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(Communicated by Edward C. Waymire)

Abstract. Here we study the almost sure almost everywhere convergence
of random series of the form

∑∞
i=1 aifi in the Lebesgue spaces Lp(X, Σ, µ),

where the ai’s are centered random variables, and the fi’s constitute an un-
conditional basic sequence or an lp stable sequence. We show that if one of
these series converges in the norm topology almost surely, then it converges
almost everywhere almost surely.

1. Introduction

Here, we consider random series of the form:

(1.1)
∞∑

i=1

aifi ,

where the ai’s are independent centered random variables, and the fi’s are either
an unconditional basic sequence, or an lp stable sequence in a Lebesgue space
Lp(X, Σ, µ), where p is not necessarily equal to 2 and µ is a σ-finite measure. The
main goal is to show that if one of these series converges in the norm topology
almost surely, then it converges almost everywhere almost surely. More precesily,
in Section 3 we prove:

Theorem 1.1. a) Let {aj}j∈N be a sequence of independent random variables such
that there exists a constant C > 0 such that E|aj |2p ≤ C(E|aj |p)2, ∀ j, and E(aj) =
0; let {fj}j∈N ⊂ Lp(X, Σ, µ), 1 ≤ p < ∞, be an lp-stable sequence, and let µ
be a σ-finite measure. If

∑∞
i=1 aifi converges in Lp(X, Σ, µ) a.s., then

∑∞
i=1 aifi

converges [µ] almost everywhere a.s.
b) Let {aj}j∈N be a sequence of independent random variables such that there

exists a constant C > 0 such that E|aj |2p ≤ C(E|aj |2)p, ∀ j, and E(aj) = 0; let
{fj}j∈N ⊂ Lp(X, Σ, µ) be an unconditional basic sequence, and let µ be a σ-finite
measure. If

∑∞
i=1 aifi converges in Lp(X, Σ, µ) a.s., then

∑∞
i=1 aifi converges [µ]-

almost everywhere a.s. If 1 ≤ p < 2, the last assertion remains true with the
additional condition: (E|ai|p)

1
p ≥ c(E|ai|2)

1
2 .
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It is remarkable that the case p = 2 in Theorem 1.1 can be easily derived from
the results in [2], with the only assumption that the series (1.1) converges in norm
a.s. This is a consequence of the fact that L2(X, Σ, µ) is a Hilbert space, and that
the independence of the ai’s makes the aifi’s behave as orthogonal elements; i.e.,
they are orthogonal in L2(X × Ω) = L2(Ω, L2(X)). Since unconditional bases are
good bases and keep some of the properties of an orthogonal basis, it is reasonable
that this result can be extended to the case p �= 2 when {fj}j∈N is an unconditional
basis.

Additionally, as a consequence, we obtain an interesting result similar to the
corollary of [6], which can be described as follows:

Corollary 1.1. Let f ∈ Span{fj}j∈N ⊂ Lp(X, Σ, µ) with µ σ-finite, {θj}j a se-
quence of i.i.d. r.v.’s taking values in {+1,−1} with equal probability, and {fj}j∈N

an unconditional basic (lp-stable) sequence. If f =
∑

i aifi is the expansion of f in
this basis, then the random series

∑
i θiaifi converges a.e. [µ] a.s.

Proof. It will become clear that this result is a direct application of Theorem 1.1
below and the definition of an unconditional basic (lp-stable) sequence. �

Intuitively, given f ∈ Span{fj}j ⊂ Lp(X, Σ, µ), one may expect the series ex-
pansion of f in the basis {fj}j∈N to converge not only in the norm of Lp(X, Σ, µ)
but also almost everywhere. It should be pointed out that the exceptional set of
zero probability may not necessarily be void for an arbitrary unconditional basic se-
quence (basis). This follows from the following result in Ergodic Theory: orthonor-
mal bases in a Hilbert space are unconditional bases, but Menchoff [5] showed that
if (X, Σ, µ) is [0, 1] with Lebesgue Measure, then there exists an orthonormal basis
{fj}j∈N of L2[0, 1] and an f0 ∈ L2[0, 1] such that the sequence Pkf0 of projections
of f0 on the subspaces spanned by {f1, ..., fk} diverges a.e.

In the following, in Section 2 we give some definitions and auxiliary results, and
in Section 3 we prove Theorem 1.1, from which Corollary 1.1 follows.

2. Auxiliary results and definitions

Here we will be considering two measure spaces: a probability space, say
(Ω,F ,P), and another measure space (X, Σ, µ), with µ σ-finite. As usual, we
define the Lebesgue spaces Lp(X, Σ, µ). We talk about properties that hold almost
everywhere [µ] almost surely. This must be understood without ambiguity meaning
that such a property holds for a measurable set defined in X ×Ω with the complete
measure µ × P [2]. The main target is to deal with certain random elements [7]
in Lp(X, Σ, µ), but some results remain true in a general separable Banach space
with arbitrary norm ‖.‖. In this case we will denote it by just (E, ‖.‖), and in
order to make things work we must consider in E, B(E) [7], the Borel σ-algebra
generated by the open sets of (E, ‖.‖). Then, a random element is a measurable
map X : Ω −→ E, where sometimes E = Lp(X, Σ, µ).

In a Banach space E, a sequence {fj}j∈N ⊂ E is called a (Schauder) basis
if ∀x ∈ E there exists a unique sequence {aj}j∈N ∈ R

N such that
x =

∑
i∈N aifi, where this must be understood as a limit in the norm topology.

A Schauder basis {fj}j∈N is called [3] an unconditional basis if ∀ a ∈ R
N such that∑

i∈N aifi converges, then
∑

i∈N θiaifi converges, provided that θj = ∓1. A se-
quence {fj}j∈N is called a (unconditional) basic sequence, if it is a (unconditional)
basis of a closed subspace of E.



Now, we need some results from probability theory. The following can be found,
for example, in [4]:

Theorem 2.1 (Generalized Kolmogorov inequality). Let X1, X2, ... be independent
r.v.’s with EXi = 0 ∀ i, and let p ≥ 1, δ > 0. Then

P

⎛
⎝ n∨

j=1

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ > δ

⎞
⎠ ≤ 1

δp
E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

.

We will also need the following inequality [2]:

Lemma 2.1. Let 0 < λ < 1, X ∈ L2(Ω,F ,P) and X > 0 a.s. Then

P (X ≥ λE(X)) ≥ (1 − λ)2
(E(X))2

EX2
.

lp-stability is defined as an equivalence of norms:

Definition 1 ([1]). Let (E, ‖.‖) be a Banach space. Then {fj}j∈N ⊂ E is an
lp-stable sequence (p ∈ [1,∞)) if there exist positive constants cp and Kp, such
that:

cp ‖a‖lp ≤
∥∥∥∥∥
∑

i

aifi

∥∥∥∥∥ ≤ Kp ‖a‖lp , ∀ a ∈ l0 .

In the following µ will be a σ-finite measure. We are also interested in uncondi-
tional basic sequences, and the following result from [9] will be very important in
the sequel:

Theorem 2.2. Let {fj}j∈N be a basic sequence in Lp(X, Σ, µ) (1 ≤ p ≤ ∞). Then
it is unconditional if and only if there exist positive constants Ap, Bp such that:

Ap

∥∥∥∥∥∥∥
⎛
⎝∑

j

|ajfj |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
Lp(X)

≤

∥∥∥∥∥∥
∑

j

ajfj

∥∥∥∥∥∥
Lp(X)

≤ Bp

∥∥∥∥∥∥∥
⎛
⎝∑

j

|ajfj |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
Lp(X)

∀
∑

j ajfj ∈ Lp(X, Σ, µ).

This result characterizes unconditional basic sequences in terms of equivalency
of norms or as a “Littlewood-Paley like” inequality. We will use this equivalence
without referring to it, but it will become clear from the context. Moreover, with
this, we can prove our first result: a kind of analogue of a result in the work of
Paley and Zygmund.

Proposition 2.1. a) Let {fj}j∈N ⊂ E be an lp-stable sequence, 0 < λ < 1, and
let {aj}j∈N be a sequence of independent random variables such that there exists a
constant C > 0 such that E|aj |2p ≤ C(E|aj|p)2, ∀ j. Then equation (2.1) holds.

b) Let {fj}j∈N ⊂ Lp(X, Σ, µ) (∞ > p ≥ 2) be a basic unconditional sequence,
0 < λ < 1; and let {aj}j∈N be a sequence of independent random variables such that
there exists a constant C > 0 such that E|aj |2p ≤ C(E|aj|2)p, ∀ j. Then equation
(2.1) holds. If 1 ≤ p < 2, the last assertion remains true with the additional
condition: (E|ai|p)

1
p ≥ c(E|ai|2)

1
2 .

(2.1) P

⎛
⎝

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p⎞
⎠ ≥ (1 − λ)2k,



where k is a positive constant independent of n.

Remark. The hypothesis E|aj |2p ≤ C(E|aj |p)2 ∀ j is a regularity condition in order
to control the values of the ai’s. Similar conditions can be found in [2] dealing, for
example, with random Fourier series. This condition prevents aj from being small
with a large probability and from being large with a small probability. For example,
if the aj ’s are N (0, σj

2), then it is known that (E|aj |p)
1
p = c(p)(E|aj|2p)

1
2p .

Part a). First, by Lemma 2.1 we have:

(2.2) P

⎛
⎝

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p⎞
⎠ ≥ (1 − λ)2

(
E

∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥
p)2

E

∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥
2p .

On the other hand,
(2.3)

E

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
2p

≤ K2p
p E

⎛
⎝ n∑

j=1

|aj |p
⎞
⎠

2

= K2p
p E

⎛
⎝ n∑

j=1

|aj |p
n∑

i=1

|ai|p
⎞
⎠

= K2p
p

⎛
⎝ n∑

j=1

E|aj |2p +
n∑
i

n∑
j �=i

E|aj |pE|ai|p
⎞
⎠

≤ K2p
p

⎛
⎝ n∑

j=1

C(E|aj|p)2 +

(
n∑

i=1

E|ai|p
)2

⎞
⎠ ≤ K2p

p (C + 1)

⎛
⎝ n∑

j=1

E|aj |p
⎞
⎠

2

.

Clearly, from (2.3):(
E

∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥
p)2

E

∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥
2p ≥

c2p
p

(∑n
j=1 E|aj |p

)2

K2p
p (C + 1)

(∑n
j=1 E|aj |p

)2 .

This, together with equation (2.2) implies the desired result.

Part b). To bound E

∥∥∥(∑n
i=1 |aifi|2

) 1
2

∥∥∥p

we must consider two separate cases:
first ∞ > p ≥ 2 and then 1 ≤ p ≤ 2. The rest of the proof is valid for all ∞ > p ≥ 1.
If p ≥ 2, then,

E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
p

=
∫
Ω

∫
X

(
n∑

i=1

|aifi|2
) p

2

dµdP =
∫
X

∫
Ω

(
n∑

i=1

|aifi|2
) p

2

dPdµ

(2.4)

=
∫
X

E

(
n∑

i=1

|aifi|2
) p

2

dµ.



But by Hölder’s inequality, E
(∑n

i=1 |aifi|2
) p

2 ≥
(
E

∑n
i=1 |aifi|2

) p
2 and clearly, from

this and (2.4) we have:

(2.5) E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
p

≥

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

.

Now, if 1 ≤ p < 2, then as a direct consequence of Minkowski’s integral inequality:

(2.6)∫
X

E

(
n∑

i=1

|aifi|2
) p

2

dµ ≥
∫
X

(
n∑

i=1

(E|ai|p)
2
p |fi|2

) p
2

dµ ≥ c

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

.

On the other hand,

(2.7) E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
2p

=
∫
Ω

⎛
⎝∫

X

(
n∑

i=1

|aifi|2
) p

2

dµ

⎞
⎠

2

dP.

If we define g(x, ω) =
(∑n

i=1 |ai(ω)fi(x)|2
) p

2 , then, by Minkowski’s inequality, we
have the following bound on (2.7):

∫
Ω

⎛
⎝∫

X

g(x, ω)dµ

⎞
⎠

2

dP ≤

⎛
⎜⎝∫

X

⎛
⎝∫

Ω

|g(x, ω)|2dP

⎞
⎠

1
2

dµ

⎞
⎟⎠

2

.

Now,
∫
Ω
|g(x, ω)|2dP = E

(∑n
i=1 |aifi(x)|2

)p. Then by the triangle inequality:

(2.8)

E

(
n∑

i=1

|aifi(x)|2
)p

≤
(

n∑
i=1

(
E|aifi(x)|2p

) 1
p

)p

=

(
n∑

i=1

(E|ai|2p)
1
p |fi(x)|2

)p

≤ C

(
n∑

i=1

E|ai|2|fi(x)|2
)p

,

where the last inequality follows from E|aj |2p ≤ C(E|aj |2)p, ∀ j.
Hence:

∫
X

⎛
⎝∫

Ω

|g(x, ω)|2dP

⎞
⎠

1
2

dµ

≤ C
1
2

∫
X

(
n∑

i=1

E|ai|2|fi|2
) p

2

dµ = C
1
2

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

Lp(X)

,

and from this it is immediate that

(2.9) E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
2p

≤ C

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
2p

.



By equations (2.9) and (2.4) or (2.6) we have the following bounds:

(2.10) E

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p

≥ Ap
pE

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
p

≥ kpA
p
p

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

and
(2.11)

E

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
2p

≤ B2p
p E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
2p

≤ CB2p
p

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
2p

.

Recalling (2.2), also from (2.10) and (2.11), we have:

(
E

∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥
p)2

E

∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥
2p ≥

A2p
p

∥∥∥(∑n
i=1 E|ai|2|fi|2

) 1
2

∥∥∥2p

B2p
p C

∥∥∥(
∑n

i=1 E|ai|2|fi|2)
1
2

∥∥∥2p ,

and then we get the desired result. �

Now, let us prove a result which is a consequence of Theorem 2.1:

Theorem 2.3. Let {Xi}i be a sequence of random elements in Lp(X, Σ, µ) such
that EXi = 0 [µ]-a.e. and {Xi(x, ·)}i are independent for almost all x ∈ X. Then
if

∑
i Xi converges in the norm topology of Lp(X × Ω), then it converges [µ]-a.e.

a.s.

Proof. This proof is a standard argument. First we begin by transferring Theorem
2.1 for random variables to this context:

(2.12)

∫
X

P

⎛
⎝(x, ω) ∈ X × Ω :

n∨
j=1

∣∣∣∣∣
m+j∑

i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

⎞
⎠ dµ

≤ 1
δp

∫
X

E

∣∣∣∣∣
m+n∑

i=m+1

Xi

∣∣∣∣∣
p

dµ (By Theorem 2.1)

=
1
δp

E

∥∥∥∥∥
m+n∑

i=m+1

Xi

∥∥∥∥∥
p

Lp(X,Σ,µ)

(By Fubini’s theorem).

Now, with this maximal inequality we have: in X × Ω write ν = µ × P; taking
δ > 0 and m ∈ N then:

{
(x, ω) : sup

j∈N

∣∣∣∣∣
m+j∑

i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
⊂

⋃
n∈N

Dn ,



where Dn =

{
(x, ω) :

n∨
j=1

∣∣∣∑m+j
i=m+1 Xi(x, ω)

∣∣∣ > δ

}
. Clearly Dn ⊂ Dn+1. Then

ν

{
(x, ω) : sup

j∈N

∣∣∣∣∣
m+j∑

i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
≤ ν

( ⋃
n∈N

Dn

)
= lim

n→∞
ν(Dn)

≤
Kp

p

δp
lim

n→∞
E

∥∥∥∥∥
n∑

i=m+1

Xi

∥∥∥∥∥
p

= C(m, δ) < ∞ (By equation (2.12)).

Since
∑n

i=1 Xi is Cauchy in Lp(X × Ω), this implies:

(2.13) lim
m→∞

ν

{
(x, ω) : sup

j∈N

∣∣∣∣∣
m+j∑

i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
= 0 .

Define En δ =

{
(x, ω) : sup

j,k>n

∣∣∣∑j
i=k+1 Xi(x, ω)

∣∣∣ > 2δ

}
. Then

En δ ⊂
{

sup
j∈N

∣∣∣∣∣
n+j∑

i=n+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
,

so that En+1 δ ⊂ En δ. From this and equation (2.13) we have:

ν

( ⋂
n∈N

En δ

)
= lim

n→∞
ν(En δ) = 0 =⇒ ν

⎛
⎝ ⋃

δ∈Q>0

⋂
n∈N

En δ

⎞
⎠ = 0 . �

3. Main results

First, let us note that if supn∈N

∥∥∥(∑n
i=1 E|ai|2|fi|2

) 1
2

∥∥∥p

< ∞ under the condi-

tions of Proposition 2.1 part b), then it is inmediate that Sn =
∑n

i=1 aifi is a
Cauchy sequence in Lp(X × Ω) (equations (3.4) and (3.5)) and since for λ > 0:
P(‖Sn − Sm‖ > λ) ≤ E‖Sn−Sm‖p

λp , then it is a Cauchy sequence in probability (in
the sense for random elements [7], [2]), but the convergence in probability of sums
of random independent elements implies a.s. convergence ([2], Chap. 2). A similar
argument holds for the case of lp-stable sequences. Now we need a converse of this
fact, which is not as trivial.

Proposition 3.1. a) Let {fj}j∈N be an lp-stable sequence and {aj}j∈N be a se-
quence of independent random variables such that there exists a constant C > 0
such that E|aj |2p ≤ C(E|aj |p)2 ∀j. Then if

∑∞
i=1 aifi converges in the norm topol-

ogy of E a.s., then
∞∑

i=1

E|ai|p < ∞ .

b) Let {fj}j∈N ⊂ Lp(X, Σ, µ) (p ≥ 2) be a basic unconditional sequence and
{aj}j∈N a sequence of independent random variables such that there exists a con-
stant C > 0, E|aj |2p ≤ C(E|aj |2)p ∀ j. If

∑∞
i=1 aifi converges in the norm topology

of Lp(X, Σ, µ) a.s., then ∥∥∥∥∥∥
( ∞∑

i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

< ∞ .



If 1 ≤ p < 2, the last assertion remains true with the additional condition: (E|ai|p)
1
p

≥ c(E|ai|2)
1
2 .

Proof of part a). Take λ ∈ (0, 1), define

Dn =

⎧⎨
⎩ω ∈ Ω :

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p⎫⎬
⎭ ,

and define

(3.1) D = lim
n→∞

Dn =
∞⋂

p=1

∞⋃
n=p

Dn .

By Proposition 2.1, ∃ k > 0 such that P(Dn) ≥ k(1 − λ)2 for all n, but

P( lim
n→∞

Dn) ≥ lim
n→∞

P(Dn) ≥ k(1 − λ)2 > 0.

Then P(D) > 0.
From this last fact, D ∩ {ω ∈ Ω :

∑
i aifi converges in E} �= ∅, equivalently,

∃ω ∈ D such that
∑

i ai(ω)fi converges in (E, ‖.‖) and this implies: ∃M > 0 such
that

sup
n∈N

∥∥∥∥∥∥
n∑

j=1

aj(ω) fj

∥∥∥∥∥∥
p

≤ M .

By equation (3.1) there exist infinitely many n’s, such that for this ω ∈ D:

∞ > M ≥

∥∥∥∥∥∥
n∑

j=1

aj(ω) fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p

≥ λcp
p

n∑
i=1

E|ai|p

=⇒
∞∑

i=1

E|ai|p < ∞,

(3.2)

and the proof of a) is complete. �

Proof of part b). The proof is almost the same as for Part a). Instead of the bound
(3.2), recalling the bound of equation (2.10) we have:
(3.3)

∞ > M ≥

∥∥∥∥∥∥
n∑

j=1

aj(ω) fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑

j=1

aj fj

∥∥∥∥∥∥
p

≥ λkpA
p
p

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

for infinitely many n’s and, then by Beppo Levi’s theorem:

∞ > lim
n→∞

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
( ∞∑

i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

. �

3.1. Main result. Now, we can prove the desired result:

Proof of Theorem 1.1. Under the hypotheses of a) or b) , we can see that
∑n

i=1 aifi

is a Cauchy sequence in Lp(X × Ω). Then both assertions will follow as a conse-
quence of Theorem 2.3:



Part a). We have

(3.4) E

∥∥∥∥∥
n∑

i=m

aifi

∥∥∥∥∥
p

≤ Kp
pE

n∑
i=m

|ai|p = Kp
p

n∑
i=m

E|ai|p −→ 0 ,

when n, m −→ ∞, as a consequence of Proposition 3.1, Part a).
Part b). Again, from Hölder’s inequality and equation (2.11):

(3.5)

E

∥∥∥∥∥
n∑

i=m

aifi

∥∥∥∥∥
p

≤

⎛
⎝E

∥∥∥∥∥
n∑

i=m

aifi

∥∥∥∥∥
2p

⎞
⎠

1
2p

≤ C
1
2p Bp

∥∥∥∥∥∥
(

n∑
i=m

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥ −→ 0,

when n, m −→ ∞, since
∑n

i=1 E|ai|2|fi|2 is a Cauchy sequence in L
p
2 (X, Σ, µ) as a

consequence of Proposition 3.1, Part b). �

4. Conclusions

Unconditional basic sequences are very important in the theory of Banach spaces.
Another related concept is lp-stability, and both are important topics in wavelet
analysis [8], shift invariant subspaces and sampling. Here we have shown that
if {fj}j is an unconditional basic sequence or an lp-stable sequence, then, if the
random series (1.1) converges in the norm topology a.s., then (1.1) also converges
[µ]-almost everywhere a.s. On the other hand, paraphrasing [2] in many circum-
stances it is hard to find a mathematical object with some prescribed properties,
or to prove that a certain family of objects verifies a given property, but it is pretty
easy to exhibit random objects which enjoy these properties almost surely. This is
the main idea behind the result obtained in Corollary 1.1.
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[5] Menchoff, D., Sur les séries de fonctions orthogonales I. Fund. Math. 4, 1923, pages 82-105.
[6] Ørno, P., A note on unconditionally converging series in Lp, Proc. A.M.S. Vol. 59(2), 1976,

252-254. MR0458156 (56:16359)
[7] Taylor, R.L., Stochastic Convergence of Weighted Sums of Random Elements in Linear

Spaces. Lecture Notes in Mathematics No.672, Springer-Verlag, 1978. MR513422 (80g:60006)
[8] Wojtaszczyk, P., Wavelets as Unconditional Bases in Lp(R), J. Fourier Anal. Appl. 5(1)

1999, pages 73-85. MR1682254 (99m:42059)
[9] Yang, L., Unconditional Basic Sequence in Lp(µ) and its lp-stability, Proc. A.M.S. Vol.

127(2), 1999, pp. 455-464. MR1473673 (99c:46024)

http://www.ams.org/mathscinet-getitem?mr=1197117
http://www.ams.org/mathscinet-getitem?mr=1197117
http://www.ams.org/mathscinet-getitem?mr=0415253
http://www.ams.org/mathscinet-getitem?mr=0415253
http://www.ams.org/mathscinet-getitem?mr=0651017
http://www.ams.org/mathscinet-getitem?mr=0651017
http://www.ams.org/mathscinet-getitem?mr=0458156
http://www.ams.org/mathscinet-getitem?mr=0458156
http://www.ams.org/mathscinet-getitem?mr=513422
http://www.ams.org/mathscinet-getitem?mr=513422
http://www.ams.org/mathscinet-getitem?mr=1682254
http://www.ams.org/mathscinet-getitem?mr=1682254
http://www.ams.org/mathscinet-getitem?mr=1473673
http://www.ams.org/mathscinet-getitem?mr=1473673
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