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ABSTRACT
The Ising model has been explored as a framework for model-
ing NP-hard problems, with several diverse systems proposed
to solve it. The Magnetic Tunnel Junction (MTJ)-based Mag-
netic RAM is capable of replacing CMOS in memory chips. In
this paper, we propose the use of MTJs for representing the
units of an Ising model and leveraging its intrinsic physics for
finding the ground state of the system through annealing. We
design the structure of a basic MTJ-based Ising cell capable of
performing the functions essential to an Ising solver. A tech-
nique to use the basic Ising cell for scaling to large problems
is described. We then go on to propose Ising-FPGA, a parallel
and reconfigurable architecture that can be used tomap a large
class of NP-hard problems, and show how a standard Place
and Route tool can be utilized to program the Ising-FPGA.
The effects of this hardware platform on our proposed design
are characterized and methods to overcome these effects are
prescribed. We discuss how two representative NP-hard prob-
lems can be mapped to the Ising model. Simulation results
show the effectiveness of MTJs as Ising units by producing
solutions close/comparable to the optimum, and demonstrate
that our design methodology holds the capability to account
for the effects of the hardware.
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1 INTRODUCTION
Computing efficiency is becoming increasingly limited by
memory bandwidth, which lags far behind processor com-
puting speeds. Several real world problems come under the
category of combinatorial optimization and are NP-hard, for
eg. the travelling salesman problem, graph coloring, etc. This
means that the problems are not computationally scalable
with traditional von Neumann computing methods [25]. The
capabilities provided by non-von Neumann architectures have
motivated research [13, 17, 31] on accelerating the process of
solving such problems.
The Ising model [11], a mathematical model to describe

interactions between magnetic spins, can be leveraged to
express and formulate many NP-hard problems due to the
combinatorial nature of the model. It consists of a system of
spins which can take one of 2 possible values {1,−1}. These

spins interact with one another in such a way that the system
gradually evolves to a minimum energy state, representing a
solution to the NP-hard problem that it encodes.

The computational complexity of the Ising model has long
been explored and investigated, and so has been the search
for efficient hardware systems [8–10, 18, 24, 33] for solving
combinatorial problems. For example, the process of quantum
annealing [6, 18] naturally holds the capability to solve the
Ising model, which requires the system to move out of local
minima so as to continue converging to the ground state. How-
ever, the quantum technology is far from reaching maturity in
terms of a large-scale commercial use due to its requirement of
operating superconducting devices at very low temperatures.
CMOS-based implementations [33] of Ising solvers have also
been looked at, including the use of GPUs [12] for exploit-
ing the inherent parallelism of Ising computations. However,
some of these have made use of extra hardware [16, 24] or
memory [12] for generating random numbers to simulate an-
nealing properties in the model. Further, the Ising model often
requires a large number of connections among Ising spins,
which has led to the use of techniques such as cell cloning
in fixed 2-D spin arrays [16], or to retaining only the nearest
neighbor connections [33] leading to sub-optimal outcomes.

Recent work [29–31] has investigated the use of spintronic
(nanomagnetic) devices for emulating the behavior of Ising
spins by exploiting their natural physics. The work in [31]
demonstrates through simulations such capability in stochas-
tic nanomagnets operating at very high speeds; but these had
very low energy barriers, implying that in reality they can
suffer from fabrication complexity, read disturbs, and inability
to write to several other Ising spins. Shim et al. [30] have used
Magnetic Tunnel Junctions (MTJs) with higher energy barriers
as Ising spin devices. Such stable MTJs form the central com-
ponent of Spin Transfer Torque Magnetic RAM (STT-MRAM),
the spintronic non-volatile memory which is replacing CMOS
technology in cache and embedded memories [32]. However,
they limit Ising spin connectivity to only the (four) nearest
neighbors, and restrict their interactions to binary. Although
this strategy yields a simple design, it severely limits the na-
ture and size of NP-hard problems that can be encoded onto
the hardware. The work in [29] does not detail how the influ-
ences from different units, in the form of voltages, would be
added up.
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In our work, we propose to evaluate an Ising model com-
puting platform based on stable MTJs which tackles simulta-
neously several of the aforementioned issues not addressed
in previous work. Our contributions are as follows:
• We design the hardware of an Ising cell, where an MTJ
represents an Ising unit, and show how it can perform Ising
computations.

• We demonstrate how a cell with fixed no. of inputs can be
slightly modified to make it scalable to large problems.

• We then propose Ising-FPGA, a parallel and reconfigurable
architecture composed of several of these Ising cells, and
having an interconnect topology similar to an FPGA.

• We analyze the degradation in signals in the hardware plat-
form to get a more realistic picture of such implementations,
and attempt to take them into account while mapping an
NP-hard problem.

2 PRELIMINARIES
2.1 The Ising Model
The Ising model was originally developed to study the behav-
ior of ferromagnets and consists of a number of spin units
(ferromagnetic elements) with pairwise interactions [11]. The
energy of the system is described by the Ising Hamiltonian

H (x) = −

N∑
i , j

Ji jxix j −
N∑
i

hixi (1)

where N is the no. of units, xi is the spin of the ith unit and
can assume one of 2 values, say ‘+1’ (up spin) and ‘−1’ (down
spin), Ji j is the coefficient of pairwise interaction between
the ith and the jth units, and hi is a bias term accounting for
external fields. The model considers a symmetric J , implying
a reciprocal nature of the interactions. Also, there are no self-
interactions, thus Jii = 0.
Solving the system involves finding a configuration x of

the spin units that minimizes the energy H . Obtaining this
ground state is an NP-hard problem due to the discrete nature
of xi , and this property of the Ising model has enabled the
mapping of several combinatorial optimization problems to it
[22]. The ground state of the spins represents the solution of
the NP-hard problem it encodes.

The energy due to a single unit xi and its connections, called
the local Hamiltonian, is expressed as[12]

H (xi ) = −

N∑
j

Ji jx jxi − hixi (2)

which considers the interactions with its neighbors and its
bias. Each step in the process of finding the ground state of the
system involves lowering the local Hamiltonian of each unit in
parallel which can be done by simply changing the state of xi
if that helps lowerH (xi ). However, the system would soon get
stuck in a local minima rather than converging to the global
optimum. The way out of this is to randomly perturb the

system and allow it to go to a higher energy state for the time
being - a popular concept known as (simulated) annealing.

2.2 Magnetic Tunnel Junction
The MTJ is an emerging non-volatile spintronic device tech-
nology. The Magnetic RAM, which is based on the MTJ, is a
viable candidate for replacing CMOS as the basic element of
future embedded memory [32]. MTJs possess 2 stable states
depending on the relative magnetizations of its ferromagnetic
layers - Parallel (P) and Anti-Parallel (AP). The P state exhibits
a lower resistance than the AP state (RP < RAP ).
The state of the MTJ can be changed by passing spin-

polarized current of appropriate polarity [14] via the mecha-
nism of spin-transfer torque [21]. The magnetization dynam-
ics of the MTJ is governed by the stochastic Landau-Lifshitz-
Gilbert (LLG) equation [21, 30]. It accounts for the effect of
the spin current Is , and also includes the random field Hth
due to thermal noise [30] which is uncorrelated in all 3 direc-
tions. Thus, the time required to switch the MTJ from the P
state to the AP state (or vice versa) is heavily dependent on
the magnitude of the switching current. Not only that, the
random thermal noise Hth causes fluctuations in the initial
magnetization angle and also affects the switching behavior
[21]. Therefore, the switching process is stochastic in nature,
implying that a current pulse of given amplitude and duration
has only a certain probability to successfully change the state.
Fig. 1 illustrates the probabilistic switching characteristics for
P → AP and AP → P for a current pulse of 2ns . 1

Figure 1: Switching probabilities of the MTJ with 2ns pulse width.
Note that current polarities would be opposite for P → AP and
AP → P .

3 ISING-FPGA FRAMEWORK
An NP-hard problem with N variables requires N Ising units,
implying an O(N 2) connectivity among the units. Also, the
specific nature/type of the connections depends on the prob-
lem itself. We therefore envision a reconfigurable MTJ-based
architecture which allows a large class of Ising models to
be implemented. To this end, we leverage the advancements
made in the FPGA technology to propose a similar architec-
ture for our Ising-model hardware platform, and call it the
Ising-FPGA. In this paper, we present the design of such an
1The asymmetry in the current requirements for the 2 directions is because
the spin transfer efficiency for AP → P is higher than that for P → AP [14].



MTJ-based Ising-FPGA possessing a routing network similar
to regular FPGAs. We develop techniques which account for
the effects of the hardware platform in the Ising model.

It must be noted that the Ising-FPGA is only an architecture,
consisting of an array of MTJs, which exhibits reconfigura-
bility and has a routing topology similar to FPGAs. It serves
the purpose of mapping problems which can be formulated
as the Ising model. The Ising-FPGA is not a standard FPGA,
with some components are made of MTJs, and which is to be
used for mapping digital logic functions.

3.1 Solving the Ising model
The local Hamiltonian in eqn. 2 tells us how the spin of an
Ising unit should be modified towards lower energy. Taking
the negative of derivative of both sides, we get

−
∂H (xi )

∂xi
=

N∑
j

Ji jx j + hi = βi (say) (3)

where βi represents the cumulative influence on the ith unit
by the other units (all x j ). The sign of βi at a certain time step
decides the direction in which xi should be updated to lower
the local energy. For eg. if xi = −1, and βi > 0, xi should be
switched to +1 (otherwise it should remain at −1). Algorithm
1 summarizes the process of solving the Ising model.

Algorithm 1 Annealing process for the Ising model
1: Initialize all xi randomly from {−1, 1}
2: for n = 1 to iters do ▷ perform iters iterations
3: for i = 1 to N do ▷ do parallely for each Ising unit
4: Calculate βi from eqn. 3. Assign x ′i = siдn(βi )
5: x ′i = −x ′i with probability p << 1 ▷ flipping randomly

with a small probability
6: end for
7: Assign x = x ′ and reduce p.
8: end for

3.2 MTJ as an Ising spin unit
In our work, we propose using an MTJ to realize an Ising spin
unit since it has 2 stable states, just as is required of an Ising
unit. Other non-volatile devices such as RRAMs and PCMs
tend to have several intermediate states [34], and therefore,
the MTJ is a better choice. It forms the central component of
a basic cell of our MTJ-based Ising-FPGA. We exploit its prob-
abilistic switching characteristics to guide the entire system
of spins through the states which reduce the energy of the
system (H (x) in eqn. 1), with the goal of reaching the ground
state.

For the MTJ-based Ising unit, we can encode the direction
and probability with which it should switch in the polarity
and magnitude respectively of the switching current provided
to it. Considering the gradient in eqn. 3, the write current
passed through the ith unit may be written as

Ii = Imin +
βi
k

(Imax − Imin) (4)

where Imin is the minimum current provided to overcome
the soft threshold below which the switching probability is
negligible,k is a normalizing factor to ensure that Ii is bounded
by a maximum current Imax . We choose values of Imin and
Imax that correspond to probabilities of roughly 0.1% and 98%
respectively for a 2ns pulse duration. For P → AP , Imin =

−22µA, Imax = −44µA, and for AP → P , Imin = 13µA, Imax =

26µA.
Once the Ising unit’s MTJ is updated probabilistically using

the write current in eqn. 4, we can allow the magnetization a
while to settle, and then read the value stored in the MTJ by
passing a small current (say < 5µA) through it and sensing
the potential drop across it [19]. This value read would then
be used to update the states of the other spins in the next
iteration. The effect of random noise in the system can be
realized by passing a small current IRF which flips the MTJ
with a small probability and, once again, letting it relax. Fig. 2
depicts the timeline of these stages where the Random Flip
of a spin unit is done according to its own value read in the
previous iteration, but before the write stage to avoid another
readout.

nth iteration
(n+1)th
iteration

(n1)th
iteration

ReadWriteRandom
Flip Relax Relax

time
(ns)

t+2t t+4 t+6 t+8 t+10

Read Random
Flip

Figure 2: Different stages of an iteration in the process of finding
the ground state of an Ising model. Each stage is of duration 2ns , and
hence an iteration takes 10ns . The dashed arrows show where the
spin value read is utilized.

3.3 MTJ-based Ising-FPGA cell
Let us now describe the structure of an Ising spin cell, which
is the basic unit of our hardware platform, and show how
eqn. 4 would be realized. Each Ising cell corresponds to one
spin variable and houses the MTJ whose state represents the
value of the spin. It is responsible for (a) receiving the states
of the other spin units and writing to its MTJ with a certain
current, (b) reading the state of its MTJ, and also (c) flipping
it randomly.

The coefficients of interactions (Ji j ) between spin units can
be represented by variable resistors, and the summation in
eqn. 3 can be obtained through an op-amp with N − 1 inputs.
Fig. 3 shows the Ising cell in a system with 5 variables. In this
figure, we specifically illustrate the Ising cell of variable x1. It
receives binary voltage signalsV2 . . .V5 ∈ {−Vm,Vm} from the
cells of the other variables x2 . . . x5, where the voltage polarity
represents their spin values (Vm for +1 and −Vm for −1). These
input voltages are modulated by the resistors R12 . . .R15 and
fed to the positive terminal of an op-amp OA1, along with
an internal bias voltage Vh1 through Rh1. The output Vo of
the op-amp OA1, with feedback resistor Rf , is provided to



the MTJ write control circuit shown within the dashed box.
It regulates the direction of current I1 through the MTJ with
the help of a pair of switches. These are controlled by the
output of comparator OA2 (in open loop configuration) which
turns on one and only one of the two switches. The switch
controlled by WR is turned on in the Write stage. Voltages
V+ and V− of opposite polarity are added to Vo to offset it and
obtain the minimum current Imin for AP → P and P → AP
respectively.
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V2
R12
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R13
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R14

V5
R15

Rh1

Vh1
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Ising cells

From other
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Vc

I1 > 0 
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MTJ

Figure 3: The proposed Ising spin cell. Switches WR, RD and RF
are turned on in the Write, Read and Random Flip stages respec-
tively. ParametersV+ = 0.227V ,V− = −0.172, obtained with HSPICE
simulations using Vm = 0.4V ,RP = 5.2kΩ, RAP = 13.7kΩ.

The output Vo of op-amp OA1 can be expressed as

Vo = −Rf

(
5∑
j=2

Vj

R1j
+
Vh1
Rh1

)
= −Rf

(
5∑
j=2

VjG1j +Vh1Gh1

)
(5)

where G denotes the respective conductances. The above re-
lation resembles eqn. 3 suggesting that a weighted sum of
the outputs from other Ising cells can be easily obtained
through an op-amp and resistors. The conductances Gi j ∈

[Gmin,Gmax ]would be directly proportional to the magnitude
of the interaction coefficient, |Ji j |. If all Ji j are normalized such
that |Ji j | ≤ 1, then Gi j = |Ji j |Gmax . To implement bipolar Ji j ,
we can simply add an inverter to each of the (N − 1) inputs of
xi ’s cell to make both Vj and −Vj available, and choose from
between the two.
The state of the MTJ is sensed by and stored in the Read

unit which then provides voltage signals to the other cells
(in the next cycle) accordingly. The Random Flip unit sends
current IRF to the MTJ to flip it with a small probability, the
direction of the current being dependent on the state stored
in the Read Unit.

3.4 Splitting inputs to multiple cells
Any non-von Neumann hardware platform designed for solv-
ing an Ising-like problem would have a fixed number of inputs
per Ising cell, however might it be implemented - spintronics-
based [29–31] or otherwise [24, 33]. Even our Ising-FPGA has
a fixed number of inputs per cell. As the problem grows in

size, this is going to pose a limitation to the no. of connections
made from/to the Ising cells.

Our approach to dealing with limited fan-in Ising cells is a
cascading of several of these cells to accommodate as many
inputs as required. The analog nature of the computation in
eqn. 5 allows for this divide-and-conquer approach with only
a small addition to the basic Ising cell. This is in the form of
another op-amp OA3. Fig. 4(a) shows the modified Ising cell
with I = 4 inputs Va . . .Vd . It can output either from its OA3
or from its Read Unit as required.

Now, considering a fan-in of I = 4 per cell, let us show how
we can split inputs to a spin variable into multiple Ising cells
for an Ising system consisting of 9 variables. The idea is to
have several layers/levels (named A,B,. . . ) of the basic Ising
cell connected in a tree-like sequence, with outputs from the
cells of one level fed into inputs of a cell in the next level until
the number of inputs remaining is less than or equal to the
fan-in of each cell. The programmable quantities in these cells
would be set as required (depending on their level). Fig. 4(b)
shows how we can split the inputs V2 . . .V9 into 2 Ising cells
(at level A) which then feeds into the last level cell of variable
x1.

The outputs of the cells shown in fig. 4(b) would be

Vo1 = Rs (V2G12 + . . .V5G15) & Vo2 = Rs (V6G16 + . . .V9G19) (6)

Vo = −Rf

(
Vo1
Rs
+
Vo2
Rs
+
Vh1
Rh1

)
= −Rf

©«
9∑
j=2

VjG1j +Vh1Gh1
ª®¬ (7)

whereVo is the output of last level cell’s OA1, and is as desired.

Vb

Ra

Vc
Rb

Rs

OA3OA1
Rs

To OA2 &
Write UnitVh

From
Read Unit

Vd

Rc

Va

Rd

Rh Vout

(a) OA3 added to the Ising cell

V2
R12

V5
R15

V6 R16
V9 R19

Rs

Rs

Rs
Rs

OA1
Rh1

Vh1

Vo

Vo1

Vo2

Level A Cell

Level A Cell

Last level
Cell

(b) Splitting 8 inputs into 2 cells
Figure 4: (a) The Modified Ising cell. (b) Multi-level Ising cells.
Observe that R12 . . .R19 are in level A, but Rh1 is in the last level
cell.



4 ARCHITECTURE OF THE ISING-FPGA
Field Programmable Gate Arrays (FPGAs) are integrated cir-
cuits that offer easy re-programmability, allowing the imple-
mentation of any desired logic function [26]. VTR/VPR [5, 23]
is an open-source platform for modeling and analyzing FPGA
architecture and CAD. The reconfigurable routing topology
of the FPGA is a good match for the kind of network connec-
tivity exhibited by an Ising model-based platform such as the
one proposed above.

4.1 Reconfigurable Ising model hardware
Let us discuss the analogous of the FPGA’s hardware for our
Ising-model solver (that is, the Ising-FPGA) and then explain
how part of VPR’s software flow can be used for configuring
the design.

Ising-FPGA: Each Configurable Logic Block (CLB) of an
FPGA corresponds to an Ising cell with multiple inputs and
one output which can be either the output of OA3 or from
the Read Unit. The no. of inputs to the CLB is set to the no. of
inputs to the Ising cell. Thus, for eg. fig. 4(b) shows 3 CLBs,
each with I = 4 inputs. The architecture file (.xml) of the FPGA
was used to describe certain parameters of the Ising-FPGA.

The connections between cells is captured by the repro-
grammable connectivity of the Ising-FPGA. For our analog
design, we can use muxes based on transmission gates (TGs)
as switches in the Switch Box (SB), in a way very similar to
directional SBs [20]. Thus, a connection between 2 cells has
one TG for each SB that it passes through.

Using VPR for Ising-FPGA:VPR produces a .blif file that
describes the netlist of the synthesized network, and uses it
to perform place and route of the design. We build a BLIF File
Generator (BFG) which takes in the no. of spin variables (N )
and the fan-in of each Ising cell (I ) as inputs, and creates a
.blif file by connecting Ising cells in a hierarchical way as
demonstrated earlier. Since the .blif file should specify only
those connections that exist, the BFG also takes in the Ising
graph, which lists the pairs of variables (i, j) which have a
non-zero interaction (Ji j , 0). VPR uses this .blif netlist to
pack, place and route the design. It outputs a .route file (among
many others) that contains the design’s routing information.

4.2 Signal Degradation and Recovery
The use of TGs for switches in our analog design implies that
their finite resistance will result in a potential drop across it,
and also bring down the current that was supposed to flow
into an Ising cell. We estimate this degradation in every path
(from each source cell to its destinations) of the circuit and
show how we can recover the original signal.
We consider a linear model for the signal degradation, in

the sense that the total resistance offered by a path is directly
proportional to its length and is independent of the length
of other paths (if any) from the same source cell. We use the

OA1Vj

OA1
lijRG Rij

l1jRG R1j

Level A
cells

Last
Level
cell

Figure 5: Signal degradation model for paths from a last level cell
(source) to level A cells (destinations).

information provided in the .route file to find the length of
the path for each (src,dest) pair in the design.

Let us look at the degradation in current before the Level A
of Ising cells. Fig. 5 shows a net from the last level cell of x j to
many level A cells, all with different path lengths. Consider
for now the path to level A cell of xi having length li j . The
current flowing through the input resistance Ri j should ideally
beVj/Ri j . The presence of TGs, each with resistance RG , in the
pathmeans that this current is now going to beVj/(li jRG+Ri j ).
To get back the original current level, we can simply reduce
the input resistance Ri j by li jRG subject to a minimum. The
new resistance Ri j is given as

Ri j =

{
(Ri j − li jRG ) if (Ri j − li jRG ) ≥ Rmin/Jmax

Rmin/Jmax otherwise (8)

where Rmin = 1/Gmax and Jmax ≥ 1 is the largest interaction
coefficient for the equivalent of the smallest possible Ri j . Be-
cause Ri j may not still be low enough, we can increase the
magnitude of Vj for recovering the desired current. Since dif-
ferent destinations would have different path lengths from the
source, they would require to boost Vj by different amounts.
Let δ ji be the increment in Vj required by the ith destination.
Equating the desired and obtained currents,

Vj (1 + δ ji )

Ri j + li jRG
=

Vj

Ri j
⇒ δ ji =

Ri j + li jRG

Ri j
− 1 (9)

For any source j, the amount of boosting is decided by the
destination having the highest value of δ (δ jmax = maxi δ ji ).
This boosting can be performed by amplifying the output
voltage of the source cell’s Read unit through suitable circuits.
No extra routing is required for this modification.

Now thatVj has been boosted by δ jmax , the new connection
resistances can be obtained yet again by substituting δ jmax in
eqn. 9. This gives us the final value of the resistors as

Ri j = Ri j (1 + δ jmax ) − li jRG (10)

For the next level of signal propagation, that is from the
output of level A cell to the input of next level’s cell, the source
connects to only a single destination. Thus, any modifications
at the source will depend only on the path for this (src,dest )
pair, and can be done by increasing the feedback resistance
Rs of the OA1 in the level A cell of the src .



5 ISING GRAPHS OF NP-HARD
PROBLEMS

5.1 Maximum Cut
Given an undirected graph G(V , E), the Max-cut problem’s
objective can be stated mathematically as [22]

maximize
1
2

∑
i , j ∈V

Wi j (1 − xix j ) (11)

whereWi j is the weight of the edge between the ith and jth

vertices, and xi , x j ∈ {−1, 1} indicate which partition they
belong to. Clearly, this objective can be mapped to the Ising
Hamiltonian in eqn. 1 by choosing Ji j = −Wi j/maxi j |Wi j |.

5.2 Travelling Salesman Problem
The TSP is anotherwell-knownNP-hard problemwhich, given
N cities and their locations, seeks to find a tour of minimum
distance such that each city must be visited exactly once. The
Ising formulation of the TSP has a system of N 2 spin variables.
The Ising Hamiltonian is given as [22]

H =
N∑
v=1

©«1 −
N∑
j=1

xv , j
ª®¬
2

+

N∑
j=1

(
1 −

N∑
v=1

xv , j

)2
+λ

∑
uv j

Wuvxu , jxv , j+1

(12)
Here the first 2 terms ensure that the constraints on the

solution to a problem (each city visited exactly once) are sat-
isfied, for which J(v , j)(u ,i) = −1 whenever u = v or i = j. The
last term corresponds to the distance travelled in the tour,
withWuv being the distance between cities u and v , and λ is
a proportionality constant to make sure that the constraints
are never violated in favor of a shorter tour, for which the
condition λ < 1/maxW (u,v) should be satisfied. We have
J(v , j)(u ,i) = dmin/Wuv , whenever i = j − 1 or j + 1, where dmin
is the minimum distance between any pair of cities.

6 SIMULATION SETUP AND RESULTS
Fig. 6 depicts the entire flow for simulation and evaluation.
First, the nature and parameters of the NP-hard problem are
input to the Graph Generator which outputs the interaction
matrix J and also the Ising graph. The Ising graph is input
to the BLIF File Generator (BFG) which creates the .bli f file
according to the no. of variables (N ) and the no. of inputs
per Ising cell (I ) (sec. 4.1). Then, VPR uses the .bli f and .xml
files to Place and Route the design. The resultant .route file is
analysed to obtain the lengths of the path between each pair
of connected Ising cells, which is accordingly used to find the
degradation in the signals and the modifications necessary
in the design (sec. 4.2 - Signal Degradation and Recovery -
SD&R). This information is passed on to the Stochastic LLG
solver along with various other parameters such as the num-
ber of iterations to perform, various current values, etc. The
LLG simulations of the MTJ were performed using an HSPICE

model2 [4, 15] which was imported into MATLAB for scala-
bility.

Rij, δ jmax  

Graph
Generator

Problem
type and

parameters

Ising
graph

BFG

N .blif file

VTR/VPR
.xml
file

XML
gen

.route
file

Routing
Analysis

I

J

Path
lengths

SD&R

J

Stochastic
LLG Solver

num_iters

IRF , Imax ,
Imin , k

N

(lij etc. )

Figure 6: Steps performed in the simulations. We start with the
Graph Generator and end with the Stochastic LLG simulations.

The current IRF for Random Flipping (sec. 3.2) was chosen
in a way that it corresponds to roughly 1% switching proba-
bility at the beginning of the simulations (at the 1st iteration),
and was then reduced linearly to a value that corresponded
roughly to 0.1% probability at the end. This is equivalent to
the theoretical notion of annealing, which requires “cooling
the system”.
With regard to accounting for the effects of the hardware,

simulations were performed for 3 situations:
• Ideal - Not considering the effects of the underlying hard-
ware, i.e. ignoring signal degradation.

• With Signal Degradation (SD) - Considering the effect of
the finite resistances of the paths in the Ising-FPGA, taking
RG = 3.45kΩ,Rmin = 50kΩ, but not recovering from the
issue.

• Recovery (Rec) - The modifications made in the design to
recover the original signals (using Ri j , δ

j
max ) with Jmax =

10.
Let us now present the results of the simulations performed
for the 2 NP-hard problems. For each of these, we mention the
usage of the significant hardware components in the Ising-
FPGA. These include
(1) the total no. of Ising cells in the Ising-FPGA,
(2) theminimumChannelWidth Factor (CWF), (theminimum

no. of tracks per channel for successful routing),
(3) the average length of the paths from the last level cells to

the Level A cells (average of all li j - fig. 5) at this CWF.
Max Cut: Table 1 specifies the graphs that were used for
benchmarking along with their no. of vertices, the best cut
value (obtained using an SDP solver [1]) and the type & range
or distribution of edge weights. Table 2 lists the aforemen-
tioned Ising-FPGA parameters at the specified Ising cell fan-in
(I ). Also included is an estimate of the power consumption (in
mW ) of the system obtained through HSPICE. Fig. 7 shows
the obtained cut values for the 4 graphs, each normalized by
their respective best cut values in table 1. Each of the graphs
was run 10 times, with 1000 iterations of the Ising simulations

2Device parameters: MTJ cell dimension - 22nm × 22nm × 1.5nm, damping
constant α = 0.01, simulation time step δt = 0.01ns , saturation magnetiza-
tion Ms = 800emu/cm3



Name Source Verts Best Cut Weight Type & Range
G1 G1 from G-set [2] 800 11429 Binary ({0, 1})
G2 Custom 140 2598.65 Fraction: U ∼ [0, 1]
G3 w01_100.0 from Biq mac [3] 100 645 Integer in [−10, 10]
G4 ising2.5-300_5555 from [3] 300 8.569 × 106 Int in [−2, 2] × 105

Table 1: Descriptions of graphs for Maxcut simulations.

per run; all maxcut values are thus average of 10 runs. It is ev-
ident that the Ideal maxcut values obtained by simulating the
Ising model are very close to the best cut values obtained by
heuristics (especially for graphs G1 and G2), thereby revealing
the potential of an Ising solver.

Name G1 G2 G3 G4
I 32 16 32 8 8

No. of cells 2398 1400 840 216 1044
Min. CWF 138 48 48 26 20

Avg. Path Lengths 23.2 8.3 8.3 10.6 5.8
Power 52.37 13.39 14.81 1.02 5.065

Table 2: Ising-FPGA hardware usage for Max Cut. Power inmW .

Figure 7: Max cut values (normalized) from the Ising simulations
for the 4 graphs, with 2 different values of Ising cell fan-in (I ) used
for G2.

From the data pertaining to fig. 7, Signal Degradation (SD)
leads to an average relative drop of 1.43% in theMaxCut values.
If we define the extent of recovery in the maxcut values as
(Rec − SD)/(Ideal − SD), the average recovery across graphs
was 78.48%. From table 2, we see that a larger fan-in (I ) reduces
the no. of Ising cells of graph G2 as expected. The minimum
CWF and the Average Path Lengths vary in different ways
depending on the nature of the graph.

TSP: Three example problems were considered from a
dataset [7, 28] - P01, GR17 and FRI26, sets of 15, 17 and 26
cities with optimal tour lengths of 291, 2085 and 937 respec-
tively. Table 3 lists the hardware usage on the Ising-FPGA
with I = 16. Ising simulations were run 20 times (each having
2000 iterations) for each city set. Table 4 mentions the results
in terms of the no. of runs (out of 20) in which at least 1 “valid”
tour was discovered and the average of their Minimum Tour
Length (MTL). SD results in an increase in the MTL by an av-
erage of 5.86% as compared to Ideal, but, more importantly, it
reduces the chances of finding a valid tour. With our recovery

Name No.of cells Min. CWF Avg.Path lengths Power
P01 1125 48 8.72 8.17
GR17 1445 48 8.59 12.58
FRI26 5408 60 14.3 45.13

Table 3: Ising-FPGA hardware usage for TSP. Power is inmW .

strategy, the no. of valid tours is almost as many as those in
the Ideal case and the MTL is only 3.49% higher than Ideal on
an average.

Additionally, fig. 8 compares the average no. of valid tours
found in each run for the cases Ideal, SD and Rec. Due to SD,
this value dropped by an average of 76.83% compared to the
Ideal, again indicating reduced chances of finding a valid tour.
We could recover an average of 83.78% of this drop.

Figure 8: Average (over 20
runs) no. of valid tours found in
a run.

City set P01 GR17 FRI26

Valid
Ideal 20 19 16
SD 9 12 6
Rec 20 19 19

MTL
Ideal 443 3448 2262
SD 450 3765 2416
Rec 453 3689 2290

Table 4: Results of Ising sim-
ulations for TSP.

7 DISCUSSION
Let us now briefly analyze some aspects of our proposed
approach and make comparisons with related work.
• Propagation delay: Each stage of opamp induces a delay
of about 20ps (from Cadence Virtuoso simulations). With 3
stages (OA1 & OA3 of level A, and OA1 of last level), the
expected propagation delay of Ising spin signals ±Vm in
the write stage is about 0.06ns . However, this delay could
be subsumed within the relax stage just before the write.
Further, any minor variations in delay from Ising cell to
cell is unlikely to affect the entire system or the final so-
lution, since randomness is an essential part of the Ising
computations.

• Resistive RAMs (RRAMs) are a suitable candidate for realiz-
ing the variable resistors that capture the interactions be-
tween Ising units. These are memristive devices [10, 34] that
offermultiple levels of resistance and easy re-programmability.

• Pervaiz et. al. [27] propose the implementation of proba-
bilistic circuits, based on unstable stochastic units called
probabilistic bits, on FPGAs. These can be used for Ising
and quantum computations. Their entire implementation is
on a real FPGA (and is therefore completely based on digital
CMOS logic and memory). On the contrary, our work pro-
poses an FPGA-like architecture based on spintronic and
memristive devices so that their inherent randomness and
in-memory computing capabilities can be harnessed for re-
alizing an Ising solver. It is expected to have a much smaller
area footprint than a fully digital implementation such as
[27]. Since the authors of that work do not report any fig-
ures on the area or power consumption of their design, we
are unable to make any detailed analysis.
Research on hardware implementations of Ising model

typically focuses on the possibility of mapping such mod-
els and on solving the associated optimization problem to



obtain answers. There is not much emphasis on the charac-
terization of system area/power/performance (yet).

• Process variations in MTJs and RRAMs isn’t expected to
affect the Ising system to any significant extent, again be-
cause such variations add to the randomness in the system
which it anyway requires.

8 CONCLUSION
In this paper, we proposed an Ising model architecture based
on MTJs, which can be used to map and solve NP-hard prob-
lems. We discuss realistic hardware implementations in terms
of Ising spin cells and their read/write capabilities, network
topology, and re-programmability of interactions among spin
units to allow different kinds of NP-hard problems to be en-
coded. We present Ising-FPGA, a parallel and reconfigurable
architecture which can be configured using a standard FPGA
Place and Route tool, and discuss ways to incorporate the
non-idealities in the hardware into the Ising model.
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