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Abstract—The problem of ordinal classification occurs in a 
large and growing number of areas. Some of the most 
common source and applications of ordinal data include 
rating scales, medical classification scales, socio-economic 
scales, meaningful groupings of continuous data, facial 
emotional intensity, facial age estimation, etc.  The problem 
of predicting ordinal classes is typically addressed by either 
performing n-1 binary classification for n ordinal classes or 
treating ordinal classes as continuous values for regression.  
However, the first strategy doesn’t fully utilize the ordering 
information of classes and the second strategy imposes a 
strong continuous assumption to ordinal classes.  In this 
paper, we propose a novel loss function called Ordinal 
Hyperplane Loss (OHPL) that is particularly designed for 
data with ordinal classes.  The proposal of OHPL is a 
significant advancement in predicting ordinal class data, 
since it enables deep learning techniques to be applied to the 
ordinal classification problem on both structured and 
unstructured data.  By minimizing OHPL, a deep neural 
network learns to map data to an optimal space where the 
distance between points and their class centroids are 
minimized while a nontrivial ordinal relationship among 
classes are maintained.  Experimental results show that 
deep neural network with OHPL not only outperforms the 
state-of-the-art alternatives on classification accuracy but 
also scales well to large ordinal classification problems. 

Keywords—ordinal hyperplane loss, ordinal classification, 
ordinal regression, deep learning, loss function, machine 
learning 

 

I. INTRODUCTION 

The problem of ordinal classification occurs in a large and 
growing number of areas. Some of the most common sources 
and applications of ordinal data are: 

• Ratings scales (e.g. Likert scales), like customer 
satisfaction ratings, “promoter” ratings and quality 
ratings 

• Medical classification scales (e.g. classification of 
disease stage/severity) and student performance (i.e., 
letter grades) 

• Socio-Economic scale (e.g., high, medium and low) 

• Meaningful groupings of continuous data (e.g., 
generational age groupings, grouping of noisy sensor 
data) 

• Facial emotional intensity [1] 
• Large storm severity ratings (e.g., Tropical Storms and 

Hurricanes) 

    Historically, data sources like surveys and medical ratings 
were relatively small in size, but this digitalized world has 
produced more and more truly big ordinal data sources, such as 
Amazon’s purchase satisfaction surveys, Yelp’s rating data, and 
electronic health records.  

Ordinal data differ from nominal (unordered) data by 
providing additional information on the order of the classes, 
which leads to a different way to evaluate the results of 
classification. For instance, misclassifying a value of ‘3’ as a 
value of ‘4’ should be viewed as a “better” error than 
misclassifying it as a ‘5’ for ordinal classification, although 
nominal classification treats these two error cases equally.     

A popular strategy to address ordinal classification problem 
is to reduce the problem of ordinal classification to multiple 
binary classifications and then use machine learning methods 
such as Support Vector Machines (SVM) [2][3][4][5] or 
Gaussian Process [6] to perform those binary classifications. 
However, this strategy doesn’t fully utilize the ordering 
information of classes.  Furthermore, SVM or Gaussian Process 
based methods are not easily scalable to big data.  

Another frequently used strategy for ordinal classification 
view ordered classes as integers and regression techniques to 
predict a continuous outcome [9]. However, this strategy 
assumes that equal “distances” between values have a consistent 
numerical meaning (i.e., all one unit differences having the same 
“meaning”). But this assumption is rarely true in ordinal data.  

    In recent years, deep learning has made breakthrough 
achievements on complex analytics problems with big data, such 
as image classification [23, 24], natural language processing [25, 
26], and speech recognition [27]. However, to the best of our 
knowledge, there is no existing mechanism by which the 
learning power of deep neural network can be applied to ordinal 
classification problems.   

The research goal of this work is to solve large-scale ordinal 
classification problems, such that the classification model can 1) 
establish and maintain the ordering of the classes without 
making assumption regarding distances among classes, 2) “pull” 
like samples together while “pushing” higher samples above the 
current class samples and “push” the lower class samples below 
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the current class samples, 3) achieve higher classification 
accuracy than the state-of-the-art, 4) be scalable to very large 
classification problems, and 5) be applied to unstructured data 
such as images and text.  

To achieve this research goal, we first proposed a novel loss 
function that is called Ordinal Hyperplane Loss (OHPL). OHPL 
is particularly designed for data with ordinal classes and enables 
deep learning techniques to be applied to the ordinal 
classification problems.  Based on OHPL, we further design a 
deep learning strategy, by which a deep neural network learns to 
map data to an optimal space where the distance between points 
and their class centroids are minimized while a nontrivial ordinal 
relationship among classes are maintained.  We also conducted 
experimental studies that demonstrated the deep learning 
strategy based on OHPL outperforms state-of-the-art 
alternatives on ordinal classification accuracies and are scalable 
to large ordinal classification problems.  

The rest of the paper will be organized as follows. In section 
II, we report, in detail, our literature study.  In section III, we 
will describe our proposed method, including Ordinal 
Hyperplane Loss (OHPL) and OHPL based deep learning 
strategy.  Experimental studies on OHPL deep learning strategy 
will be provided in section IV.  Finally, we conclude our paper 
in section V.  

II. LITERATURE STUDY 

In 2016, Gutierrez, et al published an extensive examination of 
solutions to the Ordinal Classification/Regression problem [7], 
including benchmark performance metrics versus a set of 
standard datasets that were included in the work of Chu and 
Ghahramani [6]. In their review Gutierrez, et al grouped the 
existing top performing methodologies into three categories 
that address the Ordinal Classification problem: 1) Naïve 
Approaches, 2) Ordinal Binary Decompositions and 3) 
Threshold Models.  

Naïve approaches use an appropriate simplifying 
assumption to cast the problem in such a manner that existing 
methodologies can be applied. For instance, if one assumes that 
the difference in classes is “close” to uniform they may 
transform the classes into sequential integers and apply 
regression analysis like ordinary least squares, neural nets or 
SVR. Cost sensitive methodologies which use different weights 
for different misclassification types also fall into this category 
[2].  For example, SVM with Ordered Partitions (SVMOP) uses 
class differences as weights, in an effort to not only provide 
correct classification, but to encourage misclassifications that 
are close in class number to the actual class [8]. 

The fundamental basis of binary decomposition is to recast 
the problem as a binary classification. The problem may be 
posed by comparing pairs of ordinal values with the higher 
value being assigned a value of 1 and then using either a single 
or multiple binary classification models. The earliest ordinal 
binary decomposition approaches used Ordinal Logistic 
Regression [9], which estimates binary probability for class 
ordering. More recent binary decomposition strategies using 
machine learning approaches like SVM algorithms create 

individual binary classifiers, combined with ensemble strategy 
that is based on the output of the binary classifiers. Deep Neural 
Nets allow of the output of multiple estimates that may be used 
to create class probabilities for all classes. Some researchers 
endeavored to use non-parallel hyperplanes in an SVM 
framework, but at a high cost of increased model complexity. 

    Threshold models include a large number of methodologies 
including: 

1. SVMs: Chu & Keerthi developed two SVM algorithms 
that specifically address the ordinal classification 
problem through the estimated multiple hyperplanes 
that maintain the sequential ordering of the classes [4]. 
While successful in application to small datasets, SVMs 
are known to become impractical when data sets 
increase to above 100K records.  

2. Boosting Models: RankBoost [9] attempts to improve a 
set of confidence functions, that maximize an ensemble 
of binary classifiers. Similarly, ORBoost [10] applies 
the same concepts to develop improved performance 
from ordinal regression models.  

3. Gaussian Process: GPOR [6] uses a Bayesian 
framework to model a latent function via Gaussian 
Processes. Prior and posterior probabilities for class 
membership are estimated for a set of latent functions of 
the input features.  

In late 2016, Hamsici and Martinez proposed a SVM based 
algorithm that attempted to maximize the margins between 
adjacent classes [11]. Their algorithm is similar to the one that 
was proposed by Keerthi and Chu [4], but with a notable and 
meaningful difference that their algorithm doesn’t assume 
equal margins between adjacent classes. In addition, their 
algorithm includes weight parameters, which enable the 
prioritization of one of or more of the individual algorithms 
over others. This prioritization weighting allows one to focus 
on a specific pair of ordinal classes. 

In 2017, Wang, et al used a nonparallel hyperplane 
assumption for the development of a specialized SVM 
algorithm to address the Ordinal classification problem [12]. 
For k ordinal classes, their algorithm estimates k-1 hyperplanes. 
For each, they include constraints that ensure that like labelled 
samples are within a prescribed margin of the hyperplane, while 
unlike labelled samples are one or more units away. They also 
include constraints to ensure the ordering of the hyperplanes 
reflect the ordering of the classes. 

These algorithms provide a mixed performance across the 
standard test data sets that are used to benchmark performance 
of ordinal classifiers. Many are benchmarked using 20 or more 
small datasets, with performance that represents modest 
improvements. While these incremental improvements are 
impressive, they are being benchmarked against current “best 
in breed” classifiers, so as a rule, it’s rare to find one that 
outperforms best benchmark classifier by 10% or more (in 
terms of decline in classification error).  

In February 2018, Nguyen et al, incorporated triplet loss 
based constraints to what is similar as SVM solution [3]. Their 
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algorithm employs triplet loss based constraints on local 
clusters of data points. The researchers produced both a linear 
version of their algorithm and a version that employs the kernel 
trick to produce a nonlinear mapping of the data into a higher 
dimensional space. Given the researcher’s stated algorithm 
compute cost of O(n3), their solution while successful with 
relatively small datasets, may not be viable for large datasets.  

“Triplet Loss” is a term that was first used in the FaceNet 
solution to the re-identification problem [13]. In developing 
FaceNet, Schroff et al leveraged the foundational work in Large 
Margin Nearest Neighbor (LMNN) Classification published by 
of Weinberger and Saul [14]. In [15], a framework of triplet loss 
was further proposed to provide a mechanism for applying a 
distance comparison between points without requiring the 
underlying distance assumptions for regression analysis. This 
framework of triplet loss makes it well suited to the ordinal 
classification problem, but triplet loss itself cannot be used, 
because it doesn’t guarantee the ordering of classes. 

III. PROPOSED METHOD 

Given a data  that is not separable in its original space, we 
would like to find a transformation ߮(ݔ) to map data to a high-
dimensional feature space that is optimal for ordinal 
classification.  Traditional kernel machines use a kernel 
function that is either pre-defined or pre-selected by the user to 
implicitly map the data from its original space to a high-
dimensional feature space.  However, this implicit mapping 
through kernel function does not guarantee that the mapped 
space is optimal for decision making [22].  In this research, we 
aim to design a new method that is able to automatically learn 
a transformation  towards a learning objective that directly 
reflects an optimal distribution of the data in the mapped space 
with respect to ordinal classification.   

A. Geometric Illustration of an Optimal Data Distribution 

Given a data  that is not separable in its original space as 
shown in Fig. 1 (a), a transformation ߮(ݔ)  maps data to a 
feature space as shown in Fig. 1 (b).  Now the question is how 
we evaluate the quality of the data distribution in this mapped 
space with respect to ordinal classification.  For nominal 
classification, we can use measures based on intra-class 
density/inter-class distance to describe the quality of the data 
distribution produced by ߮(ݔ).  However, this type of measures 
does not work well for ordinal classification for the following 
reasons.  First, increasing the inter-class distance does not 
guarantee the ordinal relationship is kept among classes; 
second, moving instances closer to the center of their own 
classes does not necessarily yield a better ordinal classification 
model if the moving is primarily along the dot-lines or dash-
lines as shown in Fig. 1 (c).  

 

 
Fig. 1 Geometric Illustration of an Optimal Data Distribution 

Therefore, in order to describe an optimal data distribution in 
the mapped space towards ordinal classification, we propose to 
use a group of parallel hyperplanes to represent classes as 
shown in Fig. 1 (D).  Now, we intuitively call a data distribution 
optimal for ordinal classification, if we can find a group of 
parallel hyperplanes in the mapped space, such that 1) if ݈ܿܽݏݏ௜ < ௝ݏݏ݈ܽܿ , then the hyperplane for class  is lower than 
the hyperplane for class  in the mapped space for all  and ; 
and 2) an instance is closer to the hyperplane of its class than to 
any other hyperplane.  If a transformation ߮(ݔ) maps the data 
to a feature space, where some of the above criteria are not 
satisfied, this transformation brings loss.  In the following 
subsection, we will mathematically define a loss function that 
is called Ordinal Hyperplane Loss to quantify such a loss for a 
data distribution that is produced by a transformation.  

 

B. Mathematical Definition of Ordinal Hyperplane Loss 

As the name implies that Ordinal Hyperplane Loss (OHPL) 
uses ordered linear hyperplanes, as the basis for calculating the 
loss for data distribution in the mapped space. The loss function 
is designed to utilize simple scalar distance calculations, 
combined with a standard application of large margin loss. The 
loss function enables the use of stochastic gradient descent, in 
optimizing data transformations. 

A linear hyperplane can be expressed as a simple 
mathematical equation of the form: ࢝࢞ࢀ + ܿ = 0 , where ࢝  
and ࢞ are vector valued and  is a scalar constant. A set of 
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parallel hyperplanes of this form differ in their  values. As a 
direct consequence, the ‘distance’ between two parallel 
hyperplanes can be defined to be the absolute value of the 
difference in their  values divided by 	|࢝| .  Given ࢝  , we 
further denote the hyperplane that goes through the ith data 
point ࢞࢏ as  ࢝࢞ࢀ + ܿ௜ = 0					(1) 

then bring  into (1), we have ࢝࢏࢞ࢀ + ܿ௜ = 0			(2ܽ) ܿ௜ =  (2)			࢏࢞ࢀ࢝−
further bring (2) into (1), we have the expression of the 

hyperplane that goes through   ࢝࢞ࢀ − ࢏࢞ࢀ࢝ = 0		(3) 

Given the hyperplanes going through each data point in a 
feature space, we can now represent a class in that feature space 
by calculating its Hyperplane Centroid (HC). For instance, 
the hyperplane centroid for the kth class, denoted as ܥܪ௞, can 
be expressed as 					ܥܪ௞:	࢝࢞ࢀ − 1݊௞ ෍ ௬೔ୀ௞࢏࢞ࢀ࢝ = 0				(4) 

Given the definition in (4), all ordinal classes are represented 
as a group of hyperplane centroids, which are parallel to each 
other, in the feature space. Now we define OHPL, such that we 
can quantify the loss in a data distribution that is produced by a 
data transformation ߮(ݔ)  with respect to a given vector w .  
According to the intuitive criteria of an optimal data 
distribution that are described in section 3.1, OHPL consists 
two components, namely Hyperplane Centroid Loss and 
Hyperplane Point Loss.  Hyperplane Centroid Loss reflects the 
loss caused by non-optimal ordering of Hyperplane Centroids 
per the ordinal relationship of the classes, while Hyperplane 
Point Loss reflects the loss caused by non-optimal relationship 
between individual data points and the hyperplane centroids of 
their classes.  

 
1) Hyperplane Centroid Loss(HCL) 

 
Hyperplane Centroid Loss (HCL), the first component of 

OHPL, ensures that the hyperplane centroids are properly 
ordered, per the ordering of the classes. This ordering can be 
expressed as a difference in adjacent HCs. If the adjacent HCs 
are properly ordered, then the transitive property ensures that 
all HC’s are properly ordered. Therefore, we require that the 
HCs for adjacent classes k and k+1 adhere to: 		ܥܪ௞ − ௞ାଵܥܪ > for δ ,ߜ > 0  This means, if ܥܪ௞ାଵis at least ߜ from ܥܪ௞, then the ordering is correct with sufficient distance 
between the adjacent classes. Since the difference is unbounded 
from above, this formulation doesn’t introduce a distance 
assumption. Given adjacent classes k and k+1, and δ > 0 the 
Hyperplane Centroid Loss contribution of ܥܪ௞  relative to ܥܪ௞ାଵ  is defined as: max(ܥܪ௞ − ௞ାଵܥܪ + ,ߜ 0). Finally, for 

the k ordinal class problem, the Hyperplane Centroid Loss 
(HCL) is defined as: 

ܮܥܪ  =෍max(ܥܪ௜ − ௜ାଵܥܪ + ,ߜ 0)௞ିଵ
௜ୀଵ 		(5) 

 
2) Hyperplane-Point Loss (HPL) 

 
The second component of OHPL is “Hyperplane-Point Loss” 

(HPL). In calculating this loss component, individual data points are 
compared to a specific set of Hyperplane Centroids, to access the 
point’s contribution to the loss of the data distribution. HPPL is 
actually, the sum of two analogous loss functions, that work in 
different “directions” a la the formulation of (5). 

For the points, in a given class, if we “look” in the “increasing” 
direction (direction of larger ordinal class value), we only want the 
points that are higher than the HC for the point to potentially contribute 
to the loss (those below will be examined later). For points that are 
above their HC, but are already sufficiently close to their HC, there 
isn’t much benefit in drawing them closer, so we want their loss 
contribution to be zero. Therefore, the HPL uses a margin to ensure 
that points that do not contribute to loss are closer to their HC than the 
midpoint between the HC. In Fig 2 (a), below, the circled points are 
higher than the margin above its HC, so they contribute to the total 
HPL value. Note that the dotted margin line/threshold is closer to the 
HC, than to the adjacent HC. 

 

 
               (a) HPL Increasing Direction 

 
Similarly, when we look in the decreasing direction, points that are 

further from their HC than the margin, will contribute to the HPL total. 
In Fig 2 (b), below, the three circled points contribute to HPL. 

The two components of the HPL (an increasing and a decreasing) 
that are summed to arrive at the total HPL. Formally, given a dataset 
S, let γ to be the proportion of distance between adjacent HCs, HC be 
the hyperplane centroid that represents the class that  ࢞࢏ ∈ ܵ belongs 
to, ܥܪାଵ is the higher hyperplane centroid that is adjacent to HC, and  ܮܥܪ௜ା be the HPL for the point ࢞࢏ ∈ ܵ in the increasing direction, then 
we have:  0.5 < ߛ < ݊݅݃ݎܽ݉	ݐ݊݅݋݌ 1.0 = 1+ܥܪ)ߛ	 − ௜ାܮܥܪ		 (ܥܪ = max൫(݂(࢞௜) − (ܥܪ − ାଵܥܪ) − (ܥܪ + ାଵܥܪ)ߛ − ,(ܥܪ 0൯ = max	(݂(࢞௜) − ܥܪߛ − (1 − ,ାଵܥܪ(ߛ 0) 
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Similarly, in the decreasing direction, ିܮܲܪ = max	(ܥܪߛ − ݂(࢞௜) + (1 − ,ଵିܥܪ(ߛ 0) 
     Then, the overall HPL will be the aggregation of (ܮܲܪ+  . over all data points in (−ܮܲܪ+
ܮܲܪ  = ෍ +ܮܲܪ + ௌ∋࢏࢞−ܮܲܪ 			(6) 

 
 

 
             (b) HPL Decreasing Direction 

 
Fig. 2 Computing HPL in Two Directions 

3) Ordinal Hyperplane Loss (OHPL) 

Finally, the Ordinal Hyperplane Loss (OHPL) is defined as 
the weighted aggregation of HCL and HPL, as shown below, 
where ߙ ൒ 1 reflects the importance of HCL in OHPL with 
respect to HPL.  ܱܮܲܪ = ܮܥܪߙ +  (7)				ܮܲܪ
C. OHPL-Net: OHPL Deep Learning Strategy 

Given the definition of OHPL in (17), this section describes 
a deep learning strategy for ordinal classification based on 
OHPL. Figure 3 shows a simple deep neural network (DNN) 
model that represents a non-linear transformation ϕ that maps 
input data from their original space to a n-dimensional space. 
We further add the last layer ࢝ࣘࢀ(࢞)  on the top of the 
transformation ࣘ(࢞). Then we use the weights of the last layer, 

namely w, to define  parallel hyperplanes to represent m 
ordinal classes, such that the kth class will be represented by the 
hyperplane whoes expression is shown in (4). 

Based on the hyperplane representations of the ordinal 
classes, we can calculate the Ordinal Hyperplane Loss (OHPL) 
based on the formula (7). Then the DNN can learn both an 
optimal transformation ૖  and an optimal vector w by 
minimizing the OHPL (recall that w determines the direction of 
those parallel hyperplanes in the feature space that is mapped by ૖).  

In our practical algorithm design, the HCL component of 
OHPL is estimated on the entire dataset, while the HPL 
component is applied to batches. To ensure that the ordering 
relationship is achieved as early as possible and maintained over 
the entire training process, a large weight value α > 10 is used 

to prioritize HCL loss over point loss. The algorithmic 
description of the OHPL deep learning strategy is given as 
follows. 

 
OHPL Deep Learning Algorithm 

For parameters: O ordinal classes 
h – number of hidden layers l୩– number of nodes in each layer 
w – prioritization wgt for HCL 
lr – learning rate 
m – HC margin 

 point margin proportion 
bs – batch size 
Input: Rescaled training data ሼ(ݔ௜, ݅	|(௜ݕ = 1, … , ݊ሽ  
Parameters ݄, ,࢑࢒ ,ݐ݃ݓ ,ݎ݈ ሼ࢑࢒ = 1,… , ݄ሽ  
Begin: 
1) Randomize node weights (W) and bias (b) values 
2) While not converged do 

HPPL = 0, HCL = 0, OHPL = 0 
Select mini-batch 

Calc mini-batch Hyperplane Centroids 
Calc HCL 
Calc HPPL for batch 
Update OHPL 
Calc SGD* 
Update W and b 

Repeat until training sample exhausted 
Check convergence 
End: Output W and b 

* – Stochastic Gradient Descent 

 

 
Fig 3: OHPL Deep Learning Strategy Illustration 

 
In order to facilitate the application of OHPL deep learning 

strategy on different types of data for ordinal classification, we 
further brand this strategy as OHPL-Net, a deep architecture 
that users can directly apply to their ordinal classification 
problems. An OHPL-Net contains two components. The first 
component is called ࣘ layers, which are fully connected deep 
nets that represents a non-linear transformation of the input 
data. The second component is called Hyperplane layer, which 
is a one-layer one-output neuron network representing the 
direction of Hyperplane Centroids. Again OHPL-Net uses 
OHPL to learn optimal ࣘ and optimal parallel hyperplanes. If 
users’ classification tasks involve unstructured data, such as 
medical diagnosis of Alzheimer’s disease (mild, moderate and 
severe) based on MRI images or anger level detections based 
on tweets, OHPL-Net can be put upon those deep neuron 
architectures that are built on specific unstructured data, such 
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as Convolutional Neuron Network (CNN) [23] [24] on image 
data and Recurrent Neural Network (RNN) [25] [26] [27] on 
text data. 

 

IV. EXPERIMENTAL RESULTS 

OHPL was tested against seven ordinal classification datasets that 
are found in a number of related studies, including CPU Small [16], 
Census 10 [16], ERA (Employee Rejection/Acceptance) [17], LEV 
(Lecturers Evaluation) [18], SWD (Social Worker Decisions) [19], 
Cars [20], and Red Wine [20]. Characteristics of the seven data sets 
are given in Table 1. 

 

Table 1: Test Dataset Key Characteristics 

Dataset # Records # Features # Classes Class Distribution 

CPU 
Small 8,192 12 10 ~820 per class 

Census 
10 22,784 16 10 ~2,278 per class 

Cars 1,728 6 4 (1,210,  384,  69,  65) 

Wine-
Red 1,599 11 6 (10, 53, 681, 638, 199, 18)

ERA 1,000 4 9 
(92, 142, 181, 172, 158, 

118, 88, 3, 18) 

LEV 1,000 4 5 (93, 280, 403, 197, 270) 

SWD 1,000 10 4 (32, 352, 399, 217) 

 

A. Assessment Measures 

Mean Zero-One Error (MZE) is used to test classification of 
nominal data. This measure reports the proportion of 
misclassifications when scoring the validation samples, which 
can be computed as: 

 
As discussed earlier, ordinal data differs from nominal data 

and shares some characteristics with continuous data while also 
differing from continuous data. One of the key similarities with 
continuous data is the concept of being “close” if the prediction 
is incorrect. As such, Mean Absolute Error (MAE) may be a 
more meaningful way to access model performance. As a 
minimum, it’s a powerful way to distinguish among models that 
have comparable MZE performance. MAE can be computed as: 

 
Table 1 illustrates the fundamental difference between MAE 

and MZE, for the OHPL results when applied to the Social 
Work Decisions dataset. A standard methodology to assess 
classifier performance is the use of a “confusion” matrix. The 
basic principle is to use the classifier to score a dataset that has 
known labels, giving each record an actual and a predicted class 

value. The actual values correspond to the rows of the matrix 
and the predicted classes are represented in the columns. Every 
record is an ordered pair that occurs within the matrix. Cells of 
the matrix are filled with counts of the corresponding ordered 
pairs. Assuming that the row and column sequence is the same, 
then the diagonal (darkest colored cells in the matrix below) 
represents the correctly classified counts, which sum to the 
MZE value, before dividing by the total number of records. 

 

              Table 2. Social Work Decisions OHPL Confusion Matrix 

                            Predicted                                                 

Actual 2 3 4 5 
2 16 15 4 0 
3 29 202 100 20 
4 6 79 237 83 
5 0 7 79 123 

     

As you move further from the diagonal of the matrix, the 
values get lighter in color (further in color from the diagonal). 
This color change represents increasing error, in the 
classification and the lighter the color, the higher the error for 
points that are represented in the cells. An ideal classifier, that 
isn’t a perfect classifier, will have zeros, in the three lightest 
colors in Table 2. 

B. Benchmark Algorithms  

The following benchmark algorithms are included in our 
experimental studies: 1) Support Vector Machines with Ordered 
Partitions (SVMOP) [8], 2) GPOR (Gaussian Process for Ordinal 
Regression) [6], 3) ORBALL (Ordinal Regression Boosting with All 
margins) [10], and 4) LODML (linear classifiers using triplet loss 
constraints on Mahalanobis distance within an optimization 
framework) [3]. To ensure a justifiable benchmark comparison, a 5-
fold cross validation was used when testing OHPL based classifiers. 

C. Performance Comparisions 

Table 3 shows the comparison results on MZE.  As can be 
seen, OHPL based classifier has the lowest average MZE across 
the 7 data sets.  Furthermore, OHPL achieves lowest MZE on 3 
out of 7 data sets.  Especially on the two largest data sets, CPU 
Small and Census 10, OHPL outperforms the second best by 
24.8% and 13% respectively.  Table 4 shows the comparison 
results on MAE.  As can be seen, OHPL based classifier has the 
lowest average MAE across the 7 data sets.  Furthermore, 
OHPL achieves lowest MAE on 4 out of 7 data sets. Especially 
on the two largest data sets, CPU Small and Census 10, OHPL 
outperforms the second best by 25.8% and 40.9% respectively.  
Therefore, for these larger datasets, OHPL represents a 
significant improvement over the best existing algorithms. 

D. Scalling to Big Data 

To demonstrate that OHPL can scale to large datasets, a 
collection of “synthetic” datasets was created, from the largest 
of the standard datasets that are used to benchmark ordinal 
classification/regression algorithms.  
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From the Chu and Ghahramani research [6], Census 10 
dataset is among the largest for which benchmark results are 
available. A standard benchmark assessment for this dataset is 
included in the next section. For the purposes of assessing the 
scaling of OHPL, the data set was split, 80:20, into single 
training and test datasets. The synthetic datasets were created 
by replicating the training data. In each set, the 1st replica is the 
original training dataset. For each subsequent, replica a small 
amount of random noise was added to each data value. The 
original training sample contains just 20K records. The largest 
synthetic dataset contains just over 500K records. Time to 
algorithm execution times are reported in Figure 6 below. 

 

V. CONCLUSION AND FUTURE REMARKS 

OHPL directly addresses the unique requirements of the 
ordinal classification by using a point specific large margin loss 
function to group classes, while directly adhering to the ordinal 
information that are represented in the data. DNN’s built using 
OHPL perform on par with existing high performing ordinal 
classifiers on small datasets, while demonstrating vastly 
improved results on larger standard benchmark large datasets. 
Through the application to a very large (500K+ records) 
synthetic dataset example, OHPL was demonstrated to 
effectively classify ordinal data. 

From a technical perspective, immediate plans include 
continue to develop the algorithm, to gain an additional insight 
into the impact of DNN structure (assess whether or not 
guidelines for number of layers and number of nodes per layer 
to achieve optimal performance can be established). In addition, 
early testing suggests that allowing some “flexibility” regarding 
the minimum margin between hyperplane centroids may 
provide the benefit of faster convergence to an optimal solution. 

As mentioned earlier, OHPL uses a DNN with a loss function 
that has been specifically developed for the Ordinal 
Classification problem. As such, it can handle large datasets 
(200K+ records). Testing against large datasets is critical, but 
ideally after some additional work to improve algorithm 
efficiency. Experimentation with algorithm different/additional 
strategies, to improve algorithm speed would be important 
when applying it to large datasets. 

Table 3. MZE Comparison 

 Algorithm 

Dataset SVMOP GPOR ORBALL LODML OHPL 

CPU 
Small 0.631 0.588 0.654 0.569 0.428 

Census 10 0.771 0.749 0.774 0.737 0.641 

Cars 0.003 0.037 0.012 0.028 0.024 
Wine-Red 0.358 0.394 0.334 0.432 0.431 

ERA 0.745 0.712 0.76 0.828 0.744 

LEV 0.367 0.388 0.391 0.49 0.399 

SWD 0.424 0.422 0.439 0.526 0.422 

Average 0.471 0.47 0.481 0.516 0.441 
 

                                      Table 4. MAE Comparison 

 Algorithm 

Dataset SVMOP GPOR ORBALL LODML OHPL 

CPU 
Small 1.680 1.565 1.590 1.656 1.161 

Census 10 2.127 2.190 1.951 2.174 1.153 

Cars 1 1.081 1 1.053 1 
Wine-Red 1.145 1.066 1.108 1.123 1.159 

ERA 1.664 1.742 1.645 1.816 1.034 

LEV 1.090 1.082 1.100 1.097 1.098 

SWD 1.061 1.043 1.048 1.062 1.158 

Average 1.395 1.396 1.349 1.426 1.109 
 
 

 
Fig 6: Time to Complete 500 Epochs by Number of Records (K 
records) 
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