Lifting properties in operator ranges

M. Laura Arias ${ }^{\dagger a}$, Gustavo Corach ${ }^{\dagger}{ }^{b}$, M. Celeste Gonzalez ${ }^{\dagger} \S c *$
${ }^{\dagger}$ Instituto Argentino de Matemática
Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina
${ }^{\natural}$ Dpto. de Matemática, Facultad de Ingeniería, Universidad de Buenos Aires.
${ }^{\S}$ Dpto. de Matemática, Fac. de Economía y Administración, U. N. del Comahue.
${ }^{a}$ ml_arias@uolsinectis.com.ar, ${ }^{b}$ gcorach@fi.uba.ar, ${ }^{c}$ celegonzalez@gmail.com

AMS Classification: Primary 46C05 47A05 47A30
Keywords: A-operators, operator ranges.

Abstract

Given a bounded positive linear operator A on a Hilbert space \mathcal{H} we consider the semi-Hilbertian space $\left(\mathcal{H},\langle,\rangle_{A}\right)$, where $\langle\xi, \eta\rangle_{A}=\langle A \xi, \eta\rangle$. On the other hand, we consider the operator range $R\left(A^{1 / 2}\right)$ with its canonical Hilbertian structure, denoted by $\mathbf{R}\left(A^{1 / 2}\right)$. In this paper we explore the relationship between different types of operators on $\left(\mathcal{H},\langle,\rangle_{A}\right)$ with classical subsets of operators on $\mathbf{R}\left(A^{1 / 2}\right)$, like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.

Introduction

Let \mathcal{H} be a complex Hilbert space and let $A: \mathcal{H} \rightarrow \mathcal{H}$ be a positive (semidefinite bounded linear operator) operator. Consider the semi-inner product defined by A, namely, $\langle\xi, \eta\rangle_{A}:=\langle A \xi, \eta\rangle$ for all $\xi, \eta \in \mathcal{H}$. The set of all $T \in L(\mathcal{H})$ which are A-adjointable, i.e., for which there exists $W \in L(\mathcal{H})$ such that $\langle T \xi, \eta\rangle_{A}=\langle\xi, W \eta\rangle_{A}$ for all $\xi, \eta \in \mathcal{H}$, is

$$
L_{A}(\mathcal{H})=\left\{T \in L(\mathcal{H}): T^{*} R(A) \subseteq R(A)\right\}
$$

On the other side, if $\|\xi\|_{A}=\langle\xi, \xi\rangle_{A}^{1 / 2}=\left\|A^{1 / 2} \xi\right\|$, the set of all $\left\|\|_{A}\right.$-bounded operators in $L(\mathcal{H})$ is

$$
L_{A^{1 / 2}}(\mathcal{H})=\left\{T \in L(\mathcal{H}): T^{*} R\left(A^{1 / 2}\right) \subseteq R\left(A^{1 / 2}\right)\right\}
$$

These characterizations follow from the well known Douglas' range inclusion theorem [11]. A recent result by S. Hassi, Z. Sebestyén and H. de Snoo [16] implies that $L_{A}(\mathcal{H}) \subseteq L_{A^{1 / 2}}(\mathcal{H})$. In what follows, any element in $L_{A^{1 / 2}}(\mathcal{H})$ will be called an A-operator.

[^0]Among the A-operators, the A-symmetrizable operators have been studied since the beginning of operator theory. Recall that $T \in L(\mathcal{H})$ is called A-symmetrizable if $A T=T^{*} A$, which means that $A T$ is Hermitian or selfadjoint. The book of A.C. Zaanen [26] and the papers by M. G. Krein [17], P. Lax [18], J. Dieudonné [10], B. A. Barnes [4], and Z. Sebestyén, and J. Stochel [24] contain many results, examples and applications of symmetrizable operators. More recently, P. Cojuhari and A. Gheondea [7], S. Hassi et al. [16] have extended the theory to unbounded operators $T: \mathcal{D}(T) \subseteq \mathcal{H} \rightarrow \mathcal{K}$, with semi inner products \langle,\rangle_{A} on \mathcal{H} and \langle,\rangle_{B} on \mathcal{K}, where B is a positive operator on \mathcal{K}.

The semi-inner product \langle,\rangle_{A} induces on the quotient $\mathcal{H} / N(A)$ an inner product which is not complete unless $R(A)$ is closed (here $N(A)$ denotes the nullspace and $R(A)$ the range of A). A canonical construction due to de Branges and Rovnyak [5], [6] shows that the completion of $\mathcal{H} / N(A)$ is isometrically isomorphic to the range $R\left(A^{1 / 2}\right)$ of the positive square root of A, with the inner product $\left(A^{1 / 2} \xi, A^{1 / 2} \eta\right):=\langle P \xi, P \eta\rangle$, where P denotes the orthogonal projection onto the closure of $R(A)$ in \mathcal{H}. The Hilbert space $\left(R\left(A^{1 / 2}\right),(),\right)$ will be denoted by $\mathbf{R}\left(A^{1 / 2}\right)$. The books of T. Ando [1] and D. Sarason [20] and a series of papers of Z. Sebestyén [21], [22], [23], and Z. Sebestyén and J. Stochel [24] are excellent sources for this construction.

This paper is devoted to explore the relationship between A-operators in $L(\mathcal{H})$ and the algebra $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right.$) of all (bounded linear) operators on $\mathbf{R}\left(A^{1 / 2}\right)$. There is a unitary operator U_{A} from the closure of $R(A)$ in \mathcal{H} onto the space $\mathbf{R}\left(A^{1 / 2}\right)$. The conjugation by U_{A} provides an isometric isomorphism between $L(\overline{R(A)})$ and $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. However, this isomorphism has no good properties with respect to \langle,\rangle_{A}. Our choice is to study the way in which the operator $W_{A}: \mathcal{H} \rightarrow \mathbf{R}\left(A^{1 / 2}\right)$ defined by $\xi \mapsto A \xi$, and a certain adjoint of W_{A} transform A-operators in $L(\mathcal{H})$ into operators in $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right.$), and conversely.

We describe now the main results of this paper. In 1937 M. G. Krein [17] (and, later and independently, P. Lax [18]) proved the following theorem. Consider an inner product space L with an additional Banach norm $\left\|\|_{B}\right.$ and let $T: L \rightarrow L$ be a linear operator such that $\langle T \xi, \eta\rangle=\langle\xi, T \eta\rangle$ for all $\xi, \eta \in L$. If T is $\left\|\|_{B}\right.$-bounded then it is also $\left\|\|_{L}\right.$-bounded. Our extension is the following: if $L=\mathbf{R}\left(A^{1 / 2}\right)$ and $T: L \rightarrow L$ is linear and it admits a \langle,$\rangle -adjoint V: L \rightarrow L$, then T is $\left\|\|_{\mathcal{H}}\right.$-bounded if it is $\left\|\|_{\mathbf{R}\left(A^{1 / 2}\right)}\right.$-bounded.

The second main result is the construction of partially defined homomorphisms $\alpha: L(\mathcal{H}) \rightarrow L\left(\mathbf{R}\left(A^{1 / 2}\right)\right), \beta: L\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \rightarrow L(\mathcal{H})$ such that they basically transport the Hermitian and normal operators, the contractions, the partial isometries and projections, from one side to the other. In a paper by Cojuhari and Gheondea [7], the operator $\alpha(T) \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ is called the lifting of T; we follow their terminology.

Finally, we extend to A-operators a result by M. Mbekhta [19] on the reduced minimum modulus of a partial isometry.

The contents of the paper are the following. Section 1 contains basic results on A-operators. There is also a description of the range inclusion theorem of R. G. Douglas [11], which is a key for several results of this paper. Section 2 is devoted to the description of $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and to the extension of Krein's theorem. In section 3 we study the correspondence between A-operators and classes of operators in $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. The final section 4 contains the results on the A-reduced minimum modulus.

1 Preliminaries

Throughout \mathcal{G}, \mathcal{H} and \mathcal{K} denote complex Hilbert spaces with inner product \langle,$\rangle .$ By $L(\mathcal{H}, \mathcal{K})$ we denote the space of all bounded linear operators from \mathcal{H} to \mathcal{K},
and we abbreviate $L(\mathcal{H})=L(\mathcal{H}, \mathcal{H}) . L(\mathcal{H})^{+}$is the cone of positive (semidefinite) operators of $L(\mathcal{H})$, i.e., $L(\mathcal{H})^{+}:=\{A \in L(\mathcal{H}):\langle A \xi, \xi\rangle \geq 0 \forall \xi \in \mathcal{H}\}$. For every $T \in L(\mathcal{H}, \mathcal{K})$ its range is denoted by $R(T)$, its nullspace by $N(T)$ and its adjoint by T^{*}. Given a closed subspace \mathcal{S} of $\mathcal{H}, P_{\mathcal{S}}$ denotes the orthogonal projection onto \mathcal{S}.

1.1 The semi-Hilbertian space $\left(\mathcal{H},\langle,\rangle_{A}\right)$

Given $A \in L(\mathcal{H})^{+}$, the functional $\langle,\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C},\langle\xi, \eta\rangle_{A}:=\langle A \xi, \eta\rangle$, defines a Hermitian sesquilinear form which is positive semidefinite, i.e., a semi-inner product on \mathcal{H}. So, $\left(\mathcal{H},\langle,\rangle_{A}\right)$ is a semi-Hilbertian space. By $\|.\|_{A}$ we denote the seminorm on \mathcal{H} induced by \langle,\rangle_{A}, i.e., $\|\xi\|_{A}=\langle\xi, \xi\rangle_{A}^{1 / 2}$. Given a subspace \mathcal{S} of \mathcal{H} its A orthogonal subspace is the subspace $\mathcal{S}^{\perp_{A}}=\left\{\xi \in \mathcal{H}:\langle\xi, \eta\rangle_{A}=0 \forall \eta \in \mathcal{S}\right\}$. Observe that \langle,\rangle_{A} induces a seminorm on a subset of $L(\mathcal{H})$. More precisely, given $T \in L(\mathcal{H})$, if there exists a constant $c>0$ such that $\|T \omega\|_{A} \leq c\|\omega\|_{A}$ for every $\omega \in \mathcal{H}$ then it holds $\|T\|_{A}:=\sup _{\omega \in \overline{R(A)}} \frac{\|T \omega\|_{A}}{\|\omega\|_{A}}<\infty$. Define $L_{A^{1 / 2}}(\mathcal{H}):=\{T \in L(\mathcal{H}):$ $\omega \neq 0$
for some $\left.c>0,\|T \xi\|_{A} \leq c\|\xi\|_{A} \forall \xi \in \mathcal{H}\right\} . L_{A^{1 / 2}}(\mathcal{H})$ is a subalgebra of $L(\mathcal{H})$. Note that given $T \in L_{A^{1 / 2}}(\mathcal{H})$, in general, $T^{*} \notin L_{A^{1 / 2}}(\mathcal{H})$.
Given $T \in L(\mathcal{H})$ we say that $W \in L(\mathcal{H})$ is an A-adjoint of T if $\langle T \xi, \eta\rangle_{A}=\langle\xi, W \eta\rangle_{A}$ for every $\xi, \eta \in \mathcal{H}$, or, which is equivalent, if W satisfies the equation $A X=T^{*} A$. The operator T is called A-selfadjoint if $A T=T^{*} A$. The existence of an A adjoint operator is not guaranteed. Observe that a given $T \in L(\mathcal{H})$ may admit none, one or many A-adjoints: in fact, if W is an A-adjoint of T and $A Z=0$ for some $Z \in L(\mathcal{H})$ then $W+Z$ is also an A-adjoint of T. This kind of equations can be studied applying the next theorem of R. G. Douglas (for its proof see [11] or [13]).

Theorem (Douglas) Let $B \in L(\mathcal{H}, \mathcal{K})$ and $C \in L(\mathcal{G}, \mathcal{K})$. The following conditions are equivalent:

1. $R(C) \subseteq R(B)$.
2. There is a positive number λ such that $C C^{*} \leq \lambda B B^{*}$.
3. There is $D \in L(\mathcal{G}, \mathcal{H})$ such that $B D=C$.

If one of these conditions holds then there is a unique operator $E \in L(\mathcal{G}, \mathcal{H})$ such that $B E=C$ and $R(E) \subseteq \overline{R\left(B^{*}\right)}$. Furthermore, $N(E)=N(C)$. Such E is called the reduced solution or Douglas solution of $B X=C$.
The reduced solution of the equation $B X=C$ can be explicitly obtained by means of the Moore-Penrose inverse of B. Recall that given $B \in L(\mathcal{H}, \mathcal{K})$ the MoorePenrose inverse of B, denoted by B^{\dagger}, is defined as the unique linear extension of \tilde{B}^{-1} to $\mathcal{D}\left(B^{\dagger}\right):=R(B)+R(B)^{\perp}$ with $N\left(B^{\dagger}\right)=R(B)^{\perp}$, where \tilde{B} is the isomorphism $\left.B\right|_{N(B)^{\perp}}: N(B)^{\perp} \longrightarrow R(B)$. It holds that B^{\dagger} is the unique solution of the four "Moore-Penrose equations":

$$
B X B=B, \quad X B X=X, \quad X B=P_{N(B)^{\perp}} \quad \text { and } \quad B X=\left.P_{\overline{R(B)}}\right|_{\mathcal{D}\left(B^{\dagger}\right)}
$$

B^{\dagger} is a bounded operator with closed range if and only if $R(B)$ is closed. the reduced solution of the equation $B X=C$ with $R(C) \subseteq R(B)$, is $B^{\dagger} C$. the range inclusion guarantees its boundedness. For this and other results concerning different generalized inverses of B and solutions of the equations $B X=C$, see Engl and Nashed [12] and Arias et al. [3].
In what follows, we denote $L_{A}(\mathcal{H}):=\{T \in L(\mathcal{H}): T$ admits A-adjoint $\}$. The next proposition shows that the notations $L_{A}(\mathcal{H})$ and $L_{A^{1 / 2}}(\mathcal{H})$ which look quite different, are consistent.

Proposition 1.1. Let $A \in L(\mathcal{H})^{+}$. Then:

1. $L_{A}(\mathcal{H})=\left\{T \in L(\mathcal{H}): T^{*} R(A) \subseteq R(A)\right\}$.
2. $L_{A^{1 / 2}}(\mathcal{H})=\left\{T \in L(\mathcal{H}): T^{*} R\left(A^{1 / 2}\right) \subseteq R\left(A^{1 / 2}\right)\right\}$.

Proof. (1) It is a straightforward application of Douglas theorem.
(2) Observe that $T \in L_{A^{1 / 2}}(\mathcal{H})$ if and only if $T^{*} A T \leq c A$, and apply Douglas theorem.

The next result has been proved in a more general context by Hassi, Sebestyén and de Snoo ([16], Theorem 5.1). Here we present a short proof due to J. Antezana, valid for bounded operators, which only uses the so called Jensen operator inequality.

Proposition 1.2. Let $A \in L(\mathcal{H})^{+}$. Then, $L_{A}(\mathcal{H}) \subseteq L_{A^{1 / 2}}(\mathcal{H})$.
Proof. Let $T \in L_{A}(\mathcal{H})$. Without loss of generality it is enough to consider the case where T is a contraction. In this case the $\operatorname{map} \phi: L(\mathcal{H}) \rightarrow L(\mathcal{H})$ defined by $\phi(E)=T^{*} E T$ is a contractive positive map. If there is an operator $C \in L(\mathcal{H})$ such that $A C=T^{*} A$ then

$$
T^{*} A^{2} T=A C C^{*} A \leq\|C\|^{2} A^{2}
$$

Now, by Jensen's inequality (see [14], [15]), we obtain that $T^{*} A T \leq\left(T^{*} A^{2} T\right)^{1 / 2}$. On the other hand, $\left(T^{*} A^{2} T\right)^{1 / 2} \leq\|C\| A$ because $f(t)=t^{1 / 2}$ is operator monotone. This proves that

$$
\left(T^{*} A^{1 / 2}\right)\left(T^{*} A^{1 / 2}\right)^{*}=T^{*} A T \leq\|C\| A
$$

Therefore, by Douglas theorem, $T \in L_{A^{1 / 2}}(\mathcal{H})$.
Remark 1.3. The same proof, changing $t \rightarrow t^{1 / 2}$ by $t \rightarrow t^{s}$ shows that $L_{A}(\mathcal{H}) \subseteq$ $L_{A^{s}}(\mathcal{H})$ for all $s \in(0,1)$. More generally, if $0<s<s^{\prime}<1$ then $L_{A^{s^{\prime}}}(\mathcal{H}) \subseteq L_{A^{s}}(\mathcal{H})$. Moreover, $L_{A^{s^{\prime}}}(\mathcal{H})=L_{A^{s}}(\mathcal{H})$ if and only if $R(A)$ is closed.

2 The algebra $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$

Let $A \in L(\mathcal{H})^{+} . R\left(A^{1 / 2}\right)$ be equipped with the inner product

$$
\left(A^{1 / 2} \xi, A^{1 / 2} \eta\right):=\langle P \xi, P \eta\rangle \text { for every } \xi, \eta \in \mathcal{H}
$$

where we abbreviate $P_{\overline{R(A)}}$ by P. It can be checked that $\mathbf{R}\left(A^{1 / 2}\right)=\left(R\left(A^{1 / 2}\right),(),\right)$ is a Hilbert space. Moreover, $R(A)$ is dense in $\mathbf{R}\left(A^{1 / 2}\right)$ and $(A \xi, A \eta)=\langle\xi, \eta\rangle_{A}$ for every $\xi, \eta \in \mathcal{H}$.
In this section we describe $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. For this, we consider some operators between \mathcal{H} and $\mathbf{R}\left(A^{1 / 2}\right)$, and $\overline{R(A)}$ and $\mathbf{R}\left(A^{1 / 2}\right)$, namely,

$$
\begin{gathered}
Z_{A}: \mathcal{H} \rightarrow \mathbf{R}\left(A^{1 / 2}\right) \text { defined by } Z_{A} \xi=A^{1 / 2} \xi \\
U_{A}: \overline{R(A)} \rightarrow \mathbf{R}\left(A^{1 / 2}\right) \text { defined by } U_{A} \xi=A^{1 / 2} \xi \\
W_{A}: \mathcal{H} \rightarrow \mathbf{R}\left(A^{1 / 2}\right) \text { defined by } W_{A} \xi=A \xi
\end{gathered}
$$

Following Z. Sebestyén and J. Stochel [24], we use the notations Z_{A}, U_{A} and W_{A} just to distinguish them from $A^{1 / 2}: \mathcal{H} \rightarrow \mathcal{H},\left.A^{1 / 2}\right|_{\overline{R(A)}}: \overline{R(A)} \rightarrow \mathcal{H}$ and $A: \mathcal{H} \rightarrow \mathcal{H}$, respectively. In fact, when taking adjoints, the differences between $A^{1 / 2}, Z_{A}$ and U_{A} (respectively, A and W_{A}) become apparent.

Proposition 2.1. The following assertions hold:

1. $Z_{A} \in L\left(\mathcal{H}, \mathbf{R}\left(A^{1 / 2}\right)\right)$ and Z_{A} is onto;
2. $Z_{A}^{*} \in L\left(\mathbf{R}\left(A^{1 / 2}\right), \mathcal{H}\right), Z_{A}^{*}\left(A^{1 / 2} \eta\right)=P \eta ;$
3. $Z_{A}^{*} Z_{A}=P$ and $Z_{A} Z_{A}^{*}=I_{\mathbf{R}\left(A^{1 / 2}\right)}$, in particular Z_{A} is a coisometry;
4. $U_{A} \in L\left(\overline{R(A)}, \mathbf{R}\left(A^{1 / 2}\right)\right)$ is an unitary operator;
5. $\left.Z_{A}\right|_{\overline{R(A)}}=U_{A}$;
6. $W_{A} \in L\left(\mathcal{H}, \mathbf{R}\left(A^{1 / 2}\right)\right)$ and $R\left(W_{A}\right)=R(A)$ is dense in $\mathbf{R}\left(A^{1 / 2}\right)$;
7. $W_{A}^{*}: \mathbf{R}\left(A^{1 / 2}\right) \rightarrow \mathcal{H}, W_{A}^{*}\left(A^{1 / 2} \eta\right)=A^{1 / 2} \eta$, and $R\left(W_{A}^{*}\right)=R\left(A^{1 / 2}\right)$;
8. $W_{A}^{*} W_{A}=A$ and $Z_{A}^{*} W_{A}=A^{1 / 2}$.

Proof. Straightforward.
The next result gives necessary and sufficient conditions for a linear operator \tilde{T} : $R\left(A^{1 / 2}\right) \rightarrow R\left(A^{1 / 2}\right)$ to be bounded under the norm $\left\|\|_{\mathbf{R}\left(A^{1 / 2}\right)}\right.$.

Proposition 2.2. Let $\tilde{T}: R\left(A^{1 / 2}\right) \rightarrow R\left(A^{1 / 2}\right)$ be a linear operator. Then there exists a unique linear operator $V: \mathcal{H} \rightarrow \mathcal{H}$ such that $R(V) \subseteq \overline{R(A)}$ and $A^{1 / 2} V=$ $\tilde{T} A^{1 / 2}$. Moreover, \tilde{T} is bounded in $\mathbf{R}\left(A^{1 / 2}\right)$ if and only if V is bounded in \mathcal{H}. In such case, $V=Z_{A}^{*} \tilde{T} Z_{A}$ and it is the reduced solution of the equation $Z_{A} X=\tilde{T} Z_{A}$. Moreover, $\|\tilde{T}\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\|V\|$.

Proof. Given $\xi \in \mathcal{H}$ there exists a unique $\eta \in \overline{R(A)}$ such that $\tilde{T}\left(A^{1 / 2} \xi\right)=A^{1 / 2} \eta$. Define $V: \mathcal{H} \rightarrow \mathcal{H}$ by $V \xi=\eta$. It is easy to see that V is linear and $R(V) \subseteq \overline{R(A)}$. Furthermore, $A^{1 / 2} V=\tilde{T} A^{1 / 2}$. The uniqueness is straightforward. Now, suppose that \tilde{T} is bounded in $\mathbf{R}\left(A^{1 / 2}\right)$. Hence, as $\tilde{T} Z_{A}=Z_{A} V$ then, by Douglas theorem, V is bounded. Moreover, since $R(V) \subseteq \overline{R(A)}$ then V is the reduced solution of the equation $\tilde{T} Z_{A}=Z_{A} X$ and $V=Z_{A}^{*} \tilde{T} Z_{A}$. Conversely, if V is bounded then there exists $c>0$ such that $\|V \xi\| \leq c\|\xi\|$ for every $\xi \in \mathcal{H}$. In particular, $\|V P \xi\| \leq c\|P \xi\|$ for every $\xi \in \mathcal{H}$. Now, since $N\left(A^{1 / 2}\right) \subseteq N\left(\tilde{T} A^{1 / 2}\right)=N(V)$, then $V P=V$. Hence, $\|V \xi\| \leq c\|P \xi\|$ for every $\xi \in \mathcal{H}$ or, which is equivalent, $\left\|\tilde{T}\left(A^{1 / 2} \xi\right)\right\|_{\mathbf{R}\left(A^{1 / 2}\right)} \leq c\left\|A^{1 / 2} \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}$ for every $\xi \in \mathcal{H}$. So, \tilde{T} is bounded. On the other hand, since $\tilde{T} Z_{A}=Z_{A} V, R(V) \subseteq \overline{R(A)}$ and $N(A) \subseteq N(V)$ it holds

$$
\begin{aligned}
\|\tilde{T}\|_{\mathbf{R}\left(A^{1 / 2}\right)} & =\sup \left\{\left\|\tilde{T} A^{1 / 2} \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}:\left\|A^{1 / 2} \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}=1, \xi \in \mathcal{H}\right\} \\
& =\sup \left\{\left\|A^{1 / 2} V \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}:\left\|A^{1 / 2} \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}=1, \xi \in \mathcal{H}\right\} \\
& =\sup \{\|P V \xi\|:\|P \xi\|=1, \xi \in \mathcal{H}\} \\
& =\sup \{\|V \xi\|:\|\xi\|=1, \xi \in \mathcal{H}\} \\
& =\|V\| .
\end{aligned}
$$

In his groundbreaking paper [17], M. G. Krein proved the following theorem. Let $(L,\langle\rangle$,$) be an inner product space with Euclidean norm \|\| \| L_{L}$ such that there exists a (complete) Banach norm $\left\|\|_{B}\right.$ on L. Let $T: L \rightarrow L$ be a linear operator such that $\langle T \xi, \eta\rangle=\langle\xi, T \eta\rangle \forall \xi, \eta \in L$. If T is $\left\|\|_{L}\right.$-bounded then it is also $\| \|_{B}$-bounded. We prove now that, for the special case $L=R\left(A^{1 / 2}\right)$ with the inner product of \mathcal{H} and the Banach norm $\left\|\|_{\mathbf{R}\left(A^{1 / 2}\right)}\right.$, the same conclusion holds for a wider class of operators, namely, it holds for all linear operators $T: L \rightarrow L$ such that it admits an adjoint $Z: L \rightarrow L$ in the sense that $\langle T \xi, \eta\rangle=\langle\xi, Z \eta\rangle \forall \xi, \eta \in L$.

Theorem 2.3. Let $\tilde{T}: R\left(A^{1 / 2}\right) \rightarrow R\left(A^{1 / 2}\right)$ and $Z: R\left(A^{1 / 2}\right) \rightarrow R\left(A^{1 / 2}\right)$ be linear operators such that $\left\langle\tilde{T}\left(A^{1 / 2} \xi\right), A^{1 / 2} \eta\right\rangle=\left\langle A^{1 / 2} \xi, Z\left(A^{1 / 2} \eta\right)\right\rangle$ for every $\xi, \eta \in \mathcal{H}$. If \tilde{T} is bounded in $\mathbf{R}\left(A^{1 / 2}\right)$ then \tilde{T} is bounded in \mathcal{H}.
Proof. By Proposition 2.2, there exist linear operators $V, V_{1}: \mathcal{H} \rightarrow \mathcal{H}$ such that $\tilde{T} A^{1 / 2}=A^{1 / 2} V, Z A^{1 / 2}=A^{1 / 2} V_{1}$ and $R(V), R\left(V_{1}\right) \subseteq \overline{R(A)}$. As \tilde{T} is bounded in $\mathbf{R}\left(A^{1 / 2}\right)$, then V is bounded. Moreover, for every $\xi, \eta \in \mathcal{H}$ it holds $\left\langle\xi, A V_{1} \eta\right\rangle=$ $\left\langle A^{1 / 2} \xi, A^{1 / 2} V_{1} \eta\right\rangle=\left\langle A^{1 / 2} \xi, Z A^{1 / 2} \eta\right\rangle=\left\langle\tilde{T} A^{1 / 2} \xi, A^{1 / 2} \eta\right\rangle=\left\langle A^{1 / 2} V \xi, A^{1 / 2} \eta\right\rangle=$ $\left\langle\xi, V^{*} A \eta\right\rangle$. Thus, $A V_{1}=V^{*} A$. So $V \in L_{A}(\mathcal{H}) \subseteq L_{A^{1 / 2}}(\mathcal{H})$. Therefore, by Proposition 1.1, there exists $c>0$ such that $V^{*} A V \leq c A$, or which is the same $\left\|A^{1 / 2} V \xi\right\| \leq c\left\|A^{1 / 2} \xi\right\|$ for every $\xi \in \mathcal{H}$. Thus, $\left\|\tilde{T}\left(A^{1 / 2} \xi\right)\right\|=\left\|A^{1 / 2} V \xi\right\| \leq c\left\|A^{1 / 2} \xi\right\|$ for every $\xi \in \mathcal{H}$. Therefore \tilde{T} is bounded in \mathcal{H}.

3 Relationship among A-operators and operators of $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$

In this section we study the problem of relating classes of A-operators with similar classes of operators on $\mathbf{R}\left(A^{1 / 2}\right)$. For this, note that if one needs to work with $T \in$ $L(\mathcal{H}, \mathcal{K})$ and there are positive operators $A \in L(\mathcal{H})^{+}, B \in L(\mathcal{K})^{+}$inducing semiinner products \langle,\rangle_{A} on \mathcal{H} and \langle,\rangle_{B} on \mathcal{K}, respectively, then T is $A B$-adjointable, in the sense that there exists $W \in L(\mathcal{K}, \mathcal{H})$ such that $\langle T \xi, \eta\rangle_{B}=\langle\xi, W \eta\rangle_{A} \forall \xi \in \mathcal{H}$, $\eta \in \mathcal{K}$, if and only if the equation $A X=T^{*} B$ admits a solution; by Douglas theorem, this is equivalent to $R\left(T^{*} B\right) \subseteq R(A)$. However, if $R\left(T^{*} B\right) \nsubseteq R(A)$, the definition of $A B$-adjoint of T can be extended as follows:
Definition 3.1. Given $T \in L(\mathcal{H}, \mathcal{K})$ its $A B$-adjoint is the operator \boldsymbol{T}^{\sharp} defined by

$$
\mathcal{D}\left(T^{\sharp}\right)=\left\{\xi \in \mathcal{K}: \exists \eta \in \overline{R(A)} \text { such that }\langle T \nu, \xi\rangle_{B}=\langle\nu, \eta\rangle_{A} \forall \nu \in \mathcal{H}\right\}
$$

and $T^{\sharp} \xi=\eta$ for each $\xi \in \mathcal{D}\left(T^{\sharp}\right)$.
Proposition 3.2. Let $A \in L(\mathcal{H})^{+}, B \in L(\mathcal{K})^{+}$and $T \in L(\mathcal{H}, \mathcal{K})$. The next assertions hold:

1. T^{\sharp} is a well defined linear operator.
2. If $R\left(T^{*} B\right) \subseteq R(A)$ then T^{\sharp} is the reduced solution of the equation $A X=$ $T^{*} B$, i.e. $T^{\sharp}=A^{\dagger} T^{*} B$.

Proof. 1. If given $\xi \in \mathcal{D}\left(T^{\sharp}\right)$ there exist $\eta_{1}, \eta_{2} \in \overline{R(A)}$ such that $\left\langle\nu, \eta_{1}\right\rangle_{A}=$ $\langle T \nu, \xi\rangle_{B}=\left\langle\nu, \eta_{2}\right\rangle_{A}$ for every $\nu \in \mathcal{H}$ then $\left\langle A \nu, \eta_{1}-\eta_{2}\right\rangle=0$ for every $\nu \in \mathcal{H}$. So, $A\left(\eta_{1}-\eta_{2}\right)=0$. Therefore, $\eta_{1}=\eta_{2}$ because $\eta_{1}, \eta_{2} \in \overline{R(A)}$. Thus T^{\sharp} is well defined.
2. It is a straightforward application of Douglas theorem.

Observe that if $T \in L_{A}(\mathcal{H})$ then T^{\sharp} denotes the reduced solution of the equation $A X=T^{*} A$. We work with the next classes of A-operators.
Definition 3.3. Let $T \in L(\mathcal{H})$.

1. $T \in L_{A}(\mathcal{H})$ is an A-normal operator if $T^{\sharp} T=T T^{\sharp}$.
2. T is an A-contraction if $\|T \xi\|_{A} \leq\|\xi\|_{A}$ for every $\xi \in \mathcal{H}$.
3. T is called an A-isometry if $\|T \xi\|_{A}=\|\xi\|_{A}$ for every $\xi \in \mathcal{H}$.
4. $T \in L_{A}(\mathcal{H})$ is an A-unitary operator if T and T^{\sharp} are A-isometries.
5. $T \in L_{A}(\mathcal{H})$ is called an A-partial isometry if $T^{\sharp} T$ is a projection.

In [2] the above classes of operators are studied. The definition of A-partial isometry can be extended for $T \notin L_{A}(\mathcal{H})$ (see [2]). However, in that case, the A-partial isometries are not A-operators, in general. For more results on A-contractions, see [25] and the references therein.
We denote by $L^{s a}(\mathcal{H}):=\{T \in L(\mathcal{H}): T$ is selfadjoint $\}, \mathcal{N}(\mathcal{H}):=\{T \in L(\mathcal{H})$: T is normal $\}, \mathcal{P}(\mathcal{H}):=\left\{Q \in L^{s a}(\mathcal{H}): Q\right.$ is projection $\}, \mathcal{C}(\mathcal{H}):=\{T \in L(\mathcal{H}):$ T is a contraction $\}, \mathcal{I}(\mathcal{H}):=\{T \in L(\mathcal{H}): T$ is an isometry $\}, \mathcal{U}(\mathcal{H}):=\{U \in$ $L(\mathcal{H}): U$ is unitary $\}$ and $\mathcal{J}(\mathcal{H}):=\{T \in L(\mathcal{H}): T$ is a partial isometry $\}$. We shall denote, $L_{A}^{s a}(\mathcal{H}):=\{T \in L(\mathcal{H}): T$ is A-selfadjoint $\}$ and similarly $\mathcal{N}_{A}(\mathcal{H})$, $\mathcal{P}_{A}(\mathcal{H}), \mathcal{C}_{\mathcal{A}}(\mathcal{H}), \mathcal{I}_{\mathcal{A}}(\mathcal{H}), \mathcal{U}_{\mathcal{A}}(\mathcal{H})$ and $\mathcal{J}_{A}(\mathcal{H})$.
Remark 3.4. The definition 3.3 can be easily adapted to the case $T \in L(\mathcal{H}, \mathcal{K})$ where $A \in L(\mathcal{H})^{+}, B \in L(\mathcal{K})^{+}$induce semi-inner products on \mathcal{H} and \mathcal{K}, respectively. In this case, the contractions (resp. isometries, unitaries, partial isometries, normal operators) respect to these semi-inner products will be called $A B$ contractions (resp. $A B$-isometries, $A B$-unitaries, $A B$-partial isometries, $A B$-normal operators).
Observe that the standard way of transfer selfadjoints operators, isometries, projections, unitary operators and partial isometries of $L(\mathcal{H})$ to similar classes of operator of $L(\mathcal{K})$, if \mathcal{H} and \mathcal{K} are isomorphic as Hilbert spaces, is by mean the application $T \rightarrow U T U^{*}$ where $U: \mathcal{H} \rightarrow \mathcal{K}$ is an unitary operator. Nevertheless, note that there is not unitary transformation between $\left(\mathcal{H},\langle,\rangle_{A}\right)$ and $\mathbf{R}\left(A^{1 / 2}\right)$; indeed, $\left(\mathcal{H},\langle,\rangle_{A}\right)$ is not a Hilbert space. However, there exists an $A I$-unitary operator between them which will play the role of U, namely, W_{A}. Therefore, we shall transfer A-operators to operators of $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ by means of $W_{A} T W_{A}^{\sharp}$.
Proposition 3.5. The next assertions hold

1. $W_{A}^{\sharp}=W_{A}^{\dagger}$.
2. $W_{A} \in L\left(\mathcal{H}, \mathbf{R}\left(A^{1 / 2}\right)\right)$ is an $A I$-unitary operator.

Proof. (1) First, let us prove that $\mathcal{D}\left(W_{A}^{\sharp}\right)=R(A)$. Let $\xi=A^{1 / 2} \eta \in \mathcal{D}\left(W_{A}^{\sharp}\right)$. Then, there exists $\phi \in \overline{R(A)}$ such that $\left(W_{A} \psi, A^{1 / 2} \eta\right)=\langle\psi, \phi\rangle_{A}$, for every $\psi \in \mathcal{H}$; or which is the same, $\left\langle A^{1 / 2} \psi, P \eta\right\rangle=\left\langle A^{1 / 2} \psi, A^{1 / 2} \phi\right\rangle$ for every $\psi \in \mathcal{H}$. Therefore, $P \eta=A^{1 / 2} \phi$ and so $\xi=A^{1 / 2} \eta=A \phi \in R(A)$. On the other hand, let $A \eta \in R(A)$. Then for every $\xi \in \mathcal{H},\left(W_{A} \xi, A \eta\right)=\langle\xi, P \eta\rangle_{A}$, i.e., $A \eta \in \mathcal{D}\left(W_{A}^{\sharp}\right)$ and $W_{A}^{\sharp} A \eta=P \eta$. Hence, $\mathcal{D}\left(W_{A}^{\sharp}\right)=R(A)$. Moreover, as $W_{A}^{\sharp} A \eta=P \eta$, we get that $W_{A}^{\sharp}=W_{A}^{\dagger}$.
(2) First, as $\left\|W_{A} \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\left\|A^{1 / 2} \xi\right\|=\|\xi\|_{A}$ for every $\xi \in \mathcal{H}$, then $W_{A} \in$ $L\left(\mathcal{H}, \mathbf{R}\left(A^{1 / 2}\right)\right)$ is an $A I$-isometry. On the other hand, $\left\|W_{A}^{\sharp}(A \xi)\right\|_{A}=\|P \xi\|_{A}=$ $\left\|A^{1 / 2} \xi\right\|=\|A \xi\|_{\mathbf{R}\left(A^{1 / 2}\right)}$. Thus, W_{A}^{\sharp} is an $I A$-isometry and so $W_{A} \in L\left(\mathcal{H}, \mathbf{R}\left(A^{1 / 2}\right)\right)$ is an $A I$-unitary operator.

Observe that the conjugation $W_{A} T W_{A}^{\sharp}$ is not bounded for every $T \in L(\mathcal{H})$ and that $W_{A}^{\sharp} \tilde{T} W_{A}$ is not defined for every $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. Thus, this sort of conjugation by means of the $A I$-unitary W_{A} is not as perfect as it is in the case of isomorphic Hilbert spaces. The study of these conjugations is equivalent to determine conditions for the commutativity of the following diagram:

More precisely, we study two different lifting problems:

1. given $T \in L(\mathcal{H})$ under which conditions there exists $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ such that $W_{A} T=\tilde{T} W_{A}$;
2. given $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ under which conditions there exists $T \in L(\mathcal{H})$ such that $W_{A} T=\tilde{T} W_{A}$.

The next result is due to Barnes [4] if A is injective. The general case, but with an unnecessary extra hypothesis, can be found in [9]. We present a proof based on Douglas theorem.
Proposition 3.6. Consider $T \in L(\mathcal{H})$. Then, there exists $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ such that $\tilde{T} W_{A}=W_{A} T$ if and only if $T \in L_{A^{1 / 2}}(\mathcal{H})$. In such case \tilde{T} is unique.
Proof. If $T \in L_{A^{1 / 2}}(\mathcal{H})$ then $T_{\tilde{S}}^{*} R\left(A^{1 / 2}\right) \subseteq R\left(A^{1 / 2}\right)$. By Douglas theorem, equation $W_{A}^{*} X=T^{*} W_{A}^{*}$ has solution $\tilde{S} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$, because $R\left(T^{*} W_{A}^{*}\right)=T^{*} R\left(A^{1 / 2}\right) \subseteq$ $R\left(A^{1 / 2}\right)=R\left(W_{A}^{*}\right)$; take $\tilde{T}=\tilde{S}^{*}$. Conversely, if $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ satisfies $W_{A} T=$ $\tilde{T} W_{A}$ then $T^{*} W_{A}^{*}=W_{A}^{*} \tilde{T}^{*}$ and, as before, $T^{*} R\left(\tilde{T}^{1 / 2}\right) \subseteq R\left(A^{1 / 2}\right)$. Observe that if there exists such $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$, automatically $\tilde{T}^{*} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and so $R\left(\tilde{T}^{*}\right) \subseteq$ $R\left(A^{1 / 2}\right) \subseteq \overline{R(A)}$. This means that \tilde{T}^{*} is the reduced solution of the equation $T^{*} W_{A}^{*}=W_{A}^{*} \tilde{T}^{*}$, and, as such, it is unique.
Remark 3.7. Cojuhari and Gheondea [7] proved a similar result under more general conditions on A. See also the paper by Hassi et al. [16]. Basically, they suppose that operators $T: \mathcal{H} \rightarrow \mathcal{K}, V: \mathcal{K} \rightarrow \mathcal{H}$ satisfy $B T=V^{*} A$, where $A \in L(\mathcal{H})^{+}$and $B \in L(\mathcal{K})^{+}$and they prove the existence of unique $\tilde{T}: \mathbf{R}\left(A^{1 / 2}\right) \rightarrow \mathbf{R}\left(B^{1 / 2}\right)$ and $\tilde{V}: \mathbf{R}\left(B^{1 / 2}\right) \rightarrow \mathbf{R}\left(A^{1 / 2}\right)$ such that $W_{B} T=\tilde{T} W_{A}, W_{A} V=\tilde{V} W_{B}$ and $\tilde{T}^{*}=\tilde{V}$.
In the previous proposition, we studied under which conditions an operator $T \in$ $L(\mathcal{H})$ comes from some $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ in the sense that $W_{A} T=\tilde{T} W_{A}$. The next lemma goes in the reverse direction, namely, given $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ under which conditions there exists some $T \in L(\mathcal{H})$ such that $\tilde{T} W_{A}=W_{A} T$.
Proposition 3.8. Given $\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ there exists $T \in L(\mathcal{H})$ such that $W_{A} T=$ $\tilde{T} W_{A}$ if and only if $R\left(\tilde{T} W_{A}\right) \subseteq R\left(W_{A}\right)=R(A)$. In such case, there exists a unique $T \in L_{A^{1 / 2}}(\mathcal{H})$ such that $R(T) \subseteq \overline{R(A)}$.
Proof. The first part is a straightforward consequence of Douglas theorem. Moreover, if $R\left(\tilde{T} W_{A}\right) \subseteq R\left(W_{A}\right)$ then the reduced solution T of the equation $W_{A} X=$ $\tilde{T} W_{A}$ verifies that $R(T) \subseteq \overline{R\left(W_{A}^{*}\right)}=\overline{R(A)}$. On the other hand, $R\left(T^{*} A^{1 / 2}\right)=$ $R\left(T^{*} W_{A}^{*}\right)=R\left(W_{A}^{*} \tilde{T}^{*}\right) \subseteq R\left(A^{1 / 2}\right)$. So, $T \in L_{A^{1 / 2}}(\mathcal{H})$.

Define $\tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right):=\left\{\tilde{T} \in L\left(\mathbf{R}\left(A^{1 / 2}\right)\right): R\left(\tilde{T} W_{A}\right) \subseteq R(A)\right\} . \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ is a non closed subalgebra of $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. Moreover, observe that $\tilde{T} \in \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ does not imply $\tilde{T}^{*} \in \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$, in general. In fact, \tilde{T} and $\tilde{T}^{*} \in \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ if and only if $R(A)$ reduces \tilde{T}. In the sequel, we denote $\widetilde{L}^{s a}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)=L^{\text {sa }}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \cap$ $\tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. Similarly we define $\widetilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right), \widetilde{\mathcal{C}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and $\widetilde{\mathcal{I}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. On the other hand, we denote by $\tilde{\mathcal{N}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)=\left\{\tilde{T} \in \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \cap \mathcal{N}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right.$: $R(A)$ reduces $\tilde{T}\}$. Analogously we define $\tilde{\mathcal{U}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and $\widetilde{\mathcal{J}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$.

By Propositions 3.6 and 3.8 , the next mappings are well defined:

$$
\alpha: L_{A^{1 / 2}}(\mathcal{H}) \longrightarrow \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right), T \longmapsto \tilde{T}
$$

where $\tilde{T} W_{A} \xi=W_{A} T \xi$ for all $\xi \in \mathcal{H}$, and

$$
\beta: \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \longrightarrow L_{A^{1 / 2}}(\mathcal{H}), \tilde{T} \longmapsto T
$$

where $\tilde{T} W_{A} \xi=W_{A} T \xi$ for all $\xi \in \mathcal{H}$ and $R(T) \subseteq \overline{R(A)}$.
Proposition 3.9. The following properties of α and β hold:

1. α is the homomorphism $\alpha(T)=\overline{W_{A} T W_{A}^{\sharp}} ; \alpha$ is injective if and only if A is injective.
2. β is the homomorphism $\beta(\tilde{T})=W_{A}^{\sharp} \tilde{T} W_{A} ; \beta$ is always injective.
3. $\|\alpha(T)\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\|T\|_{A}$ and $\|\beta(\tilde{T})\|_{A}=\|\tilde{T}\|_{\mathbf{R}\left(A^{1 / 2}\right)}$.
4. The compositions $\alpha \beta$ and $\beta \alpha$ can be explicitly computed as
$\alpha \beta: \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \longrightarrow \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right), \alpha \beta(\tilde{T})=\tilde{T}$ and $\beta \alpha: L_{A^{1 / 2}}(\mathcal{H}) \longrightarrow L_{A^{1 / 2}}(\mathcal{H}), \beta \alpha(T)=P T P$.

Proof. (1) As $W_{A}^{\sharp}=W_{A}^{\dagger}$ then $\alpha(T)=\overline{W_{A} T W_{A}^{\sharp}}$. The linearity of $\alpha(T)$ is trivial. If $T, T_{1} \in L_{A^{1 / 2}}(\mathcal{H})$ then $W_{A} T T_{1}=\tilde{T} W_{A} T_{1}=\tilde{T} \tilde{T}_{1} W_{A}$. So $\alpha\left(T T_{1}\right)=\alpha(T) \alpha\left(T_{1}\right)$. Thus α is an homomorphism. Now, note that if $T \in L_{A^{1 / 2}}(\mathcal{H})$ then PTP \in $L_{A^{1 / 2}}(\mathcal{H})$. Therefore, if A is not injective there exists $T \in L_{A^{1 / 2}}(\mathcal{H})$ such that $T \neq P T P$ and it holds $\alpha(T)=\alpha(P T P)$. So α is not injective. Let $T, T_{1} \in L_{A^{1 / 2}}(\mathcal{H})$ such that $\overline{W_{A} T W_{A}^{\sharp}}=\overline{W_{A} T_{1} W_{A}^{\sharp}}$. Then, it holds $P T P=P T_{1} P$ and so we obtain that $T=T_{1}$ because A is injective; hence α is injective.
(2) As $W_{A}^{\sharp}=W_{A}^{\dagger}$, it is clear that $\beta(\tilde{T})=W_{A}^{\sharp} \tilde{T} W_{A}$. The linearity of β is immediate. In addition, if $\tilde{T}, \tilde{T}_{1} \in \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ then $\tilde{T} \tilde{T}_{1} W_{A}=\tilde{T} W_{A} T_{1}=W_{A} T T_{1}$. Furthermore $R\left(T T_{1}\right) \subseteq \overline{R(A)}$. Thus $\beta\left(\tilde{T} \tilde{T}_{1}\right)=\beta(\tilde{T}) \beta\left(\tilde{T}_{1}\right)$. So, β is an homomorphism. Now, if $\beta(\tilde{T})=\beta\left(\tilde{T}_{1}\right)$ then $\tilde{T} W_{A} \xi=\tilde{T}_{1} W_{A} \xi$ for all $\xi \in \mathcal{H}$. Now, as $R\left(W_{A}\right)$ is dense in $\mathbf{R}\left(A^{1 / 2}\right)$, then $\tilde{T}=\tilde{T}_{1}$. Thus β is injective.
(3) If $W_{A} T=\tilde{T} W_{A}$ then it is sufficient to show that $\|T\|_{A}=\|\tilde{T}\|_{\mathbf{R}\left(A^{1 / 2}\right)}$. Now,

$$
\begin{aligned}
\|T\|_{A} & =\sup _{0 \neq \xi \in \overline{R(A)}} \frac{\|T \xi\|_{A}}{\|\xi\|_{A}}=\sup _{0 \neq \xi \in \overline{R(A)}} \frac{\left\|W_{A} T \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}}{\|\xi\|_{A}} \\
& =\sup _{0 \neq \xi \in \overline{R(A)}} \frac{\left\|\tilde{T} W_{A} \xi\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}}{\|A \xi\|_{\mathbf{R}\left(A^{1 / 2}\right)}}=\|\tilde{T}\|_{\mathbf{R}\left(A^{1 / 2}\right)}
\end{aligned}
$$

(4) It is straightforward.

The next result and, later, item (1) of Proposition 3.13, show a relationship between the adjoint operation in $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and the ${ }^{\sharp}$ operation in $L_{A^{1 / 2}}(\mathcal{H})$. This result for partially defined positive operators is due to Cojuhari and Gheondea ([7], Theorem 3.1). Here, we present a shorter proof for the case $A \in L(\mathcal{H})^{+}$.

Proposition 3.10. Suppose that $T, W \in L(\mathcal{H})$ satisfies that $A W=T^{*} A$. Then, $T, W \in L_{A}(\mathcal{H})$ and

$$
\tilde{W}=\tilde{T}^{*}
$$

In other words, $\alpha(W)=\alpha(T)^{*}$.
Proof. Indeed, for every $\xi, \eta \in \mathcal{H}$ it holds

$$
\begin{aligned}
(\tilde{T}(A \xi), A \eta) & =\left(W_{A} T \xi, A \eta\right)=\left\langle A^{1 / 2} T \xi, A^{1 / 2} \eta\right\rangle=\langle A T \xi, \eta\rangle \\
& =\left\langle W^{*} A \xi, \eta\right\rangle=\langle A \xi, W \eta\rangle=(A \xi, A W \eta) \\
& =(A \xi, \tilde{W}(A \eta))
\end{aligned}
$$

Therefore, $\alpha(W)=\alpha(T)^{*}$.
The next theorem which is the main result of this section relates, by means of α, the classes of A-operators defined above with similar classes in $L\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$.

Theorem 3.11. Let $A \in L(\mathcal{H})^{+}$. Then, the following equalities hold:

1. $\alpha\left(L_{A}^{s a}(\mathcal{H})\right)=\widetilde{L}^{s a}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$,
2. $\alpha\left(\mathcal{N}_{A}(\mathcal{H})\right)=\tilde{\mathcal{N}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$,
3. $\alpha\left(\mathcal{P}_{A}(\mathcal{H})\right)=\widetilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$,
4. $\alpha\left(\mathcal{C}_{A}(\mathcal{H})\right)=\widetilde{\mathcal{C}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$,
5. $\alpha\left(\mathcal{I}_{A}(\mathcal{H})\right)=\widetilde{\mathcal{I}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$,
6. $\alpha\left(\mathcal{U}_{A}(\mathcal{H})\right)=\widetilde{\mathcal{U}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$,
7. $\alpha\left(\mathcal{J}_{A}(\mathcal{H})\right)=\widetilde{\mathcal{J}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$.

Remark 3.12. Observe that $L_{A}^{s a}(\mathcal{H}), \mathcal{N}_{A}(\mathcal{H}), \mathcal{P}_{A}(\mathcal{H}), \mathcal{U}_{A}(\mathcal{H})$ and $\mathcal{J}_{A}(\mathcal{H})$ are subsets of $L_{A}(\mathcal{H})$, a fortiori of $L_{A^{1 / 2}}(\mathcal{H})$. However, $\mathcal{C}_{A}(\mathcal{H})$ and $\mathcal{I}_{A}(\mathcal{H})$ are not contained in $L_{A}(\mathcal{H})$, in general, but they are subsets of $L_{A^{1 / 2}}(\mathcal{H})$.

For the proof of Theorem 3.11 we shall need the following result in which we determine the images by β of certain subsets of $\tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$.

Proposition 3.13. Let $A \in L(\mathcal{H})^{+}$. The next assertions hold:

1. If $\tilde{T} \in \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and $R(A)$ reduces \tilde{T} then $\beta\left(\tilde{T}^{*}\right)=\beta(\tilde{T})^{\sharp}$.
2. $\beta\left(\widetilde{L}^{s a}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right) \subseteq L_{A}^{s a}(\mathcal{H})$,
3. $\beta\left(\widetilde{\mathcal{N}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right) \subseteq \mathcal{N}_{A}(\mathcal{H})$,
4. $\beta\left(\widetilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right) \subseteq \mathcal{P}_{A}(\mathcal{H})$,
5. $\beta\left(\widetilde{\mathcal{C}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right) \subseteq \mathcal{C}_{A}(\mathcal{H})$,
6. $\beta\left(\widetilde{\mathcal{I}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right) \subseteq \mathcal{I}_{A}(\mathcal{H})$,
7. $\beta\left(\tilde{\mathcal{U}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right) \subseteq \mathcal{U}_{A}(\mathcal{H})$.
8. $\beta\left(\widetilde{\mathcal{J}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)\right) \subseteq \mathcal{J}_{A}(\mathcal{H})$.

Proof. (1) For every $\xi, \eta \in \mathcal{H}$ it holds $\left\langle A \beta\left(\tilde{T}^{*}\right) \xi, \eta\right\rangle=\left(W_{A} \beta\left(\tilde{T}^{*}\right) \xi, W_{A} \eta\right)=$ $\left(\tilde{T}^{*} W_{A} \xi, W_{A} \eta\right)=\left(W_{A} \xi, \tilde{T} W_{A} \eta\right)=\left(W_{A} \xi, W_{A} \beta(\tilde{T}) \eta\right)=\langle\xi, A \beta(\tilde{T}) \eta\rangle$. Therefore, $A \beta\left(\tilde{T}^{*}\right)=\beta(\tilde{T})^{*} A$. Furthermore $R\left(\beta\left(\tilde{T}^{*}\right)\right) \subseteq \overline{R(A)}$. Hence, $\beta\left(\tilde{T}^{*}\right)=\beta(\tilde{T})^{\sharp}$.
(2) It is consequence of item (1).
(3) Let $\tilde{T} \in \tilde{\mathcal{N}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and $T=\beta(\tilde{T})$. Hence, $T T^{\sharp}=\beta(\tilde{T}) \beta\left(\tilde{T}^{*}\right)=\beta\left(\tilde{T} \tilde{T}^{*}\right)=$ $\beta\left(\tilde{T}^{*} \tilde{T}\right)=\beta\left(\tilde{T}^{*}\right) \beta(\tilde{T})=T^{\sharp} T$. Therefore $\beta(\tilde{T}) \in \mathcal{N}_{A}(\mathcal{H})$.
(4) Let $\tilde{P} \in \widetilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. Since β is a homomorphism, $\beta(\tilde{T})$ is idempotent. Furthermore, by $(2), \beta(\tilde{P})$ is A-selfadjoint. Thus, $\beta(\tilde{P}) \in \mathcal{P}_{A}(\mathcal{H})$.
(5) Let $\tilde{T} \in \widetilde{\mathcal{C}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and $T=\beta(\tilde{T})$. Then, for every $\xi \in \mathcal{H}$ it holds $\|T \xi\|_{A}=$ $\|A T \xi\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\|\tilde{T}(A \xi)\|_{\mathbf{R}\left(A^{1 / 2}\right)} \leq\|A \xi\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\|\xi\|_{A}$. Therefore, T is an A contraction.
The proofs of items (6) and (7) are similar to the above one.
(8) If $\tilde{T} \in \widetilde{\mathcal{J}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ then $\tilde{T}^{*} \tilde{T} \in \widetilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ and $\beta\left(\tilde{T}^{*} \tilde{T}\right)=T^{\sharp} T \in \mathcal{P}_{A}(\mathcal{H})$ by item (4). So $T=\beta(\tilde{T})$ is an A-partial isometry.

By Proposition 3.13 and since $\alpha \beta=i d$, the next inclusions hold: $\widetilde{L}^{s a}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \subseteq$ $\alpha\left(L_{A}^{s a}(\mathcal{H})\right), \widetilde{\mathcal{N}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \subseteq \alpha\left(\mathcal{N}_{A}(\mathcal{H})\right), \widetilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \subseteq \alpha\left(\mathcal{P}_{A}(\mathcal{H})\right), \widetilde{\mathcal{C}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \subseteq$ $\alpha\left(\mathcal{C}_{A}(\mathcal{H})\right), \widetilde{\mathcal{I}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \subseteq \alpha\left(\mathcal{I}_{A}(\mathcal{H})\right), \widetilde{\mathcal{U}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \subseteq \alpha\left(\mathcal{U}_{A}(\mathcal{H})\right)$, and $\widetilde{\mathcal{J}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \subseteq$ $\alpha\left(\mathcal{J}_{A}(\mathcal{H})\right)$. Hence, in order to finish the proof of Theorem 3.11 it only remains to show the reverse inclusions:

Proof of Theorem 3.11

(1) This equality is a particular case of Proposition 3.10.
(2) The equality follows since α is a homomorphism.
(3) Let $Q \in \mathcal{P}_{A}(\mathcal{H})$. By (1), $\alpha(Q)=\tilde{Q} \in \widetilde{L}^{s a}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. Furthermore \tilde{Q} is idempotent because α is a homomorphism. So, $\tilde{Q} \in \mathcal{P}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$.
(4) Let $T \in \mathcal{C}_{A}(\mathcal{H})$ and $\tilde{T}=\alpha(T)$. Then, for every $\xi \in \mathcal{H}$ it holds $\|\tilde{T}(A \xi)\|_{\mathbf{R}\left(A^{1 / 2}\right)}=$ $\|A T \xi\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\|T \xi\|_{A} \leq\|\xi\|_{A}=\|A \xi\|_{\mathbf{R}\left(A^{1 / 2}\right)}$. Hence, as $R(A)$ is dense in $\mathbf{R}\left(A^{1 / 2}\right)$, we get that \tilde{T} is a contraction.
The proofs of items (5) and (6) can be done following the same lines that in item (4).
(7) Let $T \in \mathcal{J}_{A}(\mathcal{H})$ then $T^{\sharp} T$ is a projection. So $\alpha\left(T^{\sharp} T\right)=\tilde{T}^{*} \tilde{T} \in \widetilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. Then $\tilde{T} \in \widetilde{\mathcal{J}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$.

Remark 3.14. A closed subspace \mathcal{S} of \mathcal{H} and a positive semidefinite operator A are called compatible if there exists a (bounded linear) projection Q onto \mathcal{S} which is A-selfadjoint. In [9], the compatibility of a pair (A, \mathcal{S}) is related to the existence in the operator range $\mathbf{R}\left(A^{1 / 2}\right)$ of a convenient orthogonal projection. More precisely, given a closed subspace \mathcal{S} of \mathcal{H} the pair (A, \mathcal{S}) is compatible if and only if $P_{\overline{A(\mathcal{S})^{\prime}}} \in \tilde{L}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ where ${\overline{A(\mathcal{S})^{\prime}}}^{\prime}$ denotes the closure of $A(\mathcal{S})$ in $\mathbf{R}\left(A^{1 / 2}\right)$. As a consequence, in general, $\tilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right) \neq \mathcal{P}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$. In fact, consider $B \in L(\mathcal{H})^{+}$
with non closed range and $A \in L(\mathcal{H} \oplus \mathcal{H})^{+}$defined by $A=\left(\begin{array}{cc}B & B^{1 / 2} \\ B^{1 / 2} & I\end{array}\right)$. Now, by Theorem 2.9, [8], the pair $(A, \overline{R(B)} \oplus\{0\})$ is not compatible. Therefore, if $\mathcal{W}=\overline{A(\overline{R(B)}} \oplus\{0\})^{\prime}$ then $P_{\mathcal{W}} \notin \tilde{\mathcal{P}}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$.

4 The A-reduced minimum modulus

In this section we introduce the concept of A-reduced minimum modulus of an operator. This is a natural generalization of the reduced minimum modulus: recall that the reduced minimum modulus of an operator $T \in L(\mathcal{H})$ is defined as

$$
\gamma(T)=\inf \left\{\|T \xi\|: \xi \in N(T)^{\perp} \text { and }\|\xi\|=1\right\}
$$

Definition 4.1. Let $A \in L(\mathcal{H})^{+}$and $T \in L(\mathcal{H})$. The A-reduced minimum modulus of T is

$$
\gamma_{A}(T)=\inf \left\{\|T \xi\|_{A}: \xi \in N\left(A^{1 / 2} T\right)^{\perp_{A}} \text { and }\|\xi\|_{A}=1\right\}
$$

Note that if $T \in L_{A}(\mathcal{H})$ then $\gamma_{A}(T)=\inf \left\{\|T \xi\|_{A}: \xi \in \overline{R\left(T^{\sharp} T\right)}\right.$ and $\left.\|\xi\|_{A}=1\right\}$. From now on, given $T \in L_{A^{1 / 2}}(\mathcal{H})$ we denote by T^{\diamond} the reduced solution of the equation $A^{1 / 2} X=T^{*} A^{1 / 2}$, namely, $T^{\diamond}=\left(A^{1 / 2}\right)^{\dagger} T^{*} A^{1 / 2}$.

Proposition 4.2. Let $A \in L(\mathcal{H})^{+}$. If $T \in L_{A^{1 / 2}}(\mathcal{H})$ then $\gamma_{A}(T) \leq \gamma(C)$ for every solution C of the equation $A^{1 / 2} X=T^{*} A^{1 / 2}$. In particular, $\gamma_{A}(T) \leq \gamma\left(T^{\diamond}\right)$.
Proof. Let $T \in L_{A^{1 / 2}}(\mathcal{H})$ and $C \in L(\mathcal{H})$ such that $A^{1 / 2} C=T^{*} A^{1 / 2}$. If $\xi \in$ $N\left(A^{1 / 2} T\right)^{\perp_{A}}$ then $\eta=A^{1 / 2} \xi \in A^{-1 / 2}\left(\overline{R\left(T^{*} A^{1 / 2}\right)}\right)$. So $\|\xi\|_{A}=\|\eta\|$ and $\|T \xi\|_{A}^{2}=$ $\underline{\left\|C^{*} \eta\right\|^{2}}$. On the other hand, as $R(C) \subseteq A^{-1 / 2}\left(R\left(T^{*} A^{1 / 2}\right)\right)$, it holds that $N\left(C^{*}\right)^{\perp}=$ $\overline{R(C)} \subseteq \overline{A^{-1 / 2}\left(R\left(T^{*} A^{1 / 2}\right)\right)} \subseteq A^{-1 / 2}\left(\overline{R\left(T^{*} A^{1 / 2}\right)}\right)$. Therefore,

$$
\begin{aligned}
\gamma_{A}(T) & =\inf \left\{\|T \xi\|_{A}: \quad \xi \in N\left(A^{1 / 2} T\right)^{\perp_{A}} \text { and }\|\xi\|_{A}=1\right\} \\
& =\inf \left\{\left\|C^{*} \eta\right\|: \eta \in A^{-1 / 2}\left(\overline{R\left(T^{*} A^{1 / 2}\right)}\right) \text { and }\|\eta\|=1\right\} \\
& \leq \inf \left\{\left\|C^{*} \eta\right\|: \eta \in N\left(C^{*}\right)^{\perp} \text { and }\|\eta\|=1\right\} \\
& =\gamma\left(C^{*}\right)=\gamma(C)
\end{aligned}
$$

Proposition 4.3. Let $A \in L(\mathcal{H})^{+}, T \in L_{A}(\mathcal{H})$ and C be a solution of the equation $A^{1 / 2} X=T^{*} A^{1 / 2}$. If $A^{1 / 2} \overline{R\left(T^{\sharp} T\right)} \subseteq \overline{R(C)}$ then $\gamma_{A}(T)=\gamma(C)$.
Proof. Let $C \in L(\mathcal{H})$ be a solution of the equation $A^{1 / 2} X=T^{*} A^{1 / 2}$. Then, by Proposition 4.2, it holds that $\gamma_{A}(T) \leq \gamma(C)$. Now, as $T \in L_{A}(\mathcal{H})$, if $\xi \in \overline{R\left(T^{\sharp} T\right)}$ then $\eta=A^{1 / 2} \xi \in A^{1 / 2} \overline{R\left(T^{\sharp} T\right)}$. Then,

$$
\begin{aligned}
\gamma_{A}(T) & =\inf \left\{\|T \xi\|_{A}: \xi \in \overline{R\left(T^{\sharp} T\right)} \text { and }\|\xi\|_{A}=1\right\} \\
& =\inf \left\{\left\|C^{*} \eta\right\|: \eta \in A^{1 / 2} \overline{R\left(T^{\sharp} T\right)} \text { and }\|\eta\|=1\right\} \\
& \geq \inf \left\{\left\|C^{*} \eta\right\|: \eta \in N\left(C^{*}\right)^{\perp} \text { and }\|\eta\|=1\right\} \\
& =\gamma\left(C^{*}\right)=\gamma(C) .
\end{aligned}
$$

Therefore, $\gamma_{A}(T)=\gamma(C)$.

Lemma 4.4. Let $A \in L(\mathcal{H})^{+}$and $T \in L_{A}(\mathcal{H})$. Then $T^{\diamond} A^{1 / 2}=A^{1 / 2} T^{\sharp}$.
Proof. As $L_{A}(\mathcal{H}) \subseteq L_{A^{1 / 2}}(\mathcal{H})$ there exists T^{\diamond}. Now, $A^{1 / 2} T^{\diamond} A^{1 / 2}=T^{*} A$. On the other hand, $A^{1 / 2} A^{1 / 2} T^{\sharp}=A T^{\sharp}=T^{*} A$. Then, $T^{\diamond} A^{1 / 2}$ and $A^{1 / 2} T^{\sharp}$ are both reduced solutions of the equation $A^{1 / 2} X=T^{*} A$. Therefore $T^{\diamond} A^{1 / 2}=A^{1 / 2} T^{\sharp}$.

The next result shows that the A-reduced minimum modulus of an operator $T \in L_{A}(\mathcal{H})$ coincides with the classical reduced minimum modulus of T^{\diamond}.

Corollary 4.5. Let $A \in L(\mathcal{H})^{+}$and $T \in L_{A}(\mathcal{H})$. Then
(1) $\gamma_{A}(T)=\gamma\left(T^{\diamond}\right)$.
(2) $\gamma_{A}(T)=\gamma_{A}\left(T^{\sharp}\right)$.

Proof. 1. By Proposition 4.3, it is sufficient to show that $A^{1 / 2} \overline{R\left(T^{\sharp} T\right)} \subseteq \overline{R\left(T^{\diamond}\right)}$. Now, by Lemma 4.4, it holds that $A^{1 / 2} R\left(T^{\sharp} T\right)=R\left(T^{\diamond} A^{1 / 2} T\right) \subseteq R\left(T^{\diamond}\right)$. Hence, $\overline{A^{1 / 2} \overline{R\left(T^{\sharp} T\right)}}=\overline{A^{1 / 2} R\left(T^{\sharp} T\right)} \subseteq \overline{R\left(T^{\diamond}\right)}$. So, $A^{1 / 2} \overline{R\left(T^{\sharp} T\right)} \subseteq \overline{R\left(T^{\diamond}\right)}$ and the assertion follows.
2. As $T \in L_{A}(\mathcal{H})$ then $T^{\sharp} \in L_{A}(\mathcal{H})$. By the above item, it is sufficient to show that $\left(T^{\diamond}\right)^{*}$ is the reduced solution of the equation $A^{1 / 2} X=\left(T^{\sharp}\right)^{*} A^{1 / 2}$. Now, by Lemma 4.4, it holds that $A^{1 / 2}\left(T^{\diamond}\right)^{*}=\left(T^{\sharp}\right)^{*} A^{1 / 2}$. On the other hand, $R\left(\left(T^{\diamond}\right)^{*}\right) \subseteq \overline{R\left(\left(T^{\diamond}\right)^{*}\right)}=N\left(T^{\diamond}\right)^{\perp}=N\left(T^{*} A^{1 / 2}\right)^{\perp}=\overline{R\left(A^{1 / 2} T\right)} \subseteq \overline{R\left(A^{1 / 2}\right)}$ and so the assertion follows.

We finish this section extending the following theorem due to Mbekhta [19]:
Theorem (Mbekhta) If $T \in L(\mathcal{H})$ is a contraction, then the following conditions are equivalent:

1. T is a non-zero partial isometry.
2. $\gamma(T)=1$.

Theorem 4.6. Let $A \in L(\mathcal{H})^{+}$. If $T \in L_{A}(\mathcal{H})$ is an A-contraction, then the following conditions are equivalent:

1. T is an A-partial isometry such that T^{\sharp} is non-zero.
2. $\gamma_{A}(T)=1$.

Proof. Let T be an A-partial isometry such that T^{\sharp} is non-zero. Then $T^{\sharp} T$ is nonzero and $\|T \xi\|_{A}=\|\xi\|_{A}$ for every $\xi \in \overline{R\left(T^{\sharp} T\right)}$. Therefore, by definition, $\gamma_{A}(T)=1$. Conversely, since $T \in L_{A}(\mathcal{H}) \subseteq L_{A^{1 / 2}}(\mathcal{H})$ then $\left(T^{\diamond}\right)^{*}=\overline{A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}} \in L(\mathcal{H})$. Thus, $T^{\diamond}\left(T^{\diamond}\right)^{*}=\overline{\left(A^{1 / 2}\right)^{\dagger} T^{*} A T\left(A^{1 / 2}\right)^{\dagger}} \leq \overline{\left(A^{1 / 2}\right)^{\dagger} A\left(A^{1 / 2}\right)^{\dagger}}=P_{\overline{R(A)}} \leq I$. Therefore $\left(T^{\diamond}\right)^{*}$ is a contraction. On the other hand, by Corollary4.5, $1=\gamma_{A}(T)=\gamma\left(T^{\diamond}\right)=$ $\gamma\left(\left(T^{\diamond}\right)^{*}\right)$. Then, by Mbekhta's theorem, $\left(T^{\diamond}\right)^{*}$ is a non-zero partial isometry. Moreover, as $\left(T^{\diamond}\right)^{*}$ is non-zero, T^{\sharp} is non-zero. Now,

$$
\begin{aligned}
\left(T^{\sharp} T\right)^{2} & =A^{\dagger} T^{*} A T A^{\dagger} T^{*} A T \\
& =\left(A^{1 / 2}\right)^{\dagger}\left(A^{1 / 2}\right)^{\dagger} T^{*} A^{1 / 2} A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}\left(A^{1 / 2}\right)^{\dagger} T^{*} A^{1 / 2} A^{1 / 2} T \\
& =\left.\left(A^{1 / 2}\right)^{\dagger} T^{\diamond}\left(T^{\diamond}\right)^{*}\right|_{\mathcal{D}\left(\left(A^{1 / 2}\right)^{\dagger}\right)} T^{\diamond} A^{1 / 2} T=\left(A^{1 / 2}\right)^{\dagger} T^{\diamond} A^{1 / 2} T \\
& =T^{\sharp} T .
\end{aligned}
$$

Then T is an A-partial isometry.

Aknowledgement The authors wish to express their thanks to Mostafa Mbekhta for suggesting the study of A-reduced minimum modulus of an operator and its relationship with A-partial isometries and to Jorge Antezana for providing the beautiful proof of 1.2 .

References

[1] T. Ando, De Branges spaces and analytic operator functions, Hokkaido University, Sapporo, Japan, 1990.
[2] M. L. Arias, G. Corach, M. C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008) 1460-1475.
[3] M. L. Arias, G. Corach, M. C. Gonzalez, Generalized inverses and Douglas equations, Proc. Amer. Math. Soc. 136 (2008) 3177-3183.
[4] B. A. Barnes, The spectral properties of certain linear operators and their extensions, Proc. Amer. Math. Soc. 128 (2000), 1371-1375.
[5] L. de Branges, J. Rovnyak, Square Summable Power Series, Holt, Rinehert and Winston, New York, 1966.
[6] L. de Branges, J. Rovnyak, Appendix on square summable power series,in ''Perturbation Theory and its Applications in Quantum Mechanics', Wiley, 1966, pp. 347-392.
[7] P. Cojuhari, A. Gheondea, On lifting of operators to Hilbert spaces induced by positive selfadjoint operators, J. Math. Anal. Appl. 304 (2005), 584-598.
[8] G. Corach, A. Maestripieri, D. Stojanoff, A classification of projectors. Topological algebras, their applications and related topics, Banach Center Publications 67, Polish Acad. Sci., Warsaw, (2005), 145-160.
[9] G. Corach, A. L. Maestripieri, D. Stojanoff, Projections in operator ranges. Proc. Amer. Math. Soc. 134 (2006), 765-778.
[10] J. Dieudonné, Quasi-Hermitian operators, in: Proc. Internat. Symp. Linear Spaces, Jerusalem, (1961), pp. 115-122.
[11] R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416.
[12] H. W. Engl, M. Z. Nashed, New extremal characterizations of generalized inverses of linear operators, J. Math. Anal. Appl. 82, (1981) 566-586.
[13] P. A. Fillmore, J. P. Williams, On operator ranges, Adv. Math. 7 (1971), 254281.
[14] F. Hansen, G. K. Pedersen, Jensen's operator inequality, Bull. London Math. Soc. 35 (2003), 553-564.
[15] F. Hansen, G. K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math.Ann. 258 (1981/82), 229-241.
[16] S. Hassi, Z. Sebestyén, H. S. V. De Snoo, On the nonnegativity of operator products, Acta Math. Hungar. 109 (2005), 1-14.
[17] M.G. Krein, Compact linear operators on functional spaces with two norms, Integral Equations Operator Theory 30 (1998) 140-162,(translation from the Ukranian of a paper published in 1937).
[18] P.D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954) 633-647.
[19] M. Mbekhta, Partial isometries and generalized inverses, Acta Sci. Math. (Szeged) 70 (2004), 767 -781.
[20] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, Wiley, New York, 1994.
[21] Z. Sebestyén, On ranges of adjoint operators in Hilbert space, Acta Sci. Math. (Szeged) 46 (1983) 295-298.
[22] Z. Sebestyén, Operator extensions on Hilbert space, Acta Sci. Math. (Szeged) 57 (1993), 233-248.
[23] Z. Sebestyén, Positivity of operator products, Acta Sci. Math. (Szeged) 66 (2000), 287-294.
[24] Z. Sebestyén, J. Stochel, Reflection symmetry and symmetrizability of Hilbert space operators, Proc. Amer. Math. Soc. 133 (2005), 1727-1731.
[25] L. Suciu, Maximum subspaces related to A-contractions and quasinormal operators, Journal of the Korean Mathematical Society 45 (2008), 1-15.
[26] A.C. Zaanen, Linear Analysis, Interscience Publishers Inc., New York, 1953.

[^0]: *The authors were supported in part by UBACYT I030, PIP 2188/00

