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On the influence of external stochastic excitation on linear 

oscillators with subcritical self-excitation applied to brake squeal  

 
 

Minh-Tuan Nguyen-Thai, Paul Wulff, Nils Gräbner, Utz von Wagner 

Abstract: A characteristic of linear systems with self-excitation is the occurrence of 
non-normal modes. Because of this non-normality, there may be a significant growth 
in the vibration amplitude at the beginning of the transient process even in the case of 
solely negative real parts of the eigenvalues, i.e. asymptotic stability of the trivial 
solution. If such a system is excited additionally with white noise, this process is 
continually restarted and a stationary vibration with dominating frequencies and 
comparably large amplitudes can be observed. Similar observations can be made during 
brake squeal, a high-frequency noise resulting from self-excitation due to the frictional 
disk-pad contact. Although commonly brake squeal is considered as a stable limit cycle 
with the necessity of corresponding nonlinearities, comparable noise phenomena can in 
the described model even observed in a pure linear case when the trivial solution is 
asymptotically stable. 

1. Introduction 

In a lot of applications, including but not limited to cutting machines, bridges under wind, and disk 

brakes, self-excited vibrations may appear as an unwanted phenomenon that reduces the effectiveness 

of the machines, causes inconvenience or even leads to destruction. In linear analysis, a self-excited 

system is usually modeled as a system of homogeneous linear ordinary differential equations (ODE) 

which may be obtained for a general continuous system by discretization and linearization. As a 

consequence, a trivial solution exists. The most popular criterion to determine, whether harmful 

vibrations happen or not is based in that type of mathematical models on the stability of the trivial 

solution. If the trivial solution is asymptotically stable, any difference between the initial state and the 

trivial solution is reduced to a negligible amount after a period of time called the transient process. The 

common disinterest in the transient process is supported by the fact that it is usually so short that it is 

far less representative for the behavior of the system than the steady state. However, the importance of 

the transient process is remarkable when there is an appearance of transient growth: vibration 

amplitudes may increase at the beginning of the transient process even when the largest Lyapunov 

exponent is negative. Transient growth is of more interest in fluid dynamics to study turbulence [1, 2]. 

In the field of mechanics, some studies led by Hoffmann show that transient growth may cause beating 

361



[3] or initiate stick-slip [4] in friction-induced vibration problems. So far, this phenomenon is known 

from literature although probably not aware to many engineers in this field. 

In reality, there may be sources for additional external forces in the self-excited systems so that 

their governed ODE are not homogeneous. Instead, white noise excitation, for example, can be added 

to the mathematical models. In this case, stability analysis of the trivial solution alone is not enough to 

characterize the behavior of the system. The asymptotic stability of the respective homogeneous system 

only means that the stochastic process in case of Gaussian white noise excitation is not drifting away. 

The result is a Gaussian probability density distribution around zero. But asymptotic stability together 

with the maximum Lyapunov exponent does not say anything about how likely large deviations from 

zero are.  

These deviations may be important, noting the fact that harmful phenomena may occur even with 

small vibration amplitudes: the amplitudes of mechanical parts during brake squeal [5, 6] – a type of 

uncomfortable noise with kHz-frequency that may happen when an automotive mechanical brake 

system is activated – lie in the micrometer range. Therefore, the effect of stochastic excitation on linear 

systems, especially systems with the above-mentioned transient growth, should be studied. 

By comparing a normal and a non-normal system with same maximum real part of the eigenvalues, 

the reason for transient growth is introduced, and then the effect of stochastic excitation on such 

equations examined. 

2. Non-normality and transient growth in linear systems with self-excitation 

2.1. Properties of an EDKN system 

Consider a system of two linear ordinary differential equations for self-excited vibrations, which is in 

its basic structure similar to those, which are obtained from minimum models for brake squeal [4, 7]. 

These equations are written in the form 

( )  x K N x 0 , (1) 

where x is a 2-by-1 vector representing in mechanical systems displacements or angles, K is a 2-by-2 

symmetric positive definite matrix (stiffness matrix) and N is a 2-by-2 skew-symmetric matrix 

representing the self-excitation (circulatory matrix). If linear damping is added to the model, its 

equations read [4] 

( )   x Dx K N x 0  , (2) 

where D is a 2-by-2 symmetric positive definite matrix (damping matrix). In general, minimal brake 

squeal models may have equations of motions, where the mass matrix is not an identity matrix (e.g. in 

[8]), i.e. they read as 
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( )   Mx Dx K N x 0  , (3) 

where M is the 2-by-2 symmetric positive definite mass matrix. 

A system governed by Eq. (3) is called an MDKN system [9], implying that its equations include 

four matrices denoted by these four letters. The special case Eq. (2) of this with mass matrix being 

identity matrix E can be called an EDKN system. Any MDKN system whose matrix M is a diagonal 

matrix with all diagonal elements equal to each other can be easily written in the form of an EDKN 

system by multiplying to the left of its equations the inverse matrix of M. The positive definite 

assumptions for M, D and K can be reduced to positive semi-definite for generalization, but it is not 

the case considered in this paper. The appearance of N originates from non-conservative circulatory 

forces and may result in instability of the trivial solution, which is in linear brake squeal models 

considered to be the mechanism of squeal. Even in the case of asymptotically stable trivial solution, a 

system with non-vanishing N is a system with self-excitation in which it can be called more specifically 

a system with subcritical self-excitation. Without N, we have the well-known MDK system which has 

always an asymptotically stable trivial solution provided that M, D and K are all symmetric positive 

definite. 

2.2. Non-normality and transient growth 

 The basic effect of transient growth for non-normal systems is known from literature also with 

application to friction induced vibrations [3, 4]. Nevertheless it shall be repeated here as an introduction 

of the considered systems and the effects resulting from additional stochastic excitation to be described 

in section 3. 

To visualize the concept of non-normality and transient growth, consider an EDKN system whose 

matrices are chosen as 
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0
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n

n
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  
 

N , (4) 

where n is a real parameter, and a corresponding EDK system 

  x Dx Kx 0  , (5) 

where α is chosen so that both systems have the same maximum real part of the eigenvalues. For 

simplicity purposes, all the parameters including the time are considered as dimensionless in the 

following. 

As long as the trivial solution is asymptotically stable (subcritical self-excitation) and its 

characteristic polynomial has no repeated roots, the general real solution of it has the form 
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1 2 1 2
1 1 1 2 2 2 3 3 1 4 4 2( ) cos( ) cos( ) sin( ) sin( )t t t tt C e t C e t C e t C e t            x u u u u , (6) 

where λ1, λ2, ω1 and ω2 are positive values. The Euclidean norms of modal vectors ui (i = 1, 2, 3, 4) are 

chosen as 1. C1, C2, C3 and C4 are coefficients to be determined from the initial condition. 

If we consider the initial condition 

 0 10 20(0)
T

x x x x ,   (0) x 0 , (7) 

with 

2 2
10 202

1x x  x , (8) 

both C3 and C4 are equal to zero while C1 and C2 can be found by solving the linear algebraic equations 

0Uc x  (9) 

where 

 1 2 ,U u u     1 2

T
C Cc . (10) 

Varying n, one gets different pairs of u1, u2 and different angles between them. When the angle is 

close to π/2, the Euclidean norm of c always stay near 1. In contrast, when the angle close to 0 or π and 

with appropriate initial conditions, either C1 or C2 or both can take a value much higher than 1, i.e. the 

initial modal vectors can be much larger than the vector of initial conditions. We can say that the latter 

case shows a strong non-normality and a system with this characteristic is called a non-normal system. 

The explanation of the concept of non-normality can also be found in [10]. As a result of the large initial 

vectors, a non-normal system may have a transient growth: even when the system is exponentially 

stable, its vibration amplitude initially increases before decaying to zero (Fig. 1a). This behavior cannot 

be seen in a typical MDK system (Fig. 1b). The maximum real part of the eigenvalues for both systems 

is approximately –0.0324 and the initial conditions are as described in Eq. (7), with x10 = 0 and x20 = 1. 

It should be noted that whether transient growth occurs or not also depends on the choice of the initial 

conditions as described in [3]. 
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a)                                                                      b) 

Figure 1.   a) Transient growth and subsequent decaying vibration of an EDKN system (2)  

with n = 0.48. 

b) Decaying vibration without transient growth of an EDK system (5) when n = 0, α = 0.72. 

3. Comparison of vibrational behavior EDK and EDKN systems subjected to 

external stochastic excitation  

In the operation of real systems, may they contain self-excitation or not, it can be expected, that small 

external disturbances are present, which are in the following modeled by Gaussian white noise. As we 

consider linear systems with Gaussian white noise most of the following steps can be performed 

analytically with well-known relations.  

The governing ODEs in this case become inhomogeneous by adding white noise to the right-hand 

side of equation (2) and (5) 

( )t t t t   X DX K N X σ  , (11) 

t t t t   X DX KX σ  . (12) 

Herein t is a scalar Gaussian white noise with zero mean and the 2-by-1 vector σ contains their 

intensity coefficients. The considered equations now form a system of linear stochastic differential 

equations (SDE). In the following we use stationary probability density functions p (PDF) for 

comparing the two systems under consideration. The probability density function can either be 

calculated using numerical integration (Monte-Carlo simulation) or by solving the corresponding 

Fokker-Planck equation. In both cases, (11) and (12) are rewritten as a first-order system 

d dt t tW Q AQ g , (13) 

d dt t tW Q A Q g  (14) 

respectively, where Qt is the vector of the random state processes  
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t
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. (15) 

tW is the Wiener process corresponding to t , and the other matrices are determined as follows 

( )

 
     

0 E
A

K N D
,   


      

0 E
A

K D
, (16) 

0

0

 
   
  

g

σ

. (17) 

The diffusion matrix is defined as 

TB gg . (18) 

To save space, the equations from now on are only written for A, but they also hold for A′. In order 

to find a PDF p(q) of the stationary process Qt, the stationary Fokker-Planck equation associated with 

Eq. (13) and (14)  

24 4 4 4

1 1 1 1

1
( ) ( ) 0

2ij j ij
i j i ji i j

p a q p b
q q q   

           
  q q   (19) 

has to be solved, where aij and bij are the elements in row i and column j of matrix A and matrix B, 

respectively. 

Since we have a linear system with Gaussian excitation, the corresponding solution is also 

Gaussian. Following [11], the solution has the form 

1
2

1

2

1 1
( ) ( , ) exp ( )

2(2 )

Tp


     
 

q μ 0 Λ q Λ q
Λ

N  (20) 

with mean value vector μ 0  due to missing asymmetry and covariance matrix Λ . Hence, Eq. (19) 

yields to the following algebraic equation [12] 

[( ) ( )]vec( ) vec( ) 0    E A A E Λ B , (21) 

where ⊗ denotes the Kronecker product and vec(∙) denotes vectorization operator. For the results 

discussed later on, it is chosen that 

0

1

 
  
 

σ . (22) 
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Solving (21) for Λ and computing (20), one obtains p(q). Marginal PDF
1Xp and

2Xp can then 

calculated by 

1 11 1 2 3 4( ) ( ) ( ) d d dX Qp x p q p q q q
  

  

     q , (23) 

2 22 2 1 3 4( ) ( ) ( ) d d dX Qp x p q p q q q
  

  

     q . (24) 

In the following, corresponding results are discussed. Figure 2 shows time responses X1t and X2t 

obtained by Monte-Carlo simulation performed by using the Euler-Maruyama method. It can be 

observed, that the vibration amplitudes of X2t of both cases are in a similar range, while for X1t the 

EDKN system produces much higher amplitudes. 

 

a)                                                                      b) 

Figure 2.   Time responses X1t and X2t for a) EDKN system and b) EDK system with same white noise 

excitation according to Eq. (22). 

A similar behavior can be observed when considering the PDF. Figures 3 and 4 show the marginal 

PDF
1Xp and

2Xp for both EDKN and EDK system as analytical solution of the Fokker-Planck equation 

according to Eqs. (20) – (24) compared with Monte-Carlo simulation results. Again 
1Xp is spreading 

much more for the EDKN system compared to the EDK system while
2Xp is comparable in both cases.  
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Figure 3.   Marginal PDFs
1Xp of stochastically excited EDKN and EDK system respectively obtained 

from solving the Fokker-Planck equation (lines) and from Monte-Carlo simulation (dots). 

 

 

Figure 4.   Marginal PDFs
2Xp of stochastically excited EDKN and EDK system respectively obtained 

from solving the Fokker-Planck equation (lines) and from Monte-Carlo simulation (dots). 
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Finally the frequency characteristic of the responses X1t and X2t for the EDKN system shall be 

considered by the absolute values of corresponding transfer functions 1( )H   and 2( )H   in the case 

of single excitation of the second equation in Eq. (2) which is in accordance with excitation Eq. (22). It 

can be seen, that for X1t distinct vibrations can be expected with (as the two eigenfrequencies are close 

together) almost one single dominating frequency which is very close to the behavior observed in brake 

squeal (Fig. 5).  

         

Figure 5.   Transfer functions 1( )H   and 2 ( )H   for excitation according to (21). 

4. Conclusions and outlook 

In this paper a non-normal EDKN system with corresponding suitable system and initial condition 

parameters producing a negative maximum real part of the eigenvalues, i.e. a system with transient 

growth and sub-critical self-excitation, has been considered in comparison with an EDK system 

showing similar stability behavior. Stochastic excitation has been added to both systems to compare its 

effect in both cases. In a system without self-excitation and stable trivial solution this will result in 

vibrations according to the excitation level around the zero solution. In contrast to this, in a system with 

similar maximum real part of the eigenvalues but self-excitation, much larger vibrations may result as 

the transient growth behavior is continually restarted by the stochastic excitation. The resulting 

vibrations remember to what can be observed during brake squeal. This surprisingly happens for a linear 

system, with stable trivial solution only needing some external noise excitation to get comparably large 

responses, while general explanation of brake squeal is that of a stable limit cycle in a nonlinear system.  

In future work, we intend to consider full MDGKN systems resulting from minimal models of 

brakes. 
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