10 weeks with the TEC compartment displaying a similar pattern (38). 

However, there was no distinction made between cTECs and mTECs, and only a short 

period of the perinatal stage was measured. Additionally, the data from several different 

time points were combined into a single data point. Our analyses were performed at 

multiple time points during the perinatal period to create a detailed temporal map of how 

cellularity and other parameters change in both cTECs and mTECs throughout the 

perinatal to juvenile transition.  

These data demonstrate that the transition from rapid expansion of thymus 

cellularity to relative homeostasis occurs by P14. Because the thymus is about 98% 

thymocytes, this transition in total thymus cellularity primarily represents a shift in the 

growth of the thymocyte compartment. Interestingly, the TEC compartment’s growth 

slows roughly a week earlier, by P7. These results suggest that the increase in 

thymocytes relies on expansion of the TEC compartment, which is consistent with the 

notion that TECs provide required niches for thymocyte progenitors (4, 57, 58). 

The stages of T cell development have been extensively studied (12). 

Hematopoietic seeding progenitors are attracted to the thymus by chemokines including 

CCL19, CCL21, and CCL25 (1-3). These signals specifically attract hematopoietic 

progenitors to the blood vessels at the CMJ where they enter the thymus. The earliest 

intrathymic thymocyte progenitors, ETPs, depend on signals from microenvironmental 
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niches to promote their survival and commitment to the T cell lineage (4, 5). Cortical 

TECs provide a number of these signals such as Il-7, Notch ligands, and Kit ligand (10, 

11). One would predict that as the number of cTECs increases during the early perinatal 

period in the wildtype thymus, there would be an increased number of niches that 

support ETP expansion and maturation. Because all stages of thymocyte development 

begin with ETPs this would be expected to increase the number of thymocytes at later 

stages as well. When TEC expansion shifts to homeostasis, the number of ETP niches 

may stabilize, which would in turn stabilize thymocyte numbers. Our temporal map of 

TEC and thymocyte cellularity supports these expectations. 

We also analyzed sex specific growth trends of the perinatal thymus. There are 

sex specific differences seen in the involuting thymus, with the thymuses of female mice 

involuting slower than those of males (51). Additionally, castration of male mice rescues 

the involuting thymus (51). This implicates sex specific hormones as one factor in 

regulating involution. Because the perinatal to juvenile transition occurs before sexual 

maturity, we did not expect a sex specific difference in thymus growth. Our data does 

indeed show that thymus growth and TEC expansion are similar in males and females 

during the perinatal period. 

Our data also show that there are numerous differences in the composition and 

structure of the TEC compartment between the perinatal and juvenile timepoints. Of 

particular interest is the increased frequency in the perinatal thymus of the TEC subset 

that costains for K8 and K5. This population has been implicated as an mTEC precursor 

population (31), which could indicate that the perinatal thymus has a greater progenitor 

potential than the juvenile. Additionally, the relative proportion of mTECs to cTECs shifts 

throughout the perinatal to juvenile transition. While there are roughly equivalent 

numbers of cTECs and mTECs until day 3, by day 28 there are nearly 8-fold more 

mTECs than cTECs. Additional experiments would be needed to investigate the causes 
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of this preferential enrichment for mTECs, but it conforms to the notion that the perinatal 

thymus expands rapidly to fill the lymphopenic periphery with functioning T cells. The 

expansion would start with the early emigration of TSPs which would differentiate 

following the thymocyte development pathway and proliferating in the cortex. It would be 

several days before these initial waves of thymocytes expressed a functioning αβTCR to 

enter the medulla. Without a large population of single positive thymocytes to provide the 

necessary cross talk signals, the mTECs would be unable to proliferate and differentiate. 

In addition to changes in the cellularity and composition of the TEC compartment, 

TEC proliferation changes across the transition. In the late fetal stage and immediately 

after birth, 30-40% of TECs are actively cycling cells. This number drops dramatically to 

just ~15% of TECs by P3 and remains low throughout the transition. It is important to 

note that the reduction in actively cycling cells, as indicated by Ki67 staining, occurs prior 

to the reduction in TEC compartment growth at day 7 and the plateauing of thymus 

growth seen at P10-P14. This suggests TEC proliferation is a factor in regulating the 

growth of the thymus.  

4.2 The Cyclin D1-RB-E2F pathway regulates the perinatal to juvenile transition in 

proliferation 

Our previously published reports (43-45) showed inhibition of RB, whether by 

overexpression of Cyclin D1 or deletion of the RB family, in TECs maintained a 

proliferative program in the thymus throughout life. However, the earlier studies did not 

determine how early growth of the K5.D1 thymus exceeded that of the WT thymus. Our 

data revealed that disruption of RB-mediated regulation of proliferation affected the 

growth of the thymus and TEC compartment only after P14 and P3 respectively. The 

lack of a phenotype in the early perinatal stage in K5.D1 mice led us to develop a 

working model in which RB in TECs is constitutively monophosphorylated until ~P7. In 
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the model RB is primarily unphosphorylated at later stages. This predicts that the TECs 

in the early perinatal stage are primed for hyperphosphorylation of RB, which leads to s-

phase entry and continued proliferation. Additionally, after the transition at P7-P14 the 

change to primarily monophosphorylated RB in TECs would lead to increased terminal 

differentiation and decreased proliferation. 

4.3 Identification of a putative TEC progenitor population 

In addition to providing the basis for our working model of the mechanism 

regulating the perinatal to juvenile transition, the K5.D1 mouse model also aided in the 

identification of a novel TEC subset. The canonical method of identifying cTEC and 

mTEC subsets via flow cytometric analysis identifies four TEC subsets based on levels 

of MHCII expression, and binding of the UEA-1 lectin or expression of the cell surface 

marker Ly51 (55, 59). The subsets identified via this method are extremely 

heterogeneous in the WT as seen, for example, by their wide range of affinity for UEA-1. 

Additionally, a downward shift in affinity for UEA-1 and expression of MHCII on K5.D1 

TECs makes accurate identification of these subsets even less clear-cut as the TECs 

exhibit a block in differentiation. We identified a new method of subsetting TECs by 

investigating UEA-1 binding and Sca-1 expression. Although the populations shown by 

this method are also heterogenous, it reveals a novel UEA-1int Sca-1- TEC2 subset that 

is enriched in the K5.D1 TEC compartment after P3. This subset contains TECs with low 

expression of MHCII and CD24 indicating that it is an immature population of TECs. The 

TEC2 subset is expanded in the K5.D1 thymus after P3 and  maintains perinatal-like 

proliferation at P3. Since both cTECs and mTECs are expanded in the K5.D1 thymus, 

and the K5.D1 is predicted to have a block in terminal differentiation, the TEC2 subset 

may contain precursor cells for both cTECs and mTECs. The high frequency of 

proliferating cells in the K5.D1 TEC2 subset suggests that it contains transit amplifying 
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cells that generate cTECs and mTECs. If this subset does contain a precursor 

population, RB regulation of its proliferation would be consistent with other reports 

showing RB-mediated regulation of cell cycle exit and differentiation in precursor cells of 

other tissues such as skin and the adult hematopoietic system (56). This putative 

precursor population could contain a population that is bipotent for both cTECs and 

mTECs, cTEC and/or mTEC lineage committed precursors, or a mixture of both.  

4.4 Future Studies 

In this study, we have created an in-depth temporal map of changes in the TEC 

compartment throughout the perinatal to juvenile transition. We have used this map to 

identify a potential pathway regulating the transition. In the future, changes in the TEC 

compartment throughout the perinatal period can be integrated with data on T cell 

development to reveal how perinatal TECs contribute to the unique functions of perinatal 

T cells. There are also still gaps in our understanding of the regulation of the perinatal to 

juvenile transition. It is currently unknown if the TEC2 subset functions as a precursor 

population. In vitro colony forming assays and in vivo reaggregate thymic organ culture 

experiments have both been used to investigate TEC precursor activity. Using either of 

these two methods, we can identify the contribution of specific TEC subsets to each TEC 

compartment. Doing so with a range of input concentrations of our putative progenitor 

subset allows us to use a limiting dilution statistical analysis to calculate the frequency 

and number of cTEC and mTEC precursor cells in the population. 
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