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1 Executive summary 
We use human mobility models, for which we are experts, and attach a virus infection dynamics to 
it, for which we are not experts but have taken it from the literature, including recent publications. 
This results in a virus spreading dynamics model. The results should be verified, but because of the 
current time pressure, we publish them in their current state.  Recommendations for improvement 
are welcome.  We come to the following conclusions: 

1. Complete lockdown works. About 10 days after lockdown, the infection dynamics dies 
down. This assumes that lockdown is complete, which can be guaranteed in the simulation, 
but not in reality.  Still, it gives strong support to the argument that it is never too late for 
complete lockdown. 

2. As a rule of thumb, we would suggest complete lockdown no later than once 10% of 
hospital capacities available for COVID-19 are in use, and possibly much earlier.  This is 
based on the following insights: 

a. Even after lockdown, the infection dynamics continues at home, leading to another 
tripling of the cases before the dynamics is slowed. 

b. There will be many critical cases coming from people who were infected before 
lockdown.  Because of the exponential growth dynamics, their number will be large. 

c. Researchers with more detailed disease progression models should improve upon 
these statements. 

3. Our simulations say that complete removal of infections at child care, primary schools, 
workplaces and during leisure activities will not be enough to sufficiently slow down 
the infection dynamics. It would have been better, but still not sufficient, if initiated earlier. 

4. Infections in public transport play an important role. In the simulations shown later, 
removing infections in the public transport system reduces the infection speed and the height 
of the peak by approximately 20%. Evidently, this depends on the infection parameters, which 
are not well known. – This does not point to reducing public transport capacities as a reaction 
to the reduced demand, but rather use it for lower densities of passengers and thus reduced 
infection rates. 

mailto:mueller@vsp.tu-berlin.de
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http://creativecommons.org/licenses/by/4.0/
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5. In our simulations, removal of infections at child care, primary schools, workplaces, leisure 
activities, and in public transport may barely have been sufficient to control the infection 
dynamics if implemented early on.  Now according to our simulations it is too late for this, 
and (even) harsher measures will have to be initiated until possibly a return to such a 
restrictive, but still somewhat functional regime will again be possible. 

Evidently, all of these results have to be taken with care.  They are based on preliminary infection 
parameters taken from the literature, used inside a model that has more transport/movement details 
than all others that we are aware of but still not enough to describe all aspects of reality, and suffer 
from having to write computer code under time pressure. Optimally, they should be confirmed 
independently.  Short of that, given current knowledge we believe that they provide justification for 
“complete lockdown” at the latest when about 10% of available hospital capacities for COVID-19 are 
in use (and possibly earlier; we are no experts of hospital capabilities).1  

What was not investigated in detail in our simulations was contact tracing, i.e. tracking down the 
infection chains and moving all people along infection chains into quarantine. The case of Singapore 
has so far shown that this may be successful. Preliminary simulation of that tactic shows that it is 
difficult to implement for COVID-19, since the incubation time is rather long, people are contagious 
before they feel sick, or maybe never feel sufficiently sick at all.  We will investigate in future work if 
and how contact tracing can be used together with a restrictive, but not totally locked down regime.   

When opening up after lockdown, it would be important to know the true fraction of people who are 
already immune, since that would slow down the infection dynamics by itself.  For Wuhan, the 
currently available numbers report that only about 0.1% of the population was infected, which would 
be very far away from “herd immunity”.  However, there have been and still may be many unknown 
infections (Frankfurter Allgemeine Zeitung GmbH 2020). 

2 Introduction 
The SARS-CoV-2 virus is increasingly affecting the world’s population. Neither treatments nor 
vaccines are currently known. Although the infection does not lead to severe illness for many people, 
about 10-20% of infected persons need hospital care, and about 5% become critical (Robert Koch 
Institute 2020). Given, say, 22000 hospital beds  (Berlin.de n.d.) for 3.5 million people in Berlin, it is 
clear that 100000 simultaneously infected persons, needing 10000 to 20000 hospital beds, would 
push the system beyond its limits. It is therefore plausible that the spread of the infection needs to 
be slowed down, to something like well below 10000 infections per week and ideally much less. 

The general means for slowing down infections is well-known: distancing, and ultimately quarantine. 
If contagious persons do not meet susceptible persons anymore, then the virus cannot spread any 
further. Also, spreading does not necessarily have to be reduced to zero: Once every infected person 
infects less than one other person, the virus dies out. The general dynamics is captured in the so-
called SIR model, with S = susceptible, I = infected, and R = recovered (Kermack, McKendrick, and 
Walker 1927; R. M. Anderson and May 1979).  Every time a susceptible and an infected person 
meet, there is a probability that the susceptible person becomes infected. Some time after the 
infection, the person typically recovers. 

The details of this process, however, are much more complicated. There is, for example, infection 
via the air (e.g. droplet infection), and infection by touch (smear infection). Smieszek (Smieszek 
2009, 2010) has described in particular the first process in detail: Infected persons generate a “viral 

                                                 
1 While we were working on the present paper, the study by (Ferguson et al. 2020) came out.  Similarities 
and differences are discussed in the paper.  Although they model at different scale (country-wide vs city-
wide) and have different foci (theirs is more on the infection dynamics, ours is more on the human movement 
side), we believe that the results are roughly in line with each other.   

https://paperpile.com/c/12XtU3/sKJAy
https://paperpile.com/c/12XtU3/OSSAG
https://paperpile.com/c/12XtU3/OSSAG
https://paperpile.com/c/12XtU3/SiQsu+dcB9m
https://paperpile.com/c/12XtU3/SiQsu+dcB9m
https://paperpile.com/c/12XtU3/boZuz+lw9kZ
https://paperpile.com/c/12XtU3/boZuz+lw9kZ
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load” that they exhale or cough into the environment, and people close by have an exposure.  
Overall, the probability to become infected by this process in a time step𝑡𝑡is described as 

𝑃𝑃𝑛𝑛,𝑡𝑡 = 1 −𝑒𝑒𝑒𝑒𝑒𝑒 [−𝛩𝛩∑𝑚𝑚 𝑞𝑞𝑚𝑚,𝑡𝑡 ⋅ 𝑖𝑖𝑛𝑛𝑛𝑛,𝑡𝑡 ⋅ 𝜏𝜏𝑛𝑛𝑛𝑛,𝑡𝑡 ]  (*) 

where 𝑚𝑚 is a sum over all other persons, 𝑞𝑞 is the shedding rate (∼microbial load), 𝑖𝑖 contact intensity, 
and 𝜏𝜏 the duration of interaction between the two individuals.  These microscopic parameters are 
difficult to obtain even for known virus species and can thus be used as calibration parameters.  
However, some mechanical aspects are clear: 

● The contact intensity needs to go down with distance 𝑑𝑑.  If one assumes that viral material 
from a point source is distributed homogeneously in all directions (similar to light), then 𝑖𝑖 ∼
1/𝑑𝑑2.  One would, however, rather expect a diffusive process, leading to 𝑖𝑖 ∼ 1/𝑑𝑑3.  This 
implies that distance matters a lot; a distance of 1 meter instead of 1/2 meter would reduce 
the probability of contagion by a factor between 4 and 8.  Even if this is only a rough 
approximation, this makes clear that one should account for typical distances between 
persons. 

● The process is probabilistic.  Even a close distance does not have to lead to an infection if it 
is short enough, and the shorter the time, the smaller the probability.  

For SIR models to be interpretable, they need to be embedded into a contact graph (Bajardi et al. 
2011; Skvortsov et al. 2007; Balcan et al. 2010). An infected person from out-of-country may return 
to its family, there it might infect one if her/his children, the child may take it to the school where it 
infects other children, they take it to their family, members of those other families may take it into 
public transport vehicles, to leisure activities, or to their workplace, etc.  These social networks are 
typically not available for simulations, for example for privacy reasons.  

It is, however, possible to generate synthetic approximations to these trajectories.  This is routinely 
done in transport modelling.  One approach is to use some information from mobile phone data (but 
not the full trajectories), and process them together with information about the transport system and 
with statistical information from other surveys (Senozon 2020b).  That approach leads to synthetic 
movement trajectories for the complete population.  From these trajectories, it is possible to extract 
how much time people spend with other people at activities or in (public transport) vehicles.  It is also 
possible to estimate distances to other persons, e.g. by comparing the number of persons in a public 
transport vehicle with that vehicle’s size, or by making assumptions about such distances at typical 
activities (home vs work vs leisure vs shopping). 

It turns out that such data sets are available for Germany, Switzerland, and Austria.  This paper 
presents simulation results based on a cutout from that data set, for the case of Berlin.  What is 
effectively done is to construct an SIR-like model on top of persons’ movement trajectories: 

1. One or more infected persons are introduced into the population. 
2. At some point, infected persons become contagious.  From then on, every time they spend 

time together with some other person in a vehicle or at some activity, equation (*) is used to 
calculate the probability that the other person, if susceptible, can become infected.  If infection 
happens, the other person will follow the same dynamics. 

3. Contagious persons eventually become recovered. 

The model runs many days, until no more infections occur.  Note that compared with the SIR model 
we have differentiated the “infected” state into infected and contagious, in order to take account of 
the relatively long incubation times of COVID-19.  

Now once such a model is available, containment strategies can be introduced into the model, and 
the results can be investigated.  Optimally, the model should be calibrated before this is done.  
Smieszek et al (Smieszek 2009; Smieszek, Fiebig, and Scholz 2009; Smieszek et al. 2011) and 
Hackl/Dubernet (Hackl and Dubernet 2019, 2018) have done this for the influenza virus, and thus 

https://paperpile.com/c/12XtU3/qGE8p+TIcuO+nTeVs
https://paperpile.com/c/12XtU3/qGE8p+TIcuO+nTeVs
https://paperpile.com/c/12XtU3/5x2qn
https://paperpile.com/c/12XtU3/boZuz+dKatb+zh8yS
https://paperpile.com/c/12XtU3/k6BWd+VBrUo
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demonstrate that this is possible.  Unfortunately, for the current situation calibration is not possible, 
since neither enough data about the microscopic behaviour of COVID-19 is available, nor enough 
epidemiologic data for model fitting.  It is still plausible to assume that the structural responses of the 
model to distancing/quarantine measures remain valid, albeit quantitative results have to be taken 
with a grain of salt.  We believe that it is better in the current situation to publish the results anyways. 

The paper will consider the following containment strategies : 

● No longer use public transport, i.e. people to go about their activities by individual means of 
transport (car, bicycle, walking). 

● Shut down work activities, i.e. force people to either work from home or not work at all. 
● Shut down leisure activities, i.e. force people to remain at home when they ordinarily would 

perform leisure activities. 
● Combinations of the above measures. 
● Complete lockdown, i.e. everybody stays at home. 

The strategies will be introduced at different days during the infection dynamics. 

The present paper goes beyond the above-mentioned studies (Smieszek 2010; Hackl and Dubernet 
2019) in the following aspects: 

● The present study includes the effect of public transport.  
● The present study is based on existing real-world models, normally used for transport 

planning. 
● The present study explicitly looks at distancing/quarantine measures. 

A somewhat similar study to ours is by (Ferguson et al. 2020).  They have considerably more 
experience in the area of epidemics modelling.  However, we believe that our human movement and 
resulting contact model, based on real world data, goes beyond their work.  We thus hope that our 
work will be a contribution, in particular for regional-scale modeling of epidemics and containment 
measures.  The approaches and their results are compared in more detail in a discussion chapter at 
the end of the paper.  

  

https://paperpile.com/c/12XtU3/lw9kZ+k6BWd
https://paperpile.com/c/12XtU3/lw9kZ+k6BWd
https://paperpile.com/c/12XtU3/Ztdak
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3 Details 
3.1 Input data 
  

 

 

Fig. 1 Top: Events for travel by individual vehicle.  Bottom: Events for travel by public transport. 
 

As stated earlier, the input data stems from activity-based transport modelling (Hilgert et al. 2017; 
Axhausen 1989). Such models generate complete daily activity chains of persons, for example 
something like home–work–shop–home–leisure–home.  Activities come with times and, importantly, 
locations.  The activity chains are then used as input for (agent based) transport simulation models, 
which assign activity locations, modes and routes and thus generate emergent effects such as 
congestion and emissions (Horni, Nagel, and Axhausen 2016).  The models are used, e.g., for 
forecasting effects of autonomous vehicles (Bischoff, Maciejewski, and Nagel 2017), investigating 
traffic signals (Thunig, Kühnel, and Nagel 2019), understanding and reducing emissions (Kickhöfer 
and Nagel 2016) or noise (Kaddoura, Kröger, and Nagel 2017) effects of transport, or evaluating 
strategies for carbon-reduced or carbon-free transport (Nagel et al. in preparation). 

https://paperpile.com/c/12XtU3/7am9O+gHnYH
https://paperpile.com/c/12XtU3/7am9O+gHnYH
https://paperpile.com/c/12XtU3/Tlbe4
https://paperpile.com/c/12XtU3/GuD3t
https://paperpile.com/c/12XtU3/Mb48W
https://paperpile.com/c/12XtU3/kArMS
https://paperpile.com/c/12XtU3/kArMS
https://paperpile.com/c/12XtU3/8ML8f
https://paperpile.com/c/12XtU3/93jB1
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The input data for the present project is generated by Senozon (Senozon 2020b, [a] 2020), and has 
been used by us also in other projects (VSP 2020). For the present paper, the activity chains are 
just used “as is”.  From their information, it is possible to reconstruct the time-dependent trajectories 
of each person with respect to their “containers” (facilities or vehicles), and it is possible to 
reconstruct who shares, at what time, which container (cf. Fig. 1). 

3.2 State transitions 
The model for the infection itself is described in the next section; this section will first explain the 
possible agent states.  Once a synthetic person becomes infected on day number d, it will undergo 
the following state transitions (Roy M. Anderson et al. 2020): 

● Between days d+3 and d+4, it will transition to contagious.  Only then will it start infecting 
other synthetic persons. 

● Between days d+5 and d+6, it will self-quarantine with a probability of 20%.  This is modelling 
that only 20% of people show strong enough symptoms to recognize that they are sick, and 
at which point they withdraw from their activities (Frankfurter Allgemeine Zeitung GmbH 
2020).  The current model assumes that they go into full quarantine, i.e. they also do not 
infect people at home. 

● Between days d+15 and d+16, it will transition to recovered.  At this point, it is assumed that 
they resume their activities, but that they are immune (Bao et al. 2020). 

As one sees, this is a somewhat more elaborate version of the standard SIR (susceptible – infected 
– recovered) model, to take into account the peculiarities of Covid-19 as far as they are currently 
understood (Roy M. Anderson et al. 2020).  State transitions always happen in between two runs of 
the daily dynamics (see below) – that is the reason why we say “between days d+x and d+x+1”. 

3.3 Infections at facilities and in vehicles 
The algorithm looks at agents when they leave a facility.  At this point, it 

● randomly selects 3 other agents which are at the facility at the same time, and 
● with each agent computes a possible infection if either the leaving agent is susceptible and 

the other agent is contagious, or the other way round.  The infection model is equation (*), 
the time 𝜏𝜏 is the time (duration) that both agents were simultaneously at the same facility. 

We bound the infection dynamics at 3 other agents, since we assume that persons do not interact 
with everybody in the facility.  If there are fewer than 3 other agents at the facility, then interaction 
simply happens with everybody.  Since we are using a 25% scenario, the number “3” stands for 12 
other persons with which interactions happen; this seems to be a (somewhat) plausible number for 
interactions at workplaces.  Clearly, we do not want the model to interact with everybody at the 
facility. 

The same algorithm is used for interaction in vehicles.  In terms of implementation, it uses a 
generalized dynamics for containers, and treats both facilities and vehicles as such containers. 

Note that the number “3” (or implicitly “12”) is used when the agent leaves.  There is, however, also 
interaction when other agents leave.  Thus, this rather models the interaction with “available spaces” 
than with persons.  E.g. assume the following time line (from left to right) and consider in particular 
the agent X: 

t0 --> t1 --> t2 --> t3 --> t4 --> t5 --> t6 
 A  A  A  A  A  A 
 .  X  X  X  X  . 
 B  B  C  C  D  D 

https://paperpile.com/c/12XtU3/5x2qn+JhLw
https://paperpile.com/c/12XtU3/lpyY
https://paperpile.com/c/12XtU3/lyEU4
https://paperpile.com/c/12XtU3/sKJAy
https://paperpile.com/c/12XtU3/sKJAy
https://paperpile.com/c/12XtU3/jo2CO
https://paperpile.com/c/12XtU3/lyEU4
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This can, for the ease of interpretation, be interpreted as three seats in a row in a public transport 
vehicle.  We have the following events with respect to person X: 

● At time t1, X enters the vehicle, and takes a seat between A and B. 
● At time t2, B leaves the vehicle.  In consequence, a possible infection of X from B is computed 

with equation (*), with t2 - t1 as the duration of the interaction.  Also, C enters the vehicle, 
and takes the seat of B. 

● At time t4, C leaves the vehicle.  A possible infection of X from C is computed, with t4 - t2 as 
the interaction time. At the same time, D enters the vehicle, and takes the seat of C. 

● At time t5, X leaves the vehicle.  A possible infection of X from A is computed, with t5 - t1 as 
interaction time, and from D, with t5 - t4 as interaction time. 

In the algorithm, however, we do not explicitly model seating positions, but just assume that every 
synthetic person that leaves interacts with up to 3 randomly selected other agents. 

The variation over time of the density of persons inside the container is currently not taken into 
account.  This could, however, be done in a further modelling step, given data of facility and vehicle 
sizes.  What is, however, taken into account is the thinning out of persons in the container when they 
are in quarantine: The algorithm still computes interaction with up to 3 randomly selected persons, 
but if these persons are in quarantine, then there is no infection dynamics in either direction.   

3.4 Multi-day modelling 
Optimally, one would have multi-day trajectories.  In our case, the data that we have ends at the end 
of the day.  Our simulations thus run the same person trajectories again and again.  This presumably 
underestimates mixing (see next section).  However, there is still strong mixing because the synthetic 
persons interact with other persons at the same facility every day.  For example, a public transport 
train may have 1000 passengers.  In our 25% scenario, they would be represented by 250 passenger 
agents.  Out of these, any of our agents would only see 3 other agents representing 12 persons.  
This leads to different encounters in every synthetic day, even when repeating the same trajectory 
over and over. 

The same holds for facilities, where the data is actually constructed such that there are typically 
around 400 persons per facility.  That is, any work, shopping, or leisure facility can have up to 400 
visitors at the same time, and every person that has that facility in its trajectory can interact with all 
of these persons.  This number of interacting agents is, however, limited (see infections at facilities 
and in vehicles). This results in an issue for home locations: Our data model does not differentiate 
between “persons living in the same block” and “persons living in the same household”.  With the 
current state of our modelling, the infection probability at home locations thus will have to average 
over these situations.   

During the first simulated day 10 random agents are infected. The first iteration is then used to 
construct certain data structures meaning that every agent memorizes its trajectory. Agents are put 
in and removed from the respective containers when undergoing activity start and end events and 
vehicle enter and leave events. These facility containers are not cleared at the beginning or end of 
the day meaning that agents can remain in a container from one day to the next. This is important to 
calculate the duration times accurately for the infection dynamics - especially at home facilities. 
Some agents, however, do not have closed circles, meaning that their last activity is not the same 
one as their first one. In these cases it is assumed that agents start their first activity at 00:00. 

As stated before, activities are of a certain type. These types are used in this research to determine 
the effects certain strategies have on the epidemic spreading. If an activity type is closed, agents will 
still be put in the respective containers without taking part in the infections dynamics. This is 
important especially for the dynamics in transit vehicles, because agents travelling to closed activities 
essentially represent “holes” as they would not travel at all in reality.  
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3.5 Graph interpretation 
The following borrows from social network and containment studies done by many others 
(Brockmann, David, and Gallardo 2009; Makinde 2007; Bajardi et al. 2011; Colizza and Vespignani 
2008; Colizza et al. 2007).  It is re-interpreted for our specific situation. 

The travel model can be seen as generating an interaction graph.  In a first step, one could connect 
persons to their activity facilities, e.g. all persons working at a certain facility would be connected to 
it.  In a second step, one could remove the intermediate facility from the graph, and draw direct 
connections between the persons.  These connections include a time period, e.g. person A and 
person B were simultaneously at facility W between time1 and time2.  The same applies to public 
transport, i.e. persons C and D may have been simultaneously in public transport vehicle V between 
time3 and time4.   

As stated above, being at the same facility does not necessarily imply immediate interaction.  
According to the models described earlier, there is a certain probability to interact, and there is mixing 
from one day to the next.  In terms of the graph interpretation, the model thus implies weak links 
between persons who are in the same vehicle or at the same facility if these containers are populated 
with many persons at that time. 

It is now easy to see that virus progression would quickly die out if everybody remained at home: 
Then each home facility would generate a subgraph (= a clique, since everybody in the subgraph 
would be directly connected to everybody else); the infection would continue to spread in those 
cliques that have at least one infected person when this type of quarantine is started; and that would 
be it. 

If we now assume that persons do only one other activity, such as work, then the virus can jump 
from one such clique to another via the workplace.  It is not clear if this would infect the whole 
population or not, since there might be subgroups of cliques that are strongly connected, but the 
subgroups may be sufficiently disconnected that the virus cannot jump.  Evidently, all other activities 
generate further interactions with yet other cliques, and public transport vehicles will do the same.   

For an example, look at Fig. 2.  There are four families, with 4, 4, 3, 1 member(s).  Family 1 has one 
member going to “work1”, and one other member going to “school”.  Family 2 has one member going 
to the same “school”, and one other member going to another workplace “work2”.  Family 3 has one 
member going to “work2”, and using a certain “pt vehicle” (presumably on the way to and from work).  
Family 4 consists of only one member, which uses the same “pt vehicle”, but goes to yet another 
workplace “work3”.   

Now assume that initially only person “a”, in “home2”, is infected.  One has the following cases: 

● If everybody stays at home, then all other members of “home2” will become infected, and 
then the virus will travel no further. 

● If home and work are open but school and public transport are closed, then in the example 
the virus will also travel to “home3” and all its members, but then stop. This, however, 
depends on families 2 and 3 visiting no second work location, either by the same person or 
by another member of the families. 

● If home and work are open and public transport can be used, then in the example the virus 
will also travel to “home4”. 

That is, the connectedness of the graph decides about how far the virus will travel. 

https://paperpile.com/c/12XtU3/ym8d1+teyd6+qGE8p+WGxhf+Q3KVC
https://paperpile.com/c/12XtU3/ym8d1+teyd6+qGE8p+WGxhf+Q3KVC
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Fig. 2 Example of graph connections between persons and containers (facilities and vehicles). 
 
A second element is the infection probability.  As indicated by equation (*), it is a result of microbial 
load, contact intensity, and contact time.  In consequence, an interaction at work, with physical 
distance to co-workers but much time spent together, can have the same infection probability as a 
short time in a public transit vehicle while squeezed together.   

 

Fig. 3 The interaction network from figure 2 when the intermediate containers are removed. 
 
A third element comes from the day-to-day repetition, as explained earlier.  At home, one interacts 
with the same persons over and over again, effectively increasing the infection probability ever more, 
implying that either all members of the household are infected, or none.  This results in thick lines 
connecting household members. Households do not provide mixing beyond themselves. 

Public transport, however, is much different: One sits or stands next to other persons every day. In 
consequence, possible infection paths are between different persons every day.  Since they run back 
into their respective homes, public transport results in strong mixing.  Other activities are probably in 
between: children at day car or primary school are probably strongly connected within relatively small 
groups, i.e. similar to the infection dynamics at homes, while young adults at secondary or tertiary 
education are probably much less strongly connected, but have many possible interactions with other 
people, varying from one day to the next.  For work it presumably depends on the work environment: 
workers in a small company meet the same people every day while workers in a large company may 
meet different people every day.  People with customer-facing jobs, such as sales people, are again 
different. 

This graph interpretation will be used in the following to provide possible intuition for the simulation 
results. 
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3.6 Calibration 
Most parameters of the model are taken from the literature, as explained so far.  The remaining free 
parameters are, from equation (*), 𝛩𝛩 ⋅ 𝑞𝑞 ⋅ 𝑖𝑖 , where 𝑞𝑞 was the shedding rate, 𝑖𝑖 the contact intensity, 
and 𝛩𝛩 is a calibration parameter.  Since none of these numbers seem to be known for COVID-19, 
we have proceeded as follows: 

● We have set the base value of 𝑞𝑞 ⋅ 𝑖𝑖 to 1. 
● For public transport vehicles, we have set 𝑞𝑞 ⋅ 𝑖𝑖 to 10.   

As stated earlier, the increased contact intensity value for public transport models includes that 
distances between persons in public transit vehicles are often much smaller than in most other 
situations. Clearly, this is debatable, and simulations with other parameters could be run.  Our 
intuition, however, is that a ratio of 10 in contact intensities between “transit vehicle” on the one hand, 
and “shopping”/“work”/”errands”/”(higher) education” on the other hand, is plausible.  In contrast, for 
home and leisure we would expect higher values than those that we are currently using. 

The remaining 𝛩𝛩 parameter was then calibrated so that in the base case, the growth rate is a tenfold 
increase of infected persons per 7 days. This is larger than what we see now in Germany (where we 
have a tenfold increase per 9 days), but is a plausible fit to the initial days which were totally without 
distancing measures, which is what our base case represents. 

4 Runs and results 
4.1 Base case 
Fig. 4 shows the base case simulation.  The base case assumes no reaction at all meaning that 
people behave completely normal and no containment strategy is in place. This behaviour is of 
course improbable when faced with an epidemic with such severe proportions.  The base case 
simulation does, however, include that 20% of the infected persons self-quarantaine, similar to 
staying at home when sick.  
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Fig. 4 Top: Base case (linear). Bottom: Base case (log). 
 

One notices the following aspects: 

● There is exponential growth of the number of infected persons initially.  This also means that 
in the first approximately 10 days the number of infected persons is small, and the situation 
does not seem dramatic.  This then rapidly changes, eventually leading to about 2.3 million 
simultaneously infected persons around day 44.  Evidently, this is what we should not let 
happen; according to the above numbers it would imply 230,000 persons needing hospital 
care, many times more than what the system can absorb.2 

● The number of recovered persons goes up to about 97% of the population.3  Once that many 
persons are immune, the reinfection rate drops below 1, and the virus dies out. 

● The model does not explicitly contain death cases.  For the dynamics of the model, it is 
irrelevant if infected persons eventually recover or eventually die. 

                                                 
2 Note that it is unclear to us if the share of critical cases is calculated as a share of the reported cases, or a 
share of the true cases.  Our model simulates “true” cases. 
3 This fraction is much larger than so-called “herd immunity”.  We attribute this to over-shooting because of 
the explosive, uninhibited infection dynamics. 
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Fig. 5 shows the share of infections occurring in different containers.  The outcome shows that 
especially home, leisure, work and public transit activities have a high influence on the epidemic 
spreading. As the home activity cannot be reduced, the next sections will outline the effects of 
reducing leisure, work and public transport.  One notices that about a fourth of infections occur in 
public transit vehicles.  Our current assumption is that the contact intensity 𝑖𝑖, as described earlier, is 
10 times higher in public transport vehicles than in activities. 

 

Fig. 5: Distribution of infection types in base case 
 

4.2 Assuming no infections in public transport 
Fig. 6 shows the effect a complete shutdown of public transport would have. The cases differ from 
each other with regard to the time point the measure is introduced.  The maximum number of 
simultaneously infected persons goes down in every case, and the maximum is reached later 
compared to the base case.  Also, the overall number of infected persons becomes smaller, implying 
a lower threshold of herd immunity. It becomes clear that shutting down public transport has an 
impact even when enforcing it as late as day 30.  

Note that we are not recommending to shut down public transport.  Still, the contagion effect of public 
transport clearly plays a role.  Resulting recommendations include: 

● Public transport should run at the highest frequency, with the largest buses and the longest 
trains possible, so that people can spread out, and in consequence the contact intensity 
becomes smaller. 

● Public transport vehicle drivers should be protected, since otherwise running at high 
frequencies will eventually no longer be possible because of lack of drivers. 

● The authorities need to consider reimbursing the operator for running large capacities despite 
reduced demand and thus reduced fare income. 
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Fig. 6 Top: No public transport cases (linear). Bottom: No public transport cases (log). 

4.3 Assuming no infections at the workplace 
Fig. 7 shows the effect of no infections at the workplace. Again, the influence of the enforcement 
time point is shown. Shutting down the workplace has a severe effect as the maximum number of 
simultaneously and overall infected persons is significantly reduced in all cases compared to the 
base. If introduced no later than day 20 the peak also occurs later. This containment strategy also 
has a significant effect because infections in public transport to and from work activities no longer 
occur. Even though the number of simultaneously infected persons is reduced the numbers are still 
too high for our health system to cope with. Resulting recommendations include:  

● It is of course not realistic to shut down all work activities. However, work activities should be 
reduced to a minimum to reduce the number interpersonal contacts meaning that people 
should work from home when possible. 

● This strategy should commence early enough to shift the peak to a later time. 
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Fig. 7 Top: No work cases (linear). Bottom: No work cases (log). 

4.4 Assuming no infections at leisure activities  
Fig. 8 shows the effect of no infections at leisure activities. The influence the enforcement time point 
has is shown. These measures noticeably reduce the peak and overall number of infected persons 
compared to the base. They shift the maximum to a later time when enforced before day 20.  The 
following is recommended: 

● Leisure activities should no longer take place as they increase both the speed and the impact 
of the epidemic. 

● This restriction should be enforced as early as possible to shift the peak to a late time point. 
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Fig. 8 Top: No leisure cases (linear). Bottom: No leisure cases (log). 
 

4.5 Assuming no infections at work and leisure activities 
Fig. 9 shows the impact of combining the containment strategies of preventing infections both at 
leisure and workplace activities. Compared to the single strategies it can clearly be seen that a 
combination of the two has a much stronger effect. The peak number of simultaneously infected 
persons can be reduced to about 970.000 cases when enforcing this strategy no later than day 20. 
This underlines the recommendations stated before that work and leisure activities should be 
reduced early enough. However, 970.000 simultaneous cases are still too many for our current 
hospital system to process, even though it is a very drastic measure.   
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Fig. 9 Top: No work and leisure cases (linear). Bottom: No work and leisure cases (log). 
 

4.6 Assuming no infections at work, at leisure activities, and in public transport 
Fig. 10 shows the effect of closing both work and leisure activities and also shutting down public 
transport. Compared to the section before, the maximum number of simultaneously infected persons 
can be reduced even more to approximately 880.000 persons when enforcing this strategy no later 
than day 20. As stated before, we do not recommend closing down public transport. However, this 
analysis shows that the population should reduce unnecessary trips where possible.     
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Fig. 10 Top: No work, leisure and public transport cases (linear). Bottom: No work, leisure and 
public transport cases (log). 

 

4.7 Complete lockdown 
Fig. 11 shows the influence of complete lockdown. We define a complete lockdown as everyone 
stays at home. There are no other activity types any more. It can clearly be seen that a complete 
lockdown is effective shortly after enforcement. Even when done after 40 days it still helps to quickly 
reduce the number of infected persons. The log plot states clearly that complete lockdown stops the 
exponential growth of infections. This is of course a very drastic method which could be enforced 
when it becomes apparent that hospitals will become overloaded. 

For many reasons, lockdown in reality will never be as complete as lockdown in our simulation model.  
Still, the experience from Wuhan seems to imply that it will bring the desired results for COVID-19.  
In Italy, it seems that people can still go to work, which may explain why, with respect to infection 
containment, the measures do not work as well as one might hope. 
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Fig. 11 Top: Shutdown cases (linear). Bottom: Shutdown cases (log). 
 

4.8 Comparison of containment strategies  
All cases show that after enforcing a containment strategy one notices that, in the log plots, the slope 
of the infections immediately switches to a slower slope. This is especially the case when shutting 
down work and leisure activities, and with a complete lockdown.  

We think that this implies that the statement “measures need to be implemented early” has to be 
differentiated: 

● The rate (= slope in log plot) of the infections can be influenced at arbitrary points in time, 
and it follows the new policy measures immediately. 

● Evidently, all infections that have been started before will still progress, and thus the 
slowdown of the number of critical cases will need the corresponding number of days to show 
in the data.  For COVID-19, this time delay may be a week or more. 

● The maximum number of simultaneously infected persons is influenced by how early or late 
the measure is implemented.  A very plausible explanation is that, if strong separation 
measures are implemented early, this leaves many subgroups without a single infected 
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person in that subgroup.  If implemented later, the infection will already have spread to many 
of these subgroups. 

Fig. 12 compares the maximum number of simultaneously infected persons in the different 
containment strategies. It can clearly be seen that solely shutting down public transport, work or 
leisure activities is not sufficient to reduce the number of patients needing hospital care 
simultaneously.  The statement that single measure strategies may not be sufficient is consistent 
with results from other studies (Ferguson et al. 2020). The figure shows that rather drastic measures 
seem to be necessary:  

● Closing leisure and work activities leads to the number of simultaneously infected persons 
being reduced. However, the reduction is, presumably, not sufficient.  

● A complete lockdown would lead to a sufficiently low number of simultaneously infected 
patients if done in time. 

● If such drastic measures are not enforced, the number of simultaneously infected persons 
would probably lead to high numbers of hospitalized persons. This would make a high 
hospital capacity necessary. 

 

Fig. 12 Comparison of maximum simultaneously infected persons 
 

5 Discussion 
None of the measures simulated in this paper, short of complete lockdown, is sufficient to reduce 
the height of the peak to levels to where we assume that they can be handled by the health system.  
Presumably, more drastic measures, as they were undertaken in China and are currently undertaken 
in Italy, will also have to be implemented in Berlin (and Italy’s strategy of still allowing persons to go 
to work may prove insufficient).   

Assuming that these more drastic measures work, one also has to assume that they will have to 
remain in place for a rather long time, and can only very slowly be relaxed, together with the 
increasing share of immune persons in the population. 

Our results are roughly in line with the work of (Ferguson et al. 2020), which appeared while we were 
working on our studies. Similarities include: 

https://paperpile.com/c/12XtU3/Ztdak
https://paperpile.com/c/12XtU3/Ztdak
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● If left to itself, the peak of the infection wave will generate numbers of critically ill patients that 
will far exceed existing hospital capacities.   

● No single “simple” restriction will by itself be sufficient to bring infection numbers down to 
what hospitals can handle.  A combination of restrictions will be necessary. 

● Any combination of strategies that avoids over-utilization of the hospital systems will have to 
be in place for many months. 

● Ferguson et al. recommend that restrictive measures should be triggered by certain 
COVID19 loads of the hospital system, taking the time-delays of the infection dynamics into 
account.  We agree with this assessment. 

There are differences in the details.  Ferguson et al. rely on an epidemics model that has been 
developed over many years and tested against other viral outbreaks, in particular influenza.  Also, 
they include a relatively detailed progression model from infections to critical cases, which we omit.  
They also include spatially resolved demographics (which allows to identify shares of the particularly 
vulnerable elderly), which we could include in principle, but have so far not used.   

On the other hand, we believe that our human movement model is better: Rather than randomly 
assigning workplaces, we use a data-driven process (which, however, is still synthetic because of 
privacy constraints).  Furthermore, we include all activities of persons, again, because our model is 
data driven. Even if our persons are synthetic, their activities come from upstream data.  Also, we 
include the effects of public transport.  Finally, we include a mechanistic infection model, taken from 
Smieszek (2010).  Ferguson et al. (2020) do not describe their microscopic infection model in that 
paper; we cannot tell if the reported so-called “R” values (= reinfection values) are model input or 
model output.  

Ferguson et al report a later peak than we do.  The causes of this should be clarified.  They 
presumably include: 

● Ferguson et al report critical hospital cases, while we show infected cases.  Clearly, hospital 
cases show up later than infected cases. 

● The model of Ferguson et al runs for the whole country (of Great Britain), while we run the 
simulation for Berlin.  It is plausible that the infection progresses more rapidly in a relatively 
homogeneous and well-connected city like Berlin than across a whole country which includes 
many more remote regions. 

● We may have calibrated against different growth rates. The paper by Ferguson does not 
contain a logarithmic plot.  Taking it from a linear plot, they seem to have a doubling of cases 
every 10 days.  This is clearly much slower than current German data, which shows a tenfold 
increase of cases every 9 days. 
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