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The structure functions F1 and F2 of the hadronic tensor of vector mesons are obtained at order 1=N and
strong coupling using the gauge/gravity duality. We find that the large N limit and the high energy one do
not commute. Thus, by considering the high energy limit first, our results of the first moments of F1 for the
rho meson agree well with those from lattice QCD, with an important improvement of the accuracy with
respect to the holographic dual calculation in the planar limit.
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I. INTRODUCTION

The idea of the present work is to investigate the leading
1=N corrections to the structure functions F1 and F2 of the
hadronic tensor of unpolarized vector mesons at strong ’t
Hooft coupling λ, using the gauge/gravity duality. For this
purpose we consider vector mesons from the D3D7-brane
system in type IIB string theory [1].
We are interested in the electromagnetic deep inelastic

scattering (DIS) of a charged lepton from a vector meson.
The DIS cross section is given by the contraction of a
leptonic tensor, lμν, with a hadronic one, Wμν. The process
involves an incoming charged lepton interacting with a
hadron with momentumP through the exchange of a virtual
photon with momentum q, with the condition q2 ≫ −P2.
We consider the definitions given in [2], however we use
the mostly plus signature. Thus, the DIS differential cross
section is given by

d2σ
dxdydϕ

¼ e4

16π2q4
ylμνWμν; ð1Þ

where y is the lepton fractional energy loss and e denotes
the electron charge. The hadronic tensor depends on the
hadron structure, where there are important contributions

from soft QCD processes. For this reason the gauge/string
theory duality becomes a suitable tool for the calculation
of this tensor, and therefore the structure functions.
In this workwe focus on the structure functions associated

with unpolarized vector mesons.1 The corresponding had-
ronic tensor has the form

Wμν ¼ F1ðx; q2Þημν −
F2ðx; q2Þ
P · q

PμPν: ð2Þ

DIS is related to the forward Compton scattering (FCS)
through the optical theorem, which is an special case of the
Cutkosky rules, based on the fact that the S-matrix is unitary.
It relates the imaginary part of the FCS amplitude to the DIS
amplitude. Then, the tensor Tμν is defined as

Tμν ¼ ihP;QjT̂ðJ̃μðqÞJνð0ÞÞjP;Qi; ð3Þ

where Jμ and Jν are the electromagnetic current operators,Q
denotes the charge of the hadron, while T̂ represents time-
ordered product. Tildes indicate the Fourier transform.
In terms of the optical theorem we can write

ImF̃j ¼ 2πFj; ð4Þ

being F̃j the jth structure function of the Tμν tensor, whileFj

is the one corresponding to the Wμν tensor.
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1The polarized structure functions b1;2;3;4 and g1;2 [2] have
been obtained at strong coupling and in the planar limit in [3,4]
from supergravity and in [5] from superstring theory scattering
amplitudes. The latter gives the relevant behavior for small values
of the Bjorken parameter x.

PHYSICAL REVIEW D 99, 046005 (2019)

2470-0010=2019=99(4)=046005(11) 046005-1 Published by the American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/288803446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.046005&domain=pdf&date_stamp=2019-02-11
https://doi.org/10.1103/PhysRevD.99.046005
https://doi.org/10.1103/PhysRevD.99.046005
https://doi.org/10.1103/PhysRevD.99.046005
https://doi.org/10.1103/PhysRevD.99.046005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


At this point it is convenient to define the Bjorken
parameter x ¼ −q2=ð2P · qÞ for q2 > 0, being its physical
kinematic range 0 ≤ x ≤ 1. On the other hand, in the
unphysical region for 1 ≪ x the product of the two
electromagnetic currents in the hadron can be written as
an operator product expansion (OPE), in terms of operators
On;k multiplied by powers of ðΛ2=q2Þγn;k=2, where n is the
spin of On;k, while δn;k, γn;k, and Δn;k ¼ δn;k þ γn;k,
represent the engineering, the anomalous and the total
scaling dimensions of the operator, respectively [6]. Then,
we can define the twist of each operator as τn;k ¼ Δn;k − n.
The relation with the physical parametric region 0 ≤ x ≤ 1
is given by a contour argument, which allows to connect the
OPE with the moments of the structure functions in the DIS
process. Thus, the n-moment of the jth structure function
can be expressed as the sum of three contributions2

Mj
nðq2Þ ≈ 1

4

X
k

Cj
n;kAn;k

�
Λ2

q2

�1
2
τn;k−1

þ 1

4

X
Qp¼Q

Cj
n;pAn;p

�
Λ2

q2

�
τp−1

þ 1

4

1

N

X
Qp≠Q

Cj
n;pan;p

�
Λ2

q2

�
τp−1

; ð5Þ

where the coefficients Cj
n;p are dimensionless, while An;p

and an;p depend on the matrix elements of the operators
hP;QjOn;kjP;Qi for a hadron state with four-momentum P
and charge Q.
Let us briefly explain how different contributions behave

in Eq. (5). We can study this equation for the photon
virtuality q to be large, intermediate or small, in compari-
son with the confinement scale Λ. At weak coupling the
Feynman’s parton model gives a suitable description of
hadrons, thus the leading contribution comes from the first
term. This contribution only sums over terms associated
with operators with the lowest twist τn;k ≈ 2 at large q2. In
this case perturbative methods of quantum field theory are
suitable. On the other hand, the second sum dominates at
strong coupling and in the planar limit, i.e., 1 ≪ λ ≪ N. In
this case protected double-trace operators constructed from
the protected single-trace ones have the smaller twist at
strong coupling. Therefore, the calculations can be done by
using the gauge/gravity duality, considering a forward
Compton scattering with the exchange of a single on-shell
particle between incoming and outgoing states. Within this
regime exchange of more than one intermediate state is
suppressed by 1=N powers. The third sum in Eq. (5)
becomes the leading one when q2 ≥ Λ2N1=ðτQ−τcÞ. In this

case τQ is the minimum twist of protected operators with
charge Q, while τc is the minimum twist of all electrically
charged protected operators. The 1=N suppression of the
third sum is expected for mesons, while for glueballs there
is a 1=N2 suppression.
In addition, we should comment on the different para-

metric regions in terms of x and the ’t Hooft coupling. For
1=

ffiffiffi
λ

p
≪ x ≪ 1 only supergravity states contribute since in

this region the ten-dimensional s-channel Mandelstam
variable satisfies s̃ ≪ 1=α0, where α0 is the string constant.
When exp ð− ffiffiffi

λ
p Þ ≪ x ≪ 1=

ffiffiffi
λ

p
excited strings are pro-

duced and their dynamics becomes important. The holo-
graphic dual calculation is derived from four-point
superstring theory scattering amplitudes. Finally, for the
exponentially small region the size of the excited string
becomes comparable with the AdS radius. In this case dual
Pomeron techniques are useful [7–17]. In previous papers
we have calculated F1 and F2 by considering the FCS
process with the exchange of a single intermediate state for
scalar and vector mesons [3–5,18]. Then, we have also
calculated these functions by considering the exchange of
two intermediate states for glueballs [19] and for scalar
mesons [20] in the D3D7-brane system of Ref. [1]. In both
cases we found that the large N limit does not commute
with the high energy one. By considering the high energy
limit first, which corresponds to the physical situation, in
the case of the pion we have obtained the first moments of
the structure function F2 and compared them with lattice
QCD calculations [21–23], obtaining a substantial improve-
ment of the accuracy, namely: from 10.8% for a single
intermediate state [18] to 1.27% in the case of two inter-
mediate states [20]. Then, a natural question iswhether or not
this effect also occurs in the case of vector mesons. The
present work answers it positively as we shall explain in
detail in the next sections.
For finite values of N we can expand the structure

functions of mesons as follows

Fj ¼ fð0Þj

�
Λ2

q2

�
τin−1 þ 1

N
fð1Þj

�
Λ2

q2

�
þ 1

N2
fð2Þj

�
Λ2

q2

�
þ · · ·

ð6Þ

where τin is the twist of the incident dual vector meson state

in type IIB supergravity, fðnÞj ’s indicate the structure
functions at order in 1=Nn, with j ¼ 1, 2 and n ¼ 1;….

Notice that in the definitions of fðnÞj ’s powers of Λ2=q2

have been factored out. The index n indicates the number
of exchanged intermediate on-shell states of the FCS
Feynman diagram. This corresponds to the number of
hadrons in the final state of the DIS process. From
expression (6) one can easily see that the high energy
(q2 ≫ Λ2) and the large N limits do not commute.
Moreover, by taking first the high energy limit, since the

2We use the notation of [6], in particular Eq. (5) is similar to
Eq. (27) of that reference but for mesons, i.e., the second term has
a factor 1=N.
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power of Λ2=q2 in the first term is larger than for the rest, it
vanishes, and then in the 1=N expansion the second term
dominates. We would like to emphasize that 1=N correc-
tions to the F1 and F2 structure functions for scalar mesons
were studied in [20], but not for vector mesons. Therefore,
we consider this calculation to be important for the
investigation of such limits beyond scalar hadrons, since
there are also lattice QCD results of the first moments of F1

for the rho meson to compare with [21].
The work is organized as follows. In Sec. II. we discuss

generalities of DIS in the context of the D3D7-brane
system at large N. In Sec. III we consider the 1=N
expansion and obtain the relevant Feynman-Witten dia-
gram in the bulk theory. Also in this section we develop the
calculation of the F1 and F2 structure functions for vector
mesons. In Sec. IV we carry out the analysis of our results.
We focus on the calculation of the first moments of the
structure function F1 of the rho meson and compare them
with the available results from lattice QCD.

II. DIS IN THE D3D7-BRANE SYSTEM

DIS processes of charged leptons from scalar and vector
mesons in the D3D7-brane system have been studied in
several papers [3–5], by considering the large N limit,
which means that the final state has only a single hadron.
A more realistic calculation for vector mesons must include
1=N corrections. This corresponds to final multiparticle
states. In this work we consider 1=N corrections of DIS of
charged leptons from unpolarized vector mesons.
Firstly, we give a brief description of the D3D7-brane

system. Let us consider N coincident D3-branes in type IIB
superstring theory. The corresponding near-horizon geom-
etry is the AdS5 × S5 spacetime, with the metric

ds2 ¼ r2

R2
ημνdxμdxν þ

R2

r2
dZ⃗ · dZ⃗; ð7Þ

where Z⃗ are coordinates of the directions perpendicular to
the D3-branes, being the radial coordinate r ¼ jZ⃗j. The
radius of AdS5 is R ¼ ð4πgsNα02Þ1=4, where gs is the string
coupling. Now, one can add a D7-brane in the probe
approximation, at a distance L ¼ jZ⃗j in the (8,9) plane. The
induced metric on the D7-brane is given by

ds2 ¼ ρ2 þ L2

R2
ημνdxμdxν þ

R2

ρ2 þ L2
dρ2 þ R2ρ2

ρ2 þ L2
dΩ2

3;

ð8Þ

where ρ2 ¼ r2 − L2 and the angles contained in Ω3 span a
three-sphere. For L ¼ 0 Eq. (8) gives the AdS5 × S3 metric,
otherwise the metric is only asymptotically AdS5 × S3.
This is the situation where the conformal symmetry is
preserved.

For L > 0 the 3-7 quarks become massive, and meson
type excitations are energetically favored. Mesons corre-
spond to excitations of open strings ending on the D7-brane.
The dynamics of these fluctuations is described by the action

SD7 ¼ −μ7
Z

d8ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðP½g�ab þ 2πα0FabÞ

p
þ ð2πα0Þ2

2
μ7

Z
P½Cð4Þ� ∧ F ∧ F; ð9Þ

where μ7 ¼ ½ð2πÞ7gsα04�−1 is the D7-brane tension, ξa

denotes the D7-brane coordinates, gab stands for the metric
(8), andP is the pullback of the background fields on the D7-
brane. The second term is the Wess-Zumino term.
It is possible to induce excitations in the transverse

directions to the D7-brane. These are two types of scalar
excitations ϕ and χ, related to the Z5 and Z6 coordinates,
respectively. On the other hand, it is also possible to perturb
the gauge fields Fab ¼ ∂aBb − ∂bBa on the Dirac-Born-
Infeld (DBI) action. In this case, there are three types of
solutions for the Ba modes, related to the expansion of the
solutions in scalar or vector spherical harmonics on S3. The
three classes of solutions are [1]

type I∶ Bμ ¼ 0; Bρ ¼ 0; Bi ¼ ϕ�
I ðρÞeik·xYl�

i ðΩÞ;
ð10Þ

type II∶ Bμ ¼ ϵμϕIIðρÞeik·xYlðΩÞ; k · ϵ ¼ 0;

Bρ ¼ 0; Bi ¼ 0; ð11Þ
type III∶ Bμ ¼ 0; Bρ ¼ ϕIIIðρÞeik·xYlðΩÞ;

Bi ¼ ϕ̃IIIðρÞeik·x∇iYlðΩÞ: ð12Þ
YlðΩÞ and Yl

iðΩÞ are scalar and vector spherical harmonics,
respectively. Some of their properties are described in the
appendix and in references therein. Note that in this case type
I and III are scalar modes, while type II modes represent
vector fields from the (asymptotically) AdS perspective.
The differentmodes of the scalar and vector perturbations are

TABLE I. Some features of D7-brane fluctuations on the
AdS5 × S3 background relevant to this work. The integer l
indicates the SOð4Þ ∼ SUð2Þ × SUð2Þ irreducible representation
(irrep) and it defines the corresponding Kaluza-Klein mass. The
relation between the scaling dimension of the associated operator
Δ and l is also presented.

Field
Type of field

in 5D
Built
from ΔðlÞ

SUð2Þ × SUð2Þ
irrep

ϕ, χ Scalars ϕ, χ lþ 3, l ≥ 0 ðl
2
; l
2
Þ

Bμ Vector BII
μ lþ 3, l ≥ 0 ðl

2
; l
2
Þ

ϕ−
I Scalar BI

i lþ 1, l ≥ 1 ðlþ1
2
; l−1

2
Þ

ϕþ
I Scalar BI

i lþ 5, l ≥ 1 ðl−1
2
; lþ1

2
Þ

ϕIII Scalar BIII
i;z lþ 3, l ≥ 1 ðl

2
; l
2
Þ
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shown in Table I, together with their relevant quantum
numbers.
Beyond the quadratic order, the interaction Lagrangian

for these modes has been derived in reference [20].
Up to this point we have described the D3D7-brane

system presented in [1], where the solutions were computed
in terms of hypergeometric functions. In the context of
DIS from mesons, one identifies the parameter that controls
the separation between the D7 and the D3-branes in the
(Z5, Z6) plane with the IR scale Λ introduced as a cutoff in
the radial direction to induce confinement [6]. Thus, we
take L ∼ ΛR2. Therefore, the relevant interactions take
place at values of ρ considerably larger than L, and in this
region the solutions are well approximated by the typical
AdS5 expressions in terms of Bessel functions, which we
write in Sec. III. The AdS masses can only take discrete
values. The presence of a small but nonzero value of L is
important for the vertices we will need to consider.

A. One-particle exchange: The N → ∞ limit

For unpolarized vector mesons we shall study only the
contributions to the Fi structure functions. These functions
can be written in terms of Wμν and the vector vμ ¼
1
q ðPμ þ qμ

2xÞ as

F1ðx; q2Þ ¼
1

2

�
gμν −

qμqν

q2

�
Wμν þ 2x2vμvνWμν; ð13Þ

F2ðx; q2Þ ¼ x

�
gμν −

qμqν

q2

�
Wμν þ 12x3vμvνWμν: ð14Þ

The FCS amplitude can be derived by using the gauge/
string theory duality, by studying a four-point interaction
with vector modes on the D7-brane and graviphotons
related to current insertion on the boundary as external
states. This gauge field arises from a particular decom-
position of the graviton mode in ten dimensions:

δgmj ¼ Amðρ; xÞvjðΩ3Þ; ð15Þ
where vj are the Killing vectors on S3, and m ¼ ðμ; ρÞ.
The structure functions have been calculated in this

context by considering a single intermediate hadron state in
[3,4], obtaining the following results at leading order

F1ðx; q2Þ ¼ AðxÞ 1

12x3
ð1 − xÞ; ð16Þ

F2ðx; q2Þ ¼ AðxÞ 1

6x3
ð1 − xÞ; ð17Þ

with

AðxÞ ¼ A0Q2

�
μ27ðα0Þ4
Λ8

��
Λ2

q2

�
lþ1

xlþ6ð1 − xÞl; ð18Þ

and A0 ¼ jcij2jcXj226þ2l½Γð3þ lÞ�2π5 is a dimensionless
constant. Also, ci and cX are the normalization constants of
the incident and intermediate dual hadron states, respec-
tively, while Q is the charge of the hadron, associated to a
Uð1Þ subgroup of the S3 isometries.
These results are valid for DIS from mesons considered

in the context of the D3D7-brane system. However, it is
important to keep in mind that [3,4] showed that completely
analogous formulas hold in the context of different Dp-brane
models, such as the D4D8D8-brane system [24] and the
D4D6D6-brane system [25], both in type IIA superstring
theory. These models are very different to each other, and
each of them shares certain phenomenological features with
large-N QCD. In consequence, it is reasonable to expect
that the qualitative form of the structure functions we just
described is universal, in the sense that it would hold in any
holographic Dp-brane model for mesons at strong coupling
and in the planar limit.Although in the presentworkwe focus
on the D3D7-model, we expect this universality to hold also
for the leading one-loop correction, at least at the qualitative
level.

III. DIS IN THE 1=N EXPANSION

The nonplanar 1=N corrections to F1 and F2 structure
functions for scalar mesons were studied in [20], and also
for the N ¼ 4 SYM theory glueball in Ref. [19]. From the
point of view of DIS, they correspond to processes with
multiparticle final states. The first nontrivial contribution
comes from considering a two-hadron final state in the
hadronic tensorWμν

2 , which can be related to a FCS process
with two intermediate on-shell states, denoted as Tμν

2 .
Writing this tensor in terms of the Uð1Þ conserved current
Jμ we obtain [19]

ImðTμν
2 Þ ¼ π

X
X1;X2

hP;QjJ̃μðqÞjX1; X2ihX1; X2jJνð0ÞjP;Qi

¼ π
X
M2;M3

Z
d3q0

2Eq0 ð2πÞ3
d3p0

2Ep0 ð2πÞ3 hP;QjJ̃μðqÞjX1; X2ihX1; X2jJνð0ÞjP;Qi

¼ 4π3
X
M2;M3

Z
d4q0

ð2πÞ4 δðM
2
2 − q02ÞδðM2

3 − ðPþ q − q0Þ2Þ

× hP;QjJμð0ÞjX1; X2ihX1; X2jJνð0ÞjP;Qi; ð19Þ
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where X1 and X2 are the intermediate states with momenta
p0 and q0 respectively, as shown in Fig. 1. The current Jμ

matrix element is related to its Fourier transform as

hP;QjJ̃μðqÞjX1; X2i ¼ ð2πÞ4δð4ÞðPþ q − p0 − q0Þ
× hP;QjJμð0ÞjX1; X2i: ð20Þ

Using the AdS=CFT duality, this current can be related to
an specific field in the bulk theory. In [19], considering 1=N
corrections to DIS from a scalar meson we have shown that
the leading contribution to the DIS process with two hadron
final states is given by a specific Feynman diagram where
one of these two outgoing hadrons has the lowest twist. In
the next subsection we will explain the amplitude we need
to calculate in the case of a spin-1 meson.

A. Leading diagram for vector mesons at order 1=N

We want to study the 1=N corrections to the DIS process
from a vector meson (for instance a rho meson), associated
to a type II vector mode BII

μ on the D7-brane. Based on the
results of [20], the leading diagram is the s-channel one,
where the exchanged particle is the one with the lowest
twist, τ ¼ Δ − n. This can be done by looking at Table I,
which gives the relevant quantum numbers of the different
solutions.
Since the lowest τ is associated to the lowest Δ, the

exchanged field should be the ϕ−
I mode with τ ¼ Δ ¼ 2.

This is what has been done in [20]. However, the interaction
term between BII

μ and ϕ−
I modes given in [20]

L3¼−μ7ð2πα0Þ3
ffiffiffiffiffiffi
−g

p L
ρ2þL2

ϕðFaJFaJ−FaμFaμÞ; ð21Þ

vanishes, due to the nature of the field solutions. It can be
seen from Eqs. (10) and (11), that a type I scalar has only
angular components, while type II vectors have only μ
components. Therefore, the interaction between these two
modes vanishes. The vector mode with τ ¼ 2 does not
contribute to the DIS process either. This can be easily seen
by analyzing the charge of this vector associated with the
3-sphere. For τ ¼ 2 we need to consider Δ ¼ 3, but this
implies that l ¼ 0, meaning that the vector mode has no
charge over the 3-sphere. Thus, there is no interaction with
theAm photon. Another possible interaction could arise from
the Wess-Zumino term in the low-energy action of the
D7-brane. This is because the gauge field is actually a
particular linear combination of the ten-dimensional graviton
and RR 4-form perturbations. This is described in detail in
[16,17], where this type of vertex has been used to study the
antisymmetric contributions to the hadronic tensor for glue-
balls and spin-1=2 hadrons. However, it can be seen that the
relevant angular integrals vanish in the present case.
The next step is to consider the exchange of τ ¼ 3

modes. There are two possibilities:
(1) ϕ, χ scalars, with Δ ¼ 3.
(2) Bμ vector, with Δ ¼ 4.

In the former case the perturbations have l ¼ 0, thus they
are not charged with respect to theUð1Þwe are considering.
Therefore, the only possibility is the exchange of a type II
vector mode with l ¼ 1.
In the IR region, the relevant interaction includes two

type II modes (one associated to the τ ¼ 3 mode we just
discussed and the other one with the incoming vector
meson) and a scalar field, and from (21) we see that it is
described by [1,20]

SIR ≈ μ7ð2πα0Þ3
L
R4

Z
d8ξ

ffiffiffi
g

p
z2ϕFμνFμν: ð22Þ

Note that we only keep the first term of the L ≪ ρ
expansion, where ρ ≃ R2=z, being z the Poincaré radial
coordinate of AdS5.
For the UV vertex we have to consider the interaction

between the Am gauge field and two Bμ modes. The
standard interaction is [4]

SUV¼−μ7ðπα0Þ2iQ
Z

d5x
ffiffiffi
g

p
AμðB�

νFμν−BνðFμνÞ�Þ; ð23Þ

where we have already integrated over the S3, being Q the
charge of the vector mode, given by the eigenvalue
equation vi∂iBμ ¼ iQBμ. Note that Q does not necessarily
have to coincide with Q, the charge of the original hadron.
In fact, one has to sum over all possible intermediate states,
and in particular all possible values of Q (see Appendix).
The diagram we need to calculate is shown in Fig. 1,

where there is an incoming photon with momentum qμ,
which interacts with a massive Bμ vector with momentum
q0μðq02 ¼ −M2

2Þ and τmin ¼ 3. This vector interacts with an

FIG. 1. Feynman-Witten diagram associated to the DIS process
with two intermediate hadron states. The momentum and the
twist of each field are indicated, while the solutions are given in
section II. The incident hadron is represented by a double line, the
intermediate spin-one modes are indicated by dashed lines, while
the solid line denotes a scalar mode. The vertical dotted line
represents the cut of the Cutkosky rule.
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incident rho meson of momentum Pμ, and with an outgoing
scalar field with momentum p0

mðp02 ¼ −M2
3Þ and con-

formal dimension τ0.
In order to calculate the diagram we need the AdS5

solutions of the fields. In the axial gauge the graviphoton
solution is

Aμðx; zÞ ¼ nμeiq·xðqzÞK1ðqzÞ; Azðx; zÞ ¼ 0; ð24Þ
while the fields on the probe D7-brane are given at small L
by the following approximate expressions [4]

B�
μðx; zÞ ¼

1ffiffiffiffi
N

p c�Bζμe
−iq0·x

ffiffiffiffiffiffiffi
Λ
M2

s
zJ2ðM2zÞ;

ρμðx0; z0Þ ¼
1ffiffiffiffi
N

p cρϵμeiP·x
0

ffiffiffiffiffiffiffi
Λ
M1

s
zJτ−1ðM1z0Þ;

ϕ�ðx0; z0Þ ¼ 1ffiffiffiffi
N

p c�ϕe
−ip0·x0

ffiffiffiffiffiffiffiffiffiffi
ΛM3

p
zJτ0−1ðM3z0Þ; ð25Þ

where c’s are numerical constants, andwe have also included
the polarization vectors. We have only written the AdS5
solution, the full ten-dimensional solution includes the
3-sphere contribution that only have the product of the scalar
spherical harmonics YlðΩ3Þ. On the other hand, the propa-
gator of the type II vector mode is given by [26]

Gμνðx; x0; z; z0Þ ¼ −
i
N

Z
d4k
ð2πÞ4G

ðkÞðz; z0ÞT μνeik·ðx−x
0Þ

¼ −
i
N

Z
d4k
ð2πÞ4

dω2

2

ðzz0ÞJτ−1ðωzÞJτ−1ðωz0Þ
k2 þ ω2 − iϵ

× T μνeik·ðx−x
0Þ; ð26Þ

where T μν ¼ ημν þ kμkν
ω2 . Recall that in our case of interest the

exchanged mode has conformal dimension τmin ¼ 3.

Finally, we redefine the D7-brane fields as Φ → Φffiffiffi
N

p ,

such that they are canonically normalized in terms of N.
The 1=N-power counting shows that the interaction terms
now scale as

SUV →
1

N
SUV; SIR →

1

N3=2 SIR: ð27Þ

B. Structure functions for vector mesons

We now derive the FCS amplitude related to the one-
point function nμhX1; X2jJμð0ÞjP;Qi. Looking at the dia-
gram of Fig. 1, the associated amplitude is

A ¼ −8iμ27ðπα0Þ5Q
L
R4

ð2πÞ4δð4ÞðPþ q − p0 − q0ÞI

×
Z

dzdz0
ffiffiffi
g

p ffiffiffiffi
g0

p
z02∂ 0½αρβ�ðz0Þϕ�ðz0Þ

× ½B�νðzÞð∂ 0
α∂μGνβðz; z0Þ − ∂ 0

α∂νGμβðz; z0ÞÞ
− ∂ 0

αGνβðz; z0Þð∂μB�νðzÞ − ∂νB�
μðzÞÞ�AμðzÞ; ð28Þ

where ∂ 0
α and ∂ 0

β are derivatives with respect to the primed
coordinates. Also, we have already performed the integrals
in the variables x and x0, which lead to the momentum
conservation relations

kμ ¼ q0μ − qμ ¼ Pμ − p0
μ: ð29Þ

In Eq. (28) I represents the integral of the scalar spherical
harmonics over the 3-sphere, which is given in the
Appendix. Replacing the solutions (24), (25) and (26) in
the amplitude, and using the relations (13), (14) and (19),
the structure functions Fi (i ¼ 1, 2, L) can be written as

Fiðq2; xÞ ¼ jc̃j2Q2μ47L
2α010R8

×
X
M2;M3

Z
d3q0

2Eq0 ð2πÞ3
d3p0

2Ep0 ð2πÞ3 δ
ð4Þ

× ðPþ q − q0 − p0Þ

× Λ3
M3

M1M2

q2jCtj2FT
i ðx; P; q; q0Þ; ð30Þ

where jc̃j2 ¼ jcϕj2jcBj2jcρj2, Ct contains the radial coor-
dinate integrals, given by

Ct ¼
Z

dzdz0
Z

dω
ω

ðq − q0Þ2 þ ω2

× ½z04Jτ−1ðM1z0ÞJτ0−1ðM3z0ÞJ2ðωz0Þ�
× ½z2K1ðqzÞJ2ðM2zÞJ2ðωzÞ�: ð31Þ

In order to obtain FT
i , the factor in (30) which depends

only of the tensor contractions, we need to calculate JTμJT�ν ,
with

JTμ ¼ ½ζ�νðkμT νβ − kνT μβÞ þ T νβðq0μζ�ν − q0νζ�μÞ�kαP½αϵβ�:

ð32Þ

Recall that B�
μ is an intermediate state, thus we need to sum

over the outgoing vector polarizations ζμ

X
λ

ζμζ
�
ν ¼ −q02ημν þ q0μq0ν: ð33Þ

Since we are only interested in the unpolarized structure
functions, we also average over the polarization vector of
the incoming hadron

ϵμϵ
�
ν ¼

1

3
ð−P2ημν þ PμPνÞ: ð34Þ

By comparing JTμJT�ν with Eqs. (13) and (14) we obtain the
following expressions
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FT
1 ¼ 1

24q2x2
P2½128x4ðq0Þ2ðP · q0Þ4 þ 128x3ðq0Þ2q · q0ðP · q0Þ3 þ 8q6xðq0Þ2P · q0

þ40q4x2ðq0Þ2ðP · q0Þ2 − 8q4x2ðq · q0ÞðP · q0Þ2 þ 32q4xðq0Þ4P · q0

−16q4xðq · q0Þ2P · q0 þ 28q4xðq0Þ2ðq · q0ÞðP · q0Þ − 16q2x4ðP · q0Þ4
þ128q2x3ðq0Þ2ðP · q0Þ3 − 48q2x3ðq · q0ÞðP · q0Þ3 þ 32q2x2ðq0Þ4ðP · q0Þ2
−40q2x2ðq · q0Þ2ðP · q0Þ2 þ 128q2x2ðq0Þ2ðq · q0ÞðP · q0Þ2 þ 2q8ðq0Þ2
þ9q6ðq0Þ4 − 2q6ðq · q0Þ2 − 2q6ðq0Þ2q · q0� ð35Þ

FT
2 ¼ 1

12q2x
P2½384x4ðq0Þ2ðP · q0Þ4 þ 384x3ðq0Þ2ðq · q0ÞðP · q0Þ3

þ64x2ðq0Þ2ðq · q0Þ2ðP · q0Þ2 þ 8q6xðq0Þ2P · q0 þ 96q4x2ðq0Þ2ðP · q0Þ2
−8q4x2ðq · q0ÞðP · q0Þ2 þ 32q4xðq0Þ4ðP · q0Þ − 16q4xðq · q0Þ2ðP · q0Þ
þ76q4xðq0Þ2ðq · q0ÞðP · q0Þ − 48q2x4ðP · q0Þ4 þ 384q2x3ðq0Þ2ðP · q0Þ3
−144q2x3ðq · q0ÞðP · q0Þ3 þ 32q2x2ðq0Þ4ðP · q0Þ2 − 136q2x2ðq · q0Þ2ðP · q0Þ2
þ384q2x2ðq0Þ2ðq · q0ÞðP · q0Þ2 − 32q2xðq · q0Þ3ðP · q0Þ þ 64q2xðq0Þ2ðq · q0Þ2ðP · q0Þ
þ2q8ðq0Þ2 þ 9q6ðq0Þ4 − 2q6ðq · q0Þ2 − 2q6ðq0Þ2ðq · q0Þ þ 8q4ðq0Þ2ðq · q0Þ2�: ð36Þ

In order to calculate the integrals in (31) we need to use a
few reasonable approximations, in a similar way as in
[19,20]. The main assumption is that Λ and the masses of
the hadrons are small in comparison with the momentum of
the virtual photon. The IR integral selects the mass of the
exchanged field as follows [19]

Z
Λ−1

0

dz0z04Jτ−1ðM1z0ÞJτ0−1ðM3z0ÞJ2ðωz0Þ

≈
1

Λ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M3

p ½ð−1Þαδðω − ðM1 þM3ÞÞ

þ ð−1Þβδðω − ðM1 −M3ÞÞ�; ð37Þ

for some integers α and β. The integral leads to ω ¼
jM1 �M3j. Then, the UV integral can be obtained by
expanding J2ðωzÞ ≈ ω2z2=8 for ω ≪ q, and taking the
upper limit as infinity since K1 decays quickly in the bulk.
We obtain

Z
∞

0

dz
ω2

8
z4K1ðqzÞJ2ðM2zÞ ≈

6M2
2qω

2

ðM2
2 þ q2Þ4 : ð38Þ

With these two equations we can obtain Ct, after noticing
that the leading term comes from ω ¼ M1 −M3 [20], we
obtain

jCtj2¼
q236M4

2

ðM2
2þq2Þ8

1

Λ6

ðM1−M3Þ6
M1M3

1

ððq−q0Þ2þðM1−M3Þ2Þ2
:

ð39Þ

The next step is to integrate over the on-shell momenta p⃗0

and q⃗0, and sum over the corresponding masses.3 The final
results for the structure functions are

F1ðx; q2Þ ¼
1

λN
C

�
M1

Λ

�
6 Λ2

q2
1

2
x3ð1 − xÞ3 ð40Þ

F2ðx; q2Þ ¼
1

λN
C

�
M1

Λ

�
6 Λ2

q2
x3ð1 − xÞ3ð4 − 3xÞ ð41Þ

FLðx; q2Þ ¼
1

λN
C
�
M1

Λ

�
6 Λ2

q2
4x3ð1 − xÞ4; ð42Þ

where C is a numerical constant.
We expect qualitatively similar results to hold in the

context of different Dp-brane models.

IV. DISCUSSION AND CONCLUSIONS

We have obtained the 1=N corrections to the F1, F2 and
FL structure functions corresponding to vector mesons,
using the gauge/gravity duality. Motivated by previous
work forN ¼ 4 SYM theory glueballs, and particularly for
scalar mesons in the D3D7-brane system, the idea is to
investigate how two very different limits behave, namely:
the large N limit in comparison with the high energy limit
(Λ2=q2 → 0). Our first result is that they do not commute
for the vector mesons. Then, since the physical way to

3For more details we refer the reader to Ref. [20].
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consider these limits implies to take first the high energy one,
followed by the large N limit, we find that in this situation
the third term in the expansion of Eq. (5) dominates the
moments of the structure functions. This is a very interesting
result which says that at strong coupling this third term
becomes the leading one for q2 ≥ Λ2N1=ðτQ−τcÞ, where τQ
and τc are the minimum twist of protected operators with
charge Q and the minimum twist of all electrically charged
protected operators, respectively.
This is similar to what happens for the glueball in the IR

deformed version ofN ¼ 4 SYM [6,19], where the process
is given in terms of closed string modes and at strong
coupling one finds that the 1=N result dominates for
q2 ≥ Λ2N2=ðτQ−τcÞ. However, note that in the present case,
i.e., for mesons, the correction is proportional to the 1=N
instead of 1=N2, as expected. Thus, at large N the critical
value for the photon virtuality qwhere this happens is much
smaller. The same occurs for the results presented in [20]
for the case of scalar mesons.
The physical implication of this result is that, at strong

coupling, for the above energy range DIS is dominated by a
two-hadron final state. From the viewpoint of the FCS
process it corresponds, through the optical theorem, to a
situation where there are two intermediate hadron states.
The structure functions F1 and F2 behave as ð1 − xÞ3 as x
approaches 1. We have also considered the longitudinal
structure function FL which behaves as ð1 − xÞ4 as x
approaches 1. We should notice that, although the states
as well as the interactions for the vector and scalar mesons
are different, all these structure functions have the same
dependence on Λ2=q2, 1=N, 1=λ and M1=Λ as in the case
of scalar mesons in the D3D7-brane system.
It is important to consider the moments of the structure

functions defined as

Mn½Fi� ¼
Z

1

0

dxxn−1Fiðx; q2Þ; ð43Þ

where Fi can be F1 and F2 in this case.
Several moments of these structure functions have been

calculated in Ref. [18] in the large N limit, i.e., by
considering a single intermediate hadron state in the
FCS process. This has been done for the first moments
of the structure function F2 in the case of the pion as well as
for F1 of the rho meson. In [18] we have compared these
results with lattice QCD data from Refs. [21–23] for the
pion, associated with the lightest pseudoscalar mode. In
addition, in the case of the rho meson associated to the
l ¼ 2 spin-1 mode of the type II solutions, the comparison
has been made with respect to results from lattice QCD of
[21]. The best fit for the case of the pion leads to results
with an accuracy of 10.8% or better, while in the case of
the rho meson the accuracy is of 18.5% or better,4 for the

D3D7-brane system. In [18] also the Sakai-Sugimoto model
of the D4D8D8-brane system and the D4D6D6-brane
system, both in type IIA string theory, have been consid-
ered for FCS with a single intermediate exchanged state.
The next step has been done in [20] where we have
considered the leading 1=N corrections to the structure
functions. The accuracy is notoriously enhanced to 1.27%
for the scalar mesons in the D3D7-brane system in this
case. It leads to a natural question which is whether for
vector mesons the accuracy of the fit can also be substan-
tially improved by considering 1=N corrections.
In order to investigate this point we have carried out the

best fit of the structure F1 including 1=N corrections in
comparison with lattice QCD data from [21]. Recall that the
results of the present work have been obtained in the type
IIB supergravity regime, i.e., where 1=

ffiffiffi
λ

p
≪ x < 1, which

means that for the calculation of the moments we have
integrated our result for the functions between x ¼ 0.1 and
x ¼ 1. On the other hand, we also need to carry out the
integration over the range exp ð− ffiffiffi

λ
p Þ ≪ x ≪ 1=

ffiffiffi
λ

p
, where

we assume that the behavior of the structure functions is
similar to the behavior shown in [5] and used in [18], i.e.,
Fsmall−x
L ∝ x−1. We support this assumption on the fact that,

in the 1=
ffiffiffi
λ

p
≪ x < 1 range the difference between the

large-N calculation (where there is only a single on-shell
hadron state exchanged in the FCS process) and the 1=N
calculation (where the leading Feynman-Witten diagram
has two on-shell hadron states exchanged) is that in the
former the dependence with the photon virtuality and
the Bjorken parameter is given by τin corresponding to
the incident meson, while in the later the q2 and x
dependence is determined by τmin. This corresponds to
one of the lowest conformal dimension from the super-
gravity excitations. However, for exp ð− ffiffiffi

λ
p Þ ≪ x ≪ 1=

ffiffiffi
λ

p
things are different, namely: the calculation from the two-
open and two-closed strings scattering amplitudes is
independent of τin. Thus, we assume that in this low-x
regime the genus-zero result from type IIB superstring
theory should not be very different with respect to a much
more complicated calculation on the torus. Then, for this
string theory regime of the holographic dual calculation we
use the expressions for the structure functions at tree level
from [18]. For our numerical calculation at low-x we
consider that the integration for the moments is performed
between x ¼ 0.0001 and x ¼ 0.1 as before [18,20]. Then,
we split each structure function in two parts, each of one
having a dimensionless constant to be fixed by fitting with
respect to lattice QCD data [21]. There is a constant C1

multiplying the low-x F1 function. In addition, there is a
second constant C2 on the large-x F1 function.
Results of the first moments of F1 of the rho meson are

presented in Table II. The values we obtain for the constants
are C1 ¼ 0.0087 and C2 ¼ 32.1939. Note that they are of
the same order as the ones found in our previous work [18]
in the large N limit, for which the constants associated with

4There is a mistake in Table 5 of Ref. [18] that we have
corrected here. The original errors presented in that reference
were overestimated.
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the small-x F1 and with the large-x F1 of the rho meson are
0.012 and 78.07, respectively.
Figure 2 shows the structure function F1 as a function of

x. The blue bell-shaped curve indicates the 1=N calculation
of this work. The black dashed bell-shaped line corre-
sponds to the case obtained in Ref. [18] for the large N
limit. For small-x values we use the result from [5], leading
to the monotonically decreasing curves. The difference
between the two curves at small values of the Bjorken
parameter comes from the slightly different constants
which correspond to the best fit developed in each situation.
There is an important improvement with the inclusion of
the leading 1=N correction. As it happened in the scalar
case, the location of the maximum is shifted to the left with
respect to the results obtained in the planar limit, matching
better the phenomenological expectations.5

From Table II we can appreciate the enhancement of the
accuracy of the moments of F1 for the case of the rho
meson which goes from 18.5% for one particle exchange in
the FCS, down to 12.5% in the leading 1=N contribution,
i.e., for the exchange of two intermediate on-shell states.
This is very important because it confirms the trend found
previously for glueballs inN ¼ 4 SYM theory [19] and for
the scalar mesons of the N ¼ 2 SYM theory from the
D3D7-brane system [20]. Thus, it indicates that in order to
infer realistic conclusions for physical systems it is crucial
to consider the 1=N expansion of the observables, and
consider first the large momentum transfer limit. Possibly,
this behavior can be identified in other high energy physical
processes.
In addition, there are two very important aspects related

to 1=N corrections that we should briefly comment,
namely: unitarization and saturation. These issues are
crucial for the low-x physics, both at weak and strong
coupling regimes. There is a number of very important
references using holographic dual descriptions at low x and
strong coupling, focusing on glueball DIS and other
hadronic processes [7,9–12,29–34]. Following [29] the
saturation line for glueball DIS in N ¼ 4 SYM theory at

strong coupling corresponds to a region of high virtual
momentum transfer (q) while the Bjorken parameter
x ∼ 1=N2, being N large but finite. On the other hand, let
us recall that the supergravity calculation we have done
in the present work holds in the range 1=

ffiffiffi
λ

p
≪ x < 1. This

describes a region parametrically distant from the saturation
line (in fact the region which we have explored is near
the horizontal axis in the ðlogðq2=Λ2Þ; logð1=xÞÞ-plane, far
below the saturation line depicted in Fig. 3 of [29]).While at
low x it has been commented on the possibility of a sort
of a “partonic” description at strong coupling [29], in the
region 1=

ffiffiffi
λ

p
≪ x < 1 the supergravity calculation includ-

ing Feynman diagramswith two ormore intermediate states
propagating in the s-channel only allows one to explore
the scattering of a charged lepton off an entire hadron in the
cloud of wee hadrons surrounding the incident one (see for
instance [6,19,20]).
In order to properly account for unitarity corrections in the

holographic string theoretical dual picture one should be
able to calculate a string worldsheet genus expansion of
the four-point superstring theory scattering amplitude, which
is at present an extremely difficult task. The string theory
genus expansion of the scattering amplitude contains the
sum of all massive string theory states propagating in the
t-channel at all orders (which obviously contains all possible
multi-graviton exchanges), but also it can be seen as the
sum of all the s-channel multi-loop diagrams including all
massive string theory states. Both the s- and t-channel series
are dual to each other by virtue of the s=t-duality. However,
the result of the genus expansion is unknown, and only
limited effective n-loop supergravity calculations can be
done. Therefore, in terms of the s-channel two-intermediate
states supergravity calculation we have done in the present
work (as well as in [19,20]) it is not possible to contribute to
the discussion of the saturation physics.
On the other hand, fortunately at low x we can explore

the saturation line in terms of the proposal made in [29].

0.2 0.4 0.6 0.8 1.0
Bjorken x

0.2

0.4

0.6

0.8

F1

FIG. 2. F1 as a function of x. We display the leading results at
low and moderate (0.1 < x ≤ 1) values of x. Dashed curves
represent the F1 computed for N → ∞, while the blue ones
correspond to the 1=N corrections. The constants C1 and C2 are
those which give the moments of F1 shown in Table II.

TABLE II. Comparison of our results for the first moments of
the structure function F1 of the lightest vector meson for a
suitable choice (best fitting) of the normalization constants with
respect to the results of the lattice QCD simulations in [21] and in
comparison with previous results presented in [18]. Uncertainties
in the lattice QCD computations are omitted.

Model=Moment M2ðF1Þ M3ðF1Þ M4ðF1Þ
Lattice QCD 0.1743 0.074 0.035
D3D7 (N → ∞) 0.1753 0.060 0.039
Percentage error −0.6 18.5 −12.8
D3D7 (1=N) 0.1750 0.065 0.038
Percentage error −0.39 12.5 −9.6

5See for example Refs. [27,28].
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The idea is to obtain the saturation line which separates
the weak-scattering and the strong-scattering regions in the
ðlogðq2=Λ2Þ; logð1=xÞÞ-plane. This has been done for
glueball DIS in [29]. In that paper the authors found a
critical value for the momentum transfer proportional to
exp½4 logN2=

ffiffiffi
λ

p � below which the DIS amplitude is
dominated by a single Pomeron exchange, but in order
to saturate the unitarity bound it is necessary to go beyond
that value and therefore the dominant contribution becomes
the multigraviton exchange. Considering our previous paper
[5] where we have calculated the structure functions at low
x for scalar and vector mesons, in principle we can draw
analogous conclusions as [29] for the saturation line and
the phase diagram in the kinematic plane ðlogðq2=Λ2Þ;
logð1=xÞÞ. A detailed study of these issues will be reported
elsewhere.
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APPENDIX: ANGULAR INTEGRALS

Scalar spherical harmonics on the 3-sphere belong to
the ðl=2; l=2Þ representation of SUð2Þ × SUð2Þ≡ SOð4Þ,
where l is a non-negative integer, while −l=2 ≤ m; n ≤
l=2. They form a basis of eigenfunctions of the Laplace
operator on the sphere,

∇2Ym;n
l ¼ −lðlþ 2ÞYm;n

l ; ðA1Þ

and satisfy the orthogonality relationZ
S3
ðYm;n

l Þ�Ym0;n0
l0 ¼ δll0δmm0δnn0 : ðA2Þ

where

ðYm;n
l Þ� ¼ ð−1ÞmþnY−m;−n

l : ðA3Þ

The integral we want to calculate has three scalar spherical
harmonics. An analytic expression for this type of integrals
can be found in [35,36], and it reads

Z
S3
Ym;n
l Ym0;n0

l0 Ym00;n00
l00 ¼ R1ðl; l0; l00Þ

� l
2

l0
2

l00
2

m m0 m00

�

×
� l

2
l0
2

l00
2

n n0 n00

�
; ðA4Þ

where we have included the 3j-symbols, and the function
R1 is defined as

R1ðx; y; zÞ ¼
ð−1Þσ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þðyþ 1Þðzþ 1Þ

2

r
;

with σ ¼ ðxþ yþ zÞ
2

ðA5Þ

and must satisfy the triangle inequality jx − zj ≤ y ≤ xþ z
in order to be nonvanishing. Also, the 3j-symbols must
satisfy the physical condition: mþm0 þm00 ¼ nþ n0 þ
n00 ¼ 0.
In our case of interest, i.e., the UV vertex of the diagram

shown in Fig. 1, the incoming state is a rho meson with
quantum numbers ðl; m; nÞ, the exchanged particle is a
vector mode with ðl0; m0; n0Þ, and the outgoing state is the
scalar ϕ with ðl00; m00; n00Þ. The leading diagram is the one
where Δ0 ¼ 4, fixing l0 ¼ 1 and −1=2 ≤ m0; n0 ≤ 1=2.
The rho meson is a hadron which can have positive, null
or negative charge. In the D3D7-brane system, the charge
is given by the R-symmetry associated to the R sector of
the SUð2ÞL × SUð2ÞR. This implies that l ¼ 2, whilem can
take three values 1, 0, −1 for a positive, null or negative
charged meson respectively. Therefore, we have the fol-
lowing product of 3j-symbols

R1ð2; 1; l00Þ
�

1 1
2

l00
2

m � 1
2

−m ∓ 1
2

��
1 1

2
l00
2

n � 1
2

−n ∓ 1
2

�
;

ðA6Þ

where m can be 1, 0, −1. For any of these values, Eq. (A6)
does not vanish only if l00 ¼ 1, 2, 3. Wewant to sum over all
possible exchanged and outgoing states, this is a sum over
m0, n0 ¼ �1=2, and over l00. The final result is the same for
the three values of m, and it reads

X1=2
m0;n0¼−1=2

X3
l00¼1

�
R1ð2; 1; l00Þ

�
1 1

2
l00
2

m m0 −m −m0

�

×

�
1 1

2
l00
2

n n0 −n − n0

��
2

¼ 6

π2
; ðA7Þ

which is the value of I present in Eq. (28).
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