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Differences between the multiple linear regression model with Corrected R2 and Corrected 

F and the ordered variable regression model with R2 and F when intercorrelation is present 

are illustrated with simulated and real-world data. 

 

Keywords: Multicollinearity, collinearity, intercorrelation, ordered variable 

regression, multiple linear regression, MLR, OVR 

 

Introduction 

Recent work by Baird and Bieber (2016) provided a framework whereby the 

correlation occurring between two or more predictors and a mutually dependent 

variable, referred to here as intercorrelation, can either be included in the regression 

model or removed completely. The model including intercorrelation was originally 

established by Woolf (1951) as a second method of regression, referred to here as 

ordered variable regression (OVR), and was demonstrated in the context of 

multicollinearity by Baird and Bieber. In its simplest form, the OVR model is fit 

by regressing X2 on X1, and the residuals derived from this fit result in a new 

predictor, X2 resid, which is now orthogonal with X1: 

 

 2 1 1 0X b X b= + ,  (1) 

 

https://dx.doi.org/10.22237/jmasm/1556668860
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which yields X2 resid. Then the OVR model is fit by regressing Y on X1 and X2 resid: 

 

 1 1 2 2 resid 0Y c X c X c= + + .  (2) 

 

The OVR model is evaluated for overall fit and statistical significance using 

R2 and F, both of which include the redundancy resulting from the intercorrelation 

between the predictors and are derived using the Type I sums of squares. The model 

removing intercorrelation refers to traditional multiple linear regression (MLR), 

though instead of using R2 and F to assess fit and statistical significance, Baird and 

Bieber (2016) provide the Corrected R2 and a Corrected F that do not include the 

intercorrelation between predictors and are derived using the Type III sums of 

squares. For clarity, an abbreviated review of the distinction between OVR and 

MLR, along with traditional R2 and F and the Corrected R2 and F, is provided here; 

a full discussion can be found in Baird and Bieber. 

When two or more predictors correlate with each other and a dependent 

variable in a regression context, a certain amount of redundancy is introduced; this 

redundancy will be illustrated using Venn diagrams. The left side of Figure 1 

illustrates the situation where Areas 1 and 2 represent the unique and independent 

contributions on Y from predictors X1 and X2. The right side of Figure 1 illustrates 

the situation where Areas 1 and 2 also represent the unique contributions on Y from 

predictors X1 and X2, but the two predictors also share contribution, redundancy, 

represented by Area 4. 

When no intercorrelation exists between two predictors (i.e., r12 = 0.00), the 

MLR and OVR model coefficients are identical in value and can both be 

represented with the left side of Figure 1. Likewise, the t values corresponding with 

said coefficients are also identical between the MLR and OVR models, as are the 

F and R2, and the sums of squares, from which the F and R2 values are derived. 

Thus, Areas 1 and 2 in the left side of Figure 1 represent both MLR and OVR model 

coefficients and corresponding t values; F and R2 reflect Areas 1 and 2’s additive 

composite, for both the MLR and OVR models. 

However, when intercorrelation is present between predictors, redundancy is 

removed from the MLR coefficients, represented by Area 4 in the right side of 

Figure 1, leaving the non-redundant contributions, as represented by Areas 1 and 2 

of the right side of Figure 1. This is evidenced in equations (3) and (4), showing 

(Σ x1x2) being removed: 
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Figure 1. Predictors are unrelated (left); Predictors are related (right) 
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This removal is also evidenced in the Type III sums of squares of X1 and X2: 

 

 ( )
1 1 2SS SS |X X X= ,  (5) 

 

 ( )
2 12SS SS |X X X= .  (6) 

 

Conversely, when any value of intercorrelation is present between predictors, the 

first coefficient of OVR retains the redundancy, as represented by Areas 1 and 4 in 

the right side of Figure 1, while the redundancy is removed from the second 

coefficient, as represented by Area 2 of the right side of Figure 1. This is evidenced 

by equations (7) and (8), which draw from equations (1) and (2), but replace X2 

with X2 resid. Because redundancy is retained in the first OVR predictor and removed 

from the second, the two OVR predictors, X1 and X2 resid, are orthogonal (i.e., 

Σ x1x2 resid = 0), thus equations (3) and (4) reduce to equations (7) and (8). 
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This behavior is also evidenced by the Type I sums of squares for X1 and X2, where 

redundancy remains in the first predictor and is removed from the second: 

 

 ( )
1 1SS SSX X= ,  (9) 

 

 ( )
2 12SS SS |X X X= .  (10) 

 

Because X1 and X2 resid are orthogonal [see equations (1) & (2)], it follows that the 

Type I sums of squares for X1 and X2 resid are identical in value to the Type I sums 

of squares for X1 and X2. 

 

 ( )
1 1SS SSX X= ,  (11) 

 

 ( ) ( )
2 resid 2 r 1e 21sidS |S SS SS |X X X X X= = .  (12) 

 

Confusion arises when the model, the model fit, and inference of the model 

do not correspond with each other. As seen in equations (13) and (14), F and R2 are 

calculated using the Type I sums of squares and thus contain the redundancy 

introduced by intercorrelation. Because intercorrelation is removed from the MLR 

coefficients [see equations (3) & (4)], F and R2 provide inflated estimates of 

statistical significance and fit for the MLR model (see Baird & Bieber, 2016; also 

see Woolf, 1951). However, because redundancy is included in one or more OVR 

coefficients [see equations (1) & (2)], the F and R2 reflect the OVR model: 

 

 
( ) ( )

( )
1 2 12

SS SS
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|X X X
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 + = ,  (13) 
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 ( ) ( )
2

SS TotaliY Y− = ,  (15) 

 

 ( ) ( )
2

SS Erroˆ ri iY Y− = ,  (16) 

 

where P is the number of parameters for sample size N. 

Fortunately, Corrected F and Corrected R2, which are calculated using the 

Type III sums of squares, cannot contain redundancy resulting from intercorrelation 

and provide appropriate values of statistical significance and fit for the MLR model 

when intercorrelation is present (Baird & Bieber, 2016). 
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 ( ) ( )
2

SS TotaliY Y− = ,  (19) 

 

 ( ) ( )
2

SS Erroˆ ri iY Y− = .  (20) 

 

As with the Corrected F and Corrected R2, intercorrelation is removed from 

the t values used to evaluate the individual MLR coefficients, via the 

unstandardized coefficients [see equations (3) & (4)] and their standard errors 

[equation (22)], where bk is an unstandardized MLR coefficient, 
kbSE  is its standard 

error, σY is the standard deviation of Y, and 
kX  is the standard deviation for k 

predictors, with N sample size and P number of predictors; 2

12R  is the redundancy 

term. 
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where 
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Because the intercorrelation occurring between predictors is retained in the first 

OVR predictor and removed from the second [see equations (1) & (2)], the OVR 

predictors are orthogonal; thus, no redundancy is removed from their standard 

errors [see equation (24)], akin to the corresponding unstandardized OVR 

coefficients [equations (7) & (8)], where ck is an unstandardized OVR coefficient 

and 
kcSE  is its standard error. 
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Although Baird and Bieber (2016) provide a framework wherein the values 

of the model, model fit, and statistical significance are consistent with each other, 

a closer review of this framework reveals an inconsistency in the MLR model when 

intercorrelation is present. As can be seen in examples contained in Baird and 

Bieber (2016, Table 1, p. 342), when there is no intercorrelation between the 

predictors, the squared values of the MLR standardized coefficients, added together, 

equal the R2 value: 

 

 2 2 2 2 2

1 2   0.467 0.312 0.315, 0.315b b R+ = + = = .  (25) 

 

Similarly, when intercorrelation is present, the standardized coefficients of the 

OVR model (located at the bottom of Table 2 of Baird & Bieber, 2016, p. 353), 

squared and added together, equal the R2. However, the squared standardized 

coefficients of the MLR model add to neither the Corrected R2 nor the R2. 
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 2 2 2 2 2

1 2OVR:   0.505 0.217 0.302, 0.302c c R+ = + = = ,  (26) 

 

 2 2 2 2 2

1 2 CorrectedMLR:   0.389 0.246 0.212, 0.137b b R+ = + = =   (27) 

 

This result indicates a discrepancy between the standardized coefficient 

values and the fit of the model. However, this discrepancy only arises when 

intercorrelation is present, and only for the MLR model. 

The primary purpose of the present study is to empirically demonstrate the 

differences between the MLR model (with Corrected R2 and Corrected F) and the 

OVR model (with R2 and F) as outlined in Baird and Bieber (2016) using both 

simulation and real-world data. The simulation study is provided to illustrate the 

concepts outlined by Baird and Bieber in a controlled but artificial fashion. The 

real-world data study is provided to demonstrate these concepts with real data from 

applied settings. 

A secondary aim of this study is to examine the differences between the MLR 

and OVR models not previously outlined by Baird and Bieber (2016); namely, the 

relationship between the standardized and unstandardized coefficients, their 

corresponding t values, with model statistical significance and fit. The simulation 

results will be used to identify the source of the aforementioned discrepancy 

between the standardized MLR coefficients and Corrected R2 values and with it, a 

possible solution. Then, the simulation and real-world results will be used to 

confirm that R2 and F reflect the OVR model by deriving them, respectively, from 

the standardized OVR coefficients and their corresponding t values; likewise, the 

results will be used to confirm that Corrected R2 and Corrected F reflect the MLR 

model by deriving them, respectively, from the standardized MLR coefficients and 

their corresponding t values. 

Methods 

Simulation Study 

Design. Simulations were designed to examine OVR and MLR models 

under increasing values of intercorrelation and sample size. As can be seen in Table 

1, each row in the table references a population with a particular degree of 

correlation (and, equivalently, covariance) between two predictor variables (i.e., 

ρ12 = 0.00, 0.10, 0.20, 0. 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99). No intercorrelation 

between predictors is included as a control comparison. Four sample sizes of 
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interest are referenced within each row, representing the samples drawn from each 

population. In all, there are 11 populations and 44 samples. 

 

Populations. . Populations for all 11 values of intercorrelation were generated 

using the covariance matrix found in equation (28). The covariance parameter 

between predictors, σ12, was incrementally increased in order to increase the value 

of the intercorrelation (i.e., 0.00, 0.1245, 0.246, 0.368, 0.49, 0.6115, 0.733, 0.855, 

0.977, 1.099, 1.219). The remaining variance and covariance parameters 

(σ11, σ22, σ13, σ23, σ33) were held constant (i.e., 1.22, 1.22, 6099, 6099, 97710314) 

for all populations. 

 

 12

1.22

1.22

6099 6099 97710314



 
 

=
 
  

Cov ,  (28) 

 

where Cov = [X1 X2 X3 ] and Mean = (3, 3, 21343). The resulting unstandardized 

[equation (29)] and standardized [equation (30)] population models for both MLR 

and OVR when σ12 = 0: 

 

 0 1 25000 5000Y B X X++= ,  (29) 

 

 1 20.56 0.56Y X X= + .  (30) 

 
 
Table 1. Study design 
 

σ12 ρ12 Samples 

0.000 0.00 n = 20, 30, 50, 100 

0.125 0.10 n = 20, 30, 50, 100 

0.246 0.20 n = 20, 30, 50, 100 

0.368 0.30 n = 20, 30, 50, 100 

0.490 0.40 n = 20, 30, 50, 100 

0.612 0.50 n = 20, 30, 50, 100 

0.733 0.60 n = 20, 30, 50, 100 

0.855 0.70 n = 20, 30, 50, 100 

0.977 0.80 n = 20, 30, 50, 100 

1.099 0.90 n = 20, 30, 50, 100 

1.219 0.99 n = 20, 30, 50, 100 
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Note, the relationship between each predictor and Y is identical, along with the 

variance of said predictors. Though perhaps rare in application, this scenario was 

designed so that the respective changes in the predictors may be evaluated relative 

to each other, for each population. In total, 11 populations were created, each with 

N = 1000000. 

 

Samples. Samples were drawn from each aforementioned population for four 

sample sizes (n = 20, 30, 50, 100). Evidence from a recent meta-analysis by 

Mundform et al. (2011) suggested the optimal number of sample replicates for 

Monte Carlo simulations to produce stable results for the purpose of evaluation to 

be around 8000. Therefore, 8000 replicates were used for each of the 44 samples. 

Sampling with replacement was used in order to optimize the sampling design 

(Sawilowsky, 2003). 

All simulations were conducted using SAS Software 9.4 (SAS Inc., Cary, NC). 

In an effort to reduce simulation error, populations from a multivariate normal 

distribution were generated using PROC IML with the RANDNORMAL function, 

which uses the Mersenne-Twister pseudorandom number generator (Matsumoto & 

Nishimura, 1998). In an effort to control for all aspects of the populations, the 

random seed used for simulating each population was held constant across all 

populations (i.e., so that any differences observed in the population could not be 

attributed to varying seeds). Samples were drawn using PROC SURVEYSELECT 

with unstructured random sampling. To reduce systematic simulation error, a 

different seed was used for each sample (i.e., to emulate random sampling). Code 

for populations and samples is provided in Appendix A. 

Real Data Study 

Dataset. Data were selected from a published, real-world, and publicly 

accessible dataset via Kuiper (2008a). The dataset example, by Kuiper (2008b), 

examined vehicle Price using three MLR models, namely Mileage and Liter size 

(Model 1), Mileage and number of Cylinders (Model 2), Mileage, Liter size, and 

number of Cylinders (Model 3). Although Liter size and Cylinder number both 

significantly predicted price for Models 1 and 2, when placed into the same model 

together (Model 3), Liter size was no longer statistically significant. Kuiper (2008b) 

concluded that the effect of multicollinearity was demonstrated by Liter no longer 

remaining a significant predictor in the full model, and that the source of the 

multicollinearity was the correlation between Liter and Cylinder, (r = 0.96), as they 

both reflect aspects of engine size. 



BAIRD & BIEBER 

11 

 

Design. This dataset was selected to demonstrate the differences in how 

intercorrelation is modeled between MLR and OVR and how intercorrelation 

influences each model’s respective fit and statistical significance in a real-world 

case of multicollinearity. In order to examine the three-predictor model, the OVR 

model was fit in the following way: regress X2 on X1, and the residuals derived from 

this fit result in a new predictor, X2 resid: 

 

 2 1 1 0X b X b= + ,  (31) 

 

which yields X2 resid. Next, regress X3 on X1 and X2 resid, and the residuals derived 

from this fit result in a new predictor, X3 resid: 

 

 2 2 re 0s3 1 1 idc XX b X b+= + ,  (32) 

 

which yields X3 resid. Finally, regress Y on X1, X2 resid, and X3 resid, resulting in the 

final OVR model: 

 

 02 2 resi 31 3d  res d1 iY cc X X c X c= ++ +   (33) 

Statistical Methods 

Unless stated otherwise, all analyses were conducted using SAS Software 9.4 (SAS 

Inc., Cary, NC). The following parameters were evaluated: unstandardized and 

standardized coefficients, sums of squares, R2; t values and F values were also 

evaluated. Code for the MLR and OVR models is provided in Appendix A. PROC 

MEANS was used to summarize the replicate results, where the mean and 95% 

confidence intervals were calculated. Figures were provided for interpretation using 

PROC SGPANNEL. Areas under the curve were estimated using trapezoidal 

numerical integration with the Pracma package (Borchers, 2015) using R (R 

Foundation for Statistical Computing, Vienna, Austria). 

Results 

Simulation Study 

Unstandardized Coefficients.  As illustrated in Figure 2, when no 

intercorrelation exists between predictors, the value of the coefficients for the MLR 
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and OVR are identical. However, as intercorrelation between the two predictors 

increases, the unstandardized MLR and OVR coefficients are affected differently. 

Specifically, as intercorrelation approaches a value of 0.99, both unstandardized 

MLR coefficients reduce simultaneously and equally in value. Note that as the 

intercorrelation approaches .90, the value of both unstandardized MLR coefficients 

is almost half of their value when intercorrelation was zero. This behavior is 

consistent with equations (3) and (4), revealing that as intercorrelation increases, 

the removal of intercorrelation from the MLR coefficients will reduce the value of 

these coefficients. It is important to note that when intercorrelation reaches a value 

of 0.99, both unstandardized MLR coefficients diverge in value, as one gets larger 

and the other smaller in value, revealing the instability of coefficient values at 

perfect or near-perfect intercorrelation (see Cohen et al., 2003). 

Conversely, as intercorrelation approaches a value of .99, the first 

unstandardized OVR coefficient remains unchanged in value, while the second 

unstandardized OVR coefficient reduces in value in a fashion identical to both 

unstandardized MLR coefficients. Thus, as intercorrelation approaches .90, the 

second OVR coefficient decreases to half of its original value and the first OVR 

coefficient retains its original value. This behavior is consistent with equations (7)  
 
 

 
 
Figure 2. Unstandardized coefficients; mean values of unstandardized coefficients with 
95% confidence intervals are provide across increasing sample sizes (n = 20, 30, 50, 
100) and thresholds of intercorrelation (r12 = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 
0.80, 0.90, 0.99) for both X1 (red) and X2 (blue); coefficient values are presented by 
model: MLR (top) and OVR (bottom); for reference, population parameter values are 
provided at the far right and are denoted as having a size of one million 
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and (8), revealing no intercorrelation term in the first OVR coefficient, thus leaving 

it unaffected from changes in intercorrelation, while all intercorrelation is removed 

in the second OVR predictor, thus reducing the second coefficient’s value as 

intercorrelation increases. It should be clarified that intercorrelation was not 

removed from the second OVR coefficient, unlike the MLR coefficients [see 

equations (3) & (4)], but instead was removed from the second predictor [see 

equations (1) and (2)], which is reflected by the second OVR coefficient. 

The means of the unstandardized MLR and OVR coefficient estimates 

approximate their population parameters increasingly well and their interval 

estimates reduced in value as sample size increased. However, when 

intercorrelation attains a value of .99, both unstandardized MLR coefficient 

estimate values diverge from their respective population parameter value and their 

interval estimate values inflate relative to all other intercorrelation conditions. In 

contrast, this behavior holds true only for the second unstandardized OVR 

coefficient, which mirrors both unstandardized MLR coefficients, while the first 

unstandardized OVR coefficient remains unchanged in value and variation. This 

behavior reveals the inflation of variation of coefficients at perfect or near-perfect 

intercorrelation (See Cohen et al., 2003). 

 

Standardized Coefficients. As illustrated in Figure 3, the behavior of the 

standardized coefficients is similar to that of the unstandardized coefficients: when 

no intercorrelation exists between predictors, all standardized MLR and OVR 

coefficients are identical in value. As intercorrelation increases to a value of .90, 

both MLR coefficients reduce simultaneously and equally in value, reducing to 

almost half of their value relative to when intercorrelation was zero. Conversely, as 

intercorrelation approaches a value of .99, the first standardized OVR coefficient 

remains unchanged in value, while the second approaches zero. 

As with the unstandardized coefficients, the means of the standardized MLR 

and OVR coefficient estimates more accurately approximate their respective 

population parameter values as sample size increases and their interval estimates 

reduced in value. Likewise, as intercorrelation attains a value of .99, both 

standardized MLR coefficient estimates diverge from their population parameter 

value and their interval values inflate relative to all other intercorrelation conditions. 

However, neither the first nor second standardized OVR coefficients deviate in 

value nor do their respective interval estimates widen in value when intercorrelation 

attains a value of .99. 
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Figure 3. Standardized coefficients; mean values of standardized coefficients with 95% 
confidence intervals are provide across increasing sample sizes (n = 20, 30, 50, 100) and 
thresholds of intercorrelation (r12 = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 
0.90, 0.99) for both X1 (red) and X2 (blue); coefficient values are presented by model: 
MLR (top) and OVR (bottom); for reference, population parameter values are provided at 
the far right and are denoted as having a size of one million 
 

 
 

 
 
Figure 4. t values of coefficients; mean values of t with 95% confidence intervals are 
provide across increasing sample sizes (n = 20, 30, 50, 100) and thresholds of 
intercorrelation (r12 = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99) for 
both X1 (red) and X2 (blue); coefficient values are presented by model: MLR (top) and 
OVR (bottom); note that the population of t values are not to scale nor do they exist in 
reality; they are provided for comparison of behavior, not value 
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t Values. As illustrated in Figure 4, the t values mirror the behavior of their 

corresponding coefficient values: when intercorrelation is zero, the t values are 

identical in value between MLR and OVR. As intercorrelation approaches .99, the 

respective t values corresponding with the MLR coefficients approach a value of 

zero. This is consistent with equations (3)-(4) and (21)-(22): as intercorrelation 

increases, the unstandardized coefficients reduce in size while their standard errors 

increase in size. Conversely, the t values corresponding with the first OVR 

coefficient remain roughly unaffected by intercorrelation; this is consistent with 

equations (7) and (23)-(24), which reveal the intercorrelation term for the first OVR 

coefficient and its standard error is zero. The t values corresponding with the second 

OVR coefficient approach zero as intercorrelation increases. This behavior is 

consistent with equations (1)-(2), revealing that intercorrelation is removed from 

the second predictor; this removal is reflected by its coefficient [equation (8)] and 

standard error [equation (24)], which will therefore reduce the t value to zero as 

intercorrelation increases. 

As sample size increases, the values of t increase, with one exception: as 

intercorrelation increases to a value of .99, the values of t corresponding with the 

first coefficient of the OVR model decrease slightly. Also, the size of the interval 

estimates decrease for t, as sample size increases. 

 

Sums of Squares. As illustrated in Figures 5 and 6, the sums of squares values 

corresponding with both the MLR and OVR predictors are identical when the value 

of intercorrelation is zero. As intercorrelation approaches a value of .99, the sums 

of squares values corresponding with the MLR predictors approach a value of zero 

in unison. This is consistent with equations (5) and (6), revealing that as 

intercorrelation increases between predictors, the removal of redundancy will 

reduce the value of the Type III sums of squares corresponding with each predictor, 

where complete redundancy will result in a value of zero. Conversely, as 

intercorrelation approaches a value of .99, the sums of squares corresponding with 

the first OVR predictor does not change in value while the value of the sums of 

squares for the second OVR predictor approaches zero in an identical fashion to the 

sums of squares corresponding with the MLR predictors. This is consistent with 

equations (9)-(12), which reveal that no redundancy is removed from the Type I 

sums of squares for the first predictor, while the redundancy between the first and 

second predictors is removed from the second predictor’s sums of squares. 
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Figure 5. Predictor sums of squares for samples; mean values of X1 (red), X2 (blue), and 
Area 4 (green) with 95% confidence intervals are provide across increasing sample sizes 
(n = 20, 30, 50, 100) and thresholds of intercorrelation (r12 = 0.00, 0.10, 0.20, 0.30, 0.40, 
0.50, 0.60, 0.70, 0.80, 0.90, 0.99) for both; values are presented by model: MLR (top) 
and OVR (bottom); Note that Area 4 is part of X1 (red) for OVR but is shown as a green 
line for comparison with MLR 
 

 
 

 
 
Figure 6. Sums of squares for populations; population values of sums of squares are 
provided across thresholds of intercorrelation (r12 = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 
0.60, 0.70, 0.80, 0.90, 0.99) for X1 (dark) and X2 (light) along with Area 4 (green), Error 
(orange), Model Total (purple), and Total (pink) for both the MLR (blue) and OVR (red) 
models; Note that OVR X2 and MLR X1 are hidden behind MLR X2 
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Table 2. Area under the curve of the population sums of squares (Figure 6) for X1, X2, 
Area 4, Error, and Total using trapezoidal numerical integration 
 

Component 
OVR 

Type I 
MLR 

Type III 

X1 0.30895 0.12082 

X2 0.12061 0.12061 

Area 4 Part of X1 0.18805 

Error 0.56058 0.56058 

Total 0.99014 0.99006 

 
 

The total and error sums of squares are identical for the Type I and III sums 

of squares [see equations (15)-(16), (19)-(20)]. This is evident in Figure 6, which 

shows the values of the total sums of squares and the error sums of squares are 

identical for both the MLR and OVR models. As intercorrelation approaches a 

value of .99, the value of the total sums of squares remains unchanged, while the 

values of the error sums of squares increase. It is important to note that although 

the total and the error sums of squares are identical for both models, only the sums 

of squares of the OVR model add to the total sums of squares when the value of 

intercorrelation is not zero. Specifically, when the value of intercorrelation is above 

zero, the sums of squares for the MLR predictors do not add to the total sums of 

squares, as evidenced by Figure 6 and in Table 2, which presents the value of the 

area under the curve for each component of the sums of squares. 

The discrepancy between the total sums of squares and the sums of squares 

of the MLR predictors is illustrated in Figures 5 and 6 as “Area 4” (see the right 

side of Figure 1). When the value of intercorrelation is zero, the value of Area 4 is 

also zero. As intercorrelation approaches a value of .99, the value of Area 4 

approaches the value of the sums of squares of the first predictor of the OVR model 

(and also the value of all predictors when intercorrelation is zero). This reveals Area 

4 to be the mathematical complement of the sums of squares reduction in the MLR 

predictors, as also evidenced by the areas under the curve for the entire range of 

intercorrelation presented in Table 2. The empirical discrepancy observed here 

between the total sums of squares and the sums of squares of the MLR predictors, 

or Area 4, confirms the deficit observed by Woolf (1951). 

 

R2 and Corrected R2 Values.  As illustrated in Figure 7, when the value of 

intercorrelation is zero, R2 and Corrected R2 are identical in value. However, as the 

value of intercorrelation approaches .99, R2 reduces to half of its original value 

when no intercorrelation was present, while Corrected R2 approaches a value of 

zero; this behavior is consistent with equations (13) and (17), respectively. For the 
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OVR model, when intercorrelation nears .99, sums of squares for the first predictor 

retains its original value while the second approaches zero—thus the combined 

sums of squares for both predictors when intercorrelation approaches one is half of 

their combined value relative to when intercorrelation is zero—the exact value of 

R2. For the MLR model, both predictor sums of squares approach a value of zero in 

unison as the value of intercorrelation approaches .99—the exact value of Corrected 

R2. 

The mean values of R2 and Corrected R2 more accurately approximate their 

respective population parameters as sample size increases as well as their interval 

estimates reduce in value. Note, a clear inflation in value of both R2 and the 

Corrected R2 exists due to no adjustment factor being used, though this inflation 

diminishes with increasing sample size. 
 
 

 
 
Figure 7. R2 and Corrected R2, F and Corrected F; mean values of R2 (Red) and 
Corrected R2 (Blue) and F (Red) and Corrected F (Blue) with 95% confidence intervals 
are provide across increasing sample sizes (n = 20, 30, 50, 100) and thresholds of 
intercorrelation (r12 = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99) for 
both; for reference, population parameter values are provided at the far right and are 
denoted as having a size of one million; note that the population of F and Corrected F are 
not to scale nor do they exist in reality; they are provided for comparison of behavior, not 
value 
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F and Corrected F Values. As illustrated in Figure 7, when the value of the 

intercorrelation is zero, F and Corrected F are identical in value. However, as the 

value of intercorrelation increases to a value of .99, the value of Corrected F 

approaches a value of zero, while F nears half of its value relative to when the value 

of intercorrelation was zero; this behavior is consistent with equations (14) and (18), 

respectively. For the OVR model, when intercorrelation nears .99, the sums of 

squares for the first predictor retains its original value while the second approaches 

zero—thus the combined sums of squares for both predictors when intercorrelation 

approaches one would be half of their combined value relative to when 

intercorrelation was zero—the approximate value of F. For the MLR model, both 

predictor sums of squares approach a value of zero in unison as the value of 

intercorrelation approaches .99—the exact value of Corrected F. In addition, the 

value of F and Corrected F increased with the increase in sample size. Note that the 

population for F is not to scale (nor does it exist in reality) and is provided for 

comparison in behavior only, not value. 

Real Data 

As illustrated in Table 3, the results demonstrating multicollinearity from Kuiper 

(2008b) are replicated using three MLR models of vehicle Price: Mileage and 

Cylinder (MLR Model 1), Mileage and Liter (MLR Model 2), Mileage, Liter, 

Cylinder (MLR Model 3). Evidence of multicollinearity was confirmed when 

comparing the three models, where Liter and Cylinder both significantly predict 

Price for Model 1 and Model 2, respectively, but when placed into the same model 

together (MLR Model 3), Liter no longer remains a statistically significant 

predictor. For comparison, two OVR models, along with Corrected F and Corrected 

R2 values for the MLR models, are also included. For brevity, both OVR models 

assume Mileage to be the most important predictor, thus it is the first predictor in 

both models. Liter precedes Cylinder in OVR Model 1; thus, Liter is assumed to be 

more important than Cylinder; Cylinder precedes Liter in OVR Model 2; thus, 

Cylinder is assumed to be more important than Liter. 

The results from the real-data study complement those found in simulation 

study. Although the full MLR model (i.e., Model 3) and the two OVR models have 

identical predictors, each model produces a different set of coefficient values, save 

for Mileage, which is not highly correlated with any other predictor. Specifically, 

the unstandardized coefficients of the MLR Model 3 for Cylinder and Liter 

correspond in value with the value of the last unstandardized coefficient of OVR 

model 1 and 2 (Cylinder and Liter, respectively). This result demonstrates that the 
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MLR unstandardized coefficient values for Cylinder and Liter represent their 

respective, non-redundant contribution after removing any overlapping 

contribution from each other and Mileage. 

These results also reveal the last predictor in each OVR model produces an 

unstandardized coefficient value that represents the unique, non-redundant 

contribution after removing any overlapping contribution from only preceding 

predictors; at the same time, coefficient values preceding the last predictor are 

unaffected by the subsequent predictors. Thus, the unstandardized coefficient value 

of Liter for OVR Model 1 is unaffected by Cylinder’s presence and is therefore the 

same value as Liter’s coefficient value in the MLR model that does not include 

Cylinder (MLR Model 2). Likewise, the unstandardized coefficient value of 

Cylinder for OVR Model 2 is unaffected by Liter’s presence, which is therefore the 

same value as Cylinder’s value in the MLR Model 1 that does not include Liter. 

The results also demonstrate the differences between R2 and F and Corrected 

R2 and Corrected F when intercorrelation is present, as seen in the simulation results. 

As can be seen in Table 3, the inflation of R2 and F are large, relative to the value 

of Corrected R2 and Corrected F, when Liter and Cylinder are included together in 

MLR Model 3. The values of Corrected R2 and Corrected F can be confirmed using 

the Type III sums of squares. Note that when intercorrelation is not high, the 

inflation of R2 and F relative to Corrected R2 and Corrected F is minimal, such as 

is the case with MLR models 1 and 2, with only Mileage and Cylinder or Mileage 

and Liter, respectively. 

A general observation of the real-data results, aside from comparisons with 

the simulation study results, demonstrates how OVR is an alternative modeling 

approach to MLR. Suppose a researcher would like to use all three predictors in the 

model, but the predictors have a particular order of importance. For instance, let us 

assume that Mileage is the most important aspect of Price among the three 

predictors. Next, Kuiper (2008b) noted that Liter size is a more precise measure of 

the engine than number of Cylinders. Therefore, let us consider Liter a more 

important predictor of Price than Cylinder, thereby making Cylinder the least 

important predictor. Found in Table 3 is the resulting model, OVR Model 1, along 

with the MLR Model 3 for comparison. 
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Table 3. Real-data example comparing MLR and OVR models 
 

  MLR model 1 MLR model 2 MLR model 3 OVR model 1  OVR model 2 

Unstandardized 
coefficient 

Intercept 3145.8 (1325.9) 9426.6 (1095.1) 4707.6 (1602.9) 24765 (741.99) Intercept 24765 (741.98) 

X1 (mileage) -0.15243 (0.03) -0.16003 (0.04) -0.15443 (0.03) -0.173 (0.04) X1 (mileage) -0.173 (0.04) 

X2 (liter)  4968.29 (258.8) 1545.3 (893.4) 4968.29 (256.4) X2 (cylinder) 4027.67 (204.4) 

X3 (cylinder) 4027.67 (204.6)  2847.9 (712.0) 2847.93 (712.0) X3 (liter) 1545.25 (893.4) 
        

Standardized 
coefficient 

X1 (mileage) -0.12639 -0.13269 -0.12805 -0.14305 X1 (mileage) -0.14305 

X2 (liter)  0.55567 0.17283 0.55558 X2 (cylinder) 0.56512 

X3 (cylinder) 0.56536  0.39976 0.11468 X3 (liter) 0.04959 
        

Type I sums of 
squares 

X1 (mileage) 1605590375 1605590375 1605590375 1605590375 X1 (mileage) 1605590375 

X2 (liter)  24218240323 24218240323 24218240323 X2 (cylinder) 25057212321 

X3 (cylinder) 25057212321  1031948046 1031948046 X3 (liter) 192976048 

Error 51798580168 52637552166 51605604120 51605604120  51605604120 

Total 78461382864 78461382864 78461382864 78461382864  78461382864 
        

Type III sums of 
squares 

X1 (mileage) 1252374754 1381011542 1283996660 1605590375 X1 (mileage) 1605590375 

X2 (liter)  24218240323 192976048 24218240323 X2 (cylinder) 25057212321 

X3 (cylinder) 25057212321  1031948046 1031948046 X3 (liter) 192976048 

Error 51798580168 52637552166 51605604120 51605604120  51605604120 

Total 78461382864 78461382864 78461382864 78461382864  78461382864 
        

t value, p-value X1 (mileage) -4.40, <.0001 -4.58, <.0001 -4.46, <.0001 -4.99, .0001 X1 (mileage) -4.99, <.0001 

X2 (liter)  19.20, <.0001 1.73, 0.0841 19.38, <.0001 X2 (cylinder) 19.71, <.0001 

X3 (cylinder) 19.68, <.0001  4.00, <.0001 4.00, <.0001 X3 (liter) 1.73, 0.0841 
        

Fit & test statistics F value, p-value 206.15, <.0001 196.48, <.0001 138.77, <.0001 138.77, <.0001  138.77, <.0001 

Corrected F, p-value 203.17 194.53 12.96 138.77, <.0001  138.77, <.0001 

R2 0.3398 0.3291 0.3423 0.3423  0.3423 

Corrected R2 0.3353 0.3263 0.032 0.3423  0.3423 
 

Note: Estimate (Standard Error); N = 804; Also note: The Type III sums of squares for the MLR models do not add to the total sums of squares (i.e., Woolf's 
deficit) 
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Although the order of the predictors in the MLR Model 3 is identical to that 

of the OVR Model 1, the coefficient values are different in both value and 

interpretation. Specifically, for the MLR model, with every one-unit increase in 

Mileage, the Price of the vehicle decreases $0.15, after removing the contribution 

of both Liter and Cylinder; for everyone one-unit increase in Liter, the Price of the 

vehicle increases $1,545.30, after removing the contribution of Mileage and 

Cylinder; for every one-unit increase in Cylinder, the Price of the vehicle increases 

$2,847.90, after removing the contribution of Mileage and Liter. Note, Liter is no 

longer a statistically significant contributor to the model and thus could be 

“dropped”. For the OVR model, with every one-unit increase in Mileage, the Price 

of the vehicle decreased $0.17; for every one-unit increase in Liter size, the Price 

of the vehicle increases $4,968.29, after removing the contribution of Mileage; for 

every one-unit increase in Cylinder, the least important predictor, the Price of the 

vehicle increases $2,847.93, after removing the contribution of Mileage and then 

Liter size. 

The MLR model removes the redundant contribution from all predictors, 

simultaneously, while the OVR model removes the redundant contribution, 

sequentially. The differences in the Liter and Cylinder values, between the MLR 

and OVR models, reveal the magnitude of the intercorrelation between these 

predictors, with the MLR model removing all intercorrelation, as reflected by the 

Corrected R2 and Corrected F while the OVR retains the intercorrelation, as 

evidenced by the R2 and F. In doing so, the OVR Model 1 addresses a possible 

theoretical or pragmatic need to model the predictors in a specific order and the 

resulting coefficient values reflect this order. What’s more, this chosen order 

allowed all predictors to be statistically significant in the OVR Model 1 but not the 

MLR model. 

Standardized Coefficients and Corrected Standardized MLR 

Coefficients with Model Fit 

The simulation results illustrate an inconsistency in the value of the standardized 

coefficients. Specifically, although both unstandardized coefficients of the MLR 

model are identical in value to the second unstandardized OVR coefficient (see 

Figure 2), this is not true for the standardized coefficients when intercorrelation is 

present (see Figure 3). As can be seen in equation (34), the value of the standardized 

coefficients is the product of the unstandardized coefficient and the ratio of the 

standard deviation of a given predictor and the standard deviation of the dependent 

variable, 
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 kX

k k

Y

b





=    (34) 

 

where βk is the standardized coefficient, bk is the unstandardized coefficient, 
kX  

is the standard deviation, all of the k predictor, and σY is the standard deviation of 

Y. Given that the values between the unstandardized MLR coefficients and the 

second unstandardized OVR coefficient are identical (see Figure 2), and because 

the standard deviation of the dependent variable, Y, is constant, the observed 

difference between the standardized MLR coefficients and the second standardized 

OVR coefficient, as seen in Figure 3, must be attributed to the difference in value 

of the standard deviation of the predictors. Note, the discrepancy between the 

standardized MLR coefficients and the second OVR coefficient occurs only when 

intercorrelation is present. 

The reason for this discrepancy is clear: when intercorrelation is present, the 

unstandardized MLR coefficients and second OVR coefficient reduce 

proportionally and identically with the increase in intercorrelation. Although the 

unstandardized MLR coefficients reduce in value as intercorrelation increases, the 

standard deviation of each MLR predictor remains unchanged in value. However, 

this is not the case with the second standardized OVR coefficient—both the second 

unstandardized OVR coefficient and the second OVR predictor reduce in value, 

together, as intercorrelation increases. Because the second OVR predictor is the 

residual of the first predictor regressed on the second [see equations (1) & (2)], the 

second OVR predictor and its standard deviation change in concert with the second 

unstandardized OVR coefficient. 

The discrepancy between the standardized MLR coefficients and the second 

OVR coefficient has a more general impact on interpretation. As demonstrated 

graphically with Figures 3 and 7, when no intercorrelation is present, the 

standardized coefficient values for both the MLR and OVR models reflect their 

individual contributions to the model — this can be verified by squaring the 

coefficient values and the adding them together, which results in the value of the 

R2 (and equivalently, Corrected R2 value). This remains true for the standardized 

OVR coefficients when intercorrelation is present — with each increase 

intercorrelation, the standardized coefficients of the OVR model, squared and 

added together, equals the value of R2. Thus, when intercorrelation is near complete, 

the first OVR coefficient represents almost everything and the second almost 

nothing. 
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Conversely, with each increase in intercorrelation, the standardized 

coefficients of the MLR model, squared and added together, do not equal the value 

of Corrected R2 (nor R2). Because the value of the standard deviation of the MLR 

predictors is constant, the resulting standardized MLR coefficients represent not 

their contribution to the model, but rather how much they contribute, relative to 

themselves without intercorrelation. This can be seen when intercorrelation is near 

complete: the standardized MLR coefficients added together equal their respective 

values when no intercorrelation was present (see Figure 3). Fortunately, a solution 

exists which resolves the discrepancy between the standardized MLR coefficients 

and the second standardized OVR coefficient. More importantly, this solution also 

enables the standardized MLR coefficients to reflect their contribution to the model 

without changing the value of their corresponding unstandardized MLR 

coefficients. 

Because the unstandardized MLR coefficients change in value when 

intercorrelation is present while the standard deviations of the MLR predictors 

remain constant, the resulting standardized coefficients reflect only a partial 

removal of redundancy from the model. Thus, to reflect the full removal of 

redundancy from the standardized MLR coefficients, the standard deviation of the 

predictors also needs to reduce in value. To calculate the (Corrected) standard 

deviation, fit an individual OVR model for each predictor originally in the MLR 

model, entering each of these predictors last, allowing all the other predictors to 

proceed it. For the two-predictor case, simply regress X1 on X2, and the residuals 

derived from this fit results in a new predictor, X1 resid: 

 

 1 2 2 0X c X c= + ,  (35) 

 

which yields X1 resid. Likewise, regress X2 on X1, and the residuals derived from this 

fit results in a new predictor, X2 resid: 

 2 1 1 0X c X c= + ,  (36) 

 

which yields X2 resid. Next, calculate the standard deviation of each new (residual) 

predictor from each OVR model: 

 

 ( ) ( )
1 resid 2 resid1 resid 2 residσ and σX XX X = = .  (37) 

 

Finally, calculate the (Corrected) standardized MLR coefficients using the 

(Corrected) standard deviation values derived from the new (residual) predictors: 
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X

Y

b





= ,  (38) 

 

 ( )
2  resid

2 Corrected 2

X

Y

b





= .  (39) 

 

Note, the only difference in equations (38) and (39) from equation (34) is the use 

of the respective standard deviations of each new (residual) predictor (i.e., the 

Corrected standard deviation). 

The Corrected standardized MLR coefficients are demonstrated empirically 

using the simulation study results, illustrated in Figure 8. As can be seen comparing 

Figure 8 with Figure 7, the squared Corrected standardized MLR coefficients for 

each level of intercorrelation now add to the corresponding Corrected R2, just as 

the squared standardized OVR coefficients for each level of intercorrelation add to 

R2. Now the MLR standardized coefficients reflect their individual contribution to 

the model; they also are identical in value and behavior to the second standardized 

OVR coefficient. Note, at near perfect intercorrelation, the variances of the 

estimates are no longer inflated nor are they unstable. 
 
 

 
 
Figure 8. Corrected standardized MLR coefficients values; mean values of Corrected 
standardized MLR coefficients with 95% confidence intervals are provided across 
increasing sample sizes (n = 20, 30, 50, 100) and thresholds of intercorrelation 
(r12 = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99) for both X1 (red) and 
X2 (blue); for reference, population parameter values are provided at the far right and are 
denoted as having a size of one million 
 

 



SAMPLING THE PORRIDGE: COMPARISON OF OVR AND MLR 

26 

Using t Values to Confirm Model Statistical Significance and Model Fit 

The calculation of the t values for the MLR and OVR coefficients is identical, 

though as seen in equations (21)-(22), because the OVR predictors are orthogonal, 

the t values reduce to equations (23)-(24) given that there is no redundancy term. It 

should be noted that the t values for the MLR coefficients can also be calculated 

without a redundancy term if using the Corrected standard deviations, as evidenced 

by equation (40). The former is the traditional formula for t that explicitly removes 

the intercorrelation. The latter is the same equation, but instead of removing the 

intercorrelation, the Corrected standard deviation of the MLR predictor is used [see 

equation (38)], which does not include any redundancy to remove. 

 

 

( ) ( ) ( )
 resid

1 2 1 2
22

2

12

11

11 1

k

k
k

k k
b

YY

XX

b b
t

RR

N PR N P




= =
   −−      − − −  − −   

  (40) 

 

The simulation results will now be used to illustrate how F and Corrected F, 

R2 and Corrected R2 can be derived using the t values. As can be seen in Figures 4 

and 7 of the simulation study results, the t values corresponding with the MLR 

coefficients for each level of intercorrelation, squared, added together and divided 

by the number of predictors (i.e., P = 2), equal the value of the corresponding 

Corrected F values. 

 

 1 2

2 2

Corrected

b bt t
F

P

+
=   (41) 

 

As seen in Figures 4 and 7, the t values corresponding with the OVR 

coefficients for each level of intercorrelation, squared, added together and divided 

by the number of predictors (i.e., P = 2), equal the value of the corresponding F 

values. 

 

 1 2

2 2

c ct t
F

P

+
=   (42) 

 

The Corrected R2 can also be derived from the MLR t values, using Corrected 

F values. For each level of intercorrelation, the t values, squared, added together, 
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and divided by the number of predictors (i.e., P = 2), equals the same value as the 

Corrected F value, which is then used to derive the Corrected R2: 

 

 2 Corrected
Corrected

1

F
R

N P
F

P

=
− − 

+ 
 

,  (43) 

 

where N is the sample size for P number of predictors. Likewise, the t values 

corresponding with unstandardized coefficients of OVR model, squared, added 

together, and divided by the number of predictors can be used to derive the F, which 

is then used to derive the R2: 

 

 2

1

F
R

N P
F

P

=
− − 

+ 
 

.  (44) 

 

Of course, the Corrected R2 and R2 can be used to derive the Corrected F and F: 
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,  (46) 

 

where N is the sample size for P number of predictors. 

Empirical Demonstration: Using Standardized Coefficients and t 

Values to Derive Model Fit and Statistical Significance 

Tables 4 and 5 empirically demonstrate the two-predictor situation for the MLR 

and OVR models using the simulation results, where the relationships between the 

unstandardized coefficients, standardized coefficients, Corrected standard 

deviations, t values, F and Corrected F values, R2 and Corrected R2 values, and 

Type I and Type III sums of squares are provided, for each increase in 

intercorrelation. For reference, the standard deviation of the predictors and the 

original standardized MLR coefficients are provided. For precision, only the 

population values are provided. 
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Table 4. Simulation study (population) MLR model results 
 

    Corr 
σ 

 Corr 
β 

 TYPE III Error SS  Corr  R2 
values 

Corr R2 
values 

Corr 
Σ(β2) r12  B σ β t values X SS Total SS F values F values Σ(t2)/2 

0.00 X1 5003.59 1.10 1.10 0.56 0.56 911.69 3.05E+13 3.67E+13 8.30E+05 8.31E+05 8.31E+05 0.62 0.62 0.62 
 X2 5000.77 1.10 1.10 0.56 0.56 911.38 3.05E+13 9.77E+13       

0.10 X1 4540.82 1.10 1.10 0.51 0.50 766.34 2.49E+13 4.24E+13 6.53E+05 5.87E+05 5.87E+05 0.57 0.51 0.51 
 X2 4537.98 1.10 1.10 0.51 0.50 765.94 2.49E+13 9.77E+13       

0.20 X1 4164.91 1.10 1.08 0.47 0.46 657.50 2.03E+13 4.70E+13 5.40E+05 4.32E+05 4.32E+05 0.52 0.42 0.42 
 X2 4162.14 1.10 1.08 0.46 0.46 657.05 2.03E+13 9.77E+13       

0.30 X1 3845.27 1.10 1.05 0.43 0.41 567.87 1.64E+13 5.09E+13 4.61E+05 3.22E+05 3.22E+05 0.48 0.34 0.34 
 X2 3842.65 1.10 1.05 0.43 0.41 567.41 1.64E+13 9.77E+13       

0.40 X1 3571.17 1.10 1.01 0.40 0.37 490.76 1.31E+13 5.42E+13 4.02E+05 2.41E+05 2.41E+05 0.45 0.27 0.27 
 X2 3568.78 1.10 1.01 0.40 0.37 490.32 1.30E+13 9.77E+13       

0.50 X1 3334.4 1.10 0.96 0.37 0.32 421.92 1.02E+13 5.71E+13 3.56E+05 1.78E+05 1.78E+05 0.42 0.21 0.21 
 X2 3332.35 1.10 0.96 0.37 0.32 421.52 1.01E+13 9.77E+13       

0.60 X1 3126.98 1.10 0.88 0.35 0.28 357.72 7.63E+12 5.96E+13 3.20E+05 1.28E+05 1.28E+05 0.39 0.16 0.16 
 X2 3125.43 1.10 0.88 0.35 0.28 357.40 7.62E+12 9.77E+13       

0.70 X1 2942.97 1.10 0.79 0.33 0.23 294.96 5.38E+12 6.19E+13 2.90E+05 8.69E+04 8.69E+04 0.37 0.11 0.11 
 X2 2942.18 1.10 0.79 0.33 0.23 294.74 5.37E+12 9.78E+13       

0.80 X1 2779.06 1.10 0.66 0.31 0.19 230.18 3.38E+12 6.39E+13 2.66E+05 5.30E+04 5.30E+04 0.35 0.07 0.07 
 X2 2779.57 1.10 0.66 0.31 0.19 230.11 3.38E+12 9.78E+13       

0.90 X1 2631.49 1.10 0.48 0.29 0.13 155.84 1.59E+12 6.56E+13 2.45E+05 2.43E+04 2.43E+04 0.33 0.03 0.03 
 X2 2634.92 1.10 0.48 0.29 0.13 155.98 1.60E+12 9.78E+13       

0.99 X1 2453.35 1.10 0.04 0.27 0.01 13.38 1.20E+10 6.72E+13 2.27E+05 1.87E+02 1.87E+02 0.31 0.00 0.00 
 X2 2553.88 1.10 0.04 0.29 0.01 13.93 1.30E+10 9.78E+13       

 

Note: Corr denotes “Corrected”; N = 1000000; STD(Y): 9887.0; R2 and F are provided for comparison only, they do not correspond with MLR when 

intercorrelation is present; when r12 = 0.99, 1 + 2 = .56, as indicated on page 24 

 
 
 
 
 



BAIRD & BIEBER 

29 

Table 5. Simulation study (population) OVR model results 
 

      TYPE III Error SS   
R2 values Σ(β2) r12  B σ β t values X SS Total SS F values Σ(t2)/2 

0.00 X1 4997.85 1.10 0.56 910.64 3.05E+13 3.67E+13 8.30E+05 8.30E+05 0.62 0.62 
 X2 5000.77 1.10 0.56 911.38 3.05E+13 9.77E+13     

0.10 X1 4998.74 1.10 0.56 847.95 3.05E+13 4.24E+13 6.53E+05 6.53E+05 0.57 0.57 
 X2 4537.98 1.10 0.50 765.94 2.49E+13 9.77E+13     

0.20 X1 4999.49 1.10 0.56 805.61 3.05E+13 4.70E+13 5.40E+05 5.40E+05 0.52 0.52 
 X2 4162.14 1.08 0.46 657.05 2.03E+13 9.77E+13     

0.30 X1 5000.16 1.10 0.56 774.22 3.05E+13 5.09E+13 4.61E+05 4.61E+05 0.48 0.48 
 X2 3842.65 1.05 0.41 567.41 1.64E+13 9.77E+13     

0.40 X1 5000.79 1.10 0.56 750.06 3.05E+13 5.42E+13 4.02E+05 4.02E+05 0.45 0.45 
 X2 3568.78 1.01 0.37 490.32 1.30E+13 9.77E+13     

0.50 X1 5001.37 1.10 0.56 730.94 3.05E+13 5.71E+13 3.56E+05 3.56E+05 0.42 0.42 
 X2 3332.35 0.96 0.32 421.52 1.01E+13 9.77E+13     

0.60 X1 5001.93 1.10 0.56 715.37 3.05E+13 5.96E+13 3.20E+05 3.20E+05 0.39 0.39 
 X2 3125.43 0.88 0.28 357.40 7.62E+12 9.77E+13     

0.70 X1 5002.49 1.10 0.56 702.37 3.05E+13 6.19E+13 2.90E+05 2.90E+05 0.37 0.37 
 X2 2942.18 0.79 0.23 294.74 5.37E+12 9.78E+13     

0.80 X1 5003.08 1.10 0.56 691.42 3.05E+13 6.39E+13 2.66E+05 2.66E+05 0.35 0.35 
 X2 2779.57 0.66 0.19 230.11 3.38E+12 9.78E+13     

0.90 X1 5003.76 1.10 0.56 682.06 3.05E+13 6.56E+13 2.45E+05 2.45E+05 0.33 0.33 
 X2 2634.92 0.48 0.13 155.98 1.60E+12 9.78E+13     

0.99 X1 5005.03 1.10 0.56 674.18 3.05E+13 6.72E+13 2.27E+05 2.27E+05 0.31 0.31 
 X2 2553.88 0.04 0.01 13.93 1.30E+10 9.78E+13     

 

Note:  N = 1000000; STD(Y): 9887.0 
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Table 6. Confirmation using real-world data 
 

  OVR A OVR B OVR C MLR  

Unstandardized 
coefficients 

Intercept 6185.75 24765 24765 4707.6  

Mileage X3: -0.154 -0.173 -0.173 -0.1544  

Liter 4990.39 X3: 1545.2 4968.29 1545.3  

Cylinder 2976.36 4027.67 X3: 2847.9 2847.9  
       

     Original Corrected 
Standardized 

coefficients 
Mileage -0.1279 -0.14305 -0.14305 -0.12805 -0.12792 

Liter 0.5582 0.04959 0.55558 0.17283 0.04959 
Cylinder 0.11995 0.56512 0.11468 0.39976 0.11468 

       

Standard 
deviations 

Price    9884.85 9884.85 
Mileage 8188.2   8196.32 8188.2 

Liter  0.3172448  1.10556 0.31725 
Cylinder   0.3980532 1.38753 0.39805 

       

Type I sums of 
squares 

Mileage 1283996660 1605590375 1605590375 1605590375  

Liter 24442819155 192976048 24218240323 24218240323  

Cylinder 1128962928 25057212321 1031948046 1031948046  

Error 51605604120 51605604120 51605604120 51605604120  

Total 78461382864 78461382864 78461382864 78461382864  
       

Type III sums 
of squares 

Mileage 1283996660 1605590375 1605590375 1283996660  

Liter 24442819155 192976048 24218240323 192976048  

Cylinder 1128962928 25057212321 1031948046 1031948046  

Error 51605604120 51605604120 51605604120 51605604120  

Total 78461382864 78461382864 78461382864 78461382864  
       

t value, p-value Mileage -4.46, <.0001 -4.99, <.0001 -4.99, .0001 -4.46, <.0001  

Liter 19.47, <.0001 1.73, 0.0841 19.38, <.0001 1.73, 0.0841  

Cylinder 4.18, 0.0841 19.71, <.0001 4.00, <.0001 4.00, <.0001  
       

Fit & test 
statistics 

F value, p-value 138.77, <.0001 138.77, <.0001 138.77, <.0001 138.77, <.0001  

Corrected F, p-value 138.77, <.0001 138.77, <.0001 138.77, <.0001 12.96, <.0001 12.96 
R2 0.3423 0.3423 0.3423 0.342  

Corrected R2 0.3423 0.3423 0.3423 0.032 0.032 
 

Note: N = 804; bolded numbers reflect order being last; the Type III sums of squares for the MLR model do not add to the total sums of squares (i.e., Woolf's 
deficit) 
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For each level of intercorrelation, the Corrected standardized MLR 

coefficients values, squared and added together, equal the value of Corrected R2 

while the standardized OVR coefficients values, squared and added together, equal 

the value of R2. Note, the standardized MLR coefficients, squared and added 

together, never equal the value of Corrected R2 nor R2, except when intercorrelation 

is zero. Likewise, the t values corresponding with the MLR coefficients, squared, 

added together, and divided by the number of predictors (i.e., 2), equal Corrected 

F while the t values corresponding with the OVR coefficients, squared, added 

together, and divided by the number of predictors (i.e., 2), equal F. To verify these 

results, Corrected R2 and Corrected F can be derived from the Type III sums of 

squares for the MLR model while R2 and F can be derived from the Type I sums of 

squares for the OVR model, as outlined in Baird and Bieber (2016). 

The process of calculating the Corrected standardized MLR coefficients will 

now be demonstrated for the three-predictor situation using the real-world data. As 

can be seen in Table 6, three OVR models are fitted, where Mileage, Liter, and 

Cylinder are placed last in each model, respectively OVR A, OVR B, and OVR C. 

Second, the standard deviation is calculated for each of the these resulting (residual) 

predictors. Third, these (Corrected) standard deviations are used to calculate the 

(Corrected) standardized MLR coefficients representing Mileage, Liter, and 

Cylinder (last column). Note that the Corrected standardized MLR coefficients, 

squared and combined, add to the Corrected R2. 

For reference, the standardized OVR coefficients, squared and combined, add 

to R2 and the t values, corresponding with the MLR and OVR coefficients, squared, 

added together, and divided by three, add Corrected F and F, respectively. It is 

important to point out that the Corrected standardized coefficients of the MLR are 

now identical in value to each last standardized coefficient of each OVR model, 

whereas the corresponding unstandardized coefficients of the MLR model were 

always identical in value to the last unstandardized coefficients in each OVR model. 

Discussion 

This study was designed to empirically demonstrate the effects of intercorrelation 

between the MLR and OVR models, Type I and III sum of squares, and values of 

model statistical significance and model fit, as previously outlined by Baird and 

Bieber (2016). This demonstration was achieved using two separate sources of 

empirical evidence: simulated and real-world data. The simulation study was 

engineered to illustrate the differences between the two models and their 

corresponding model fits and test statistics in a controlled fashion: the last row, last 
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column, and diagonal elements where identical for each increase in value of the off-

diagonal elements in the first row and column of the population covariances. 

Therefore, predictors X1 and X2 serve as a reference for each other as 

intercorrelation increases. The predictors also serve as a reference for each other 

and for themselves between models, given that the same population covariances 

were used to evaluate both the MLR and OVR models. 

Although the simulation study reflects an artificial situation in application, 

the pure effects of intercorrelation between the MLR and OVR models and their 

corresponding fit and test statistics from this design may be demonstrated clearly. 

On the other hand, the real-world dataset was chosen to illustrate the differences 

between the two models and their corresponding fit and test statistics in an applied 

fashion: the source of the data were collected to address certain questions of an 

applied nature occurring in the auto industry, where more than two predictors are 

of interest and multicollinearity is considered a problem, outside of the context of 

the current study. 

A second aim of this study was to use the simulation results to identify the 

source of the discrepancy that occurs between the standardized coefficients of the 

MLR model and model fit when intercorrelation is present. In revealing the source 

of this discrepancy, a solution was also provided using the simulation dataset and 

confirmed using the real-world dataset. For clarity, study aims 1 and 2 will now be 

considered together, in concert, as they constitute an internally consistent 

framework. 

The results from the simulation study confirm the framework provided in 

Baird and Bieber (2016). Although the MLR and OVR model coefficients, their 

corresponding t values, and values of model fit and statistical significance are 

identical when no intercorrelation is present, sharp differences exist when 

intercorrelation is present. As intercorrelation approaches a value of .99, the value 

of both unstandardized MLR coefficients identically reduce to almost half of their 

value relative to when no intercorrelation was present. Thus, the individual 

contribution of each predictor becomes indistinguishable from the other—

reflecting one single predictor, not two separate predictors—both canceling each 

other out as neither can take “credit.” As the MLR coefficient values become 

indistinguishable from each other, their unique, non-redundant contributions 

diminish to zero, as evidenced by the Type III sums of squares of the predictors, 

Corrected standardized MLR coefficients, and t values. 

Conversely, as intercorrelation approaches a value of .99, the value of the first 

unstandardized OVR coefficient retains its original value, while only the value of 

the second OVR coefficient reduces to half of its original value in a fashion 
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identical with both unstandardized MLR coefficients. Here, the contribution of the 

second predictor diminishes proportionally to the increase in redundancy while the 

contribution of the first predictor, which is unchanged, assumes all “credit”. This is 

evidenced by the first standardized OVR coefficient retaining its original value, 

while the second OVR coefficient approaches a value of zero. Likewise, the t value 

corresponding with the first OVR predictor retains its original value 

(approximately), while the t value corresponding with the second OVR predictor 

approaches a value of zero. These results are mirrored by the sums of squares, 

where the sums of squares of the first predictor retains its original value meanwhile 

the second approaches a value of zero in the same fashion as the Type III sums of 

squares for both MLR predictors. 

The findings from the simulation study also reveal differences between 

traditional and Corrected F and R2 and how these test statistics and model fits are 

consistent with the results from the OVR and MLR models, respectively. As 

anticipated mathematically in Baird and Bieber (2016) and demonstrated 

empirically here, as the value of intercorrelation approaches .99, Corrected R2 and 

Corrected F approach a value of zero in a manner proportional to and coterminous 

with the values of the Type III sums of squares for each MLR predictor, from which 

both were derived. Evidence that Corrected R2 and Corrected F reflect the MLR 

model was confirmed using the Corrected standardized coefficients and their 

corresponding t values. 

As anticipated in Baird and Bieber (2016) and demonstrated empirically here, 

as the value of intercorrelation increases to .99, R2 and F approach a value of half 

of their original value when intercorrelation was zero in a manner proportional to 

and coterminous with the values of the combined Type I sums of squares for each 

OVR predictor, from which both were derived. Evidence that traditional R2 and F 

reflect the OVR model was further demonstrated using the standardized 

coefficients and their corresponding t values. 

The simulation study also demonstrates the differences between the MLR and 

OVR models regarding sample size and intercorrelation. As anticipated, when 

sample size increased, the means of the coefficients (standardized and 

unstandardized) approached their corresponding population parameters and the 

intervals estimates reduced in size, relative to the corresponding means and interval 

estimates with smaller sample sizes. As expected, the values of t and F also 

increased in value relative to corresponding values with smaller sample sizes. Also 

anticipated, the values of both R2 and Corrected R2 where higher than their 

corresponding population parameters, but reduced as sample size increased, 

thereby revealing the inflation that takes place when not adjusting for the number 
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of parameters in the model, especially with smaller sample sizes (Miles, 2014). The 

adjustment factor was not used here so the relationship between R2 and Corrected 

R with the standardized coefficients and sums of squares could be clearly elucidated. 

It should be noted that this adjustment, originally devised for R2, would also adjust 

for inflation of Corrected R2 equally well: 
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The aforementioned changes due to increasing sample size did not appear to 

influence the differences between the MLR and OVR models (and their respective 

test statistics and fits) due to increasing intercorrelation—that is, the difference as 

intercorrelation increased did not seem to be modified as sample size increased, 

with one exception: near-perfect intercorrelation. Specifically, when 

intercorrelation was at the .99 level, the mean of the standardized and 

unstandardized coefficients of the MLR model deviated greatly from their 

respective population parameter values and their confidence intervals inflated in 

size, as anticipated (see Cohen et al., 2003). However, this behavior also held true 

only for the second unstandardized coefficient of the OVR model. The standardized 

OVR coefficients and the Corrected standardized MLR coefficients did not 

deviated from their population parameter, nor did their confidence intervals inflate 

in size. 

Although the simulation study results confirm the framework provided by 

Baird and Bieber (2016), this framework was also applied to real-world data, using 

more than two predictors. The real-world data results confirmed the findings from 

the simulation results, along with demonstrating the framework in applied settings. 

As noted by Kuiper (2008b) using this dataset, evidence of multicollinearity was 

found when comparing the three models, where Liter and Cylinder both 

significantly predict Price for MLR Model 1 and MLR Model 2, respectively, but 

when placed into the same model together (MLR Model 3), Liter no longer 

remained a significant predictor. However, OVR provided an alternative modeling 

approach, where, in the case of these data, designating Liter before Cylinder 

allowed all three predictors to be statistically significant in the model. Also 
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demonstrated was how a specific order of predictor importance could be modeled 

and interpreted using OVR, relative to MLR. 

The real-world data were used to confirm, in an applied setting, how R2 and 

F values are larger than Corrected R2 and Corrected F values. This inflation is also 

reflected between the t values of the OVR and the t values MLR models, as well as 

the standardized coefficients of the OVR model and the Corrected standardized 

coefficients of the MLR model. For greater context, it should be noted that this 

inflation, identified in the simulation results as “Area 4”, is the original discrepancy 

observed by Woolf (1951). More importantly, the results from the real-world study 

demonstrate the unity of how R2 and F can be derived from the standardized OVR 

coefficients, t values, and Type I sums of squares, and how Corrected R2 and 

Corrected F can be derived from the Corrected standardized MLR coefficients, t 

values, and Type III sums of squares, from published, non-engineered data. This 

unity is especially relevant considering that the F and Corrected F, R2 and Corrected 

R2 can all be derived from the t values alone, even though the t values and the 

unstandardized coefficients with which they correspond have never been modified 

from their original value. 

There are limitations of the present study. The results address correlation that 

is positive and linear only. This design was used because the literature referencing 

multicollinearity are usually in the context of correlation that is linear and most 

often positive (cf. Mela & Kopalle, 2002). Thus, subsequent empirical studies 

looking at different types of correlation, such as suppressor effects (see Cohen et 

al., 2003), also need be explored. The results reflect the effects of increasing 

intercorrelation for MLR and OVR using a specified and constant value of 

correlation between the predictors and the dependent variable (i.e., Area 4). 

Because Area 4 is not a function of the correlation between predictors, but rather 

the simultaneous correlation between predictors and each predictor’s respective 

correlation with the dependent variable, caution must be used to not reduce the 

findings observed here to correlation between predictors only. 

This study empirically confirms and advances the framework proposed by 

Baird and Bieber (2016), as an extension of Woolf (1951), and demonstrates the 

internal consistency of this framework, showing how the coefficient values, t values, 

and sums of squares values can all be used to derive identical values of fit and 

statistical significance for their respective models. An essential next step of 

evaluating this framework is to consider when and why the OVR model would be 

used in place of the MLR model, or vice versa, in applied settings, along with 

demonstrating how this framework compares to competing approaches of dealing 
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with multicollinearity, such as ridge regression, principal component regression, 

hierarchical regression, and stepwise regression. 
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Appendix A 

I. Code for Populations 
 
/*creating population for [.00]*/ 
proc iml; 
N = 1000000;    /* population size   */ 
 
/* specify population mean and covariance */ 
Mean = {3, 3, 21343}; 
Cov =  {1.22 .0000 6099, 
        .0000 1.22 6099, 
         6099 6099 97710314}; 
 
call randseed(121982);  /*seed remains constant for populations */ 
X = Randnormal(N, Mean, Cov); 

create population_0 from X[c={"X1" "X2" "Y"}]; 
append from X; 
close population_0; 
quit; 
 
 
 
II. Code for Samples 
 
proc surveyselect data=Population_0 out=sample0a seed=14159 method=urs 
sampsize=20 rep=8000 OUTHITS; 
run; 
 
 
 
III. Code for MLR 
 
PROC REG Data= sample0a outest=mlrs0a tableout alpha=0.05 noprint 
RIDGE=0; 

MODEL Y=X1 X2 /rsquare MSE OUTSTB OUTVIF; 
by Replicate; 
RUN; 
 
 
 
IV. Code for OVR 
 
*Step 1, make new predictor 2; 
PROC REG Data= sample0a noprint; 

MODEL X2= X1; 
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OUTPUT OUT= res0a  residual=yresid; by Replicate; RUN; quit; 
 
*Step 2, OVR Model; 
PROC REG Data=res0a  outest=ovrs0a tableout alpha=0.05 noprint RIDGE=0; 

MODEL Y=X1 yresid /rsquare MSE OUTSTB OUTVIF; 
by Replicate; 
RUN; 
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