
ar
X

iv
:m

at
h/

04
08

38
9v

4 
 [

m
at

h.
K

T
] 

 9
 M

ay
 2

00
6

RELATIVE CYCLIC HOMOLOGY OF SQUARE ZERO

EXTENSIONS

JORGE A. GUCCIONE AND JUAN J. GUCCIONE

Abstract. Let k be a characteristic zero field, C a k-algebra and M a square
zero two sided ideal of C. We obtain a new mixed complex, simpler than
the canonical one, giving the Hochschild and cyclic homologies of C relative
to M . This complex resembles the canonical reduced mixed complex of an
augmented algebra. We begin the study of our complex showing that it has a
harmonic decomposition like to the one considered by Cuntz and Quillen for

the normalized mixed complex of an algebra. We also give new proofs of two
theorems of Goodwillie, obtaining a light improvement of one of them.

1. Introduction

Let k be a characteristic zero field, C a k-algebra andM a two-sided ideal ofC. In
this work we deal with the Hochschild, cyclic, periodic and negative homologies of C
relative to M , when M2 = 0. Our main result is Theorem 3.2, in which we obtain a

double mixed complex (X̂, b̂, d̂, B̂), given these homologies, whose associated mixed

complex (X̆, b̆, B̆) is simpler than the canonical mixed complex of C relative to M .

We hope that (X̂, b̂, d̂, B̂) be useful to prove results about cyclic type homologies
of an algebra relative to a nilpotent ideal, by induction on the degree of nilpotence.
Evidence in such sense is provided by Theorem 4.6, in which we improve a result

of Goodwillie. We also hope that (X̂, b̂, d̂, B̂) be a first step to obtain explicit
computations of cyclic homology groups of an algebra C relative to a two sided
square zero ideal.

The paper is organized in the following way:

In Section 2 we recall some well known definitions and results. Among them, the
perturbation lemma, which we will use again and again in the rest of the paper,
and the definition of double mixed complex, which we got from [Co].

Section 3 is devoted to establishing the main results in this paper. Since M2 = 0,
the algebraC is isomorphic to a square zero extensionE = A⋉fM , whereA = C/M
and f : A ⊗ A → M is a Hochschild normal 2-cocycle. So, we can restrict our

attention to this type of algebras. In fact, (X̂, b̂, d̂, B̂) can be thought as a double
mixed complex associated to the 3-tuple (A,M, f), and this association is functorial
in an evident sense. For 0 ≤ 2w ≤ v, let Xw

v be the direct sum of all the tensor
products X0⊗· · ·⊗Xn such that X0 = M , Xi = M for w indices i > 0 and Xi = A
for the other ones, where n = v−w and A = A/k. Let b : Xw

v → Xw
v−1 be the map

given by the same formula as the Hochschild boundary map of an algebra, where
the meaning of the concatenation xixi+1 of two consecutive factors in a simple
tensor means is the one given in item (3) of Notation 1.2. Let t : Xw

v → Xw
v be the

map defined by

t(x0 ⊗ · · · ⊗ xn) = (−1)inxi ⊗ · · · ⊗ xn ⊗ x0 ⊗ · · · ⊗ xi−1,
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where i denotes the last index such that xi ∈ M and letN = id+t+t2+· · ·+tw. The
double mixed complex (X̂, b̂, d̂, B̂) has objects X̂w

v = Xw
v ⊕Xw

v−1. The boundary
maps are given by

b̂(x,y) =
(
b(x) + (id−t)(y),−b(y)

)
and d̂(x,y) =

(
d(x), d′(y)

)
,

where d, d′ : Xw
v → Xw+1

v are maps depending on f , and the Connes operator is

given by B̂(x,y) = (0, N(x)). So, it resembles the reduced mixed complex of an
augmented algebra. Since the maps t and N satisfy

(1) Im(1 − t) = ker(N) and Im(N) = ker(1− t),

the cyclic homology of E relative to M is the homology of the quotient complex
of (X, b, d) by the image of id−t. Indeed, this also follows from the fact that

(X̂, b̂, d̂, B̂) satisfies the Connes property ([C-Q]), which is another consequence of
the equalities (1). We finish the section giving a new proof of the following celebrate
theorem of Goodwillie: if M is a nilpotent two-sided ideal of a k-algebra C, then
HP(C) = HP(C/M).

The aim of Section 4 is to show that (X̆, b̆, B̆) has a harmonic decomposition like
the one studied in [C-Q]. In order to carry out this task we need to define a de

Rham coboundary map and a Karoubi operator on (X̆, b̆). Actually it will be

convenient for us to work with a new double mixed complex, namely (Ẍ, d̈, b̈, B̈),

whose associated mixed complex is also (X̆, b̆, B̆). As in [C-Q] the Karoubi operator

κ̈ of (Ẍ, d̈, b̈) commutes with b̈ and d̈ and satisfies a polynomial equation Pw(κ) on

each Ẍw
v . Thus we have the harmonic decomposition Ẍ = P (Ẍ)⊕P⊥(Ẍ), where P

is the spectral projection onto the generalized nullspace for id−κ̈ and P⊥ = 1−P .
The first component of this decomposition is B̈-acyclic and the second one is d̈-
acyclic and killed by B̈. Hence (Ẍ, d̈, b̈) has the Connes property. We finish the

section by giving two explicit descriptions of P (Ẍ) and obtaining a new expression
for the connection map of the long exact sequence relating the absolute Hochschild
homologies of A and E, with the Hochschild homology of E relative to M .

Although we had assume that k is a characteristic zero field, many of the results
in this paper are valid under considerable weaker hypothesis. More precisely we can
take a commutative ring k and a k subalgebra S of A and consider the S-relative
Hochschild, cyclic, negative and periodic homologies. In this case we must replace
A by A/S and the tensor products over k, that appear in all the complexes in this
paper, by cyclic tensor products over S (See [K1], [G-S], [K2] and [Q])). All the
results of Section 3 are valid in this context, with the exception of Lemma 3.3,
Theorem 3.4 and Propositions 3.5 and 3.8. If k contains Q, then all the results in
this paper are valid, except Theorem 4.6, and this theorem is also valid if we also
have that Se is semisimple. Finally, when Se is a separable k-algebra, the relative
and absolute homologies coincide, as was shown in the above mentioned papers.

Next we introduce some notations that we will use throughout this paper.

Notations 1.1. Let k be a commutative ring, V a k-module, C a k-algebra and M
a C-bimodule.

(1) We put C = C/k and given x ∈ C we also let x denote its class in C.

(2) We let V ⊗n denote the n-fold power tensor of V .

(3) Given x0⊗· · ·⊗xn ∈ C⊗C
⊗n

and 0 ≤ i < j ≤ n, we write xj
i = xi⊗· · ·⊗xj.

(4) For n ≥ 0, we let M⊗n
C denote the n-fold power tensor of M over C. As

usual, we consider that M⊗0
C = C.

(5) Given x1 ⊗C · · · ⊗C xn ∈ M⊗n
C and 1 ≤ i < j ≤ n, we will write x

j
i =

xi ⊗C · · · ⊗C xj .
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Notations 1.2. Let E = A⋉f M be a square zero extension.

(1) We let πA : E → A and πM : E → M denote the maps defined by πA(a,m) =
a and πM (a,m) = m, respectively.

(2) We extend f to E ⊗ E writing f(x, y) = 0 if x ∈ M or y ∈ M .

(3) Given x, y ∈ A
⋃
M we set

xy =





the product of x and y in A if x, y ∈ A,

the left action of x on y if x ∈ A and y ∈ M ,

the right action of y on x if x ∈ M and y ∈ A,

0 if x, y ∈ M .

(4) For 0 ≤ w ≤ n, let Bn
w ⊆ E

⊗n
be the k-submodule spanned by the n-tensors

x1 ⊗ · · · ⊗ xn such that exactly w of the xi’s belong to M , while the other
ones belong to A. To unify expressions we make the convention that B0

0 = k
and Bn

w = 0, for w < 0 or n < w.

(5) For xn
0 ∈ M ⊗Bn

w

⋃
A⊗Bn

w+1 and 0 ≤ l ≤ n, we define µl(x
n
0 ) by

µl(x
n
0 ) =

{
(−1)lxl−1

0 ⊗ xlxl+1 ⊗ xn
l+2 if 0 ≤ l < n,

(−1)nxnx0 ⊗ xn−1
1 If l = n.

Moreover we set

µA
0 (x

n
0 ) = πA(x0x1)⊗ xn

2 , µA
n (x

n
0 ) = (−1)nπA(xnx0)⊗ xn−1

1 ,

µM
0 (xn

0 ) = πM (x0x1)⊗ xn
2 , µM

n (xn
0 ) = (−1)nπM (xnx0)⊗ xn−1

1 .

(6) For xn
0 ∈ M ⊗Bn

w

⋃
A⊗Bn

w+1 and 0 ≤ j ≤ n, we define µl(x
n
0 ) by

Fj(x
n
0 ) =

{
(−1)jxj−1

0 ⊗ f(xj , xj+1)⊗ xn
j+2 if 0 ≤ j < n,

−xn−1
1 ⊗ f(xn, x0) If j = n.

(7) For an elementary tensor xn
0 , such that xi ∈ A

⋃
M for all i, we let i(xn

0 )
denote the last index i such that xi ∈ M .

(8) For an elementary tensor xn
0 such that xi ∈ A

⋃
M for all i, we define

t(xn
0 ) = (−1)i(x

n
0 )nxn

i(xn
0 )

⊗ x
i(xn

0 )−1
0 .

Acknowledgement. Wewould like to thank our colleague, Professor Guillermo Corti-
ñas for his careful reading of a first version of our paper and for his suggestions
that have helped us to improve the presentation of this paper substantially.

2. Preliminaries

In this section we recall some well known definitions and results, and we fix some
notations that we will use in the rest of the paper. Let C be a k-algebra.

2.1. Double and triple complexes. A double complex X = (X, dv, dh) of C-
modules, is a family (Xpq)p,q∈Z of C-modules, together with C-linear maps

dh : Xpq → Xp−1,q and dv : Xpq → Xp,q−1,

such that dh ��������dh = 0, dv ��������dv = 0 and dv ��������dh + dh ��������dv = 0. The total complex of
(X, dv, dh) is the complex Tot(X ) = (X, d), in which

Xn =
∏

p

Xp,n−p and d = dv + dh.
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A morphism of double complexes f : (X, dv, dh) → (Y, δv, δh) is a family of maps
f : Xpq → Ypq, such that δv ��������f = f ��������dv and δh ��������f = f ��������dh. The morphism from
Tot(X, dv, dh) to Tot(Y, δv, δh) induced by f will be denoted Tot(f).

Similarly, one can give the notions of triple complex X = (X, dv, dh, dd) and of
morphism of triple complexes. For a triple complex X , there are three ways for
constructing a double complex by taking total complexes of double complexes. We
call each one of these double complexes a partial total complex of X . Finally, the
total complex Tot(X ) of X , is the total complex of any of its partial total complexes.
Of course, Tot(X ) is independently of the chosen way to construct it.

2.2. Mixed complexes. In this subsection we recall briefly the notion of mixed
complex. For more details about this concept we refer to [Ka1] and [B].

A mixed complex (X, b,B) is a graded C-module (Xn)n≥0, endowed with mor-
phisms b : Xn → Xn−1 and B : Xn → Xn+1, such that

b ��������b = 0, B ��������B = 0 and B ��������b+ b ��������B = 0.

A morphism of mixed complexes f : (X, b,B) → (Y, d,D) is a family f : Xn → Yn,
such that d ��������f = f ��������b and D ��������f = f ��������B. A mixed complex X = (X, b,B) determines
a double complex

BP(X ) =

...

b

��

...

b

��

...

b

��
. . . X2

Boo

b

��

X1
Boo

b

��

X0
Boo

. . . X1
Boo

b

��

X0
Boo

. . . X0
Boo

By deleting the positively numbered columns we obtain a subcomplex BN(X ) of
BP(X ). The quotient double complex BP(X )/BN(X ) is denoted by BC(X ). The
homologies HC∗(X ), HN∗(X ) and HP∗(X ), of the total complexes of BC(X ), BN(X )
and BP(X ) respectively, are called the cyclic, negative and periodic homologies ofX .
The homology HH∗(X ), of (X, b), is called the Hochschild homology of X . Finally,
it is clear that a morphism f : X → Y of mixed complexes induces a morphism
from the double complex BP(X ) to the double complex BP(Y).

Following [Co] by a double mixed complex we will understand a bigraded module
X equipped with three k-linear maps of degree ±1: ∂ that lowers the first index
and fixes the second one, δ that fixes the first index and lowers the second one, and
B which fixes the first index and increases the second one. These maps satisfy

0 = ∂2 = δ2 = B2 = δ ��������∂ + ∂ ��������δ = δ ��������B +B ��������δ = ∂ ��������B +B ��������∂.

The mixed complex (X, δ+∂,B) associated with a double mixed complex (X, δ, ∂,B)
is obtained setting (X, δ + ∂) = Tot(X, δ, ∂) and Bn =

⊕
i+j=n Bij . By definition,

the Hochschild, cyclic, periodic and negative homologies of (X, δ, ∂,B) are the
Hochschild, cyclic, periodic and negative homologies of (X, δ + ∂,B), respectively.

2.3. The relative Hochschild and cyclic homologies. Let C be a k-algebra

and let (C ⊗ C
⊗∗

, b, B) be the normalized mixed complex of C. Recall that the
cyclic, negative, periodic and Hochschild homologies HC∗(C), HN∗(C), HP∗(C) and

HH∗(C) of C are the respective homologies of (C ⊗ C
⊗∗

, b, B).
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Next, we define the relative homologies. Let I be a two sided ideal of C and
let D = C/I. The cyclic, negative, periodic and Hochschild homologies HC∗(C, I),
HN∗(C, I), HP∗(C, I) and HH∗(C, I), of C relative to I, are by definition the re-
spective homologies of the mixed complex

ker
(
(C ⊗ C

⊗∗
, b, B)

π // (D ⊗D
⊗∗

, b, B)
)
,

where π is the map induced by the canonical projection from C onto D.

2.4. The perturbation lemma. Next, we recall the perturbation lemma. We
give the more general version introduced in [C].

A homotopy equivalence data

(2) (Y, ∂)
i

// (X, d)
poo

, h : X∗ → X∗+1,

consists of the following:

(1) Chain complexes (Y, ∂), (X, d) and quasi-isomorphisms i, p between them,

(2) A homotopy h from i ��������p to id.

A perturbation δ of (2) is a map δ : X∗ → X∗−1 such that (d + δ)2 = 0. We call
it small if id−δ ��������h is invertible. In this case we write A = (id−δ ��������h)−1 ��������δ and we
consider

(3) (Y, ∂1)
i1

// (X, d+ δ)
p1

oo
, h1 : X∗ → X∗+1,

with

∂1 = ∂ + p ��������A ��������i, i1 = i+ h ��������A ��������i, p1 = p+ p ��������A ��������h, h1 = h+ h ��������A ��������h.

A deformation retract is a homotopy equivalence data such that p ��������i = id. A defor-
mation retract is called special if h ��������i = 0, p ��������h = 0 and h ��������h = 0.

In all the cases considered in this paper the map δ ��������h is locally nilpotent, and so
(id−δ ��������h)−1 =

∑∞

n=0(δ
��������h)n.

Theorem 2.1. ([C]) If δ is a small perturbation of the homotopy equivalence
data (2), then the perturbed data (3) is a homotopy equivalence. Moreover, if (2)
is a special deformation retract, then (3) is also.

2.5. The suspension. The suspension of a chain complex (X, d) is the complex
(X, d)[1] = (X [1], d[1]), defined by X [1]∗ = X∗−1 and d[1]∗ = −d∗−1.

3. The relative cyclic homology of a square zero extension

Let A be a k-algebra,M an A-bimodule and f : A⊗A → M a Hochschild normal
2-cocycle. The square zero extension E = A ⋉f M , of A by M associated with f ,
is the direct sum A⊕M with the associative algebra structure given by

(a,m)(a′,m′) = (aa′, am′ +ma′ + f(a, a′)).

Let C be a k-algebra and let M be a two sided ideal of C such that M2 = 0. It is
well known that C is isomorphic to a square zero extension E of A by M . In this
section we obtain a double mixed complex, simpler than the canonical one, giving
the Hochschild, cyclic, periodic and negative homologies of E relative to M . Then
we show that the cyclic homology of E relative to M , is also given by a still simpler
complex. Finally, we obtain convenient expressions for the connection map of the
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long exact sequences in Hochschild and cyclic homologies, associated with the short
exact sequence of mixed complexes

(4) 0 // ker(π)
i // (E ⊗ E

⊗∗
, b, B)

π // (A⊗A
⊗∗

, b, B) // 0.

3.1. Complexes for the relative Hochschild, cyclic, periodic and negative

homologies. For w ≥ 0 and v ≥ 2w, let Xw
v = M ⊗Bv−w

w . By convenience we put
Xw

v = 0, otherwise. From now on we often will use the indices v, w and n, which
always will satisfy the relation n = v − w. Consider the triple diagram

X =

...

−b

��

...

b

��

...

−b

��
...

−b

��

...

b

��

...

−b

��

··· X2
4

id−too X2
4

Noo X2
4

id−too ···Noo

...

−b

��

...

b

��

...

−b

��

··· X1
4

d′

EE












−b

��

id−too X1
4

d

EE













b

��

Noo X1
4

d′

EE













−b

��

id−too ···Noo

··· X0
4

id−too

−b

��

d′

EE













X0
4

Noo

b

��

d

EE












X0
4

id−too

−b

��

d′

EE













···Noo

··· X1
3

−b

��

id−too X1
3

b

��

Noo X1
3

−b

��

id−too ···Noo

··· X0
3

id−too

−b

��

d′

EE













X0
3

Noo

b

��

d

EE












X0
3

id−too

−b

��

d′

EE













···Noo

··· X1
2

id−too X1
2

Noo X1
2

id−too ···Noo

··· X0
2

id−too

−b

��

d′

EE













X0
2

Noo

b

��

d

EE












X0
2

id−too

−b

��

d′

EE













···Noo

··· X0
1

id−too

−b

��

X0
1

Noo

b

��

X0
1

id−too

−b

��

···Noo

··· X0
0

id−too X0
0

Noo X0
0

id−too ···Noo

where

b(xn
0 ) =

n∑

j=0

µj(x
n
0 ), d(xn

0 ) =

n−1∑

j=1

Fj(x
n
0 ),

d′(xn
0 ) = −d(xn

0 )−

n−1∑

j=i(xn
0 )+1

t(Fj(x
n
0 )), N(xn

0 ) =

w∑

l=0

tl(xn
0 ),

the middle face (X, b, d) is the 0-th face and the bottom row is the 0-th row. Note
that id−t : X0

v → X0
v is the zero map and N : X0

v → X0
v is the identity map.

For l ∈ Z, let τ l(X ) be the subdiagram of X obtaining by deleting the u-th faces
(X, b, d) and (X,−b, d′) with u > l, and let τ0(X ) and τ10 (X ) be the quotient triple
diagrams of X by τ−1(X ) and τ1(X ) by τ−1(X ), respectively.
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Theorem 3.1. X is a triple complex. Moreover

HH∗(E,M) = H∗(Tot(τ
1
0 (X ))),

HC∗(E,M) = H∗(Tot(τ0(X ))),

HP∗(E,M) = H∗(Tot(X )),

HN∗(E,M) = H∗(Tot(τ
1(X ))).

Consequently, the following equalities hold:

d ��������b = −b ��������d, d′ ��������b = −b ��������d′, d′ ��������N = −N ��������d,

d ��������(id−t) = −(id−t) ��������d′, b ��������N = N ��������b, t ��������b = b ��������t.

We will use these equalities freely throughout the paper.

Theorem 3.1 is a consequence of Theorem 3.2, which we enounce below and whose
proof will be relegated to Appendix A. For w ≥ 0 and v ≥ 2w, let X̂w

v = Xw
v ⊕Xw

v−1.

Consider the diagram (X̂, b̂, d̂) where the maps b̂ : X̂w
v → X̂w

v−1 and d̂ : X̂w
v → X̂w+1

v

are defined by

b̂(x,y) =
(
b(x) + (id−t)(y),−b(y)

)
and d̂(x,y) =

(
d(x), d′(y)

)
.

Note that (X̂, b̂, d̂) is one of the partial total complexes of the triple complex τ10 (X ),

and so Tot(τ10 (X )) = Tot(X̂, b̂, d̂) (but we have not proved that τ10 (X ) is a triple

complex, yet). Let B̂ : X̂w
v → X̂w

v+1 be the map defined by B̂(x,y) = (0, N(x)).

Theorem 3.2. The following assertions hold:

(1) (X̂, b̂, d̂, B̂) is a double mixed complex.

(2) The Hochschild, cyclic, periodic and negative homologies of (X̂, b̂, d̂, B̂) are
the Hochschild, cyclic, periodic and negative homologies of E relative to M ,
respectively.

Proof. See Appendix A. �

Proof of Theorem 3.1 Let (X̆, b̆, B̆) be the mixed complex associated with

(X̂, b̂, d̂, B̂). Theorem 3.1 follows immediately from Theorem 3.2 and the fact that

Tot(τ10 (X )) = (X̆, b̆),

Tot(τ0(X )) = Tot(BC(X̆, b̆, B̆)),

Tot(X ) = Tot(BP(X̆, b̆, B̆)),

Tot(τ1(X )) = Tot(BN(X̆, b̆, B̆)),

which can be easily checked. �

Lemma 3.3. The rows of the triple complex X are contractible.

Proof. For w ≥ 0 and v ≥ 2w, let σ, σ′ : Xw
v → Xw

v be the maps defined by

σ = 1
w+1 id and σ′ =

∑w−1
j=0

w−j
w+1t

j . A direct computation shows that:

σ ��������N = N ��������σ =
1

w + 1
N,

(id−t) ��������σ′ = σ′
��������(id−t) =

w−1∑

j=0

w − j

w + 1
tj −

w∑

j=1

w − j + 1

w + 1
tj = id−

1

w + 1
N.

The result follows immediately from these equalities. �
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Theorem 3.4. Let (X, b, d) be the cokernel of id−t : (X,−b, d′) → (X, b, d). The
relative cyclic homology HC∗(E,M) is the homology of (X, b, d).

Proof. This follows immediately from Theorem 3.1 and Lemma 3.3. �

From Lemma 3.3 it follows also that (X̂, b̂, d̂, B̂) has the Connes property. The-
orem 3.4 can be alternatively deduced from this fact.

Let C be a k-algebra, M a two sided ideal of C and A = C/M . Next we give
an alternative proof of a celebrated theorem of Goodwillie obtained in [G2]. To do
this we need the following result:

Proposition 3.5. It is true that b ��������σ′ = σ′ ��������b.

Proof. Fix w ≥ 0 and v > 2w and let xn
0 ∈ Xw

v be an elementary tensor. Let
0 = i0 < i1 < · · · < iw ≤ n be the indexes such that xij ∈ M and set iw+1 = n+1.
A direct computation shows that

µl
��������tj(xn

0 ) =

{
tj ��������µl+iw+1−j

(xn
0 ) if 0 ≤ l ≤ n− iw+1−j,

tj ��������µl−n−1+iw+1−j
(xn

0 ) if n− iw+1−j < l ≤ n.

Hence, the families µl
��������tj(xn

0 ) and tj ��������µl(x
n
0 ) coincide, and so

b ��������σ′(xn
0 ) =

n∑

l=0

w−1∑

j=0

w − j

w + 1
µl
��������tj(xn

0 ) =

w−1∑

j=0

n∑

l=0

w − j

w + 1
tj ��������µl(x

n
0 ) = σ′

��������b(xn
0 ),

as we want. �

Theorem 3.6. (Goodwillie) Let C be a k-algebra, M a two-sided ideal of C and
A = C/M . If M is nilpotent, then HP∗(C) = HP∗(A).

Proof. Without loss of generality we can assume that M2 = 0. So C is isomorphic
to a squared zero extension E = A ⋉f M . We prove the theorem showing that
HP∗(E,M) = 0. Let us consider the filtration (Fq(X ))q≥0 of X , given by Fq(X

w
v ) =

Xw
v if w ≥ q and Fq(X

w
v ) = 0 otherwise. Taking the graded complex associated

with this filtration we can assume that E the zero squared extension E = A ⋉M ,
with trivial cocycle. In this case X is contractible, since d = d′ = 0 and, by
Proposition 3.5, b ��������σ′ = σ′ ��������b. �

3.2. The connection map for the Hochschild homology. Let

. . . // HHn(E,M) // HHn(E) // HHn(A)
δn // HHn−1(E,M) // HHn−1(E) // . . .

be the long exact sequence associated with the short exact sequence (4). In this

subsection we obtain a morphism of complexes δ̆ : (A⊗A
⊗∗

, b) → (X̆, b̆)[1], inducing
the maps δn. For each n ≥ 0, let

δ1 : A⊗A
⊗n

→ X0
n−1, δ2 : A⊗A

⊗n
→ X0

n−2 and δ3 : A⊗A
⊗n

→ X1
n−1

be the maps defined by

δ1 =

n∑

j=0

t ��������Fj , δ2 = µ0
��������F1 and δ3 =

n−1∑

i=2

F0
��������Fi −

∑

0≤i<j≤n

t ��������Fi
��������Fj .

The proof of Proposition 3.7 below and Proposition 3.8 in the next subsection are
relegated to Appendix A.

Proposition 3.7. The connection map δn : HHn(A) → HHn−1(E,M) is induced

by the morphism of complexes δ̆ : (A⊗A
⊗∗

, b) → (X̆, b̆)[1], given by

δ̆(a) = (δ2(a), δ1(a), δ3(a), 0, 0, . . . ),
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where we are writing

X̆n−1 = X0
n−2 ⊕X0

n−1 ⊕X1
n−1 ⊕X1

n ⊕X2
n ⊕X2

n+1 ⊕X3
n+1 ⊕X3

n+2 ⊕ · · ·

Proof. See Appendix A. �

3.3. The connection map for the cyclic homology. Let

. . . // HCn(E,M) // HCn(E) // HCn(A)
δn // HCn−1(E,M) // HCn−1(E) // . . .

be the long exact sequence associated with the short exact sequence (4).

Proposition 3.8. The connection map δn : HCn(A) → HCn−1(E,M) is induced

by the morphism of complexes δ : Tot(BC(A ⊗ A
⊗∗

, b, B)) → Tot(X, b, d)[1], given

by δ(an0 ,b
n−2
0 , cn−4

0 , . . . ) = δ1(an0 ). Note that the image of δ is included in X
0

n−1.

Proof. See Appendix A. �

4. The harmonic decomposition

As in the proof of Theorem 3.1, we let (X̆, b̆, B̆) denote the mixed complex

associated with the double mixed complex (X̂, b̂, d̂, B̂), introduced in Theorem 3.2.

The aim of this section is to show that (X̆, b̆, B̆) has a harmonic decomposition
like the one studied in [C-Q]. In order to carry out this task we need to define a

de Rham coboundary map and a Karoubi operator on (X̆, b̆). As we said in the

introduction we are going to work with a new double mixed complex (Ẍ, d̈, b̈, B̈),

whose associated mixed complex is also (X̆, b̆, B̆). In the first three subsections we
follow closely the exposition of [C-Q].

4.1. The Rham coboundary map and the Karoubi operator. It is easy to
see that τ10 (X ) is the total complex of the double complex

(Ẍ, b̈, d̈) =

...

b̈
��

...

b̈
��

...

b̈
��

...

b̈
��

Ẍ2
4 Ẍ1

4

b̈
��

d̈oo Ẍ0
4

b̈
��

d̈oo Ẍ−1
4

b̈
��

d̈oo

Ẍ1
3

b̈
��

Ẍ0
3

b̈
��

d̈oo Ẍ−1
3

b̈
��

d̈oo

Ẍ1
2 Ẍ0

2

b̈
��

d̈oo Ẍ−1
2

b̈
��

d̈oo

Ẍ0
1

b̈
��

Ẍ−1
1

b̈
��

d̈oo

Ẍ0
0 Ẍ−1

0

d̈oo

where Ẍw
v = Xw

v ⊕Xw+1
v and the boundary maps are defined by

b̈(x,y) = (b(x),−b(y)) and d̈(x,y) = (d(x) + (id−t)(y), d′(y)).
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The de Rham coboundary map d̈R : Ẍw
v → Ẍw−1

v is defined by d̈R(x,y) = (0,x).

It is immediate that (Ẍ, d̈R) is acyclic. We now define the Karoubi operator of Ẍ .

Let κ̈(0) : Ẍw
v → Ẍw

v and κ̈(1) : Ẍw
v → Ẍw

v be the maps defined by

κ̈(0)(x,y) = (t(x), t(y)) and κ̈(1)(x,y) =
(
0, d(x)− d′(x)

)
.

The Karoubi operator κ̈ of Ẍ is the degree zero operator defined by

κ̈ = κ̈(0) + κ̈(1).

Let d̆R : X̆n → X̆n+1 and κ̆ : X̆n → X̆n be the maps defined by

d̆Rn =
n⊕

w=−1

d̈R
w

n+w and κ̆n =
n⊕

w=−1

κ̈w
n+w,

respectively. A direct computation shows that

(5) id−κ̈ = d̈ ��������d̈R + d̈R ��������d̈ and 0 = b̈ ��������d̈R + d̈R �������� b̈.

In particular, κ̈ is homotopic to the identity with respect to either of the differentials
d̈, d̈R, and so it commutes with them. From (5) it follows that

id−κ̆ = b̆ ��������d̆R + d̆R �������� b̆.

Consequently, κ̆ commutes with b̆ and d̆R. Hence, κ̈ also commutes with b̈ (which

can be also proved by a direct computation). Let B̈ : Ẍw
v → Ẍw−1

v be the map

defined by B̈(x,y) = (0, N(x)). An easy computation shows that (Ẍ, d̈, b̈, B̈) is a

double mixed complex and that its associated mixed complex is (X̆, b̆, B̆). Further-

more, B̈(x) =
∑w

i=0 κ̈
i ��������d̈R(x) for all x ∈ Ẍw

v . Using this we obtain:

B̈ ��������κ̈ = κ̈ ��������B̈ = B̈ and d̈R ��������B̈ = B̈ ��������d̈R = 0.

4.2. The harmonic decomposition. From the definition of κ̈ it follows immedi-
ately that

(κ̈w+2 − id) ��������(κ̈w+1 − id)(Ẍw
v ) ⊆ (κw+2 − id)(Xw+1

1v ) = 0.

This implies that κ̈ satisfies the polynomial equation Pw(κ̈) = 0 on Ẍw
v , where

Pw = (Xw+1 − 1)(Xw+2 − 1).

The roots of Pw are the r-th roots of unity, with r = w+1 and r = w+2. Moreover,
1 is a double root and the all other roots are simple. Consequently Ẍw

v decomposes
into the direct sum of the generalized eigenspace ker(κ̈ − id)2 and its complement
Im(κ̈− id)2. Combining this for all v, w we obtain the following decomposition

Ẍ = ker(κ̈− id)2 ⊕ Im(κ̈− id)2,

Each of these generalized subspaces is stable under any operator commuting with
κ̈, for instance, b̈, d̈, d̈R and B̈.

4.3. The harmonic projection and the Green operator. Let P be the har-
monic projection operator, which is the identity map on ker(κ̈− id)2 and the zero
map on Im(κ̈− id)2. Thus we have

Ẍ = P (Ẍ)⊕ P⊥(Ẍ),

where P⊥ = id−P . It is immediate that (P (Ẍ), d̈, b̈, B̈) and (P⊥(Ẍ), d̈, b̈, B̈) are

double mixed subcomplexes of (Ẍ, d̈, b̈, B̈). On P⊥(Ẍ) the operator

id−κ̈ = d̈ ��������d̈R + d̈R ��������d̈
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is both invertible and homotopic to zero with respect to either differential d̈ and
d̈R. Hence the complexes (P⊥(Ẍ), d̈) and (P⊥(Ẍ), d̈R) are acyclic. Let

P (X̆n) =

n⊕

w=−1

P (Ẍw
n+w) and P⊥(X̆n) =

n⊕

w=−1

P⊥(Ẍw
n+w).

The same argument shows that (P⊥(X̆), b̆) and (P⊥(X̆), d̆R) are also acyclic. The

Green operator G : Ẍ → Ẍ is defined to be zero on P (Ẍ) and the inverse of id−κ̈

on P⊥(Ẍ). It is immediate that

(6) G ��������P = P ��������G = 0 and P⊥ = G ��������(id−κ̈) = G ��������(d̈ ��������d̈R + d̈R ��������d̈).

Moreover P and G commute with each operator that commutes with κ̈.

Proposition 4.1. One has

P⊥(Ẍ) = d̈ ��������P⊥(Ẍ)⊕ d̈R ��������P⊥(Ẍ).

Furthermore d̈R maps d̈ ��������P⊥(Ẍ) isomorphically onto d̈R ��������P⊥(Ẍ) with inverse G ��������d̈

and d̈ maps d̈R ��������P⊥(Ẍ) isomorphically onto d̈ ��������P⊥(Ẍ) with inverse G ��������d̈R. This gives

a new proof that (P⊥(Ẍ), d̈) and (P⊥(Ẍ), d̈R) are acyclic.

Proof. The proof of Proposition 2.1 of [C-Q] works in our setting. �

Proposition 4.2. One has x ∈ P (Ẍw
v ) if and only if d̈R(x) and d̈R ��������d̈(x) are κ̈-

invariant.

Proof. The proof of Proposition 2.2 of [C-Q] works in our setting. �

Fix w ≥ 0 and v ≥ 2w. Let X̀w
v and X́w

v be the image of the canonical inclusions

of Xw
v into Ẍw

v and Ẍw−1
v respectively, and let κ́ : X́w

v → X́w
v be the map induced

by κ̈. For x = (x0, 0) ∈ X̀w
v we write

d̀(x) = (d(x0), 0),

and, for y = (0,y0) ∈ X́w
v , we write

d́(y) = (0, d(y0)), d́′(y) = (0, d′(y0)) and t́(y) = (0, t(y0)).

It is immediate that κ́ coincides with t́. Note that κ̈ has finite order on d̈R(Ẍ) = X́

in each degree. In fact κ̈w+1 = id on X́w
v . By the discussion in the page 86 of [C-Q],

X́w
v = ker(id−κ́)⊕ Im(id−κ́),(7)

P (d̈R(X̀w
v )) = P (X́w

v ) = ker(id−κ́),(8)

P⊥(d̈R(X̀w
v )) = P⊥(X́w

v ) = Im(id−κ́),(9)

and the maps PX́w
v

and GX́w
v
, defined as the projection onto ker(id−κ́) associated

with (7) and the Green operator for id−κ́ : X́w
v → X́w

v , respectively, satisfy:

(10) PX́w
v
=

1

w + 1

w∑

i=0

κ́i and GX́w
v
=

1

w + 1

w∑

i=0

(
w

2
− i)κ́i.

Consequently, for all x ∈ Ẍw
v ,

P ��������d̈R(x) =
1

w + 1

w∑

i=0

κ̈i
��������d̈R(x) =

1

w + 1
B̈(x),(11)

G ��������d̈R(x) =
1

w + 1

w∑

i=0

(
w

2
− i)κ̈i

��������d̈R(x).(12)



12 JORGE A. GUCCIONE AND JUAN J. GUCCIONE

The formula (11) has the following consequences: it implies that

(13) B̈(P⊥(Ẍ)) = 0.

Using this, we obtain that B̈(x) = (w + 1)d̈R(P (x)) for all x ∈ Ẍw
v . So, since

(P⊥(Ẍ), d̈R) is acyclic,

(14) H∗(P (Ẍ), B̈) = H∗(P (Ẍ), d̈R) = H∗(Ẍ, d̈R) = 0.

In the terminology of [C-Q] this says that (P (Ẍ), d̈, b̈, B̈) is B̈-acyclic. Lastly, (10)
combined with (12) and the second formula of (6), allows us to obtain an explicit

formula for P . In fact, for x ∈ X́w
v , this is given by (10). Then, assume that

x ∈ X̀w
v . Since by (12), G ��������d̈R(x) ∈ X́w

v , we have:

G ��������d̈ ��������d̈R(x) = d̈ ��������G ��������d̈R(x) = d́′ ��������G ��������d̈R(x) + sw ��������(id−t́) ��������G ��������d̈R(x),

where sw : X́w
v → X̀w

v is the map defined by sw(0,x) = (x, 0). Using this, the

second formula of (6), and the fact that t́ ��������κ̈i ��������d̈R(x) = κ̈i+1 ��������d̈R(x), we obtain:

P (x) = x−G ��������d̈R ��������d̀0(x) −G ��������d̈ ��������d̈R(x)

= x−
1

w + 2

w+1∑

i=0

(
w + 1

2
− i)κ̈i

�������� d̈R ��������d̀(x) +
1

w + 1

w∑

i=0

(
w

2
− i)d́′ ��������κ̈i

��������d̈R(x)

−
1

w + 1

w∑

i=0

(
w

2
− i)sw ��������(id−t́) ��������κ̈i

��������d̈R(x)

=
1

w + 1
sw ��������B̈n(x) −

1

w + 2

w+1∑

i=0

(
w + 1

2
− i)κ̈i

��������d̈R ��������d̀(x)

+
1

w + 1

w∑

i=0

(
w

2
− i)d́′ ��������κ̈i

��������d̈R(x).

We now consider the chain complex (Ẍ, b̈, d̈) and denote by ker(B̈), Im(B̈) the kernel

and image of B̈ on Ẍ. These are subcomplexes of (Ẍ, b̈, d̈). By (13) and (14), we

have ker(B̈)/ Im(B̈) = P⊥(Ẍ). Consequently,

H∗(ker(B̈)/ Im(B̈), b̈, d̈) = 0.

That is, the double mixed complex (Ẍ, d̈, b̈, B̈) has the Connes property ([C-Q]).

Let us define the reduced cyclic complex C
λ

X to be the quotient double complex

C
λ

X = Ẍ/ ker(B̈). It is easy to check that C
λ

X = P (Ẍ)⊕P⊥(Ẍ)

Im(B̈)⊕P⊥(Ẍ)
= P (Ẍ)

Im(B̈)
and that B̆

induces the isomorphism of complexes Tot(C
λ

X)[1] ≃ Im(B̆). So, we have a short
exact sequence of double complexes

0 //
Tot(C

λ

X)[1]
i // Tot(P )(X̆)

j //
Tot(C

λ

X) // 0,

where j is the canonical surjection and i is induced by B̈.

4.4. A description of P (Ẍ). The aim of this subsection is to obtain a precise

description of the double mixed complex (P (Ẍ), d̈, b̈, B̈). The main result are The-
orem 4.3 and Proposition 4.4. We relegate their proofs to Appendix B.

Take x = (x0,x1) ∈ Ẍw
v , with x0 ∈ Xw

v and x1 ∈ Xw+1
v . By Proposition 4.2

we know that x ∈ P (Ẍ) if and only if x0 and d(x0) + (id−t)(x1) are t-invariant.

From this it follows immediately that if x ∈ P (Ẍ), then (x0,x
′
1) ∈ P (Ẍ) for all

x′
1 ∈ Xw+1

v such that x′
1 −x1 is t-invariant. Conversely, if x and (x0,x

′
1) belong to

P (Ẍ), then (id−t)(x′
1−x1) is t-invariant, but this implies that (id−t)(x′

1−x1) = 0.
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In other words, that x′
1−x1 is t-invariant. In particular (0,x1) ∈ P (Ẍ) if and only

if x1 is t-invariant. We let tP (Ẍw
v ) denote the set of all elements of the shape

(0,x1) ∈ Ẍw
v with x1 a t-invariant element. It is immediate that (tP (Ẍ),−b, d′) is

a subcomplex of (P (Ẍ), b̈, d̈).
We assert that if x ∈ Xw

v is t-invariant, then

(15) (x,−σ′
��������d(x)) ∈ P (Ẍ).

This follows immediately from the equality (id−t) ��������σ′(y) = y − 1
w+2N(y), which

was obtained in the proof of Lemma 3.3.

Recall from Theorem 3.4 that X
w

v is the cokernel of id−t : Xw
v → Xw

v . Let

X̃w
v = X

w

v ⊕X
w+1

v . Consider the diagram

(X̃, b̃, d̃) =

...

b̃

��

...

b̃

��

...

b̃

��

...

b̃

��
X̃2

4 X̃1
4

b̃

��

d̃oo X̃0
4

b̃

��

d̃oo X̃−1
4

b̃

��

d̃oo

X̃1
3

b̃

��

X̃0
3

b̃

��

d̃oo X̃−1
3

b̃

��

d̃oo

X̃1
2 X̃0

2

b̃

��

d̃oo X̃−1
2

b̃

��

d̃oo

X̃0
1

b̃

��

X̃−1
1

b̃

��

d̃oo

X̃0
0 X̃−1

0

d̃oo

where the maps b̃ : X̃w
v → X̃w

v−1 and d̃ : X̃w
v → X̃w+1

v are defined by

b̃(x,y) = (b(x),−b(y)) and d̃(x,y) = (d(x),−d(y)),

respectively. Let p : Xw
v → X

w

v be the map defined by

p(x) =
n− iw + 2

v + 2
[x] for each elementary tensor x ∈ Xw

v ,

where iw is the last index such that xiw ∈ M and [x] denotes the class of x in X
w

v .

Let N : X
w

v → Xw
v be the map induced by N . It is immediate that p is a retraction

of N . Given a t-invariant element x ∈ Xw
v , let

Υ(x) = (− id+N ��������p) ��������σ′
��������d(x) ∈ Xw+1

v .

Let eξ̃ : X̃w
v → X̃w

v−1 and eς̃ : X̃w
v → X̃w+1

v be the maps defined by

eξ̃(x,y) = (0, eξ(x)) and eς̃(x,y) = (0, eς(x)),

where eξ : X
w

v → X
w+1

v−1 and eς : X
w

v → X
w+2

v are the maps given by

eξ(x) = −
1

w + 1
p ��������σ′

��������d ��������N ��������b(x)−
1

w + 1
b ��������p ��������σ′

��������d ��������N(x)

and

eς(x) =
1

w + 1
d ��������p ��������σ′

��������d ��������N(x) +
1

w + 2
p ��������σ′

��������d ��������N ��������d(x),
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respectively.

Theorem 4.3. Let B̃ : X̃w
v → X̃w

v+1 be the map defined by B̃(x,y) = (0,x). The

diagrams (X̃, d̃, b̃+ eξ̃, B̃) and (X̃, d̃+ eς̃ , b̃, B̃) are mixed double complexes and the
maps

Ψ: (X̃, d̃, b̃+eξ̃, B̃) → (P (Ẍ), d̈, b̈, B̈) and Λ: (X̃, d̃, b̃+eξ̃, B̃) → (X̃, d̃+eς̃ , b̃, B̃),

defined by Ψ−1
v (0,y) = Λ−1

v (0,y) = (0,y), and

Ψw
v (x,y) =

1

w + 1

(
N(x),Υ ��������N(x)

)
+ (0, N(y)),

Λw
v (x,y) = (x,y) +

1

w + 1
(0, p ��������σ′

��������d ��������N(x)),

for w ≥ 0, are isomorphisms of double mixed complexes.

Proof. See Appendix B. �

We now give a formula for eς.

Proposition 4.4. Let xn
0 ∈ Xw

v be an elementary tensor, let 0 = i0 < · · · < iw ≤ n
be the indices such that xij ∈ M and let iw+1 = n + 1. Given 0 ≤ α ≤ n we let
j(α) denote the number defined by ij(α) ≤ α < ij(α)+1. We have:

eς([xn
0 ]) =

∑

α<β

λ
(w)
αβ [Fα

��������Fβ(x
n
0 )],

where [Fα
��������Fβ(x

n
0 )] denotes the class of Fα

��������Fβ(x
n
0 ) in Xw+2

v and

λ
(w)
αβ =

2(j(β)− j(α))

(w + 1)(w + 2)(w + 3)
−

1

(w + 2)(w + 3)
.

Proof. See Appendix B. �

Let i : X
w+1

v → X̃w
v and π : X̃w

v → X
w

v be the canonical maps. The short exact
sequence of double complexes

(16) 0 // (X
∗+1

∗ , b, d)
i // (X̃∗

∗ , b̃, d̃+
eς̃)

π // (X
∗

∗, b, d)
// 0.

splits in each level via the maps s : X
w

v → X̃w
v and r : X̃w

v → X
w+1

v , given by
s(x) = (x, 0) and r(x,y) = y. From this it follows immediately that the connection
map of the homology long exact sequence associated with (16) is induced by the

morphism of double complexes eς : (X
∗

∗, b, d) → (X
∗−2

∗ , b, d).

Proposition 4.5. The maps

Sn : HCn(E,M) → HCn−2(E,M),

Bn : HCn(E,M) → HHn+1(E,M),

in : HHn(E,M) → HCn(E,M),

are induced by −eς, i and π, respectively.

Proof. Left to the reader. �

Let C be a k-algebra and let M be a two-sided ideal of C. In [G2] was proved
that if Mm+1 = 0, then

Sm(n+1) : HCn+2m(n+1)(C,M) → HCn(C,M)

is the zero map. Actually, arguing as in the proof of Theorem 4.6 it is easy to see
that if the previous formula holds when m = 1, then it is valid for all m whenever
M2m = 0. Next, we give a theorem that improves this result.
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Theorem 4.6. If M2m = 0, then

Sm([n/2]+1) : HCn+2m([n/2]+1)(C,M) → HCn(C,M) (n ≥ 0)

is the zero map, where [n/2] denotes the integer part of n/2.

Proof. We make the proof by induction on m. For m = 1 the theorem follows from
Proposition 4.5. Assume that m > 1 and that the corollary is valid for m− 1. Let
l = [n2 ] + 1. Consider the commutative diagram with exact rows

HCn+2ml(C,M
2) //

Sl

��

HCn+2ml(C,M)
π //

Sl

��

HCn+2ml

(
C
M2 ,

M
M2

)

Sl

��
HCn+2(m−1)l(C,M

2)
i //

S(m−1)l

��

HCn+2(m−1)l(C,M) //

S(m−1)l

��

HCn+2(m−1)l

(
C
M2 ,

M
M2

)

S(m−1)l

��
HCn(C,M

2)
i // HCn(C,M) // HCn

(
C
M2 ,

M
M2

)

where i and π are the canonical maps. Let x ∈ HCn+2ml(C,M). By the case m = 1,
we know that Sl(π(x)) = 0. So, there exists y ∈ HCn+2(m−1)l(C,M

2) such that

Sl(x) = i(y). Since (M2)2
m−1

= M2m = 0 we can apply the inductive hypothesis
to conclude that Sml(x) = i(S(m−1)l(Sl(y))) = 0. �

Note that Theorem 4.6 implies that if M2 = 0, then the maps

S2 : HC2(C,M) → HC0(C,M) and S3 : HC3(C,M) → HC1(C,M)

are zero.

4.5. The connection map for the Hochschild homology revised. Let

δ̂3 : A⊗A
⊗n

→ X
1

n−1 and δ̃3 : A⊗A
⊗n

→ X
1

n−1

be the maps defined by

δ̂3(a) =

n−1∑

j=2

n+1−2j

2(n+1)
F0j(a) +

n−1∑

i=0

i+1−n

n+1
Fin(a) +

∑

0<i<j<n

i−j

n+1
Fij(a),

δ̃3(a) = −
1

2

∑

0<i<j≤n

Fij(a),

where Fij(a) is the class of t ��������Fi
��������Fj(a) in X

1

n−1.

Proposition 4.7. The connection map δn : HHn(A) → HHn−1(E,M) associated
with the short exact sequence (3) is induced by the morphisms of complexes

δ̂ : (A⊗A
⊗∗

, b) → Tot(X̃, d̃, b̃+ eξ̃) and δ̃ : (A⊗A
⊗∗

, b) → Tot(X̃, d̃+ eς̃ , b̃),

given by

δ̂(a) = (δ2(a), δ1(a), δ̂3(a), 0, 0, . . . ) and δ̃(a) = (δ2(a), δ1(a), δ̃3(a), 0, 0, . . . ),

where we are writing

Tot((X̃, d̃, b̃+ eξ̃))n−1 = Tot((X̃, d̃+ eς̃ , b̃))n−1

= X̃−1
n−2 ⊕ X̃0

n−1 ⊕ X̃1
n ⊕ X̃2

n+1 ⊕ X̃3
n+2 ⊕ · · ·

≃ X
0

n−2 ⊕X
0

n−1 ⊕X
1

n−1 ⊕X
1

n ⊕X
2

n ⊕ · · ·

(here we are identifying X̃−1
n−2 = X

−1

n−2 ⊕X
0

n−2 with X
0

n−2).
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Proof. Let δ̆ be the morphism introduced in Proposition 3.7. By Theorem 4.3,

to check the assertions it suffices to show that Tot(Ψ)n−1
�������� δ̂n = Tot(P )n �������� δ̆n and

Tot(Λ)n−1
�������� δ̂n = δ̃n. In other words we must prove that

Ψ−1(0, δ2(a)) = (0, δ2(a)),(17)

Ψ0(δ1(a), δ̂3n(a)) = P (δ1(a), δ3(a)),(18)

Λ−1(0, δ2(a)) = (0, δ2(a)),(19)

Λ0(δ1(a), δ̂3(a)) = (δ1(a), δ̃3(a)),(20)

where a ∈ A ⊗ A
⊗n

and δ1(a), δ2(a) and δ3(a) are as in Subsection 3.2. Equal-
ities (17) and (19) are immediate. To check the equality (18) we first compute

P̆ (δ1(a), δ3(a)). Since, by (15) we know that (δ1(a),−σ′ ��������d ��������δ1(a)) ∈ P (Ẍ) and P is
a projection, we have:

P (δ1(a), δ3(a)) = P (δ1(a),−σ′
��������d ��������δ1(a)) + P (0, (δ3 + σ′

��������d ��������δ1)(a))

=
(
δ1(a),−σ′

��������d ��������δ1(a)
)
+ P ��������d̈R ��������

(
(δ3 + σ′ ��������d ��������δ1)(a), 0

)

=
(
δ1(a),

1

2
δ3(a) +

1

2
t ��������δ3(a)−

1

2
σ′
��������d ��������δ1(a) +

1

2
t ��������σ′

��������d ��������δ1(a)
)
.

where the third equality follows from (11). Let

L(a) :=
1

2
δ3(a) +

1

2
t ��������δ3(a) −

1

2
σ′
��������d ��������δ1(a) +

1

2
t ��������σ′

��������d ��������δ1(a).

By the definition of Ψ0, to prove equality (18), we must show that

(21) (− id+N ��������p) ��������σ′
��������d ��������δ1(a) +N(δ̂3(a)) = L(a).

A direct computation shows that

t ��������Fi
��������Fj(a) =

{
Fi+n−j

��������t ��������Fj(a) if 0 ≤ i < j − 1 < n− 1,

Fi+1
��������t ��������Fn(a) if 0 ≤ i < n− 2 and j = n,

and

t2 ��������Fi
��������Fj(a) =

{
−Fj−i−1

��������t ��������Fi(a) if 0 ≤ i < j − 1 < n− 1,

−Fn−i−2
��������t ��������Fi+1(a) if 0 ≤ i < n− 2 and j = n.

Hence,

σ′
��������d ��������δ1(a) =

1

2

n−2∑

i=1

n∑

j=0

Fi
��������t ��������Fj(a) =

1

2

∑

0≤i<j≤n

t ��������Fi
��������Fj(a)−

1

2

∑

0≤i<j≤n

t2 ��������Fi
��������Fj(a).

Thus, by the definition of δ3,

L(a) =
1

2

n−1∑

j=2

F0
��������Fj(a) +

1

2

n−1∑

j=2

t ��������F0
��������Fj(a)−

∑

0≤i<j≤n

t ��������Fi
��������Fj(a).

and, by the definition of p,

p ��������σ′
��������d ��������δ1(a) =

∑

0≤i<j<n

j − i

2(n+ 1)
[t ��������Fi

��������Fj(a)] +
n−1∑

i=0

n− i− 1

2(n+ 1)
[t ��������Fi

��������Fn(a)]

−
∑

0≤i<j<n

n− j + i+ 1

2(n+ 1)
[t2 ��������Fi

��������Fj(a)]−

n−1∑

i=0

i+ 2

2(n+ 1)
[t2 ��������Fi

��������Fn(a)]

=
∑

0≤i<j<n

2j − 2i− n− 1

2(n+ 1)
[t ��������Fi

��������Fj(a)] +

n−1∑

i=0

n− 2i− 3

2(n+ 1)
[t ��������Fi

��������Fn(a)],
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where [x] denotes the class of x ∈ X1
n−1 in X

1

n−1. Consequently,

L(a) + (id−N ��������p) ��������σ′
��������d ��������δ1(a) =

n−1∑

j=2

n+ 1− 2j

2(n+ 1)
(t+ t2) ��������F0

��������Fj(a)

+

n−1∑

i=0

i+ 1− n

n+ 1
(t+ t2) ��������Fi

��������Fn(a) +
∑

0<i<j<n

i− j

n+ 1
(t+ t2) ��������Fi

��������Fj(a).

The equality (21) follows immediately from this fact. To prove equality (20) we
must show that

δ̂3n(a) + p ��������σ′
��������d ��������δ1(a) = −

1

2

∑

0<i<j≤n

[t ��������Fi
��������Fj(a)],

which can be checked by a direct computation. �

Appendix A.

This appendix is devoted to prove Theorem 3.2 and Propositions 3.7 and 3.8.

Let E = A ⋉f M be a square zero extension. By definition, the Hochschild
homology of E relative to M is the homology of the complex

(X̆, b̆) = ker
(
(E ⊗ E

⊗∗
, b)

π //(A⊗A
⊗∗

, b)
)
,

where π is the canonical projection. Let X̂w
v = (A ⊗ Bn

w+1) ⊕ (M ⊗ Bn
w). It is

immediate that (X̆, b̆) is the total complex of the second quadrant double complex

(X̂, b̂, d̂) =

...

b̂

��

...

b̂

��

...

b̂

��
X̂2

4 X̂1
4

b̂

��

d̂oo X̂0
4

b̂

��

d̂oo

X̂1
3

b̂

��

X̂0
3

b̂

��

d̂oo

X̂1
2 X̂0

2

b̂

��

d̂oo

X̂0
1

b̂

��
X̂0

0

where d̂ : X̂w
v → X̂w+1

v is defined by d̂(xn
0 ) =

∑n−1
j=0 Fj(x

n
0 )+ t ��������Fn(x

n
0 ) and b̂ is given

by the same formula as the Hochschild boundary map.
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The w-th column (X̂w, b̂) of the above complex is the total complex of the double
complex

(Xw, b, α) =

...

b0

��

...

b1

��
Xw

0,2w+2

b0

��

Xw
1,2w+2

b1

��

αoo

Xw
0,2w+1

b0

��

Xw
1,2w+1

b1

��

αoo

Xw
0,2w Xw

1,2w
αoo

where Xw
0v = M ⊗ Bn

w, X
w
1,v−1 = A ⊗ Bn

w+1, b0 is given by the same formula as

the Hochschild boundary map, b1(x
n
0 ) = µA

0 (x
n
0 ) +

∑n−1
j=1 µl(x

n
0 ) + µA

n (x
n
0 ) and

α(xn
0 ) = µM

0 (xn
0 ) + µM

n (xn
0 ).

Lemma A.1. Let θw1 : (Xw
1 , b1) → (Xw

1 ,−b) and ϑw
1 : (Xw

1 ,−b) → (Xw
1 , b1) be the

morphisms of complexes given by

θw1 (x
n+1
0 ) = µM

0 (xn+1
0 ) and ϑw

1 (x
n
0 ) =

n−i(xn
0 )∑

l=0

1⊗ tl(xn
0 ),

where t(xn
0 ) = (−1)nxn ⊗ xn−1

0 . Then, θw1
��������ϑw

1 = id and ϑw
1
��������θw1 is homotopic to id.

A homotopy is the family of maps ǫw : Xw
1,v−1 → Xw

1v, defined by

ǫw(xn
0 ) = −

n−i(xn
0 )∑

l=0

1⊗ tl(xn
0 ).

Proof. It is immediate that θw1 is a morphism of chain complexes and θw1
��������ϑw

1 = id.
We claim that ϑw

1 is also a morphism of chain complexes. Let x ∈ Xw
1v be an

elementary tensor and let i = i(x). On one hand, a direct computation shows that

µA
0 (1⊗ x) = µA

n+1(1⊗ tn−i(x)) = 0 and µA
0 (1⊗ tl(x)) = −µA

n+1(1⊗ tl−1(x)),

for 1 ≤ l ≤ n− i, and so

b1(ϑ
w
1 (x)) =

n∑

j=1

n−i∑

l=0

µj(1⊗ tl(x)) = −1⊗
n−1∑

j=0

n−i∑

l=0

µj(t
l(x)).

On the other hand, it is easy to see that

(22) tl(µj(x)) =

{
µj+l(t

l(x)) if 0 ≤ l ≤ n− i and 0 ≤ j ≤ n− l − 1,

µj+l−n(t
l+1(x)) if 0 ≤ l ≤ n− i− 1 and n− l ≤ j ≤ n,

and so

ϑw
1 (b(x)) =

i−1∑

j=0

1⊗ tn−i(µj(x)) +
n−i−1∑

l=0

n∑

j=0

1⊗ tl(µj(x)) = 1⊗
n−1∑

j=0

n−i∑

l=0

µj(t
l(x)),

which proves the claim. We now check that ǫw is an homotopy from ϑw
1
��������θw1 to the

identity map. Let x ∈ Xw
1,v−1 be an elementary tensor and let i = i(x). On one

hand, since

µA
n+1(1⊗tn−i(x)) = 0 and µA

0 (1⊗tl(x)) = −µA
n+1(1⊗tl−1(x)) for 1 ≤ l ≤ n− 1,
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we have

b1(ǫ
w(x)) = −x−

n∑

j=1

n−i∑

l=0

µj(1 ⊗ tl(x)) = −x+

n−1∑

j=0

n−i∑

l=0

1⊗ µj(t
l(x)).

On the other hand, using the equality

n−i−1∑

l=0

1⊗ tlµA
n (x)) =

n−i−1∑

l=0

1⊗ tlµn(x))

and the equations (22) twice, we obtain

ǫw((b1(x)) = −

n−i∑

l=0

1⊗ tl(µA
0 (x)) −

n−i−1∑

l=0

n∑

j=1

1⊗ tl(µj(x)) −

i−1∑

j=1

1⊗ tn−i(µj(x))

= −

n−i∑

l=0

1⊗ tl(µA
0 (x)) −

n−1∑

j=0

n−i∑

l=0

1⊗ µj(t
l(x)) +

n−i∑

l=0

1⊗ µl(t
l(x)).

Since tl(µ0(x)) − µl(t
l(x)) = tl(µ0(x))− tl(µA

0 (x)) = tl(µM
0 (x)), we have

b1(ǫ
w(x)) + ǫw((b1(x)) = −x+

n−i∑

l=0

1⊗ tl(µM
0 (x)) = −x+ ϑw

1 (θ
w
1 (x)),

which proves that ǫw is a homotopy from ϑw
1
��������θw1 to id. �

Lemma A.2. For w ≥ 0, let τ10 (X
w) be the double diagram with two columns

(Xw, b) (Xw,−b)
id−too . The following assertions hold:

(1) τ10 (X
w) is a double complex.

(2) The map ϑw : τ10 (X
w) → (Xw, b, α), where ϑw

0 : Xw
v → Xw

v is the identity
map and ϑw

1 : Xw
v−1 → Xw

v−1 is as in Lemma A.1, is a morphism of double
complexes.

(3) The map θ̂w : (X̂w, b̂) → Tot(τ10 (X
w)), defined by

θ̂w(x,y) = (x+ t(y), µM
0 (y)),

is a morphism of complexes.

(4) Let ϑ̂w : Tot(τ10 (X
w)) → (X̂w, b̂) be the map induced by ϑw. It is true that

θ̂w ��������ϑ̂w = id and ϑ̂w �������� θ̂w is homotopic to the identity map. A homotopy is
the family of maps

ǫ̂w : Xw
0v ⊕ Xw

1,v−1 → Xw
0,v+1 ⊕ Xw

1v,

defined by ǫ̂w(x,y) = (0, ǫw(y)), where ǫw is the homotopy introduced in
Lemma A.1.

Proof. By Lemma A.1 there is a special deformation retract

(Xw
∗ ⊕Xw

∗−1, b⊕−b)
id⊕ϑw

1

// (X
w
0∗⊕Xw

1,∗−1, b0⊕b1)
id⊕θw

1oo
,

with homotopy ǫ̂w : Xw
0∗ ⊕ Xw

1,∗−1 → Xw
0,∗+1 ⊕ Xw

1∗, given by ǫ̂w(x,y) = (0, ǫw(y)).
Applying the perturbation lemma to this endowed with the perturbation α, we
obtain a special deformation retract

T̂ot(τ10 (X
w))

ϑ̃w

// (X̂w, b̂)
θ̃w

oo
,
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with homotopy ǫ̃w : Xw
0∗ ⊕Xw

1,∗−1 → Xw
0,∗+1 ⊕Xw

1∗. To finish the proof it remains to
check that

T̂ot(τ10 (X
w)) = Tot(τ10 (X

w)), ϑ̃w = ϑ̂w, θ̃w = θ̂w and ǫ̃w = ǫ̂w,

which follow easily from the fact that id−t = α ��������ϑw
1 and α ��������ǫw = t. �

The first item of the following lemma is part of item (1) of Theorem 3.2.

Lemma A.3. The following assertions hold:

(1) The diagram (X̂, b̂, d̂), introduced above Theorem 3.2, is a double complex.

(2) The map ϑ̂ : (X̂, b̂, d̂) → (X̂, b̂, d̂), obtained by gluing the maps ϑ̂w introduced
in Lemma A.2, is a morphism of double complexes.

(3) Recall from the proof of Lemma 3.1 that (X̆, b̆) = Tot(X̂, b̂, d̂) and from the

beginning of this section that (X̆, b̆) = Tot(X̂, b̂, d̂). For w ≥ 0 and v ≥ 2w,

let ζ̂wv : X̂w
v → X̂w+1

v+1 be the maps defined by

ζ̂w(xn
0 ,y

n
0 ) =

(
0, F0(y

n
0 ) +

n∑

j=i(yn
0 )+1

Fj(y
n
0 )

)
.

The map θ̆ : (X̆, b̆) → (X̆, b̆), defined by θ̆n =
⊕n

w=0 θ̂
w
n+w +

⊕n−1
w=0 ζ̂

w
n+w,

where θ̂wn+w is as in Lemma A.2, is a morphism of complexes.

(4) Let ϑ̆ : (X̆, b̆) → (X̆, b̆) be the map induced by ϑ̂. It is true that θ̆ ��������ϑ̆ = id

and ϑ̆ ��������θ̆ is homotopic to the identity map. A homotopy is the family of

maps ǫ̆ : X̆n → X̆n+1, defined by ǫ̆n+1 =
⊕n

w=0 ǫ̂
w
n+w+1, where ǫ̂wn+w+1 is as

Lemma A.2.

Proof. By Lemma A.2 we have the following special deformation retract:

⊕

w≥0

(X̂w
∗+w, b̂)

ϑ̂

//
⊕

w≥0

(X̂w
∗+w, b̂)

θ̂oo
, ǫ̂,

where ϑ̂ =
⊕

w≥0 ϑ̂
w
∗+w, θ̂ =

⊕
w≥0 θ̂

w
∗+w and ǫ̂ =

⊕
w≥0 ǫ̂

w
∗+w. Consider the per-

turbation d̂. Applying the perturbation lemma to this datum, we obtain a special
deformation retract

Tot(X̂, b̂, d̂)
ϑ //

(X̆, b̆)
θ

oo , ǫ∗+1 : X̆∗ → X̆∗+1.

To finish the proof it remains to check that

Tot(X̂, b̂, d̂) = (X̆, b̆), ϑ = ϑ̆, θ = θ̆ and ǫ = ǫ̆,

for which it suffices to check that

θ̂ ��������d̂ ��������ϑ̂ = d̂, ǫ̂ ��������d̂ ��������ϑ̂ = 0, θ̂ ��������d̂ �������� ǫ̂ = ζ̂ and ǫ̂ ��������d̂ �������� ǫ̂ = 0,

where ζ̂n =
⊕n−1

w=0 ζ̂
w
n+w, which follows by a direct computation. �

Let (X̆, b̆, B̆) = ker
(
(E ⊗ E

⊗∗
, b, B)

π //(A⊗A
⊗∗

, b, B)
)
.

Lemma A.4. Let B̂ be as in Theorem 3.2. The following assertions hold:

(1) (X̂, b̂, d̂, B̂) is a double mixed complex.

(2) Let (X̆, b̆, B̆) be the mixed complex associated with (X̂, b̂, d̂, B̂). The maps

ϑ̆ : (X̆, b̆, B̆) → (X̆, b̆, B̆) and θ̆ : (X̆, b̆, B̆) → (X̆, b̆, B̆),

introduced in Lemma A.3, are morphisms of mixed complexes.
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Proof. 1) From the fact that b̂ �������� b̂ = 0 it follows easily that t ��������b = b ��������t. Thus we obtain

that b ��������N = N ��������b, which implies that b̂ ��������B̂ + B̂ �������� b̂ = 0. To prove that d̂ ��������B̂ + B̂ ��������d̂ = 0
we must check that d′ ��������N = −N ��������d. Let xn

0 ∈ Xw
v be an elementary tensor. Let

0 = i0 < i1 < · · · < iw ≤ n be the indices such that xij ∈ M and let iw+1 = n+ 1.
Fix l ∈ {0, . . . , n − 1} \ ({i0, . . . , iw} ∪ {i1 − 1, . . . , iw − 1}) and let r such that
ir < l < ir+1. A direct computation shows that

tj(Fl(x
n
0 )) =





Fl+n+1−iw+1−j
��������tj(xn

0 ) if 0 ≤ j ≤ w − r,

t ��������Fl+n+1−ir+1
��������tw−r(xn

0 ) if j = w − r + 1,

Fl−iw+2−j
��������tj−1(xn

0 ) if j > w − r + 1.

Hence

d′ ��������N(xn
0 ) = −

n−1∑

l=1

w∑

j=0

Fl
��������tj(xn

0 )−

n−1∑

l=i(xn
0 )+1

w∑

j=0

t ��������Fl
��������tj(xn

0 ) = −

w+1∑

j=0

n−1∑

l=1

tj ��������Fl(x
n
0 ),

as we want.

2) From Lemma A.3 we get a special deformation retract between the total com-

plexes of the double complexes BC(X̆, b̆, 0) and BC(X̆, b̆, 0). Consider the perturba-

tion B̆. The result it follows by applying the perturbation lemma to this setting,

and using that B̆ = θ̆ ��������B̆ ��������ϑ̆, B̆ �������� ǫ̆ = 0 and ǫ̆ ��������B̆ = 0. �

Proof of Theorem 3.2. It follows immediately from Lemma A.4. �

Proof of Proposition 3.7. It is immediate that the sequence

0 // (X̆, b̆)
i // (E ⊗ E

⊗∗
, b)

π // (A⊗A
⊗∗

, b) // 0.

splits in each level via the maps sn : A⊗A
⊗n

→ E⊗E
⊗n

and rn : E ⊗E
⊗n

→ X̆n,
given by sn(a

n
0 ) = (a0, 0) ⊗ · · · ⊗ (an, 0) and rn = id−sn ��������πn. From this it follows

that the connection map δn : HHn(A) → HHn−1(E,M) is induced by the map

δ : (A⊗A
⊗∗

, b) → (X̆, b̆)[1], given by δn = rn−1
��������bn ��������sn. To finish the proof it suffices

to check that δ̆ = θ̆ ��������δ, where θ̆ : (X̆, b̆) → (X̆, b̆) is as in Lemma A.3. �

Proof of Proposition 3.8. From Proposition 3.7 and Lemma A.4 it follows that
δn is induced by the morphism of complexes

δ́ : Tot(BC(A⊗A
⊗∗

, b, B)) → Tot(BC(X̆, b̆, B̆))[1],

given by δ́n(a
n
0 ,b

n−2
0 , cn−4

0 , . . . ) = (δ̆n(a
n
0 ), δ̆n−2(b

n−2
0 ), δ̆n−4(c

n−4
0 ), . . . ), where δ̆n,

δ̆n−2, δ̆n−4, etcetera, are as in Proposition 3.7. To finish the proof it suffices

to compose this map with the canonical projection from Tot(BC(X̆, b̆, B̆))[1] to

Tot(X0, b0, d0)[1]. �

Appendix B.

Recall from the discussion above Theorem 4.3, that for each t-invariant element
x ∈ Xw

v ,
Υ(x) = (− id+N ��������p) ��������σ′

��������d(x) ∈ Xw+1
v .

It is easy to check that Υ(x) is univocally determined by the following properties:

Υ(x) ∈ ker(p) and (x,Υ(x)) ∈ P (Ẍ).

Let eP (Ẍw
v ) = {(x,Υ(x)) ∈ Ẍw

v : x is t-invariant}. Clearly, P (Ẍ) = eP (Ẍ)⊕tP (Ẍ).

We assert that d̈(eP (Ẍw
v )) ⊆ eP (Ẍw+1

v ). In order to prove this we will need the
following result

Lemma B.1. It is true that d ��������p = −p ��������d′.
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Proof. Let yn
0 ∈ Xw

v and let iw > 0 be the last index such that yiw ∈ M . We have:

p ��������d′(yn
0 ) = −

n−1∑

j=1

p ��������Fj(y
n
0 )−

n−1∑

j=iw+1

p ��������t ��������Fj(y
n
0 )

= −

iw−2∑

j=1

n− iw + 2

v + 2
[Fj(y

n
0 )]−

n−1∑

j=iw+1

n− j + 1

v + 2
[Fj(y

n
0 )]

−
n−1∑

j=iw+1

j − iw + 1

v + 2
[t ��������Fj(y

n
0 )]

= −

n−1∑

j=1

n− iw + 2

v + 2
[Fj(y

n
0 )]

= −d ��������p(yn
0 ),

where [x] denotes the class of x ∈ Xw+1
v in X

w+1

v . �

Proposition B.2. Let x ∈ Xw
v be a t-invariant element. Then

d̈(x,Υ(x)) = −
w + 1

w + 2
(d′(x),Υ ��������d′(x)).

Proof. Since, by Lemma 3.3,

(t− id)(Υ(x)) = d(x)−
1

w + 2
N ��������d(x) = d(x)+

1

w + 2
d′ ��������N(x) = d(x)+

w + 1

w + 2
d′(x),

we have:

d̈(x,Υ(x)) = (d(x) + (id−t)(Υ(x)), d′(Υ(x)) =

(
−
w + 1

w + 2
d′(x), d′(Υ(x))

)
.

In order to finish the proof it suffices to check that
(
−
w + 1

w + 2
d′(x), d′(Υ(x))

)
∈ P (Ẍ) and p(d′(Υ(x)) = 0.

The first fact follows immediately from the fact that P (Ẍ) is a subcomplex of

(Ẍ, b̈, d̈) and the second one follows easily from Lemma B.1. �

For each v and w, let eb : eP (Ẍw
v ) → eP (Ẍw

v−1) and
eξ : eP (Ẍw

v ) → tP (Ẍw
v−1) be

the maps defined by b̈(x) = eb(x) + eξ(x). We now want to compute these maps.
To carry out this task we will need Proposition B.3 below. Let tXw

v be the set of
t-invariant elements of Xw

v and let ξ : tXw
v → tXw+1

v−1 be the map defined by

ξ(x) = −N ��������p ��������σ′
��������d ��������b(x)−N ��������b ��������p ��������σ′

��������d(x).

Proposition B.3. Assume that x ∈ Xw
v is a t-invariant element. Then,

eb(x,Υ(x)) = (b(x),Υ(b(x))) and eξ(x,Υ(x)) = (0, ξ(x)).

Proof. First note that b̈(x,Υ(x)) ∈ P (Ẍ), since P (Ẍ) is a subcomplex of (Ẍ, b̈, d̈).
So, from the fact that

b̈(x,Υ(x)) = (b(x),−b(Υ(x)) = (b(x),Υ(b(x))) + (0,−b(Υ(x))−Υ(b(x))),

it follows that

eb(x,Υ(x)) = (b(x),Υ(b(x))) and eξ(x,Υ(x)) = (0,−Υ(b(x))− b(Υ(x))).
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To finishes the proof we must compute the last map. But, since by Proposition 3.5,

b ��������σ′
��������d(x) = σ′

��������b ��������d(x) = −σ′
��������d ��������b(x),

we have:

−Υ(b(x))− b(Υ(x)) = (id−N ��������p) ��������σ′
��������d ��������b(x) + b ��������(id−N ��������p) ��������σ′

��������d(x)

= −N ��������p ��������σ′
��������d ��������b(x)− b ��������N ��������p ��������σ′

��������d(x)

= −N ��������p ��������σ′
��������d ��������b(x)−N ��������b ��������p ��������σ′

��������d(x),

as we want. �

Proof of Theorem 4.3. It is immediate that Λ is a morphism of double mixed
complexes. Using Propositions B.2 and B.3 it is easy to check that Ψ is a morphism
of double mixed complexes. To finish the proof it suffices to note that the maps Λ
and Ψ are bijective. �

We now are going to prove Proposition 4.4. To carry out this task it is convenient
to first calculate p ��������σ′ ��������d ��������N .

Lemma B.4. Let xn
0 ∈ Xw

v be an elementary tensor, let 0 = i0 < · · · < iw ≤ n be
the indices such that xij ∈ M and let iw+1 = n+ 1. Given 0 ≤ α ≤ n, we let j(α)
denote the number defined by ij(α) ≤ α ≤ ij(α)+1. We have:

p ��������σ′
��������d ��������N([xn

0 ]) =

n−1∑

α=1

(−1)αDα[Fα(x
n
0 )],

where [xn
0 ] and [Fα(x

n
0 )] denote the class of xn

0 in X
w

v and Fα(x
n
0 ) in X

w+1

v , re-
spectively, and

Dα =
w + 1

2
−

(w + 1)(w + 2α+ 2) + 2(n+ 1)(w − j(α)) − 2
∑w

u=1 iu
2(w + 2)(v + 2)

.

Proof. Let d′′ = −d′ − d. Then,

d ��������N([xn
0 ]) = −d′ ��������N([xn

0 ])− d′′ ��������N([xn
0 ]) = N ��������d([xn

0 ])− d′′ ��������N([xn
0 ]).

On one hand, it is immediate that

p ��������σ′
��������N ��������d([xn

0 ]) =




w∑

j=0

w + 1− j

w + 2


 p ��������N ��������d([xn

0 ]) =
w + 1

2
d([xn

0 ]).

On the other hand,

p ��������σ′
��������d′′ ��������N([xn

0 ]) =
n−1∑

α=1

p ��������σ′
��������t ��������Fα(x

n
0 ) =

n−1∑

α=1

Cα[Fα(x
n
0 )],

where

Cα =
(w + 1)(α+ 1− ij(α))

(w + 2)(v + 2)
+

j(α)∑

u=1

(u+ w − j(α))(iu − iu−1 + 1)

(w + 2)(v + 2)

+
(w − j(α))(n − iw + 2)

(w + 2)(v + 2)
+

w∑

u=j(α)+2

(u − j(α)− 1)(iu − iu−1 + 1)

(w + 2)(v + 2)

=
(w + 1)(w + 2α+ 2) + 2(n+ 1)(w − j(α)) − 2

∑w
u=1 iu

2(w + 2)(v + 2)
.

The result follows immediately from these facts. �
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Proof of Proposition 4.4. By Lemma B.4,

d ��������p ��������σ′
��������d ��������N([xn

0 ])=
∑

α<β

Lαβ [Fα
��������Fβ(x

n
0 )],

where

Lαβ = Dβ −Dα =
(w + 1)(α− β) + (n+ 1)(j(β)− j(α))

(w + 2)(v + 2)
,

and
p ��������σ′

��������d ��������N ��������d([xn
0 ]) =

∑

α<β

L′
αβ [Fα

��������Fβ(x
n
0 )],

where

L′
αβ =

(
(w + 2)(w + 2β + 1) + 2n(w − j(β)) − 2(

∑
iu − w + j(α) + α)

2(w + 3)(v + 2)

−
(w + 2)(w + 2α+ 3) + 2n(w + 1− j(α))− 2(

∑
iu − w + j(β) + 2β)

2(w + 3)(v + 2)

)

=
(w + 3)(β − α) + (n− 1)(j(α)− j(β)) − (v + 2)

(w + 3)(v + 2)
.

So,

eς̃([xn
0 ]) =

1

w + 1
d ��������p ��������σ′

��������d ��������N([xn
0 ])+

1

w + 2
p ��������σ′

��������d ��������N ��������d([xn
0 ]) =

∑

α<β

λ
(w)
αβ [Fα

��������Fβ(x
n
0 )],

where

λ
(w)
αβ =

2(j(β)− j(α))

(w + 1)(w + 2)(w + 3)
−

1

(w + 2)(w + 3)
,

as desired. �
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