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DIFFERENTIAL STRUCTURE OF THE THOMPSON
COMPONENTS OF SELFADJOINT OPERATORS.

GUILLERMINA FONGI AND ALEJANDRA MAESTRIPIERI

ABsTrRACT. Different equivalence relations are defined in the set L()*® of self-
adjoint operators of a Hilbert space H in order to extend a very well known
relation in the cone of positive operators. As in the positive case, for a € L(H)*
the equivalence class C, admits a differential structure, which is compatible
with a complete metric defined on Cy. This metric coincides with the Thomp-
son metric when a is positive.

1. INTRODUCTION

Let L(H) be the algebra of bounded linear operators of a Hilbert space H and
L(H)™" the cone of positive operators. Consider the partial order < induced in L(H)
by L(H)T. There is a natural equivalence relation in L(H)* which arises from this
order (namely, given a,b € L(H)™, a ~ b if and only if there exist positive numbers
«, 0 such that a < ab and b < fa). Each class or Thompson component admits a
complete metric, known as the Thompson part metric. In fact, this construction
can be done in every closed convex cone of a Banach space. The reader is referred
to [10] and [11] to find definitions, properties and applications of this metric.

On the other hand, the set GL(H)® of invertible selfadjoint operators admits
a differential structure as a homogeneous space of the group GL(H) of invertible
operators, see [5]. The orbit of the identity is the set GL(H)™ of invertible positive
operators and it is also the Thompson component of every a € GL(H)*. More
generally, the components of positive operators are parameterized by the ranges of
their square roots, see [2] and [3]. Also, in [2] and [3] the differential and metrical
properties of the component of a positive operator were studied in detail. The
aim of this paper is to extend this equivalence relation to the set L(H)*® of selfad-
joint operators and to define a metric on each component, that coincides with the
Thompson metric in the positive case; also to study the geometrical structure of
the components and finally, to compare both approaches.

The contents of the paper are the following: In Section 2 we recall some classi-
cal results about decompositions of selfadjoint operators which are used along the
paper. Also, the definition and some properties of the Thompson part metric for
positive operators are stated. Section 3 contains a brief description of the homo-
geneous structure of GL(H)®. We give a new characterization of the orbit of an
invertible selfadjoint operator by means of its polar decomposition. In Section 4
we define three equivalence relations on L(H)® that extend the one defined in the
cone L(H)T and characterize the corresponding equivalence classes, C,, C1, C2. In

2000 Mathematics Subject Classification. Primary 47B15; Secondary 58B20.
Key words and phrases. Selfadjoint operators, Thompson part metric, differential geometry.

1


https://core.ac.uk/display/288803214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 GUILLERMINA FONGI AND ALEJANDRA MAESTRIPIERI

Section 5, we show that C, is homeomorphic to the product of two Thompson com-
ponents of positive operators. This result allows to define the Thompson metric
dp on the component of a selfadjoint operator. It is proved that, for a € L(H)?,
C, admits a natural structure of homogeneous space of an appropriated group and
given b, c € C, there exists a unique geodesic v, . joining them. A Finsler structure
is given in C, which allows to define the length of a curve v C C,, L(v). It holds
that the geodesic 7; . has minimal length among all curves with endpoints b and
c. Finally if d(b, ¢) is the geodesic distance between b and ¢, then d is a complete
distance in C, and d(b,¢) = dr(b,c¢) = L(yp,c)-

2. PRELIMINARIES

Let H be a Hilbert space, L(H) the algebra of linear bounded operators in H,
L(H)* the subset of selfadjoint operators and L(H)*" the cone of positive operators
of L(H). Denote by GL(H) the group of invertible operators of L(H) and GL(H)® =
L(H)®* N GL(H), the set of invertible selfadjoint operators. Let U be the subgroup
of GL(H) of unitary operators and P the subset of reflections of U, ie., P =
{u € L(H) : u = u=! = w*}. The range and the nullspace of a € L(H) are R(a)
and N (a) respectively. If S is a closed subspace of H, ps denotes the orthogonal
projection onto S. Observe that ps induces a matrix decomposition as follows:
if p = ps each a € L(H) can be written as a = a1z , where ay; =

az1  a22
pap|s € L(S), a1z = pa(l —p)l‘SL € L(S§*,S), az1 = (1 — p)ap;; € L(S,S8*) and
ass = (1 —pa(l —p)‘sL € L(S1).

Every operator a € L(H) admits a polar decomposition a = v|a| where |a| =
(a*a)'/? is positive and v is a partial isometry from N(a)* onto R(a). Observe
that, in general, this decomposition is not unique. To fix the isometric part, define
v, as the partial isometry verifying that v, : N(a)* — R(a) is an isometry and
N(vg) = N(a). If a is selfadjoint, the isometric part of the polar decomposition
can be defined to obtain a reflection: in this case R(a)* = N(a) so that if u, =
Vo + PN(a), it i easy to see that u, € P and a = ugla| = |alu,. Notice that
Ua|y () = id|N(a) and if p, = PRy YaPa = Va- If g, = ““TH then ¢, is an orthogonal
projection and ug,q, = qq-

From now on, given a € L(H)® denote by a = u,|a| the polar decomposition
of a with u, € P and a = v,|a| the polar decomposition of a with v, the partial
isometry defined before.

Lemma 2.1. Consider a € L(H)® with polar decomposition a = uglal. Then
a admits a unique decomposition a = a1 — ag such that a1,as are (semidefinite)

positive and a1as = 0. Moreover a; = M\% = aq, and ay = MT_Q = —a(l — qq),
where g, = ““T'H
Proof. Straightforward. O

Given a € L(H)*® we will refer to the decomposition of Lemma 2.1 as the positive
decomposition of a.

Consider ¢ € L(H)*® with positive decomposition @ = a; — ag then |a| = a1 + ag;
if pe = Prrey then va = Pa, —Pays Ya = Pay —Paz +PN(a) a0d Pa = Pa, + Pa,. Notice
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also that R(ay) and R(ag) are closed if and only if R(a) is closed. Finally observe

that R(q,) = R(a1) ® N(a) and N(q,) = R(az).

Thompson metric for positive operators. Every closed convex cone K of a
real Banach space E defines an order relation: if z,y € E, x < y if and only if
y —x € K. Suppose that K is normal, i.e. there exists a constant r > 0 such
that ||z|| < r|ly|l if 0 < & < y. Consider the following equivalence relation in K:
x ~ y if there exist constants r, s > 0 such that z < ry and y < sz. The Thompson
component of x € E, Cy, is the equivalence class of z. Thompson [13] proved that

dr(z,y) =logmax{inf{r > 0: z < ry},inf{s > 0: y < sz}}

defines a complete distance on each component of K. The distance dr is known as
the part metric or Thompson metric. In the papers by R. Nussbaum [10] and [11]
some applications and examples of this metric can be found.

Observe that if H is a Hilbert space then L(H)™" is a closed normal convex cone
and the above relation can be considered in L(H)™ .

The following proposition shows that the components Cy, a € L(H)T, are para-
metrized by the ranges of a'/2.

Proposition 2.2. Consider a,b € L(H)t then b € C, if and only if R(a'/?) =
R(b'/?).

Proof. See Corollary 3.3 of [2]. O

Each C, admits a structure of homogeneous space of an appropiated group.
In particular, if @ € L(H)" has closed range then C, identifies with GL(R(a))™.
There is a natural connection on the associated tangent bundle, TC,, and given
b,c € C, there exists a unique geodesic in C, joining b to ¢, namely, v .(t) =
b2 2= /2) /2t € [0,1]. Also the geodesic distance, d(b,c) = inf{L(v)}
(where the infimun is taken over all smooth curves in C,, joining b to ¢ and L(7)
is the lenght of +) coincides with the Thompson metric, dr, on each component.
Moreover, if b, c € C, it holds that

(2.1) dr(b,¢) = L(yp,c) = || log(b~2cb1/?)]],
where b=1/2 = (bl/Q)Tl
R(a)

b'/2. See [2] and [3] for a complete exposition of these facts.

and (b'/2)T denotes the Moore-Penrose pseudoinverse of

3. HOMOGENEOUS STRUCTURE OF GL(H)®.

In what follows we recall some results about the geometry of the set of invertible
selfadjoint operators, GL(H)®, that can be found in [5]. The main result of this
section is a characterization of the orbit of an invertible selfadjoint operator given
by the action of GL(H) in terms of the polar decomposition of its elements.

Given a € GL(H)® define in H the following sesquilinear indefinite form

<x,y>a = <a‘xay>7 JJ,Z/ S H

The adjoint of u € L(H) with respect to (, ), or the a-adjoint of u is u** = a tu*a.

It is easy to see that the group U, of a-unitary elements consists on the operators
u € GL(H) such that = = a~lu*a.
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Consider the following action of GL(H) on L(H)*:
L:GL(H) x L(H)* — L(H)*, Lya = gag®, for a € L(H)® and g € GL(H).
Given a € L(H)?, the orbit of a corresponding to the action L is the set

O, = {gag” : g € GL(H)}.

Observe that if a is invertible then O, C GL(H)*, so that L : GL(H)xGL(H)* —
GL(H)®. The action L is locally transitive in GL(H)?, see [5].

The isotropy group of a € GL(H)*, I, is the group of operators g € GL(H) such
that Lya = a, i.e I, = {g € GL(H) : gag* = a}. Then I, =U,-:.

Proposition 3.1. Given a € GL(H)*, consider the map f, : GL(H) — O,
fa(g9) = Lga = gag*. Then (GL(H),Oq, fa) is a principal fibre bundle with struc-
tural group I,.

Proof. See Proposition 1.1 of [5]. O

The next result shows that the orbit of @ € GL(H)?® is the orbit of its unitary
part.

Lemma 3.2. Consider a € GL(H)*® with polar decomposition a = uglal, u, € P,
then Oy = O,,

Proof. Since a is selfadjoint, a = ug|a| = |a|*/?u4la|'/?. Then a € O,, so that
0, =0,,. O

Given w € U the unitary orbit of w is the set UO,, = {vwu* : v € U}. The
following theorem relates the orbits O, and 4O, .

Theorem 3.3. Consider a,b € GL(H)® with polar decompositions a = uglal, b =
up|b| and positive decompositions a = a1 — az, b = by — by. Then the following
conditions are equivalent:

(1) b e Oy,

(2) up, € UO,,,,

(3) dim R(a;) = dim R(b;), fori=1,2.
Proof. (1) — (2): Consider b € O, then, by Lemma 3.2, u;, € O,,, so that there
exists g € GL(H) such that up = gu,g*. Therefore uy, = gu,g* = (¢*) ‘uq.g~*, or
9*gUueg* g = Uu,. Consider X\ = ¢g*g; then Mg = uq or A~ = ugAu,. Since A > 0
and u, € P, it follows that A~Y2 =u A\ 2u,, or A=Y2u, = u V2. If g = wAl/2
is the polar decomposition of ¢ with w € U, we get that u, = wA/2u  \/2w* =
wu,w*, so that u, € UO,,, .

(2) — (3): Consider up € UO,,,, then there exists u € U such that u, = uugu*.
Therefore py, — P, = Up = UULU" = UPg, U* — Upg,u*. It follows from Lemma 2.1
that pp, = upe,u* so that dim R(a;) = dim R(b;), for i = 1,2.

(3) — (1): Since dim R(b;) = dim R(a;) for i« = 1,2, there exists a partial
isometry wu; from H onto R(b;) with N(u;) = R(a;)*. Consider u = wuy + uz
then u € U because R(a1) ® R(az) = H and R(a;)t = R(a2). Also uu,u* =
U(Pay — Pay )W = Pb, — Db, = Up, s0 that upy € O, , or equivalently b € O,. O

Consider the map

7:GL(H)* — P, m(a)=uq, where a € GL(H)*,a = uglal.
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It follows from the definition of 7 that the fibre of u € P, 7=({u}), is the subset
of GL(H)® of elements a = uy|a| such that u, = u, i.e. 771 ({u}) = {a € GL(H)* :
a = ua,«a > 0}. In particular, the fibre of 1 is GL(H)*.

The following lemma is similar to Proposition 4.1 of [5].

Lemma 3.4. Consider u € P, then the following conditions are equivalent:
(1) aen ' ({u}),
(2) a=a*, au >0,
(3) au = ua, au > 0.

Proof. Straightforward. |

4. EQUIVALENCE RELATIONS IN L(H)*

From now on, given ¢ € L(H)?®, ¢ = ¢1 — ¢z denotes the positive decomposition of
¢ defined in the Preliminaries and p. = pgpy. Recall that ¢ = Ue|c| = ve|e| denotes
the polar decompositions of ¢ with u, € P and v, a partial isometry.

Given v, and v, partial isometries, v, is unitarily equivalent to v if there exits
u € U such that vy, = uv,u*. The unitary orbit of v, is the set UO,, = {uv,u* :
u€U}.

Given a reflection v € P, consider the indefinite sesquilinear form given by

<xay>’u = <Ul‘,y>, xvyEHa

and define in L(H) the following order: given a,b € L(H), then a <, b if and only
if ((b—a)z,z), >0Va € H, or equivalently, v(b—a) > 0.

In what follows we define three equivalence relations in L(H)® that extend the
relation in L(H)* discussed in the Preliminaries. Consider a,b € L(H)*® then

(1) a ~ b, if there exist «, 3 > 0 such that a <,,, ab and b <,,, (b.

(2) a ~1 b, if there exist o, > 0 such that |a] < «fb], || < Bla| and v, is
unitarily equivalent to vy.

(3) @ ~q b, if there exist a, § > 0 such that |a| < «|b| and [b] < Fla] .

It is not difficult to see that ~; and ~5 are equivalence relations.
To see that ~ is an equivalence relation we need the following lemma.

Lemma 4.1. Consider a,b € L(H)® with polar decompositions a = uglal,b = up|b|.
If a ~ b, then ug, = up.

Proof. If a ~ b, then there exist a;, 3 > 0 such that u,(ab—a) > 0 and uy(SBa—b) > 0.
Then ¢ = augb > |a| > 0, and b = a~lu,c. Since the polar decomposition is unique
in R(b), it follows that u, = u, in R(b). It remains to prove that u, = u, in N(b).
In fact N(a) = N(b): if x € N(b), then 0 < {(c — |a|])z,z) = —(|a|z,z) so that
|alz = 0. Hence, z € N(|a|]) = N(a) and N(b) C N(a). In the same way, using that
up(Ba — b) > 0 it follows that N(a) € N(b). Then u, = up in N(a) by definition
(see the Preliminaries). O

Corollary 4.2. The relation ~ is an equivalence relation.

Proof. Apply Lemma 4.1. O
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Denote by C,, C} and C? the equivalence classes or components of a correspond-
ing to ~, ~1 and ~q respectively.

As a corollary of Lemma 4.1 we obtain a characterization of the component C,
of a in terms of its polar decomposition.

Corollary 4.3. Consider a € L(H)®, with polar decomposition a = ug|a|. Then
Co={bec L(H)*: R(b]*?) = R(|a|"?) and up = ug}

Proof. Consider b € C, with polar decomposition b = |b|up, then by Lemma 4.1,
it follows that u, = up. Also there exist a,3 > 0 such that u,(ab —a) > 0
and up(Ba —b) > 0 so that |a| < «alb|] and |b] < Bl|a|. Therefore |a| ~ |b| and
by Proposition 2.2, this is equivalent to R(|b|'/?) = R(|a|'/?). The converse is
similar. d

Corollary 4.4. Consider a = vy|a|] € L(H)*® with closed range, then C, = C,, .

Proof. Since a has closed range, b € C, if and only if R(b) = R(a) and up = ug
or equivalently, R(b) = R(a) and v, = v,. But observe that, in this case, R(v,) =
R(a). Therefore v, € C,. O

It follows from Proposition 2.2 that C} = {b € L(H)* : R(|b|'/?) = R(|a|'/?)
and v, € UO,, } and C? = {b € L(H)* : R(|b|*/?) = R(|a|*/?)}.

Given a € L(H)*®, denote by a = a|W. If a has closed range then a €
GL(R(a))®. Consider the orbit of @ in R(a), i.e., Oz = {gag* : g € GL(R(a))}.
Observe that it follows from Theorem 3.3 that if a € GL(H)® then O, = C}. More
generally,

Proposition 4.5. Let a € L(H)® be a closed range operator and b € L(H)®. Then
the following conditions are equivalent:

(2) R(b) = R(a) and dim R(b;) = dim R(a;), fori=1,2,

(3) 5 € O;.

Proof. (1) — (2): If b € C!, then R(|b]'/2) = R(|a|*/?). Since a has closed range
R(a) = R(|a|'/?) so that R(|b|'/?) is closed. Then R(|b|'/?) = [b|'/2(N(b)*) =
|b]*/2(R(|b|'/?)) = R(b). Therefore R(b) = R(a). Also v, € UO,,, so that v, =
uvau® for u € U. In the same way as in the proof of (2) — (3) of Theorem 3.3 it
can be proved that dim R(b;) = dim R(a;) for i = 1,2.

(2) — (3): Notice that b € GL(R(a)) because R(b) = R(a). Then apply Theorem
3.3 to GL(R(a))®.

(3)— (1): Consider b € L(H)* such that b = gag* with g € GL(R(a)). Then
R(b) = R(b) = R(a). By Theorem 3.3, uj € UO,,. If ¢ € L(H)* it holds that
uz = U, therefore v, € UOy;,, i.e. there exists u € U(R(a)) such that v, = uv,u*.
If w = u+ py(q) then w € Y and vy = wv,w*. Therefore b € Cj. O

Remark 4.6. In Section 3 we defined the map
7:GL(H)® — P, m(b) =up, for b€ GL(H)® with b = uy|b|.
From the definitions and properties studied in Section 3, if u € P, it holds that
7 ({u}) € O, € GL(H)".
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Notice that 771({u}) = Cy, O, = C! and GL(H)* = C2. Analogously, if a is a
closed range operator, consider the map

Ta : GL(R(a))® — P(R(a)), wm(b) = up,
where GL(R(a))® is the set of invertible selfadjoint operators in R(a), P(R(a))
is the subset of reflections in R(a) and b = wp|b| is the polar decomposition of
b€ GL(R(a))®. Then, by Corollary 4.3 and Proposition 4.5, we can identify

7 {ia}) = Cay, Oz =CL, GL(R(a))® =~ C2.
More generally, given a € L(H)®, it holds that C, C C! C C2. Therefore ~, ~;
and ~9 extend to L(H)* the relation in L(H)' described in the Preliminaries. In
fact, if @ € L(H)" and b € L(H)® is such that b € C,, then 1 = u, = up so that

b€ L(H)T and there exist a, 8 > 0 such that a < ab and b < Ba. Therefore, when
a is positive, C, coincides with the Thompson component of a.

5. THE THOMPSON COMPONENTS OF L(H)*

The next theorem proves that given a € L(H)*®, C, is homeomorphic to the
product of two Thompson components of positive operators. This characterization
naturally leads to the definition of a metric on C, that extends the Thompson
metric. From now on we will refer to C, as the Thompson component of a.

Theorem 5.1. Consider a € L(H)® with positive decomposition a = a1 —ay. Then
C, is homeomorphic to Cy, X C,,.

Proof. Given b € L(H)® with positive decomposition b = by —bs, define ¢ : L(H)* —
L(H)™ x L(H)™", 1(b) = (b1,b2). The map 1 is well defined because, by Lemma
2.1, the decomposition is unique; also ¥ is injective. If b € C,, u, = up and there
exist a,, 3 > 0 such that (ab— a)u, > 0 and (Ba — b)u, > 0, then g, (ab — a)ugq, =
qa(ab — a)q, > 0, with ¢, = ““T'H Since bg, = by and aq, = ai, it follows that
aby —aq > 0. Similarly, Sa; > by. Hence b; € C,,. In the same way, bs € Cl,.

To see that 1 is surjective consider (b1, bs) € Cy, X Cy,, then b = by —by € L(H)®,
b1,b2 > 0 and bibs = 0. Hence, by Lemma 2.1, if b = by — by, then b € L(H)*.
Moreover b € C,: since b; € C,, there exist «; > 0 such that a; < o;b; for i =1, 2.
Hence |a| < aib; + asbs < o/(by + ba) < o/|b|, where o = max{aj,az}. In a
similar way, there exists 3 > 0 such that [b] < §'|al. Therefore [b] € Cjq . It
remains to prove that u, = uy, or equivalently that g, = g. Since [b] € C},, then

N(a) = N(b). Also R(a1) = R(b1) because by € Cy,. Then R(q,) = R(a1) ® N(a)
(see the Preliminaries). Therefore R(q,) = R(gs) so that g, = gs, because ¢, and

qp are orthogonal projectors. (I

Remark 5.2. Consider a € L(H)® with positive decomposition a = a; — as. Then,
from the proof of Theorem 5.1, the component of a can be written as
C, = {bl — by € L(,/‘()‘s 1 b; € Ca“ 1= 1,2}.
Consider a,b,c € L(H)® with positive decompositions a = a3 — as,b = by — by
and ¢ =c; —co. If b,c € Cy, define
d(b, c) = max{dr(b;,c;),i = 1,2)},

where dr(b;, ¢;) = logmax{inf{r > 0: b; <r¢;},inf{s > 0: ¢; < sb;}} fori = 1,2,
is the Thompson metric for positive operators considered in the Preliminaries.
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Observe that d is well defined because of the uniqueness of the positive decom-
position of selfadjoint operators and the fact that b;,¢; € Cy,, ¢ = 1,2, where dr
is defined. It is easy to see that d defines a complete metric on C,. Furthermore
observe that the metric d coincides with dp on each positive component. From now
on, denote by d = dr, the Thompson metric on C,.

If ¢ € L(H)® has closed range, denote by ¢! = (C‘R(C))_l = CTIR@)’ where cf is
the Moore-Penrose pseudoinverse of c¢. Observe that ¢=! € GL(R(c)).

Proposition 5.3. Given a € L(H)® with closed range, consider b,c € C, with
positive decompositions b = by — by and ¢ = ¢1 — co then

dr(b,c) = | log[((by/*) er (b1 + (b3 %) ea (b)) o 11

Proof. Since b,c € C, and a = a1 — as is the positive decomposition of a then

for i = 1,2, bj,¢; € C,,. Since d; = b, /?¢;b;7*? € GL(R(b;))*, then, by (2.1),
. log d 0 dy 0

dr(b,¢) = max{||log d;||, i = 1,2} = | ( 0 logds ) I= Hlog( 0 dy ) |

= | log[((by/?)Ter (by/*)T + (b3 %) Tea (b)) O

]Il

Corollary 5.4. Consider a € L(H)*® with closed range. If b,c € C, then
dT(ba C) = dT(‘b|7 |C|)

Proof. 1f b,c € C, then |b|,|c| € Cy and, by Theorem 3.11 of [2], it holds that
dr(b),|e]) = ||log(|b|=*/2|¢||b|~*/?)||. On the other hand, it is easy to see that
(1B1M/2) || (p]/2)T = (b1/%)Ter (b)/*)T + (b/%)Tea(by'*)T where b = by — by and ¢ =
c1 — co are the positive decompositions of b and ¢ respectively. Then, applying
Proposition 5.3, it follows that dr(b,c) = dr(|b],|c|)- O

As in the positive case, the metrical structure of (C,,dr) is related to a differ-
ential structure. Consider a € L(H)® with closed range and positive decomposition
a = a; — ag, then C,, identifies with GL(R(a;))* for i = 1,2 (see [2], [3]) and, as
it was pointed out in the Preliminaries, C,, is a homogeneous space of GL(R(a;)),
i = 1,2. The reader is referred to [3] and [9] in order to have a full description of
this structure. Then, since C, is homeomorphic to C,, X C,, (see Theorem 5.1),
C,, admits a natural structure of homogeneous space of GL(R(a1)) x GL(R(az)).

A natural connection can be defined in C,, which induces the concept of parallel
field along a curve. A curve v C C, is a geodesic if 7 is parallel along + and, in this
case v satisfies ¥ = 4714 (see [2], [3]).

For b € C,, denote by (T'C,), the tangent space of C, at b. If X € (T'C,); it
follows from the product structure considered on C,, that X = Xip,, + Xopa,,
where X; € L(R(a;))®, i = 1,2.

The unique geodesic 7y such that v(0) = b and ¥ = X € (TC,), is

o
2

V(1) =

It follows easily that v(t) = v1(t) — y2(t) where ~;(t) = e3Xbi et X g the
geodesic such that ;(0) = b; and 7;(0) = X;p,, € (T'Cy,),,, i = 1,2.

Xblp o 5bTX
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Given b, ¢ € C, there is only one geodesic v, . such that v, .(0) = b and (1) =
¢, namely

(5.1) Voo () = [1 /(1B =12 el bl /)" bl va = el (v
It is easy to see that
(5'2) ’yb7c(t) = TVby,c1 (t) — Vba,cz (t)7

where , ., (t) = 63/2(();1/201-1);1/2)%3/2 is the geodesic in C,, joining b; and ¢;,
i=1,2.
The norm
X1l = [1(612) X (B 2)Tl, X € (TCa)ss

defines a Finsler structure on the tangent bundle T'C,, i.e. a smooth assignation
of a complete norm on each tangent space (T'Cy)p, b € Cy. If X = X1po, + Xopa,,
with X; € L(R(a;))®, i = 1,2 it follows that || X ||, = max{||X;||s,,? = 1,2}.

For a C* curve v : [0,1] — C, define the length of ~ by

Liy) = / 1)y

Given v C C, then L(vy) = max{L(v1), L(2)}, where v = 71 — 72 is the positive
decomposition of . In fact, ||§(t)|l, ) = max{|[V:(t)ll1, ), 7 = 1,2}

Lemma 5.5. Given a € L(H)® with closed range, consider b,c € C,. If vy 1s the
unique geodesic joining b and c then

L(v,e) = L(vp o) = max{|| log(b; 2eib; )|, i = 1,2}

Proof. The first equality follows from (5.1). From (5.2) we get that L(vp.) =
max{L(v, c,) i =1,2} but L(,.,) = || log(b; /*¢;b; */?)|| (see the Preliminaries

or Corollary 2.9 of [2] ). O

Now we show that among all curves in C, joining b and c, the geodesic v, . has
minimal length.

Proposition 5.6. Given a closed range operator a € L(H)®, consider b,c € C,. If
§:00,1] = C, is a C™ curve such that 6(0) = b and 6(1) = ¢, then L(y,.) < L(d).

Proof. Consider a curve § : [0,1] — C,, §(t) = |6(t)|v, such that §(0) = b and
0(1) = c. If b = |b|vg, ¢ = |c|v, then it holds that |§] : [0,1] — C)q is a curve joining
|b] with |c|. Then, by Theorem 2.10 of [2], it follows that L(vj|,c|) < L(|d]). But
L(Vpy,1e)) = L(,c) and L(5) = L(|4]).

(]

Consider b, c € C,, the geodesic distance in C, is defined by
d(b,c) = inf{L(v) : v:[0,1] = Ca, C>, 7(0) = b,7(1) = c}.
Corollary 5.7. Given a € L(H)® with closed range and b,c € C,, then
d(b; ¢) = L(.c)-

Asin the positive case, the Thompson metric coincides with the geodesic distance
on each component.
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Corollary 5.8. Consider a closed range operator a € L(H)*. If b,c € C,, then
dr(b,c) = d(b,c) = L(7b.c)
where vy, . s the geodesic in Cy, joining b and c.

Proof. Apply (2.1), Corollary 5.4 and Lemma 5.5. d

Final remarks. The geometrical structure of C, as a homogeneous space, dis-
cussed in Section 5 when a has closed range, is still valid in the general case.
However the computations are more complicated. The reader can find in [3] these
computations in detail when a is a general positive operator. In Section 3 the orbit
of an invertible selfadjoint operator was described by means of the polar decompo-
sition of its elements. More generally, it is interesting to study the orbit of a closed
range operator a € L(H)?, i.e. the set O, = {gag*,g € GL(H)}. The geometrical
and metrical structures of O, were studied in the positive case, in [4], where it
was proved that O, admits a structure of differential manifold, if an appropriated
metric is considered.
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