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Cellular/Molecular

Molecular Dissection of IA in Cortical Pyramidal Neurons
Reveals Three Distinct Components Encoded by Kv4.2,
Kv4.3, and Kv1.4 �-Subunits

Aaron J. Norris and Jeanne M. Nerbonne
Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110

The rapidly activating and inactivating voltage-gated K � (Kv) current, IA , is broadly expressed in neurons and is a key regulator of action
potential repolarization, repetitive firing, backpropagation (into dendrites) of action potentials, and responses to synaptic inputs. Inter-
estingly, results from previous studies on a number of neuronal cell types, including hippocampal, cortical, and spinal neurons, suggest
that macroscopic IA is composed of multiple components and that each component is likely encoded by distinct Kv channel �-subunits.
The goals of the experiments presented here were to test this hypothesis and to determine the molecular identities of the Kv channel
�-subunits that generate IA in cortical pyramidal neurons. Combining genetic disruption of individual Kv �-subunit genes with phar-
macological approaches to block Kv currents selectively, the experiments here revealed that Kv1.4, Kv4.2, and Kv4.3 �-subunits encode
distinct components of IA that together underlie the macroscopic IA in mouse (male and female) cortical pyramidal neurons. Recordings
from neurons lacking both Kv4.2 and Kv4.3 (Kv4.2�/�/Kv4.3�/�) revealed that, although Kv1.4 encodes a minor component of IA, the
Kv1.4-encoded current was found in all the Kv4.2�/�/Kv4.3�/� cortical pyramidal neurons examined. Of the cortical pyramidal neurons
lacking both Kv4.2 and Kv1.4, 90% expressed a Kv4.3-encoded IA larger in amplitude than the Kv1.4-encoded component. The experi-
mental findings also demonstrate that the targeted deletion of the individual Kv �-subunits encoding components of IA results in
electrical remodeling that is Kv �-subunit specific.

Introduction
Voltage-gated K� (Kv) currents play distinct roles in controlling
neuronal action potential waveforms, repetitive firing patterns
(Crill and Schwindt, 1983), responses to synaptic inputs (Kole et al.,
2007), neurotransmitter release (Ishikawa et al., 2003), and synaptic
plasticity (Schrader et al., 2002). Consistent with these diverse roles,
multiple types of Kv currents with distinct time- and voltage-
dependent properties are coexpressed in most neurons. The func-
tional diversity of neuronal Kv currents is generated, in part, through
the expression of multiple Kv channel pore-forming (�) subunits. In
cortical pyramidal neurons, for example, multiple Kv channel
�-subunits from different subfamilies are coexpressed (Guan et al.,
2006). The macroscopic Kv currents in these cells can be separated
into four components based on differing time constants (�) of inac-
tivation: IA, which inactivates rapidly (� � 25 ms); ID, characterized
by an intermediate rate of inactivation (� � 250 ms); IK, which in-
activates slowly (� � 2 s); and ISS, which is non-inactivating (Locke
and Nerbonne, 1997a). Previous studies suggest that these kinetically

distinct current components are encoded by molecularly distinct
populations of channels (Yuan et al., 2005).

The rapidly activating and rapidly inactivating Kv current, IA,
which is widely expressed in central and peripheral neurons
(Rogawski, 1985), regulates multiple neuronal processes, includ-
ing action potential repolarization, repetitive firing (Yuan et al.,
2005), synaptic integration, and the backpropagation (into den-
drites) of action potentials (Cai et al., 2004). Considerable evi-
dence also suggests that alterations in IA expression and/or
function are associated with neuropathology. For example, IA

availability is decreased in a mouse model of temporal lobe epi-
lepsy (Bernard et al., 2004). Additionally, a mutation in Kv4.2 has
been identified in a patient with temporal lobe epilepsy (Singh et
al., 2006). Other studies using experimental models of epilepsy
have described alterations in the expression and the subcellular
localization of Kv4.2 and Kv4.3 in the hippocampus (Lugo et al.,
2008; Monaghan et al., 2008).

To understand the molecular mechanisms that regulate the
expression, properties, and functioning of IA in normal and
pathological states, the pore-forming and accessory subunits un-
derlying the generation of IA channels have to be identified. Pre-
vious studies on neurons from mice (Kv4.2�/�) in which the
Kcnd2 (Kv4.2) locus was disrupted revealed that Kv4.2 contrib-
utes importantly to the generation of IA in cortical pyramidal
neurons (Nerbonne et al., 2008), hippocampal pyramidal neu-
rons (Chen et al., 2006), and neurons from the dorsal horn of the
spinal cord (Hu et al., 2006). In each of these studies however,
rapidly activating and inactivating currents similar to IA in wild-
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type (WT) cells were observed, suggesting that additional com-
ponents of IA (i.e., not encoded by Kv4.2) are expressed in
these cells. The studies presented here exploit pharmacology,
in combination with genetic tools to disrupt the expression of
individual Kv channel �-subunits, to identify the Kv channel
�-subunits responsible for the generation of IA in cortical py-
ramidal neurons.

Materials and Methods
Isolation and maintenance of cortical pyramidal neurons. WT C57BL/6
mice and mice harboring targeted genetic disruption of the Kcna4
(Kv1.4�/�) (London et al., 1998), Kcnd2 (Kv4.2�/�) (Nerbonne et al.,
2008), or Kcnd3 (Kv4.3�/�) (Niwa et al., 2008) locus in the C57BL/6
background were used in the experiments presented here. Neurons were
isolated from the primary visual cortices of postnatal day 6 – 8 animals of
both genders using previously described methods (Huettner and Baugh-
man, 1986; Locke and Nerbonne, 1997a,b; Nerbonne et al., 2008).
Briefly, mice were first anesthetized with halothane and then decapitated.
After dissection of the visual cortex, the tissue, which contained all cor-
tical layers, was chopped into small pieces and incubated in Neurobasal
medium containing papain (Worthington Biochemicals) under 95% ox-
ygen/5% CO2 at 37°C for 30 min. After the incubation, the tissue pieces
were triturated using fire-polished Pasteur pipettes. Isolated neurons
were recovered by centrifugation through a bovine serum albumin gra-
dient. Cells were resuspended in Neurobasal media (Invitrogen) and
plated on previously prepared monolayers of cortical astrocytes (Huett-
ner and Baughman, 1986). One hour after plating, the media was re-
placed with Minimum Essential Medium (Invitrogen) supplemented
with 10% fetal bovine serum and 0.14 mM L-glutamine. Cultures were
maintained in a 5% CO2, 37°C incubator.

Electrophysiological recordings. Whole-cell recordings were obtained
from isolated cortical pyramidal neurons at room temperature
(22–23°C). Recordings were obtained from pyramidal-shaped neurons
on the first and second day in culture before the elaboration of extensive
processes to ensure adequate voltage-clamp control (see analysis below).
Data were collected using an Axon 1D amplifier (Molecular Devices)
controlled through a Digidata 1322 analog/digital interface (Molecular
Devices). Pipettes were fabricated from borosilicate glass (WPI) with a
Sutter Instruments model P-87 horizontal puller. Using a standard pi-
pette solution (see below), pipette resistances were between 2 and 4
M�. For recordings, bath solution contained the following (in mM):
140 NaCl, 4 KCl, 2 CaCl2, 2 MgCl2, 10 HEPES, 5 glucose, 0.001 TTX,
and 0.1 CdCl2, pH 7.4 (300 mOsm). The recording pipette solution
contained the following (in mM): 135 KCl, 10 HEPES, 5 glucose, 1.1 CaCl2,
and 2.5 BAPTA, and 3 MgATP and 0.5 NaGTP were added the day of re-
cording, pH 7.4 (300 mOsm). The calculated free Ca2� in this BAPTA-
buffered pipette solution was 100 nM (MAXCHELATOR) (Patton et al.,
2004). The K� channel blockers used, tetraethylammonium (TEA),
4-aminopyridine (4-AP), heteropodatoxin-2 (Hptx-2), �-dendrotoxin (�-
Dtx) (Alomone Labs), and Ba2�, were added to the bath solution imme-
diately before recordings. All reagents were from Sigma unless
otherwise noted.

In all experiments, junction potentials were zeroed before forming
pipette–membrane seals. Signals were low-pass filtered at 10 kHz and
sampled at 100 kHz. Whole-cell Kv currents were routinely evoked in
response to 4 s depolarizing voltage steps to potentials between �40 and
�40 mV (in 10 mV increments) from a holding potential of �70 mV. In
parallel experiments, a prepulse paradigm was used to facilitate the iso-
lation of the rapidly inactivating currents in each cell. In this case, cur-
rents evoked at test potentials from �40 to �40 mV (in 10 mV
increments) after a brief (60 ms) step to �10 mV were recorded. Offline
subtraction of the currents evoked after the prepulse from the currents
evoked without the prepulse allowed the isolation of the rapidly inacti-
vating outward K � currents (see Fig. 1).

Data analysis. Data were compiled and analyzed using ClampFit (Mo-
lecular Devices), Microsoft Excel, and Prism (GraphPad Software). Only
data from cells with input resistances greater that 300 M� and access
resistances �15 M� were included in the analyses. Membrane capaci-

tances were determined by analyzing the decays of capacitive currents
elicited by short (25 ms) voltage steps (�10 mV) from the holding po-
tential (�70 mV). Whole-cell membrane capacitances (Cm) were calcu-
lated for each cell by dividing the integrated capacitive transients by the
voltage. Consistent with the short time in culture and lack of extensive
processes, the capacitive transients of recorded cells had single-
exponential decay phases. Input resistances were calculated from the
steady-state currents elicited by the same �10 mV steps (from the hold-
ing potential). For each cell, the series resistance was calculated by divid-
ing the time constant of the decay of the capacitive transient (fit by a
single exponential) by the Cm; the mean � SEM series resistance was
5.4 � 0.1 M� (n � 222). Series resistances were compensated electron-
ically by �80% in all cells. Voltage errors resulting from uncompensated
series resistances, therefore, were small (�2 mV) and were not corrected.
The inactivation phases of the Kv currents were analyzed using the equa-
tion y � A1e�t / � 1 � A2e�t / � 2 � A3e�t / � 3 � C, where A1 (IA), A2 (ID),
and A3 (IK) are the amplitudes of individual current components (see
text), each with a characteristic time constant of decay (�1, �2, and �3),
and C is the non-inactivating component (ISS) of the total Kv current. For
statistical analyses, current–voltage ( I–V) plots were compared using
repeated-measures ANOVA. The statistical significance of the differ-
ences between individual I–V plots were, subsequently, calculated using
Tukey’s multiple comparisons post hoc test, and p values are reported in
the text or in the figure legends.

Western blots. For biochemical experiments, mice were deeply anes-
thetized with halothane and decapitated, and the brains were rapidly
removed. Posterior (	1 mm) cortices from four animals of each geno-
type (WT, Kv1.4�/�, Kv4.2�/�, and Kv4.3�/�) were dissected and flash
frozen in liquid nitrogen. Protein lysates were prepared from the poste-
rior cortices using previously described methods (Brunet et al., 2004).
The protein concentration in each sample was determined using a Bio-
Rad protein assay kit, following the instructions of the manufacturer.
Equal amounts of proteins were fractionated on 7.5% SDS-PAGE gels,
transferred to polyvinylidene difluoride membranes, incubated in block-
ing buffer at room temperature for 1 h, followed by incubation with
primary antibodies against the individual Kv �-subunits overnight at
4°C. The monoclonal anti-Kv4.2 and anti-Kv4.3 antibodies were ob-
tained from the University of California, Davis (UCD)/National Insti-
tutes of Health (NIH) NeuroMab Facility, supported by NIH Grant
U24NS050606 and maintained by the Department of Neurobiology,
Physiology, and Behavior, College of Biological Sciences at UCD. The
polyclonal anti-Kv1.4 antibody used was obtained from Millipore Bio-
science Research Reagents. Bound antibodies were detected using horse-
radish peroxidase-conjugated rabbit anti-mouse IgG (Bethyl Labs) or
goat anti-rabbit IgG (GE Healthcare) and the Dura West chemilumines-
cence reagent (Pierce). Signals were detected and quantified using the
Bio-Rad ChemiDoc system and Quantity One software (Bio-Rad). Blots
were reprobed with primary antibodies against glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) (Abcam) to verify equal loading of lanes.
For quantification, the anti-GAPDH signals were used to normalize the
Kv �-subunit signals measured from the same blot.

Results
Distinct component of IA evident in Kv4.2 �/� pyramidal neurons
Previously, we reported that the rapidly activating and rapidly
inactivating Kv current, IA, which is prominent in WT cortical
pyramidal neurons (Fig. 1A), was not evident in most (80%)
cortical pyramidal neurons (Fig. 1B) isolated from mice
(Kv4.2�/�) harboring a targeted disruption of the Kcnd2 (Kv4.2)
locus (Nerbonne et al., 2008), findings consistent with previous
suggestions that Kv4.2 is the critical Kv �-subunit encoding IA

channels in cortical (and hippocampal) pyramidal neurons
(Korngreen and Sakmann, 2000; Kim et al., 2005; Chen et al.,
2006). In a small subset (	20%) of Kv4.2�/� cells, however, a
rapidly inactivating current was observed (Nerbonne et al.,
2008), suggesting the expression of a molecularly distinct (non-
Kv4.2-encoded) IA in this subset of cortical pyramidal neurons.
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The marked differences in the waveforms of the Kv currents in
the vast majority (80%) of Kv4.2�/� cortical pyramidal neurons
(Fig. 1B) and those recorded from WT cells (Fig. 1A) reflects the
upregulation of delayed rectifier currents (IK and ISS), as evi-
denced by the sensitivity of the upregulated currents to the K�

channel blocker TEA. As illustrated in Figure 1C, addition of 3
mM TEA to the bath reduced IK and ISS, revealing a rapidly inac-
tivating current component similar to IA in WT neurons (Fig.
1C). Similar results were obtained in all (n � 23) Kv4.2�/� neu-
rons examined in the presence of TEA. To quantify the amplitude
of IA in these (Kv4.2�/�) cells, a 60 ms prepulse to �10 mV was
used to inactivate IA (Fig. 1Db). Offline subtraction of the current
records obtained with the prepulse from the control records in
the same cell (Fig. 1Da) allowed the isolation IA (Fig. 1Da– b).
The peak amplitudes of the subtracted current records were mea-
sured and normalized to cell capacitance to yield IA densities. The
mean � SEM density of IA in Kv4.2�/� neurons was significantly
( p � 0.01) lower than in WT cells (Fig. 1F), an observation that
might be interpreted as suggesting the presence of residual Kv4.2-
encoded channels in Kv4.2�/� cells. Previous studies, however,
have shown that no Kv4.2 protein or transcript is detectable in the
cortices of Kv4.2�/� mice (Burkhalter et al., 2006; Nerbonne et
al., 2008). Thus, the observation of a reduction in, but not the
elimination of, IA in Kv4.2�/� neurons indicates that other Kv

�-subunits (in addition to Kv4.2) contribute to the generation of
functional IA channels in cortical pyramidal neurons.

Pharmacologic characterization of IA in Kv4.2 �/� neurons
Subsequent experiments were focused on determining the mo-
lecular identity of the Kv �-subunit(s) underlying the non-
Kv4.2-encoded component(s) of IA in cortical pyramidal
neurons. In heterologous expression systems, subunits of the
Kv1, Kv3, Kv4, and Kv12 subfamilies can generate rapidly acti-
vating and inactivating (A-type) Kv currents (Blair et al., 1991;
Ruppersberg et al., 1991; Rettig et al., 1994; Trudeau et al., 1999).
Previous studies (Camerino et al., 2007) also suggest that the
channels encoded by the various Kv �-subunits can be distin-
guished by using selective pharmacologic blockers. In control
experiments, 3 mM TEA, which effectively blocks Kv3 channels
(Rudy and McBain, 2001; Gutman et al., 2003), had no measur-
able effects on IA in WT neurons, indicating that Kv3 channels do
not contribute to the generation of IA in mouse visual cortical
pyramidal neurons (data not shown). The remaining Kv subfam-
ilies, Kv1, Kv4, and Kv12, can be, at least partially, separated
based on differential sensitivities to 4-AP. Previous studies have
shown, for example, that Kv1 channels are blocked effectively
by submillimolar concentrations of 4-AP (Grissmer et al.,
1994; Rasmusson et al., 1995; Gutman et al., 2003), whereas
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Figure 1. A component of IA , sensitive to 1 mM 4-AP, is present in all Kv4.2�/� cortical pyramidal neurons. Representative outward Kv current waveforms, elicited by 4 s voltage steps to test
potentials between �40 and �40 mV (in 10 mV increments) from a holding potential of �70 mV, in WT neurons (A), Kv4.2�/� neurons (B), and Kv4.2�/� neurons in bath containing 3 mM TEA
(C), are illustrated. D, E, The amplitudes of IA in individual cells were determined from subtracted records (a � b) of the Kv currents elicited by depolarizing steps preceded by a (60 ms) prepulse to
�10 mV (b) from the Kv currents evoked by identical voltage steps without the prepulse (a). The mean � SEM density of IA in Kv4.2�/� (n � 23) neurons was significantly (*p � 0.01) lower than
in WT (n � 23) neurons (F ). Addition of 1 mM 4-AP to the bath reduced IA density in Kv4.2�/� and WT neurons (E), although the mean � SEM density of the 4-AP-resistant component of IA was
significantly (*p � 0.01) lower in Kv4.2�/� neurons (n � 12) than in WT neurons (n � 18) (F ).
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Kv4 channels are blocked by 4-AP in the several millimolar
range (Serôdio et al., 1996) and Kv12 channels are insensitive
to high millimolar concentrations of 4-AP (Trudeau et al.,
1999; Gutman et al., 2003).

To explore the possible role of Kv1 channels, recordings were
obtained from Kv4.2�/� and WT neurons exposed to 1 mM 4-AP
(in the presence of 3 mM TEA) (Fig. 1E). Addition of 1 mM 4-AP
to the bath solution markedly reduced IA in both Kv4.2�/� and
WT neurons (Fig. 1F), demonstrating the presence of a 1 mM

4-AP-sensitive (Kv1-encoded?) component of IA in neurons of
both (WT and Kv4.2�/�) genotypes. Although this concentration
of 4-AP was selected to facilitate selective block of Kv1-encoded
channels, Kv4-encoded channels might also be affected, albeit to
a lesser extent (Serôdio et al., 1996; Gutman et al., 2003). Consis-
tent with the suggestion that Kv4.2 channels are not effectively
blocked by 1 mM 4-AP, the magnitude of the reduction in IA

density caused by 1 mM 4-AP was similar in Kv4.2�/� and WT
neurons (Fig. 1F). The mean � SEM density of the 4-AP-
resistant IA, however, was significantly ( p � 0.01) lower in
Kv4.2�/� than in WT cells (Fig. 1C,D), consistent with the elim-
ination of the Kv4.2-encoded component of IA in Kv4.2�/� neu-
rons. In recordings obtained from 10 of 12 Kv4.2�/� neurons in 1
mM 4-AP, a rapidly inactivating current remained, suggesting the
presence of an additional, non-Kv1-encoded component of IA.

There was no detectable 1 mM 4-AP-insensitive component of IA

in the other 2 of 12 Kv4.2�/� cells examined (see Discussion).

Kv1.4 encodes a component of IA in cortical pyramidal neurons
The 4-AP sensitivity of IA (Fig. 1) suggests that one component of
IA in WT and Kv4.2�/� neurons is likely encoded by Kv1 chan-
nels. Previous studies in heterologous cells have shown that Kv1.4
generates rapidly activating and inactivating currents when ex-
pressed alone (Po et al., 1993) and that other Kv1 subfamily
members can generate rapidly inactivating currents through het-
eromeric assembly with Kv1.4 or by combining with accessory
Kv� subunits, specifically Kv�1 or Kv�3 (Po et al., 1993; Heine-
mann et al., 1995; Leicher et al., 1998). To explore directly the
hypothesis that Kv1.4 encodes a component of IA, whole-cell Kv
currents were examined in cortical neurons isolated from mice
(Kv1.4�/�) harboring a targeted disruption of the Kcna4 (Kv1.4)
locus (London et al., 1998). The waveforms of the Kv currents in
Kv1.4�/� neurons (Fig. 2A) were similar to those in WT neurons
(Fig. 1A), and the inactivation phases of the currents were also
well described by the sum of three exponentials. Analysis of the
Kv current waveforms revealed that the mean � SEM density of
the peak Kv current as well as IA, ID, and IK densities were similar
in Kv1.4�/� neurons (n � 15) to those determined in WT cells
(n � 28). There was, however, a small, but statistically significant
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Figure 2. UseofBa 2� toblockKv4-encodedcurrentsrevealsaroleforKv1.4inthegenerationof IA incorticalpyramidalneurons.OutwardKvcurrentswereevokedand IA wasmeasuredinKv1.4�/�neurons
under control conditions (A) and in the presence of 400�M Ba 2� (B) using the subtraction protocol described in the legend to Figure 1. Similar experiments were performed on WT neurons (data not illustrated).
The mean � SEM densities of IA in WT (n � 22) and Kv1.4�/� (n � 13) neurons were similar under control conditions. In the presence of 400 �M Ba 2�, however, the mean � SEM IA density in Kv1.4�/�

neurons (n�22) was significantly ( #p�0.05) lowerthaninWTneurons(n�14)(C).Thepresenceof Ba 2� significantly(*p�0.01, #p�0.05)reducedthemean�SEM IA density in Kv1.4�/�and inWT neurons.

Table 1. Kv current densities in Kv1.4�/�, Kv4.3�/�, and WT cortical pyramidal neurons

Genotype n IPeak density (pA/pF) IA (pA/pF) ID (pA/pF) IK (pA/pF) ISS (pA/pF)

WT 23 250.4 � 19.1 98.3 � 11.7 40.9 � 3.2 77.0 � 7.2 32.8 � 2.2
Kv1.4�/� 14 264.3 � 32.4 86.1 � 11.9 55.0 � 8.2 99.6 � 13.3 41.7 � 2.9*
Kv4.3�/� 20 231.6 � 21.8 53.7 � 7.8* 40.8 � 5.1 81.9 � 10.6 43.7 � 4*

All values are mean � SEM density. Kv currents recorded at �30 mV (from a holding potential of �70 mV) were analyzed. *p � 0.01, significantly different from those in WT neurons.
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( p � 0.01), difference in ISS densities
measured in Kv1.4�/� and WT neurons
(Table 1). The observation that mean �
SEM IA densities are similar in Kv1.4�/�

and WT neurons may indicate that Kv1.4
does not contribute to IA in WT cells or,
alternatively, that other IA components are
upregulated in Kv1.4�/� neurons masking
the loss of the Kv1.4-encoded current. To
explore these possibilities, pharmacological
experiments were conducted.

In hippocampal pyramidal neurons,
Ba 2� in the hundred micromolar range
has been shown to reduce IA selectively
(Gasparini et al., 2007; Andrásfalvy et al.,
2008). In addition, the effect of Ba 2� on IA

was reportedly reduced in Kv4.2�/� hip-
pocampal neurons (Andrásfalvy et al.,
2008), suggesting that, of the channels
that may encode IA, Ba 2� is selective for
Kv4-encoded channels, although block of
inward rectifier channels has also been re-
ported (Schoots et al., 1996; Hughes et al.,
2000). Control experiments revealed that
the effect of 400 �M Ba 2� on IA ampli-
tudes in Kv4.2�/� neurons (n � 18) was
significantly ( p � 0.01) smaller than in
WT cells (n � 14). At �40 mV, for example,
the calculated mean � SEM density of the
Ba2�-sensitive component of IA was 75 � 4
pA/pF in WT neurons and 42 � 3 pA/pF in
Kv4.2�/� neurons. In subsequent experi-
ments, therefore, Kv currents in Kv1.4�/�

and WT neurons were examined in control bath solution and in the
presence of 400 �M Ba2� (Fig. 2). As illustrated in Figure 2, addition
of 400 �M Ba2� to the bath significantly ( p � 0.01) reduced the
density of IA in Kv1.4�/� neurons (Fig. 2C). In addition, the mean �
SEM density of the Ba2�-resistant component of IA was significantly
( p�0.05) larger in WT than in Kv1.4�/� neurons (Fig. 2C), indicating
arole forKv1.4 inthegenerationof IA inWTneurons.Thisobservation,
together with the finding that mean�SEM peak IA densities are similar
inKv1.4�/� andWTneurons, suggests theKv4-encodedcomponentof
IA is upregulated in Kv1.4�/� neurons.

Residual IA is present in neurons lacking both Kv4.2 and Kv1.4
The results of the experiments described above using pharmacol-
ogy in combination with the targeted disruption of Kv4.2 or Kv1.4
revealed roles for both of these subunits (Kv4.2 and Kv1.4) in the
generation IA current in cortical pyramidal neurons. To determine
whether there are additional Kv channels that contribute to the gen-
eration of macroscopic IA in cortical pyramidal neurons, we gener-
ated mice lacking both Kv1.4 and Kv4.2 (Kv1.4�/�/Kv4.2�/�) and
examined Kv currents in cells isolated from these animals. Similar to
the Kv currents in Kv4.2�/� neurons (Fig. 1B), marked increases in
the delayed rectifier currents (IK and ISS) were evident in records
obtained from Kv1.4�/�/Kv4.2�/� neurons (Fig. 3A). Also similar to
the Kv4.2�/� neurons, addition of TEA to the bath blocked the de-
layed rectifier currents and unmasked a residual component of IA in
18 of 20 Kv1.4�/�/Kv4.2�/� cells examined (Fig. 3B,C). In 2 of the
20 Kv1.4�/�/Kv4.2�/� neurons studied, no rapidly inactivating cur-
rents were detected in the presence of TEA.

Subsequent experiments were focused on exploring the pos-
sible roles of Kv1 and Kv4 �-subunits in the generation of the

component of IA remaining in Kv1.4�/�/Kv4.2�/� neurons (Fig.
3). In addition to Kv1.4, several Kv1 �-subunits, including Kv1.1,
Kv1.2, and Kv1.6, are reportedly expressed in cortical pyramidal
neurons (Guan et al., 2006). Initial experiments were performed
using the peptide toxin �-Dtx, which has been reported to block
heterologously expressed Kv1.1-, 1.2-, and 1.6-encoded currents
and has been used previously to examine the roles of Kv1 chan-
nels in cortical neurons (Harvey and Robertson, 2004; Guan et
al., 2006; Kole et al., 2007). As was done in the experiments on
Kv4.2�/� neurons (Fig. 1), TEA was added to the bath to block
the large delayed rectifier currents (IK and ISS) in Kv1.4�/�/
Kv4.2�/� neurons (Fig. 3A). The further addition of �-Dtx to the
bath solution at a concentration of 100 nM had no significant
effect on IA currents in Kv1.4�/�/Kv4.2�/� neurons (data not
illustrated). Similar experiments were performed using Hptx-2,
which is specific for Kv4 channels (Zarayskiy et al., 2005). In
contrast to �-Dtx, addition of Hptx-2 (at 1 �M) significantly
( p � 0.01) reduced IA amplitudes of Kv1.4�/�/Kv4.2�/� neurons
(Fig. 3D), revealing an additional role for Kv4 �-subunits (i.e., in
addition to Kv4.2) in the generation of IA in cortical pyramidal
neurons. Interestingly, previous reports demonstrated that Kv4.3
is expressed in cortical pyramidal neurons (Serôdio and Rudy,
1998; Burkhalter et al., 2006), suggesting a role for Kv4.3.

Targeted disruption of Kcnd3 reveals a role for Kv4.3 in the
generation of IA in cortical pyramidal neurons
To explore directly the role of Kv4.3 in the generation of IA in cortical
pyramidal neurons, whole-cell Kv current recordings were obtained
from neurons isolated from animals harboring a targeted disruption
of the Kcnd3 (Kv4.3�/�) locus (Niwa et al., 2008). In most (20 of 24)

BA

C a

b

Kv1.4-/-/Kv4.2 -/- + 3 mM TEA

1 s

10
0 

pA
/p

F

1 s

10
0p

A/
pF

-40 -20 0 20 40

50

100

Kv1.4-/-/Kv4.2 -/-

 + 1 µM HpTx 

*

Test Potential (mV)

D

a-b

I A D
en

si
ty

 (p
A/

pF
)

Figure 3. A heteropodatoxin-2-sensitive component of IA is present in Kv1.4�/�/Kv4.2�/� neurons. Similar to the findings in
Kv4.2�/� neurons (Fig. 1), large delayed rectifier currents (IK and ISS) were evident in recordings obtained from Kv1.4�/�/Kv4.2�/�

neurons (A). Addition of 3 mM TEA to the bath solution (to block the delayed rectifier currents), however, revealed a rapidly inactivating
current (B) in 18 of 20 Kv1.4�/�/Kv4.2�/� neurons examined. The amplitude of the IA component remaining in Kv1.4�/�/Kv4.2�/�

neuronswasquantified(C)usingthesamesubtractionprotocolasusedinexperimentsonKv4.2�/�(Fig.1)andKv1.4�/�(Fig.2)neurons
andasdescribedinthelegendtoFigure1.Themean�SEMdensityofthe IA componentremainingin Kv1.4�/�/Kv4.2�/�neurons(n�
20) was reduced significantly (*p � 0.01) by addition of 1 �M Hptx-2 (n � 14) to the bath (D).
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of the Kv4.3�/� neurons studied, the waveforms of the Kv currents
(Fig. 4B) were similar to those recorded from WT neurons (Fig. 4A)
with a prominent rapidly inactivating IA component. Similar to the
Kv currents in WT neurons, the inactivation phases of the Kv cur-
rents in these (20 of 24) Kv4.3�/� neurons were well described by the
sum of three exponentials, consistent with the expression of IA, ID,
IK, and ISS (Table 1). The waveforms of the Kv currents in the
remaining (4 of 24) Kv4.3�/� neurons (Fig. 4C), however, were distinct
and resembled the current waveforms seen in most Kv4.2�/�

neurons (Fig. 1 B) with large delayed rectifier currents and with-
out a prominent rapidly inactivating current component. The pre-
pulse paradigm described previously was used to isolate (and allow
the quantification of) IA in Kv4.3�/� neurons. These experiments
revealed that the mean � SEM density of IA was significantly ( p �
0.01) lower in Kv4.3�/� neurons (n � 24) than in WT cells (n � 22)
(Fig. 4D).

4-AP-sensitive IA component remains in Kv4.2�/�/Kv4.3 �/�

cortical pyramidal neurons
The results of the experiments presented above indicate that, in ad-
dition to Kv4.2, Kv1.4 and Kv4.3 also encode IA channels and con-
tribute to the generation of the macroscopic IA recorded in cortical
pyramidal neurons. Accordingly, disruption of both Kv4.2 and
Kv4.3 should leave only the Kv1.4-encoded component of IA, a cur-
rent that would be expected to be blocked completely by 1 mM 4-AP.
This hypothesis was tested directly by obtaining recordings from
neurons isolated from mice lacking both Kv4.2 and Kv4.3 (Kv4.2�/�/
Kv4.3�/�), generated by crossing the Kv4.2�/� and Kv4.3�/�

animals. The waveforms of the Kv currents in Kv4.2�/�/Kv4.3�/�

cortical pyramidal neurons (Fig. 5A) resembled those in

Kv4.2�/� neurons (Fig. 1B) with large delayed rectifier currents
and without a prominent rapidly inactivating current compo-
nent. Inclusion of 3 mM TEA in the bath unmasked a rapidly
inactivating current in all (n � 18) Kv4.2�/�/Kv4.3�/� neurons
(Fig. 5B). Interestingly, the mean � SEM peak density of the IA

remaining in Kv4.2�/�/Kv4.3�/� neurons is similar in magnitude
to the IA component eliminated in Kv1.4�/� neurons (Fig. 2B).
In addition, as illustrated in Figure 5C, no rapidly inactivating
currents remained in Kv4.2�/�/Kv4.3�/� neurons (n � 13) in the
presence of 1 mM 4-AP (Fig. 5C).

The expression of Kv1.4, Kv4.2, and Kv4.3 proteins is
independent in the cortex
To examine the relative expression levels of the Kv1.4, Kv4.2, and
Kv4.3 proteins in cortex and the impact of the targeted deletion of
individual �-subunits, Western blots were conducted on lysates
prepared from posterior cortices (containing visual cortex) dis-
sected from WT, Kv1.4�/�, Kv4.2�/�, and Kv4.3�/� animals
(n � 4 for each genotype). As illustrated in Figure 6A–C, the
Kv1.4, Kv4.2, and Kv4.3 proteins were readily detected in the
cortical lysates from WT mice, demonstrating that all three of
these Kv �-subunits are expressed. In addition, in the samples
from Kv1.4�/�, Kv4.2�/�, or Kv4.3�/� animals, no Kv1.4, Kv4.2,
or Kv4.3 protein, respectively, was detected, confirming the spec-
ificity of each of the antibodies used. Each blot was also probed
with an anti-GAPDH antibody to confirm equal protein loading
in each lane. The anti-GAPDH signals were used to normalize the
Kv �-subunit-specific antibody signals in each lane. Quantifica-
tion of the normalized Kv �-subunit-specific antibody signals
revealed that the expression levels of Kv1.4 and Kv4.3 in samples
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Figure 4. Genetic disruption of Kv4.3 reduces IA density in cortical pyramidal neurons. Whole-cell Kv current recordings revealed heterogeneity in the waveforms of the currents recorded in
Kv4.3�/� neurons, specifically in the inactivation phases of currents. In the vast majority (20 of 24) of the Kv4.3�/� neurons (B), the Kv currents were similar to those recorded from WT neurons
(A) with a prominent rapidly inactivating current. In the remaining (4 of 24) Kv4.3�/� neurons (Kv4.3�/�*) (C), large delayed rectifier currents (IK and ISS) were evident, reminiscent of the Kv
current waveforms observed in Kv4.2�/� neurons (Fig. 1), suggesting that marked remodeling of Kv currents also occurs in this subset of Kv4.3�/�* cortical pyramidal neurons. In all Kv4.3�/�

neurons (n � 24), however, IA was present and subsequently quantified using the subtraction protocol described in the legend to Figure 1. These analyses revealed that the mean � SEM IA density
in Kv4.3�/� (n � 24) neurons was significantly (*p � 0.01) lower than in WT (n � 22) neurons (D).
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from mice with targeted disruption of the
other Kv �-subunits were similar to those
in WT cortices (Fig. 6D). The expression
of Kv4.2 appeared to be slightly increased
in samples from Kv1.4�/� animals relative
to those from WT animals, but the differ-
ence did not reach statistical significance
( p � 0.15 by t test) (Fig. 6D). These re-
sults indicate that the total protein expres-
sion levels of the Kv �-subunits encoding
individual components of IA do not un-
dergo appreciable remodeling in response
to the genetic disruption of the other IA

encoding Kv �-subunits. Nevertheless, it
is certainly possible that remodeling of the
subcellular distribution of Kv subunits in
different neuronal compartments occurs
in one or more of the targeted deletion
animals. Alternative experimental ap-
proaches need to be used to explore this
possibility.

Genetic and pharmacologic dissection of IA

The contributions of Kv1.4, Kv4.2, and
Kv4.3 to the generation of the total mac-
roscopic IA in cortical pyramidal neurons
is revealed in direct comparisons of IA

densities in cortical pyramidal neurons of
the various genotypes and examined un-
der different pharmacologic conditions
(Fig. 7). As discussed previously, in all ex-
periments conducted on Kv4.2�/� (as well as Kv1.4�/�/Kv4.2�/�

and Kv4.2�/�/Kv4.3�/�) neurons, 3 mM TEA was used to facili-
tate the isolation of IA by reducing the large delayed rectifier

currents (IK) that are present in Kv4.2�/� neurons (Fig. 1). In
control experiments on WT cells, 3 mM TEA had no effect on IA

(data not shown). Examination of the distributions of IA densities
determined in individual cells reveals that there is considerable
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heterogeneity in peak IA densities among WT cortical pyramidal
neurons (Fig. 7A). In both Kv4.2�/� and Kv4.3�/� neurons, the
distributions of IA densities in individual cells are similar to WT
neurons, although the mean IA densities are lower. In the Kv1.4�/

�/Kv4.2�/� cortical pyramidal neurons, the mean IA density was
similar to that measured in Kv4.2�/� neurons, although the dis-
tribution of IA densities in individual neurons is shifted consid-
erably, revealing that more Kv1.4�/�/Kv4.2�/� neurons
displayed low IA densities. In addition, IA densities in Kv4.2�/�/
Kv4.3�/� neurons were low and tightly clustered (Fig. 7A).

Analyses of results of the experiments conducted using the
various pharmacological manipulations yielded similar conclu-
sions. Consistent with roles for Kv4 and Kv1 channels in the
generation of IA, for example, both Ba 2� and 4-AP reduced the
density of IA in WT cortical pyramidal neurons. In addition, the 1
mM 4-AP-resistant component of IA was reduced in Kv4.2�/�

relative to WT neurons, consistent with the loss of the Kv4.2-
encoded component of IA. Furthermore, the component of IA

remaining in Kv4.2�/�/Kv4.3�/� neurons was eliminated com-
pletely by 1 mM 4-AP, indicating that the 4-AP-resistant compo-
nent of IA in Kv4.2�/� neurons is encoded by Kv4.3. Finally,
complete block of the component of IA remaining in Kv4.2�/�/
Kv4.3�/� cells by 1 mM 4-AP is consistent with Kv1.4-containing
channels encoding this component of IA.

Discussion
Multiple components of IA in cortical pyramidal neurons
A systematic experimental approach, using genetic disruption of
Kv �-subunit expression paired with pharmacology, was used to
identify the Kv channel �-subunits responsible for the generation
of macroscopic IA in cortical pyramidal neurons. The results pre-

sented here demonstrate that Kv1.4, Kv4.2, and Kv4.3 all contrib-
ute to macroscopic IA in (mouse visual) cortical pyramidal
neurons. In Kv1.4�/�, Kv4.2�/�, and Kv4.3�/� neurons, a com-
ponent of IA is lost. The components of IA encoded by Kv1.4 and
Kv4.3 were individually isolated in neurons (Kv4.2�/�/Kv4.3�/�

and Kv1.4�/�/Kv4.2�/� neurons, respectively) with combined
genetic disruption of the other two Kv �-subunits. In each case,
the remaining component of IA was blocked selectively by 4-AP
or Hptx-2, respectively. In addition, the component of IA remain-
ing in Kv1.4�/�/Kv4.2�/� neurons was sensitive to Hptx-2 but
not �-Dtx, indicating that Kv1 �-subunits do not contribute to IA

in cortical pyramidal neurons in the absence of Kv1.4. To the best
of our knowledge, this study represents the first complete molec-
ular dissection of IA in mammalian neurons and, in addition,
provides the first direct demonstration of a native neuronal
Kv1.4-encoded current.

Precise determination of the contributions of Kv1.4-, Kv4.2-,
and Kv4.3-encoded channels to the generation of the macro-
scopic IA in individual WT neurons has been limited by the lack of
potent blockers specific for channels encoded by these
�-subunits. The limitations of pharmacology can be seen in Fig-
ure 7 where the reduction of IA density in WT neurons attribut-
able to 1 mM 4-AP is larger than expected if 1 mM 4-AP
specifically and selectively blocks only Kv1-encoded channels.
The magnitude of the reduction in IA density by 1 mM 4-AP
suggests, probably not surprisingly, some block of Kv4 channels
at this (1 mM) concentration. The use of targeted gene disruption
is specific but is hindered by the now well documented electrical
remodeling evident in neurons when the expression of the nor-
mal channel repertoire is altered (Marder and Goaillard, 2006;
Van Wart and Matthews, 2006; Nerbonne et al., 2008). The sum-
mary data (Fig. 7) indicate that Kv4.2 and Kv4.3 �-subunits are
the major contributors to macroscopic IA in cortical pyramidal
neurons. The cumulative results also indicate that Kv1.4-
encoded channels contribute a minor component of IA, ex-
pressed at a lower density in cortical pyramidal neurons than the
Kv4-encoded components (Fig. 7A). The recordings here were
obtained from young postnatal cortical pyramidal neurons, and
it is certainly possible that the relative contributions of Kv1.4,
Kv4.2, and Kv4.3 to the total IA changes during development.
Interestingly, the biochemical data revealed the robust expression
of Kv1.4, Kv4.2, and Kv4.3 in adult cortex (Fig. 6). Previous stud-
ies suggest that the physiological properties of cortical neurons
do change during postnatal development, although the major
effects appear to be quantitative changes in current densities
rather than qualitative changes in current properties/types (Mc-
Cormick and Prince, 1987; Kasper et al., 1994). It seems reason-
able to suggest, therefore, that Kv1.4, Kv4.2, and Kv4.3 all
contribute to IA in cortical pyramidal neurons throughout post-
natal development. As neurons mature, however, the subcellular
distribution patterns and/or functional roles of individual chan-
nel types may change. Additional experiments will be necessary to
explore these questions directly.

Remodeling of Kv currents in response to the loss of IA

encoding �-subunits
The experiments here also revealed that Kv current remodeling is
evident in Kv1.4�/�, Kv4.2�/�, and Kv4.3�/� neurons. The char-
acteristics of the Kv current remodeling, however, were different
in each case. In Kv1.4�/� neurons, a small increase in ISS was seen
in conjunction with an increase in a Ba 2�-sensitive (Kv4-
encoded) rapidly inactivating current. In the majority (	80%) of
Kv4.2�/� neurons, marked differences in Kv current waveforms
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were evident, reflecting increased TEA-sensitive delayed rectifier
currents (Fig. 1) (Nerbonne et al., 2008). Surprisingly, only 20%
of Kv4.3�/� neurons displayed a similar remodeling (Fig. 4C)
despite similar decreases in mean IA density in Kv4.2�/� and
Kv4.3�/� neurons (Fig. 7A). These observations illustrate the
complexity of ascertaining the functional roles of individual
channel �-subunits by using genetic disruption alone. Interest-
ingly, other studies have reported changes occurring at the circuit
level in Kv4.2�/� mice. Specifically, experiments on acute brain
slices from Kv4.2�/� mice revealed increased inhibition of hip-
pocampal pyramidal neurons mediated by an increase in tonic
GABA currents (Andrásfalvy et al., 2008), suggesting that wide-
spread, compensatory changes in neuronal properties and excit-
ability can occur in response to alterations in Kv �-subunit
expression.

Molecular diversity of Kv4 channels
The results presented here demonstrate that both Kv4.2 and
Kv4.3 can form functional channels in cortical pyramidal neu-
rons independent of each other. Finding functional Kv4.3 chan-
nels independent of Kv4.2 expression in cells that normally
express both is somewhat surprising given that cardiac myocytes
from Kv4.2�/� mice have no remaining Kv4-encoded current
despite the expression of Kv4.3 (Guo et al., 2005). Although the
experiments here demonstrate that Kv4.2 and Kv4.3 can function
independently, previous studies have shown that Kv4.2 and
Kv4.3 can be coimmunoprecipitated from brain, consistent with
the presence of heteromultimeric Kv4.2/Kv4.3 channels (Mari-
onneau et al., 2009). The formation of functional homomultim-
eric or heteromultimeric Kv4 channels is also consistent with the
partially overlapping subcellular localization of Kv4.2 and Kv4.3
in cortical neurons (Burkhalter et al., 2006). The molecular di-
versity of neuronal Kv4 channels could enable precise and inde-
pendent modulation of multiple neuronal processes, as well as
differential sensitivities to multiple regulatory pathways. The
functional diversity of neuronal Kv4 channels is likely further
expanded by the coexpression of numerous accessory subunits,
such as the K� channel interacting proteins KChIPs and dipep-
tidyl peptidases DPP6 and DPP10 (Schrader et al., 2002; Jerng et
al., 2005; Maffie and Rudy, 2008).

Implications for future studies on Kv channel
macromolecular complexes
Numerous recent studies suggest that neuronal Kv channels, like
other types of ion channels, function as components of macro-
molecular protein complexes (Lai and Jan, 2006; Dai et al., 2009).
Identification of the Kv �-subunits responsible for the generation
of specific Kv currents is a critical first step in determining the
composition of functional Kv channel complexes and the roles
individual Kv �-subunits and accessory subunits play in control-
ling channel properties and in regulating neuronal excitability.
Knowing that Kv1.4, Kv4.2, and Kv4.3 encode distinct compo-
nents of IA in cortical pyramidal neurons, therefore, provides a
foundation for studies aimed at defining the physiological roles
of accessory subunits and other regulatory proteins in the gener-
ation of functional IA channel complexes.

Despite the many studies in heterologous expression systems,
very little is known about the in situ functioning of Kv channel
accessory subunits and translating findings from heterologous
systems to native cells has proven difficult. For example, studies
in heterologous cells suggest that DPP6 plays a dominant role in
determining the kinetic properties of Kv4-encoded currents
(Jerng et al., 2005). A recent study examining the effects of dis-

rupting DPP6 expression in hippocampal neurons, however, de-
scribed very small changes in the properties of IA, although there
were marked and unexpected alterations in neuronal excitability
(Kim et al., 2008). Although the authors interpreted the func-
tional effects in terms of changes in IA, the experiential observa-
tions may, in part, reflect electrical remodeling with knockdown
of DPP6, as is evident in response to disruption of Kv channel
�-subunit expression (Guo et al., 2005; Nerbonne et al., 2008).
Interestingly, several channel accessory subunits have been sug-
gested to interact with and differentially regulate multiple types
of ion channels (Li et al., 2005; Nerbonne and Kass, 2005; Solé et
al., 2009; Thomsen et al., 2009), highlighting the possibility that
accessory subunits may play complex roles in regulating different
types of channels, as well as in orchestrating electrical remodel-
ing. The demonstration here that Kv1.4, Kv4.2, and Kv4.3 each
encode a component of IA in cortical pyramidal neurons and that
varied electrical remodeling occurs in response to the disruption
of Kv �-subunit expression will facilitate the design and, perhaps
most importantly, the interpretation of experiments focused on
defining the roles of IA channel accessory and regulatory proteins.
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