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Cellular/Molecular

Role of Guanylyl Cyclase Modulation in Mouse Cone
Phototransduction

Keisuke Sakurai,1 Jeannie Chen,2 and Vladimir J. Kefalov1

1Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110, and 2Zilkha Neurogenetic Institute, Departments of
Cell and Neurobiology, and Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033

A negative phototransduction feedback in rods and cones is critical for the timely termination of their light responses and for extending
their function to a wide range of light intensities. The calcium feedback mechanisms that modulate phototransduction in rods have been
studied extensively. However, the corresponding modulation mechanisms that enable cones to terminate rapidly their light responses
and to adapt in bright light, properties critical for our daytime vision, are still not understood. In cones, calcium feedback to guanylyl
cyclase is potentially a key step in phototransduction modulation. The guanylyl cyclase activity is modulated by the calcium-binding
guanylyl cyclase activating proteins (GCAP1 and GCAP2). Here, we used single-cell and transretinal recordings from mouse to determine
how GCAPs modulate dark-adapted responses as well as light adaptation in mammalian cones. Deletion of GCAPs increased threefold the
amplitude and dramatically prolonged the light responses in dark-adapted mouse cones. It also reduced the operating range of mouse
cones in background illumination and severely impaired their light adaptation. Thus, GCAPs exert powerful modulation on the mam-
malian cone phototransduction cascade and play an important role in setting the functional properties of cones in darkness and during
light adaptation. Surprisingly, despite their better adaptation capacity and wider calcium dynamic range, mammalian cones were mod-
ulated by GCAPs to a lesser extent than mammalian rods. We conclude that a disparity in the strength of GCAP modulation cannot explain
the differences in the dark-adapted properties or in the operating ranges of mammalian rods and cones.

Introduction
Rod and cone photoreceptors respond to �10 logarithmic units of
light intensities. Our ability to see over this enormous range can be
explained, in part, by adaptation within rods and cones. Although
the adaptation mechanisms that modulate rod phototransduction
have been studied extensively (Burns and Arshavsky, 2005), the
mechanisms that enable cones to adapt are poorly understood. Cone
transduction proteins are homologous or identical to the ones found
in rods, and the cone phototransduction cascade is believed to func-
tion similarly to the one in rods (Ebrey and Koutalos, 2001). Re-
markably, whereas rods saturate in moderately bright light (Green,
1971), cones can adjust their sensitivity and remain photosensitive
even in bright light (Boynton and Whitten, 1970).

In both rods and cones, adaptation is modulated by changes in
intracellular Ca 2�. In darkness, the continuous current entering

the outer segment through the cGMP-gated channels is carried in
part by Ca 2�, which is returned to the extracellular space via a
Na�/(Ca 2�, K�) exchanger. After photoactivation and the clo-
sure of cGMP channels, the concentration of Ca 2� in the outer
segment declines. This triggers a Ca 2�-mediated negative feed-
back on phototransduction, which in rods mediates response
shutoff and adaptation (Fain et al., 2001; Nakatani et al., 2002).
Interestingly, Ca 2� constitutes a larger fraction of the total outer
segment ionic flux in cones (20 –35%) compared with rods (10 –
20%) (Korenbrot, 1995; Korenbrot and Rebrik, 2002). This attri-
bute, in combination with the smaller outer segments of cones,
allows their intracellular Ca 2� to decline several times faster dur-
ing light stimulation than that in rods (Sampath et al., 1999). In
addition, the dynamic range of Ca 2� in cones is threefold larger
than that in rods (Korenbrot, 1995; Sampath et al., 1998, 1999).
Although these quantitative differences create the potential for
stronger phototransduction modulation by Ca 2� in cones com-
pared with rods, this issue has not been examined experimentally.

A key mechanism by which Ca 2� modulates phototransduc-
tion in rods involves the synthesis of cGMP by guanylyl cyclase
(GC), regulated by a pair of Ca 2�-binding guanylyl cyclase acti-
vating proteins (GCAP1 and GCAP2) (Koch and Stryer, 1988;
Burns et al., 2002). In rods, GCAPs modulate GC up to 20-fold,
inhibiting it at high Ca 2� and activating it at low Ca 2� levels
(Palczewski et al., 2000). The deletion of GCAPs in mouse rods
abolishes the Ca 2� feedback on GC and results in slowed photo-
response shutoff and impaired light adaptation (Mendez et al.,
2001; Burns et al., 2002). Electroretinogram (ERG) recordings
have provided an initial evidence for modulation of cone-driven
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bipolar cell responses by GCAPs (Pennesi et al., 2003). However,
the effectiveness of GCAPs in modulating light response kinetics
and sensitivity or their effect on light adaptation in mammalian
cones has not been assessed. Here we addressed these questions
by comparing the flash responses from control and GCAPs�/�

mouse cones. Surprisingly, we found that, whereas GCAPs
strongly modulate cone sensitivity and response kinetics, the
Ca 2� modulation on guanylyl cyclase is weaker in cones than in
rods both in darkness and during light adaptation.

Materials and Methods
Animals. GCAP knock-out mice (GCAPs�/�) (Mendez et al., 2001) of
either sex were used after at least 12 h dark adaptation. To facilitate
suction recordings and to remove the rod component in the response of
transretinal electroretinogram, all recordings for cones were done from
mice in rod transducin � (rT�) knock-out (Gnat1�/�) background (Cal-
vert et al., 2000), generously provided by Janis Lem, Tufts University,
Boston, Massachusetts.

Western blot analysis. Retinas were dissected from mice at P30, homog-
enized in buffer [80 mM Tris-HCl, pH 8.0, 4 mM MgCl2, protease inhib-
itor cocktail (Roche Diagnostics), and 0.5 mM phenylmethylsulfonyl
fluoride], and incubated with DNase I (Roche Diagnostics) for 30 – 45
min at room temperature. Equal volume of protein sample loading buf-
fer (100 mM Tris, pH 6.8, 0.2 M dithiothreitol, 8% SDS, 20% glycerol, and
a dash of bromophenol blue) was added, and the equivalent amounts of
protein were loaded and separated in Tris-glycine polyacrylamide gel
(Invitrogen). The protein samples then were transferred onto nitrocellu-
lose membrane (Whatman Schleicher & Schuell) and were incubated
with polyclonal antibodies against GCAP1, GCAP2, mouse green opsin
(mGO), and rod transducin. The signal was detected using the Odyssey
Infrared Imaging System from LI-COR Biosciences.

Immunofluorescence. All mice were killed at P30. Before enucleation,
the superior pole for each mouse eye was cauterized for orientation. The
mouse eye was placed in fixative solution (4.0% paraformaldehyde and
0.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2). The cornea and
lens were removed, and the remaining eyecup was further fixed for 2 h
and rinsed free of fixative with 0.1 M cacodylate buffer, pH 7.2. The tissues
were infiltrated with 30% sucrose in 0.1 M cacodylate buffer for 14 –18 h
at 4°C and embedded in Tissue Tek O.C.T. (Sakura Kinetek), and quickly
frozen in liquid nitrogen. Ten micrometer frozen sections were obtained
with a Jung CM 3000 cryostat machine (Leica). The retinal sections were
incubated for 1 h in blocking solution (2.0% BSA, 0.3% Triton X-100,
and 2% goat serum in PBS). This blocking solution was also used in all
subsequent antibody incubation steps. Some sections were incubated
with mouse cone arrestin antibody (LUMI-J) (Zhu et al., 2002). After
washing with blocking solution, the sections were incubated with a 1:100
dilution of FITC-conjugated rabbit anti-mouse IgG (Vector Laborato-
ries). Other sections were incubated with fluorescein-conjugated peanut
agglutinin (Vector Laboratories). After a series of washing and a short fix
(5 min in 4.0% paraformaldehyde in PBS), the sections were mounted
with Vectashield containing DAPI (Vector Laboratories), coverslipped,
and analyzed with an AxioPlan 2 imaging microscope (Carl Zeiss).

Electrophysiology. We performed single-cell suction recordings from
individual cones and transretinal ERG recordings from isolated whole
retina. Mice were maintained in 12/12 h light/dark cycle and dark
adapted overnight before experiments. After the animals were killed, eyes
were marked for orientation, removed under dim red light, and he-
misected, and retinas were isolated under infrared light. For single-cell
recordings, the dorsal part of retina was isolated, sliced with a razor blade,
and stored in Locke solution at 4°C. Recordings were done from small
pieces of retina placed in a recording chamber fit to an inverted micro-
scope and perfused at �37°C. The perfusion Locke solution contained
112 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl2, 1.2 mM CaCl2, 10 mM HEPES,
20 mM NaHCO3, 3 mM Na2-succinate, 0.5 mM Na-glutamate, and 10 mM

glucose and was equilibrated with 95% O2/5% CO2, pH 7.4. For cones,
recordings were done by drawing the cell body of a single photoreceptor
into the recording electrode as described previously (Nikonov et al.,
2006; Shi et al., 2007). The suction electrode was filled with solution

containing 140 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl2, 1.2 mM CaCl2, 3
mM HEPES, and 10 mM glucose, pH 7.4. Responses were amplified by a
current-to-voltage converter (Axopatch 200B; Molecular Devices), low-
pass filtered by an eight-pole Bessel filter (Krohn-Hite) with a cutoff
frequency of 30 Hz, digitized at 1 kHz, and stored on a computer using
pClamp 8.2 acquisition software (Molecular Devices). For BAPTA exper-
iments, the retina was treated with Locke solution containing 100 �M

BAPTA-AM for 20 min at room temperature.
For transretinal recordings, a quarter of the isolated dorsal retina was

mounted on filter paper, photoreceptor-side up, and placed on the re-
cording chamber with an electrode connected to the bottom. A second
electrode was placed above the retina. To increase retina stability and the
duration of recordings, the perfusion solution was kept at slightly lower
temperature, �34°C, than for single-cell recordings. The perfusion
Locke solution contained 2 mM L-glutamic acid to block higher-order
components of photoresponse (Sillman et al., 1969). The electrode solu-
tion under the retina contained, in addition, 10 mM BaCl2 to suppress the
glial component (Bolnick et al., 1979; Nymark et al., 2005). Responses
were amplified by a differential amplifier (DP-311; Warner Instru-
ments). Saturated M-cone transretinal photoresponses were obtained
using white light through a long-pass filter (�410 nm; Edmund GG455).

For all recordings and for all figures, test flashes were given at t � 0.
Normalized flash sensitivity, SF, was calculated as the ratio of dim-flash
response amplitude and flash intensity normalized by the saturated dark-
adapted response for each retina. Intensity–response data were fit by the
following equation:

R

Rmax
�

I

I � Io
, (1)

where R is the transient-peak amplitude of response, Rmax is maximal
response amplitude, I is flash intensity, and Io is the flash intensity to
generate half-maximal response.

The fractional amplitude of residual response in background illumi-
nation was fitted with Hill equation as follows:

Rmax

Rmax,dark
�

IR
k

IR
k � IB

k , (2)

where Rmax is a maximal response amplitude in background illumina-
tion, Rmax,dark is the maximal response amplitude in darkness, IB (pho-
tons �m �2 s �1) is the background light intensity, IR (photons �m �2

s �1) is the background light intensity required to reduce the amplitude
twofold, and k is the Hill coefficient.

The decline in photoreceptor sensitivity in background light was fit by
the Weber–Fechner equation:

SF

SF
D �

IS

IS � IB
, (3)

where SF is photoreceptor sensitivity in background light, SF
D is photore-

ceptor sensitivity in darkness, IB (photons �m �2 s �1) is the background
light intensity, and IS (photons �m �2 s �1) is the background light in-
tensity required to reduce sensitivity twofold.

The expected exponential decline in sensitivity or residual maximal
response in background, IB, in the absence of adaptation was described as
follows:

SF

SF
D �

Rmax

Rmax,dark
� exp�� SF

DTiIB�, (4)

where Ti (s) is the integration time of the dark-adapted response.
Estimation of collecting areas of cones. For suction recordings, as de-

scribed previously (Baylor et al., 1979; Nikonov et al., 2005), the effective
collecting area ac(�) of the mouse cone for a flash of � nm is given by the
following equation:

ac��� � 2.303f�����C
	d2lcone

4

 10�4, (5)
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where f is a factor allowing for the use of unpolarized light entering the
outer segment perpendicular to its axis ( f � 0.75), �(�)(M

�1 cm �1) is
the extinction coefficient of M-opsin at a given wavelength � (nm) of the
pigment in solution, � is the quantum efficiency of photoisomerization,
C(M) is the pigment concentration in the outer segment, and d (�m) and
lcone (�m) are the diameter and length of the outer segment. For
M-opsin, �(500) and � of M-opsin are 43,900 M

�1 cm �1 and 0.61 (Saku-
rai et al., 2007), and the pigment concentration, C, is 3.2 � 10 �3

M

(Hárosi, 1982). The cone outer segment has a base of 1.2 �m diameter, a
tip of 0.8 �m diameter, and a length of 13.4 �m (Carter-Dawson and
LaVail, 1979). Thus, the estimated cone outer segment volume is 10.5
�m 3 assuming that its shape is equivalent to a cylinder with a diameter of
1.0 �m. Combining these values, the collection area, ac(500), of M-cones
in our recording configuration is calculated as 0.16 �m 2.

For transretinal recordings, the effective collecting area Ac(�) of mouse
M-cone for flash of � nm is given by the following equation:

Ac��� � kf

	d2

4
	1 � 10�����Clcone�10�4


�kshadow, (6)

where d (�m) and lcone (�m) are the diameter and length of the outer
segments, respectively, kf is a coefficient of funneling light effect (kf � 1),
and kshadow denotes a coefficient, which represents the shadow effect of
rod outer segments (Heikkinen et al., 2008). Because the retina was
placed on the chamber with photoreceptor-side up, the shadow coeffi-
cient can be defined as kshadow � 10��lrod�lcone��rod�500�C�10�4

, where lrod

(23.6 �m) and lcone (13.4 �m) are the lengths of rod and cone outer
segment, respectively. The molar extinction coefficient of mouse rho-
dopsin at 500 nm, �rod

(500), is 40,200 M
�1 cm �1 (Imai et al., 2007). Thus,

kshadow can be estimated as 0.74 at 500 nm light. Our experiments were
done using dorsal mouse retina, in which M cones are dominant (Apple-
bury et al., 2000). Assuming that transretinal photoresponses to green
monochromatic light (500 nm) are derived from M-cones, we estimated
Ac(500) to be 0.12 �m 2.

Results
GCAPs�/�, Gnat1�/� retina contains a normal complement
of cones
GCAPs�/� mice (Mendez et al., 2001) were crossed with the
Gnat1�/� mice lacking the �-subunit of rod transducin to facil-

itate the isolation of cone responses. The
deletion of transducin renders the rods
unable to respond to light but preserves
the structure of rods and the morphology
of the retina (Calvert et al., 2000). Because
both transducin and GCAPs are abun-
dantly expressed in rod photoreceptors,
we performed light microscopy on plastic-
embedded sections to evaluate whether
the absence of these proteins affected ret-
inal morphology. No changes were de-
tected in the thickness of retinal layers and
outer segment length (data not shown).
We then performed immunocytochemis-
try on frozen sections to determine
whether the knock-outs had a deleterious
effect on cones. Retinal sections from
wild-type and knock-out mice were re-
acted with mouse cone arrestin antibody
(Nikonov et al., 2005) or peanut aggluti-
nin, both of which label cones specifically
(Fig. 1A). The labeled cones showed sim-
ilar density and outer segment morphol-
ogy, and no difference was observed with
respect to the number of cones counted in
retinal sections that contain the entire
span of retina along the vertical meridian

(wild type, 670 � 10, n � 3; knock-out, 650 � 10, n � 3; mean �
SEM). In addition, the level of mGO, another cone marker, was
similar in retinal extracts from wild-type and knock-out mice
(Fig. 1B). The absence of rT� and the GCAP proteins in the
knock-out mice was confirmed by Western blots (Fig. 1B). Thus,
removal of GCAPs and rod transducin had no discernable effect
on cone morphology and on the expression of cone markers. This
allowed us to use animals of rod transducin knock-out back-
ground (Gnat1�/�) to perform cone recordings as described pre-
viously (Nikonov et al., 2006; Shi et al., 2007) from control and
GCAPs-deficient (GCAPs�/�) animals.

GCAPs modulate the kinetics and sensitivity of single-cell
cone responses
We began characterizing the role of GCAPs in mammalian cone
phototransduction by investigating how their deletion affects the
responses of mouse cones in dark-adapted conditions. To do
that, we recorded suction electrode photoresponses to 500 nm
test flashes from single M-cones selected from the dorsal retina in
Gnat1�/� mice (control cones) and in Gnat1�/� mice also lack-
ing GCAPs (GCAPs�/� cones). Typical flash response families
from control and GCAPs�/� cones are shown in Figure 2, A and
B. The rising phase of the dim flash response in GCAPs�/� cones
was not noticeably different from that in control cones (Fig. 2C),
suggesting that GCAPs do not modulate the activation steps of
cone phototransduction. However, the deletion of GCAPs had a
dramatic effect on the kinetics of response shutoff. The lack of
GCAPs delayed the onset of recovery (Fig. 2C,D) and increased
the time-to-peak of mouse cone dim-flash responses by twofold,
from 112 � 4 ms in control cones to 221 � 9 ms in GCAPs�/�

cones, respectively (Table 1). The effect of GCAPs deletion on the
dim-flash integration time was even more dramatic because this
parameter increased 3.3-fold, from 112 � 10 ms in control cones
to 374 � 23 ms in GCAPs�/� cones, respectively (Table 1).

The fractional response to a single-cone pigment activation
was 0.22 � 0.06% (n � 12) of the total circulating current in

Figure 1. Cone density and expression of transduction proteins in wild-type and GCAPs�/�,Gnat1�/� retina. Cones were
visualized by immunofluorescence (green) (A) of mouse cone arrestin (mCAR, top) and peanut agglutinin (PNA, bottom). Nuclei
were stained with DAPI (blue). os, Outer segment; is, inner segment; onl, outer nuclear layer; opl, outer plexiform layer. B,
Representative Western blots of whole retinal homogenate from wild-type (WT) and GCAPs�/�, Gnat1�/� (KO) mice probed
with antibodies against the indicated transduction protein (mGO, rT�, GCAP1, and GCAP2). Actin served as a loading control. Each
lane contains retinal homogenate from a different mouse. No changes in expression level of mouse green opsin were observed.
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control cones (Fig. 2C). This value is consis-
tent with the �0.2% obtained in previous
studies (Nikonov et al., 2006; Heikkinen et
al., 2008). In the absence of GCAPs, the frac-
tional response increased approximately
threefold, to 0.63 � 0.14% (n � 16) of the
total circulating current in GCAPs�/� cones
(Fig. 2C). Consistent with this increase in
the single-photon response, cone sensitivity
also increased approximately threefold in
GCAPs�/� cones compared with control
cones as indicated by the corresponding de-
crease in half-saturating flash intensity (Io)
(Table 1). Together, these results indicate
that the negative feedback on phototrans-
duction by GCAPs strongly modulates the
timely shutoff of the light response in mam-
malian cones and affects dramatically their
response kinetics and sensitivity. Notably,
the slower response recovery and increased
single-photon response in GCAPs�/� cones
are qualitatively similar to the effects ob-
served in GCAPs�/� rods (Burns et al.,
2002). These results are also consistent with
in vivo studies of cone function in GCAPs-
deficient mice (Pennesi et al., 2003).

BAPTA has no effect on
GCAPs�/� cones
To investigate whether other components,
such as recoverin and calmodulin, modu-
late cone dim flash response kinetics in a calcium-dependent
manner, we pretreated control and GCAPs�/� mouse retinas
with 100 �M BAPTA-AM to increase the buffering capacity of
cone outer segments for Ca 2�. BAPTA treatment slowed down
substantially the kinetics of responses in control cones compared
with untreated cones (Fig. 3A, Table 1) and often resulted in
overshoot or oscillation during their inactivation, indicating that
BAPTA-AM was successfully incorporated into cone outer seg-
ments. This result is consistent with the deceleration of response
shutoff in GCAPs�/� cones and indicates that Ca 2�-sensing pro-
teins in cones are involved in modulating their dim flash response
kinetics. In contrast, for GCAPs�/� cones, the kinesics of
BAPTA-treated responses did not differ from those of untreated
GCAPs�/� cones (Fig. 3B, Table 1). Thus, in the dim flash regi-
men, GCAPs appear to be the only calcium-dependent modula-
tor of response kinetics in mouse cones.

GCAPs modulate the kinetics and sensitivity of transretinal
cone responses
To characterize further the role of GCAPs in mammalian cone
phototransduction, we next investigated how their deletion af-
fects light adaptation of mouse cones. To do that, we performed
transretinal cone recordings from isolated retinas of Gnat1�/�

mice (control retinas) and Gnat1�/� mice also lacking GCAPs
(GCAPs�/� retinas). Although this method produces responses
with a waveform similar to that of single-cell responses (Heikki-
nen et al., 2008; Wang and Kefalov, 2010), its major advantage
over suction electrode recordings is that it provides stable and
long-lasting recordings without significant deterioration of the
responses for up to 2 h. The glutamate in the perfusion solution
(for details, see Materials and Methods) saturated synaptic trans-
mission to second-order neurons and enabled us to observe the

isolated response produced by photoreceptors without interfer-
ence from second-order neuron responses. We began by compar-
ing the amplitudes and waveforms of flash responses from
control and GCAPs�/� retinas under dark-adapted conditions
(Fig. 4A,B) in experiments similar to the suction recordings de-
scribed above. To avoid complications in the analysis, we used the
dorsal part of the retina, populated predominantly with M-cones
(Applebury et al., 2000; Haverkamp et al., 2005). Because we used
500 nm light for stimulation, any response from S-cones would
be expected to contribute to the overall response only at high
enough intensities that overcome their low sensitivity in this part
of the spectrum. This, in turn, would be expected to result in
shallower and wider than normal intensity–response function
(Eq. 1). However, the intensity–response measurements for both
control and GCAPs�/� retinas were well fitted with Equation 1
(Fig. 4D), indicating the negligible contribution of S-opsin and
S-cones to the photoresponses.

Similar to our findings from single-cell recordings above, the
cone response kinetics of GCAPs�/� retinas were slower than
those of control retinas (Fig. 4, compare A, B). The cone response
time-to-peak was increased twofold, from 121 � 4 ms in control
retinas to 211 � 5 ms in GCAPs�/� retinas (Table 2). The cone
response integration time was also increased by �2.3-fold, from
183 � 28 ms in controls retinas to 423 � 21 ms in GCAPs�/�

retinas (Table 2). Notably, the changes in cone response kinetics
upon the deletions of GCAPs in transretinal (Table 2) and single-
cell (Table 1) recordings were comparable. Furthermore, the
fractional response by single-cone pigment activation was 0.30 �
0.06% (n � 13) of the maximum response in control retinas and
approximately threefold higher in GCAPs�/� retinas at 0.83 �
0.12% (n � 13) (Fig. 4C). These values are also comparable with
the ones obtained with single-cell recordings. Consistent with the

Figure 2. Flash response families of dark-adapted control (A) and GCAPs�/� (B) M-cones recorded with a suction electrode.
Cone responses were evoked by a series of 500 nm test flashes (10 ms in duration). The test flash intensities (in photons �m �2)
were 500, 1.4 � 10 3, 5.7 � 10 3, 1.9 � 10 4, 5.2 � 10 4, and 1.7 � 10 5 for control cones and 180, 500, 1.4 � 10 3, 5.7 � 10 3,
1.9 � 10 4, 5.2 � 10 4, and 1.7 � 10 5 for GCAPs�/� cones. C, Averaged single-photon responses of control (black, n � 12) and
GCAPs�/� (gray, n � 16) cones. Error bars show SEM. To calculate the number of R*, the collecting area of cones was estimated
to be 0.16 �m 2 (for details, see Eq. 5 and Materials and Methods). D, The responses from C replotted normalized to unity to
demonstrate the slower response kinetics of the GCAPs�/� cones (gray) compared with control cones (black).
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increase in the single-photon response, the sensitivity of cones
from GCAPs�/� retinas was also increased compared with that of
cones from control retinas (Fig. 4D, Table 2). Together, these
results indicate that the transretinal recordings from GCAPs-
deficient cones yielded results essentially identical to the ones

obtained using suction recordings. This
validated our use of transretinal record-
ings to investigate the adaptation prop-
erties of control and GCAPs�/� cones
described below.

GCAPs modulate the operating range of
background illumination for cones
A key manifestation of light adaptation is
the extension of the range of intensities
over which the sensory cell can operate
(Torre et al., 1995). In the absence of ad-
aptation, the maximum photoreceptor
response declines exponentially with in-
creasing background light and the cells
rapidly saturate (Matthews et al., 1988).
To determine the role of GCAPs in mam-
malian cone adaptation, we first investi-
gated how their deletion affects the
operating range of mouse cones. Figure 5, A
and B, shows typical cone responses from
control and GCAPs�/� retinas, respectively,
to steps of background light of increasing
intensities. The background light caused a
rapid response followed by a partial relax-
ation attributable to adaptation. The resid-
ual cone response in steady state was
measured with a saturating test flash deliv-
ered 2 s after the onset of the background. As
expected, the maximum response declined
with increasing background light for both
control and GCAPs�/� retinas (Fig. 5C).
From Equation 2, the background intensity
that reduced the maximum cone response
twofold (IR) was 94,300 photons �m�2 s�1

in control retinas and 3900 photons �m�2

s�1 in GCAPs�/� retinas (Table 2). Part of
this 24-fold reduction could be attributed to
the product of larger amplitude (2.7-fold)
and longer integration time (2.3-fold) of the
single-photon responses of GCAPs�/�

cones compared with controls, giving a total
of 6.2-fold shift in the position of the oper-
ating range. The remaining 3.9-fold could
be explained by compromised background
adaptation of mouse cones in the absence of
GCAPs. Notably, the decline of the maxi-
mum cone response amplitude with in-
creasing background light was steeper in the
absence of GCAPs (Fig. 5C), producing a

change in the Hill coefficient of Equation 2 from 0.47 in control
retinas to 0.70 in GCAPs�/� retinas (Table 2). The operating range of
mouse cones, defined as the ratio of the background intensity at
which the residual amplitude is 95% of its dark-adapted value and

Figure 3. Lack of effect by BAPTA on GCAP�/� cone response kinetics. Normalized dim flash responses from control (A) and
GCAP�/� (B) cones. Black traces show responses in control solution, and gray traces show responses from cones treated with 100
�M BAPTA-AM.

Figure 4. Flash response families of dark-adapted control cones (A) and GCAPs�/� cones (B) from transretinal recordings.
Cone responses were evoked by a series of 500 nm test flashes (10 ms in duration) with intensities (photons �m �2) 36, 1.2�10 2,
3.9 � 10 2, 1.1 � 10 3, and 3.6 � 10 3. The largest response in each case was triggered by unattenuated white flash. C, Fractional
single-photon responses of control (black) and GCAPs�/� (gray) cones. Error bars show SEM. The cone collecting area was
estimated to be 0.12 �m 2 (for details, see Eq. 6 and Materials and Methods). D, Intensity–response relations of cone transretinal
responses to estimate sensitivity in control (filled circles) and GCAPs�/� (open circles) retinas. The solid curves represent the
corresponding intensity–response functions (Eq. 1) with Io of 2180 and 918 photons �m �2, respectively. Error bars show SEM.

Table 1. Parameters of cone suction recordings

Control Control � BAPTA GCAPs�/� GCAPs�/� � BAPTA

Io (photons �m �2) 3415 � 857 (12) 3035 � 851 (10) 1248 � 178 (16) 2390 � 1173 (8)
Rmax (pA) 4.5 � 0.7 (12) 4.2 � 0.6 (10) 6.2 � 0.8 (16) 7.7 � 1.1 (8)
Time-to-peak (ms) 112 � 4 (12) 152 � 17 (10) 221 � 9 (16) 207 � 24 (8)
Integration time (ms) 112 � 10 (12) 258 � 67 (10) 374 � 23 (16) 382 � 36 (8)

Mean � SEM (n). Io is the flash strength that generates half-maximal response.
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the intensity at which it is 5%, decreased from 2.8 � 105-fold to
4.5 � 103-fold upon deletion of GCAPs.

To confirm our findings from transretinal recordings, we per-
formed limited background adaptation experiments from individ-
ual cones using a suction electrode. The response kinetics from
single-cell recordings were somewhat faster than those from tran-
sretinal recordings, producing a slight shift of their adaptation curves
(Fig. 5, inset) to the right compared with those from transretinal
recordings. This was most likely attributable to the difference in
recording temperature: the single-cell recordings were done at 37°C
versus 34°C for the transretinal recordings (this lower temperature
was used to improve the stability and length
of the transretinal recordings). Notably,
however, the shift in the single-cell adapta-
tion curve induced by GCAPs deletion was
28-fold, comparable with that measured
with transretinal recordings. In addition,
the values for the Hill coefficient, k, mea-
sured from these recordings, 0.49 and 0.78
for control and GCAPs�/� cones, respec-
tively, were comparable with those mea-
sured from transretinal recordings (Table
2). Together, these results demonstrate that
Ca2� modulation of GC activity via GCAPs
plays an important role in shifting the oper-
ating range of mammalian cones to brighter
light and in widening their adaptation
curve.

Deletion of GCAPs impairs cone
light adaptation
To further characterize the role of GCAPs
in mammalian cone adaptation, we next in-
vestigated how their deletion affects the light
sensitivity of mouse cones. We used an ex-
perimental protocol similar to the one de-
scribed above but now measured sensitivity
by recording the cone dim flash responses
2 s after the onset of step light of various
intensity in control (Fig. 6A) and GCAPs�/�

(Fig. 6B) retinas. In both cases, the cone dim
flash response amplitude gradually de-
creased with increasing background light
intensity. Cone flash sensitivity (SF) decline
in control and GCAPs�/� retinas could be
fitted with the Weber–Fechner function
(Eq. 3) (Fig. 6C). The background light re-
quired to reduce cone sensitivity twofold
(IS) declined by 12-fold, from 12,900 pho-
tons �m�2 s�1 for control retina to 1100
photons �m�2 s�1 for GCAPs�/� retina
(Table 2). The dim flash response used to
estimate cone sensitivity was not �30% of
the maximum for all backgrounds in both
genotypes except for the two brightest back-
grounds in GCAPs�/� retinas. There, the re-
sponses to dimmer flashes would have been too small to measure
reliably due to response compression, and we were forced to use
slightly higher flash intensity, producing 35 and 42% fractional re-
sponses. This likely explains the underestimation of GCAPs�/� cone
sensitivity at backgrounds �2 � 103 photons �m�2 s�1 (Fig. 6C).
Notably, the initial desensitization of GCAPs�/� cones in back-
ground light followed the expected change in sensitivity in the ab-

sence of adaptation (Eq. 4) (Fig. 6C, dotted line). Thus, the calcium
modulation of GC is the dominant mechanism for mammalian cone
adaptation in dim-to-moderate background light conditions.

One complication of our analysis was the larger single-photon
response amplitude and larger integration time of GCAPs�/�

cones, which increased the effective activation by steady light in
GCAPs�/� compared with control retinas (Fig. 5C). To exclude

Figure 5. Effect of background light on cone operating range in control and GCAPs�/� retinas. Maximum cone response
amplitudes under a series of background lights were measured 2 s after the onset of step light illumination in control (A) and
GCAPs�/� (B) retinas by a test flash of unattenuated white light. The time course of light stimulation is shown on the top of each
panel. The step light intensities (photons �m �2 s �1) were 0, 440, 1.3 � 10 3, 3.9 � 10 3, 1.2 � 10 4, 5.2 � 10 4, and 1.7 � 10 5

for control retina and 0, 130, 440, 1.3�10 3, 3.9�10 3, 1.2�10 4, and 5.2�10 4 for GCAPs�/� retina. C, Normalized maximum
cone responses as a function of background intensity for control (filled circles) and GCAPs�/� (open circles) retina. The smooth
curves represent best-fitted Hill equation (Eq. 2) with k � 0.47 and 0.70, IR � 94,300 and 3900 photons �m �2 s �1 for control
and GCAPs�/�, respectively. Error bars show SEM. The dashed and dotted curves represent the expected change in maximum
response of control and GCAPs�/� cones, respectively, in the absence of adaptation (Eq. 4). (Inset) Normalized maximum cone
response as a function of background intensity for control (n � 5) and GCAPs�/� (n � 5) cones obtained with single-cell
recordings. The curves represent best-fitted Hill equations with k�0.49 and 0.78, IR �3.4�10 5 and 1.2�10 4 photons �m �2

s �1 for control and GCAPs�/� cones, respectively.

Table 2. Parameters of cone ERG recordings

Control cones GCAPs�/� cones

Io (photons �m �2) 2180 � 380 (13) 918 � 110 (13)*
Rmax (�V) 13.5 � 0.6 (13) 16.2 � 1.0 (13)*
Time-to-peak (ms) 121 � 4 (13) 211 � 5 (13)**
Integration time (ms) 183 � 28 (13) 423 � 21 (13)**
SF

D (photons �1 �m 2) 3.7E-04 � 6.5E-05 (13) 1.0E-03 � 1.4E-04 (13)**
IS (photons �m �2 s �1) 12,900 � 3100 (7) 1100 � 280 (7)*
IR (photons �m �2 s �1) 94,300 � 26,100 (7) 3900 � 770 (7)*
k, Hill coefficient 0.47 � 0.04 (7) 0.70 � 0.03 (7)**

Mean � SEM (n). Student’s t test determined significant differences: *p � 0.05, **p � 0.005. IS is parameter of
Weber–Fechner function in Figure 6C. IR and k are parameters obtained from the fit with Equation 2 in Figure 5C.

7996 • J. Neurosci., June 1, 2011 • 31(22):7991– 8000 Sakurai et al. • Role of GCAPs in Mammalian Cone Phototransduction



this effect on the flash sensitivity change, we plotted the normal-
ized cone sensitivity (SF/SF

D) against the normalized maximal re-
sidual amplitude (Fig. 6D). Considering that the internal calcium
concentration declines proportionally to the residual photore-
ceptor dark current (Sampath et al., 1999; Matthews and Fain,
2003), the normalized residual response, Rmax/Rmax,dark, must be
proportional to the relative change in calcium (Ca 2�/Ca 2�

dark).
Notably, GCAPs�/� cones desensitized less than control cones
for equal decline in calcium levels (Fig. 6D). These results indi-
cate that the deletion of GCAPs compromises the ability of cones
to lower their sensitivity in adaptation to background light.

GCAPs and light adaptation in rods versus cones
The effects of GCAPs deletion on light adaptation in mouse rods
has been characterized previously (Mendez et al., 2001). To com-
pare the roles of GCAPs in adaptation in rods versus cones, we
repeated and extended these rod experiments using the same
transretinal recording protocols described above for cones. Sim-
ilar to the case of cones, the maximum response of light-adapted
rods declined with increasing background light for both wild-
type control and GCAPs�/� retinas (Fig. 7A). The operating range

of mouse rods spanned 140-fold of back-
ground light (Fig. 7A). This is 2000-fold
less than the corresponding 2.8 � 10 5-
fold operating range of cones (Fig. 5C).
The background intensity that reduced
the maximum rod response twofold from
its dark-adapted level (IR) was 756 pho-
tons �m�2 s�1 in control rods and 27
photons �m�2 s�1 in GCAPs�/� rods
(Table 3), indicating that 28-fold shift was
induced by the deletion of GCAPs in rods.
As in cones, part of this shift could be at-
tributed to the increase in dark-adapted
sensitivity (3.5-fold) and integration time
(3.1-fold) upon the deletion of GCAPs in
rods, giving a total of 11-fold difference
(also larger than the corresponding 6.2-
fold difference in cones). The remaining
2.5-fold (28/11) shift in the operating
range to lower intensities could be ex-
plained by impaired rod adaptation. No-
tably, in contrast to the case in cones, the
deletion of GCAPs in rods did not affect
the Hill coefficient of their Weber–Fech-
ner curve (Fig. 7A, Table 3). Thus, unlike
in cones, in rods the Ca 2� modulation of
GC activity via GCAPs does not widen
their adaptation curve, and its effect is re-
stricted to shifting the operating range of
rods to brighter light.

The impaired adaptation of GCAPs-
deficient rods could also be observed from
the shift in normalized flash sensitivity
(SF/SF

D) in GCAP�/� retinas (Fig. 7B). The
background light required to reduce rod
sensitivity twofold (IS) in control retinas
was 272 photons �m�2 s�1 (Table 3).
Taking into account the �30% smaller
photoreceptor collecting area for tran-
sretinal recordings compared with single-
cell recordings (for details, see Materials
and Methods), this value is comparable

with the 159 photons �m�2 s�1 value, measured from single-cell
recordings (Mendez et al., 2001). The deletion of GCAPs resulted
in 18-fold reduction of rod IS to 14 photons �m�2 s�1 (Fig. 7B,
Table 3). To determine the effect of background on flash sensi-
tivity independent of the change in maximum response amplitude,
we again plotted the normalized sensitivity against the residual max-
imal amplitude for control and GCAPs�/� rods (Fig. 7C, solid lines).
We then compared the adaptation in rods with the results obtained
from cones, replotted from Figure 6D (Fig. 7C, dashed lines). For
comparison, we also included the expected decline in relative sensi-
tivity in the absence of any Ca2� modulation (Fig. 7C, blue dotted
line). The extent of Ca2� modulation for each photoreceptor could
be quantified by the shift in the slope of the corresponding fitting
power functions. Thus, the contribution of GCAPs to Ca2� modu-
lation in rods could be estimated as 0.7 by dividing the power func-
tion of GCAPs�/� rods (solid red line) by the power function of
control rods (solid black line). This ratio, 1.7/2.3, indicated that 30%
of the flash sensitivity decline in rods could be attributed to GCAPs
feedback. Notably, the contribution of GCAPs to Ca2� modulation
in cones, estimated by dividing the corresponding power functions of
GCAPs�/� cones (dashed red line) and control cones (dashed black

Figure 6. Effect of background light on cone sensitivity in control and GCAPs�/� retinas. Sensitivity under a series of back-
ground lights was measured from dim flash responses delivered 2 s after the onset of step light illumination in control (A) and
GCAPs�/� (B) retinas. The time course of light stimulation is shown on the top of each panel. The flash intensities (photons
�m �2) delivered in darkness for control and GCAPs�/� retinas were 1.6 � 10 3 and 120, respectively. The flash intensities
(photons �m �2) delivered on the step light for control retina were 1.6 � 10 3 for the first five traces, 4.5 � 10 3, and 1.5 � 10 4.
The flash intensities (photons �m �2) delivered on the step light for GCAPs�/� retina were 120 for first five traces, 500, and 1.6�
10 3. The step light intensities in A and B are the same as in Figure 5, A and B, respectively. C, Fractional sensitivity (SF/SF

D) as a
function of background intensity. Flash sensitivity (SF) was determined by dividing the peak amplitude of dim flash response by the
flash intensity and the maximal response amplitude for each retina. SF

D is the flash sensitivity in darkness. Averages of control (filled
circles) and GCAPs�/� (open circles) retinas. Solid curves are best-fitting Weber–Fechner functions with Is � 12,900 (control) and
1100 (GCAPs�/�) photons �m �2 s �1. The dotted curve represents the expected change in sensitivity of GCAPs�/� cones in the
absence of adaptation (Eq. 4). D, Relative sensitivity (SF/SF

D) as a function of the residual amplitude (Rmax/Rmax,dark) for control and
GCAPs�/� cones. Combined data from C and Figure 5C. Residual amplitude determines the internal calcium concentration; as the
residual amplitude declines, the internal calcium concentration becomes low. The decline in sensitivity against the reduction of
calcium concentration was substantially shallower in GCAPs�/� retinas than in control retinas, demonstrating the impaired cone
adaptation in the absence of GCAPs. The parameters of the best-fitting power functions (solid lines) are 2.94 for control cones and
2.35 for GCAPs�/� cones. The dotted line represents the expected change in sensitivity in the absence of Ca 2� modulation (Eq. 4)
in GCAPs�/� cones. Error bars show SEM.
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line), was 0.8 (2.4/2.9), indicating that only
20% of the flash sensitivity decline in cones
could be attributed to GCAP feedback.
Thus, the extent of Ca2�-dependent modu-
lation on adaptation by GCAPs appears to
be larger in mammalian rods than that in
cones.

Discussion
Our analysis of the function of GCAPs-
deficient mouse cones demonstrates that
the Ca 2� feedback to guanylyl cyclase reg-
ulates mammalian cone flash response
sensitivity and kinetics in darkness and
during light adaptation. Block of this
modulation in mouse cones by the dele-
tion of GCAP1 and GCAP2 increased the
fractional flash response threefold com-
pared with control cones. Although the
rising phase of the dim flash response was
not affected by the lack of GCAPs modu-
lation, the shutoff of the response was se-
verely delayed, with a twofold longer
time-to-peak and threefold longer inte-
gration time. Block of the Ca 2� feedback
mediated by GCAPs also shifted by 24-
fold the operating range of cones to lower
background lights and narrowed their ad-
aptation curve. Most (6.2-fold) of the re-
duction in the cone operating range could
be explained by the increase in single-
photon response amplitude and integration
time of GCAPs-deficient cones compared
with controls. Comparison of the effects of
GCAPs deletion in mammalian rods and
cones revealed that, surprisingly, the Ca2�

modulation on guanylyl cyclase is weaker in
cones than in rods both in darkness and
during light adaptation.

GCAPs are required for the timely
response shutoff in mammalian cones
The decline in calcium induced by light could modulate photo-
transduction through at least three different feedback mecha-
nisms affecting shutoff of the photoactivated pigment, the
conductance of the cGMP channels, and the synthesis of cGMP.
For rods, the Ca 2�-dependent modulation of cGMP synthesis by
GC is dominant in dim light conditions (Koutalos and Yau, 1996;
Burns et al., 2002; Makino et al., 2004). In contrast, modulation
of the photoactivated pigment (Burns et al., 2002; Makino et al.,
2004) and the cGMP-gated channels (Chen et al., 2010) play no
detectable role in rod background light adaptation. Our finding that
BAPTA fails to slow down the response of GCAPs�/� cones (Fig. 3B)
indicates that, similar to the case in rods, GCAP modulation on the
synthesis of cGMP is the major mechanism controlling the timely
shutoff of dim flash responses in mammalian cones.

Comparison of dim flash transretinal responses from control
and GCAPs-deficient photoreceptors allowed us to estimate and
compare the times of onset of the calcium modulation of GC after
a flash in rods and cones. In rods, the GCAPs-deficient responses
began deviating from control responses �120 ms after the flash
(Fig. 7D). In cones, the two responses deviated at �80 ms. Thus,
consistent with the expected faster decline of calcium in cones

compared with rods (Sampath et al., 1999), the onset of their
GCAPs modulation was also faster. Interestingly, this 1.4-fold
(120/80) slower onset of the GCAPs feedback in rods versus cones
was comparable with the 1.5-fold (163/121) larger time-to-peak
of rods versus cones (Tables 2 and 3). Thus, the difference in
time-to-peak between rods and cones could possibly be attribut-
able to the slower onset of the GCAPs feedback in rods compared
with cones.

Figure 7. A, Normalized maximum rod responses as a function of background intensity for control (black circles, n � 10) and
GCAPs�/� (open circles, n � 7) retina. The smooth curves represent best–fitted Hill equation with k � 1.20 and 1.29, IR � 756
and 27 photons �m �2 s �1 for control and GCAPs�/� rods, respectively. Error bars show SEM. The dotted curve represents the
expected change in maximum response of GCAPs�/� rods in the absence of adaptation (Eq. 4). B, Relative sensitivity as a function
of background intensity. Flash sensitivity (SF) was determined for each retina by dividing the peak amplitude of dim flash response
by the flash intensity and the maximal amplitude for each retina. SF

D is flash sensitivity in darkness. Averages of control (filled circles,
n�10) and GCAPs�/� (open circles, n�7) retinas. Solid lines are best-fitting Weber–Fechner functions with IS �272 [wild type
(WT)] and 14 (GCAPs�/�) photons �m �2 s �1. The dotted curve represents the expected change in sensitivity of GCAPs�/� rods
in the absence of adaptation (Eq. 4). C, Relative sensitivity (SF/SF

D) as a function of residual amplitude (Rmax/Rmax,dark). The decline
in sensitivity against the reduction of residual amplitude (indicative of calcium level) for both rods and cones was substantially
shallower in GCAPs�/� retinas than in control retinas. The parameters of the best-fitting power functions are 2.30 for control rods
(solid black line) and 1.69 for GCAPs�/� rods (solid red line). The dashed lines are the fitting functions for control cones (black) and
GCAPs�/� cones (red) from Figure 6 D. The blue dotted line represents the expected change in sensitivity in the absence of Ca 2�

modulation. Error bars show SEM. D, Single-photon responses of rods (top) and cones (bottom) normalized by dividing them by
their respective control peak amplitudes. The time of divergence of the GCAPs�/� (red) responses from control (black) responses
was 120 ms for rods and 85 ms for cones.

Table 3. Parameters of rod ERG recordings

Control rods (n � 10) GCAPs�/� rods (n � 7)

Io (photons �m �2) 19 � 3 11 � 1
Rmax (�V) 89 � 9 83 � 9
Time-to-peak (ms) 163 � 5 389 � 11
Integration time (ms) 336 � 33 1025 � 39
SF

D (photons �1 �m 2) 2.6E-02 � 3.1E-03 9.1E-02 � 2.0E-02
IS (photons �m �2 s �1) 272 � 30 14 � 3
IR (photons �m �2 s �1) 756 � 92 27 � 10
k 1.20 � 0.07 1.29 � 0.20

Mean � SEM. SF
D is a flash sensitivity in darkness. IS is a background intensity, which gives half the flash sensitivity

in Figure 7B. IR and k are parameters obtained from the fit with Equation 2 in Figure 7A.
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Weaker GCAPs modulation in cones than in rods
Our study clearly demonstrates that Ca 2�-dependent modula-
tion of cGMP synthesis by GCAPs affects the dark-adapted re-
sponse kinetics and sensitivity as well as the adaptation capacity
of mammalian cones. Considering the wider functional range of
cones compared with rods, we expected that Ca 2�-dependent
modulation of GCAPs in cones will be stronger than that in rods.
However, surprisingly, the strength of the modulation by GCAPs
in dark-adapted state appears to be lower in cones than in rods.
Thus, deletion of GCAPs resulted in only twofold to threefold
increase in single-photon response amplitude in mouse cones
(Figs. 2C, 4C) compared with a corresponding fivefold to sixfold
increase in mouse rods (Mendez et al., 2001). Another way of
comparing the strength of GCAPs modulation in rods and cones
is by estimating the feedback loop gain, gL, as described previ-
ously (Burns et al., 2002). For small responses that cause linear
perturbations in the loop, �L � 1 � gL, where �L is the ratio of
time integrals of single-photon response in GCAPs�/� and con-
trol cones. The ratio of single-photon responses in GCAPs�/�

and control cones was 2.9 (0.63/0.22; see Results) and the corre-
sponding ratio of integration times was 3.3 (374/112; Table 2).
Thus, the time integral of the GCAPs�/� cone responses was
9.6-fold larger than that of control cone responses. This gave a
value for �L of 9.6, and a cone feedback loop gain of 8.6. Notably,
this value is lower than the corresponding strength of the feed-
back loop in rods, previously estimated to be 11 (Burns et al.,
2002). Together, these results rule out differences in the strength
of feedback on cGMP synthesis as a possible mechanism contrib-
uting to the lower sensitivity of mammalian cones compared with
rods.

The strength of the modulation by GCAPs was comparable or
perhaps even slightly lower in mouse cones than in rods during
background adaptation. The deletion of GCAPs induced a 24-
fold shift to lower intensities in the operating range in mouse
cones (Fig. 5C, Table 2) compared with a corresponding 28-fold
shift in mouse rods (Fig. 7B, Table 3). The relatively weak contri-
bution of GCAPs modulation to light adaptation in cones com-
pared with rods was confirmed by the smaller shift in the relative
sensitivity versus residual maximal response function during the
deletion of GCAPs (Fig. 7C) for cones (20%) compared with rods
(30%). These results also indicate that, although the Ca 2� feed-
back on GC is the main mechanism for mammalian cone back-
ground adaptation for dim-to-moderate light intensities (Fig.
6C), other mechanisms dominate adaptation in brighter light
conditions.

One notable difference between rods and cones was how the
deletion of GCAPs affected their operating range. In rods, the
deletion of GCAPs resulted in a simple shift of the adaptation
curve without affecting its Hill coefficient (Fig. 7A, Table 3). In
contrast, in cones, the deletion of GCAPs not only shifted their
adaptation curve but also accelerated cone saturation as demon-
strated by the higher Hill coefficient of adaptation (Fig. 5C, Table
2). Thus, GC modulation by GCAPs hinders saturation and wid-
ens the operating range in mammalian cones but not in rods.

Rod versus cone isoforms of GC and GCAPs
A possible explanation for the differences in strength of the Ca 2�

feedback on cGMP synthesis in rods and cones could be the ex-
pression of rod/cone-specific isoforms of GC and GCAPs or the
coexpression of their isoforms with different ratios in rods and
cones. For instance, carp rods and cones express different iso-
forms of GC (GC-R1 and GC-R2 in rods vs GC-C in cones) and
GCAPs (GCAP1 and GCAP2 in rods vs GCAP3 in cones) (Take-

moto et al., 2009). This would allow for photoreceptor-specific
tuning of the modulation of cGMP synthesis in rods versus cones.
In contrast, rods and cones in the mouse share the same isoforms
of GC and GCAPs (Howes et al., 1998). However, mouse cones
primarily express GC1 and GCAP1 (Cuenca et al., 1998), whereas
mouse rods express both isoforms of GC (GC1 and GC2) and
GCAP (GCAP1 and GCAP2) (Cuenca et al., 1998; Baehr and
Palczewski, 2007). It is possible, therefore, that differences in the
Ca 2� sensitivities of GCAP1 and GCAP2 and in the way that they
modulate GC1 and GC2 (Peshenko and Dizhoor, 2004) account
for the rod/cone differences in modulation of cGMP synthesis.
Notably, the GCAP2 modulation of guanylyl cyclase in rods be-
comes more prominent at higher intensities of background light
(Makino et al., 2008). This observation is consistent with our
finding that the overall modulation of guanylyl cyclase is weaker
in mouse cones, which express primarily GCAP1, than in mouse
rods, in which GCAP2 is expressed more abundantly.

Another possibility is that the expression levels of GC and
GCAPs differ in rods and cones. Indeed, in the case of carp retina,
the expression of both GC and GCAPs is significantly higher in
cones compared with rods (Takemoto et al., 2009) and the basal
activity of GC in cones is 36-fold higher than that in rods. In
addition to the rod/cone differences in GC and GCAPs expres-
sion, this higher activity of GC in dark-adapted cones might be
attributable to a lower level of dark-adapted Ca 2� in cones
compared with rods (Sampath et al., 1998, 1999). A higher
dark-adapted activity of GC (and concomitant higher dark
phosphodiesterase activity) would restrict the range of upregula-
tion of cGMP synthesis during illumination in cones compared
with rods. Consistent with this notion, the incremental GC activ-
ity in carp rods at a low Ca 2� concentration, namely in light-
adapted conditions, increases by a factor of 7 compared with that
at a high Ca 2� concentration, namely in darkness, whereas the
GC activity in cones in light-adapted conditions is raised by only
twofold compared with that in darkness (Takemoto et al., 2009).
This observation is consistent with our results indicating a
smaller contribution of GCAPs modulation to light adaptation in
cones compared with that in rods. Thus, the wide range of adap-
tation in cones could be accomplished by the Ca 2�-mediated
modulation of photoactivated pigment lifetime, cGMP channel
conductance, or by additional, yet unknown mechanisms.
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