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Abstract

The Dimensional Regularization (DR) of Bollini and Giambiagi (BG) can not be defined for all Schwartz
Tempered Distributions Explicitly Lorentz Invariant (STDELI) S} . In this paper we overcome such
limitation and show that it can be generalized to all aforementioned STDELI and obtain a productina
ring with zero divisors. For this purpose, we resort to a formula obtained by Bollini and Rocca and
demonstrate the existence of the convolution (in Minkowskian space) of such distributions. This is
done by following a procedure similar to that used so as to define a general convolution between

the Ultradistributions of ] Sebastiao e Silva (JSS), also known as Ultrahyperfunctions, obtained by
Bollini et al. Using the Inverse Fourier Transform we get the ring with zero divisors S7 4, defined as

14 = F 18]}, where F ! denotes the Inverse Fourier Transform. In this manner we effect a
dimensional regularization in momentum space (the ring S’ ) via convolution, and a product of
distributions in the corresponding configuration space (the ring S} ,). This generalizes the results
obtained by BG for Euclidean space. We provide several examples of the application of our new results in
Quantum Field Theory (QFT). In particular, the convolution of n massless Feynman’s propagators and
the convolution of n massless Wheeler’s propagators in Minkowskian space. The results obtained in this
work have already allowed us to calculate the classical partition function of Newtonian gravity, for the
first time ever, in the Gibbs’ formulation and in the Tsallis’ one. It is our hope that this convolution will
allow one to quantize non-renormalizable Quantum Field Theories (QFT’s).

1. Introduction

The problem of defining the product of two distributions (a product in a ring with divisors of zero) is an old one
of hard functional analysis.

In QFT the problem of evaluating the product of distributions with coincident point singularities is related
to the asymptotic behaviour of loop integrals of propagators.

From a mathematical point of view, practically all definitions of that product lead to limitations on the set of
distributions that can be multiplied by each other to give another distribution of the same type.

In fact, Laurent Schwartz showed that he can not define a product of distributions regarded as an algebra,
instead of as a ring with divisors of zero.

In [1-4] it was demonstrated that it is possible to define a general convolution between the ultradistributions
of JSS [5] (Ultrahyperfunctions). This convolution yields another Ultrahyperfunction. Therefore, we have a
product in a ring with zero divisors. Such a ring is the space of Distributions of Exponential Type, or
Ultradistributions of Exponential Type, obtained applying the anti-Fourier transform to the space of Tempered
Ultradistributions or Ultradistributions of Exponential Type.

© 2018 The Author(s). Published by IOP Publishing Ltd
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We must clarify at this point that the Ultrahyperfunctions are the generalization and extension to the
complex plane of the Schwartz Tempered Distributions and the Distributions of Exponential Type. That is,
the Temperate Distributions and those of Exponential Type are a subset of the Ultrahyprefunctions.

The problem we then face is that of formulating the convolution between Ultradistributions. Thisis a
complex issue, difficult to manage, even if it has the advantage of allowing one to attempt non-
renormalizable QFT’s.

Fortunately, we have found that a method similar to that used to define the convolution of Ultradistributions
can also be used to define the convolution of Lorentz Invariant distributions using the DR of BG in momentum
space. As a consequence, Ultradistributions meed not to be used in the calculations of this paper, which considerably
simplifies it. Taking advantage of such Regularization one can also work in configuration space [6]. Thus, one can
obtain a convolution of Lorentz Invariant Tempered Distributions in momentum space and the corresponding
product in configuration space.

DR is one of the most important advances in theoretical physics and is used in several disciplines of it [7-60].

Our DR generalization happens to be a convolution of STDELI in momentum space and a product in a ring
with divisors of zero in configuration space.

Itis our hope that this convolution can then be used to treat non-renormalizable QFT’s. This is our present
goals.

More to the point, let us emphasize that our work is concerned with deeper issues than those regarding
QFT axiomatics in Euclidean space and QFT renormalization. Here, we are generalizing BG dimensional
regularization to all Schwartz Tempered, explicitly Lorentz invariant, distributions (STDELI), something that BG
were unable to achieve. This would permit one to deal with non-renormalizable QFT’s. Indeed, we do not have
to use counterterms in a renormalization process devoted to eliminate infinities. This is exactly what we do not
want to do, since a non-renormalizable theory involves an infinite numeber of counterterms. The central purpose of
our work is to define a STDELI convolution in order to avoid counterterms. We do not appeal to a simple
correlation-functions’ convolution (not defined for all STDELI). At the same time, we conserve all extant
solutions to the problem of running coupling constants and the renormalization group. The STDELI
convolution, once obtained, converts configuration space into a ring with zero-divisors. In it, one has now
defined a product between the ring-elements. Thus, any unitary-causal-Lorentz invariant theory quantified in
such a manner becomes predictive. The distinction those between renormalizable on not-renormalizable QFT’s
becomes unnecessary now. With our BG generalization, that uses Laurent’s expansions in the dimension, all
finite constants of the convolutions become completely determined, eliminating arbitrary choices of finite
constants. This is tantamount to eliminating all finite renormalizations of the theory. What is the importance of
using only that term independent of the dimension in Laurent’s expansion? That the result obtained for finite
convolutions will coincide with such a term. This translates to configuration space the product-operation in a
ring with divisors of zero.

As examples, we calculate some convolutions of distributions used in QFT. In particular, the convolution of
n massless Feynman’s propagators and the convolution of n massless Wheeler’s propagators. For a full
discussion about definition and properties of Wheeler’s propagators see [61, 62] which in turn are based on
Wheeler and Feynman works [63, 64].

The results obtained in this work have already allowed us to calculate the classical partition function of
Newtonian gravity, for the first time ever, in the Gibbs’ formulation and in the Tsallis’ one [65].

Note that we have added an appendix the by recourse to a simple example, is able to make it explicit how
much simpler is our treatment is compared to the habitual DR technique.

2. Preliminary materials

2.1. Lorentz Invariant Tempered Distributions
In this subsection we give the definitions that we will use in this paper.

We consider first the case on the v-dimensional Minkowskian space M, Let §’ be the space of Schwartz
Tempered Distributions [5, 66]. Letbe g € §'. Wesaythat g € S/ ifand onlyif:

dl
£(p) = £ (p) @21.1)
dp
where the derivative is in the sense of distributions, lis a natural number, p = k* = k@ — k — ki — - — k21, f
satisfies:
f IACI RS 2.1.2)
—oo (1 4+ p?)"

and is continuous in M,,. The exponent n is a natural number. We say then that f € Tj;.

2
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In the case of Euclidean space R,,let g € §'. We say that g € Sy ifand onlyif

g (k) = g f (k) (2.1.3)
where k? = ki + k? + k5 — - + k2, with f(k) satisfying:
[ %dk < oo, (2.1.4)
0

and f (k) is continuous in R,,. We say then that f € Tig.
We call S/, and Sy, the Fourier Anti-transformed Spaces of S; and Sy, respectively.

2.2. The Fourier transform in Euclidean space
The Fourier transform of a spherically symmetric function is given, according to Bochner’s formula, by [67]:

fk,v)= (2:)2% f ” f @, vyriFoza(kr) dr, (2.2.1)
k= Yo z

where r2 = x§ + x7 + - + x5 k* = kg + ki + - + k;_,and Jv.2 is the Bessel function of order
(v — 2)/2.Bythe use of the equality

nJe2(z) = e”'iii”K%(fiz) + e’%”IC%(iz), (2.2.2)
where KC is the modified Bessel function, (2.2. 1) takes the form:

(27T)

fk,v)y=2 f f(r, V)rife iV ICu—2 —2(—ikr)
+ e’4”70%2(1kr)] dr. (2.2.3)
By performing the change of variables x = 1%, p = k%, (2.2. 1) and (2.2. 3) can be re-written as:

v2
f(p’ v) = 71-(2722
pi

[ P e Tea(p 20 d (2.2.4)
0

v—2
fp, vy =2 D)X e I (—ix2pl?)

+ ei%y,c%(ixl/zpl/Z)] dx. (22 5)

2.3. The Fourier transform in Minkowskian space
For the Minkowskian case we have, according to [2]

-2 (x + 0)°%
o T

v=2

fen=007[" je v){e Ko [—i(x + i0)/2(p + i0)/?]

(p +i0)=
ire-n (X — iO)% . - N1/2 L N1/2
e 1 mlcvzz [I(X - 10) (p - 10) ] dx, (23 1)
where p = ki — k? — ki - - - — k2. The corresponding inversion formula is then given by [2]:
~ 00 im(v— j ‘/;72
flov)= (Z%f flp, u){e E )% 2 [—i(x + i0)/2(p + i0)'/2]
) 2 —00
iT2-v) (p ZO)V : . - \1/2 :\1/2
+e 1 WK%[z(x — i0)!/2(p — i0)!/%] » dp. (2.3.2)

Equation (2.3. 1) is the generalization of Bochner’s formula (2.2. 1) to Minkowskian Space.

2.4. An original example
As an example not previously published of this formula we will calculate the Fourier anti-transform of the
Dirac’s delta 6(p) in four dimensions. For this, we make use of the formula given in [68]:

ﬂ[ln(f

K(Z)___+Zk'(l+k)' 5

) - %w(k +1) — ok + 2)], (2.4.1)
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where ¥ (z) = w.Then:

£ = > M _j 0)L/2 - \1/2
flx 9 o) f_oc 6(/)){1(3(—}— io)%/Cl[ i(x +i0)"/2(p + i0)'/?]
- i%l@[i(x —i0)/2(p — i0)1/2]} dp. (2.4.2)
(x —10)«

After a simple calculation we obtain:

A 1 oo 1 1
fx, 4) = (27)3130 5(P)[x 0 + . iO]dp (24.3)

and finally:

. 1 1 1
f 4 = (27r)3[x + 10 T io]’ (24.4)

3. The convolution in Fuclidean space

3.1. The generalization of dimensional regularization in configuration space to the euclidean space
The expression for the convolution of two spherically symmetric functions was deduced in [6]

(h(k, v) = (f * &)k, v)):

24— % 00
hik, v) = ———— [I™ f(k, v)g (R, v)
e
2
x [4k2k2 — (k2 — k2 — kD17 kiks diy dks. G.1.1)

However, BG did not obtain a product in a ring with divisors of zero, which we will do now. Consider here that f
and gbelong to Sg. With the change of variables p = k, p, = k?, p, = k7 takes the form:

227’/71'% 00
hp, V)= ———[[" fpp )¢ (o V)
r(55)s
x [4p1p, — (p — py — p)*12 dpy dpy. (3.1.2)

Let ¥ be a vertical band contained in the complex v-plane 207. Integral (3.1. 2) is an analytic function of v
defined in the domain 2. Then, according to the method of [ 1], i(v, p) can be analytically continued to other
parts of 2. In particular, near the dimension v, we have the Laurent’s expansion:

o0

h(p,v) = Y W™ (p)(v — v (3.1.3)

m=—1

Here, v is the dimension of the considered space. In particular, vy = 4is the dimension that we will consider.
We now define the convolution product as the (v — v)-independent term of the Laurent’s expansion. (3.1. 3):

hl/o(p) = h(o)(p)- (31 4)

Thus, in the ring with zero divisors Sy, we have defined a product of distributions.

3.2. Example
As an example of the use of (2.2. 1) and (3.1. 1), we evaluate the convolution of a massless propagator with a propagator
corresponding to a scalar particle of mass m. The result of this convolution, using this formula, is given in [69]. It is:

5 )

v—2 4—v
hik, v) = ZV’ZW%m”"‘F( 2 )F( 2 )F(l i-v %; —k—z) (3.2.1)

TR R
Now we use the equality:

_ _ 2
F(4 I/)F 1’4 l/’z’_k_
2 2 2 m?

— _ 2 _ 2

:r(4 ”) _ EF(6 ”)k—p R A | (3.2.2)
2 v 2 ) m? 2 2 m?
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After atedious calculation, we obtain the corresponding Laurent’s expansion of h(k, v/):

82

h(k, v)=—
(k, v) -

+472(C+ 2 — In4 — In7 — Inm?)

m2

2k2 k2 - s
— 2 —F[1, 1; 3; — + > alv — 4y, (3.2.3)
m s=1

where Cis Euler’s constant with changed sign C = —0.577 215 664 90. Thus, we have

1 1
— %« —— =473(C+ 2 —In4 — In7m — Inm?
2R+ m ( )
k2 k2
— 27T2—2F(1, 1; 3; ——2). (3.2.4)
m m

4. The convolution in Minkowskian space

4.1. The generalization of dimensional regularization in configuration space to the Minkowskian space
In this section we repeat the efforts of the preceding one for Minkowskian space.

The generalization of the Bochner’s formula to Minkowskian space has been obtained in [2]. The
corresponding expression for v = 2n is:

v—3

w2z ime-w (3 — Vv 00
h(p, V):zu—le 2 F( 5 )/]_oo f oy 1)g(py V)
1 B _ ) 4 1/;3 .
X q(p — iO)z[(p P P) Pl iO] + =2
0
_ _ 2 4 %3

X (p + iO)i[(’D P P) PPy _ iO] }dp1 dp, 4.1. 1)

P

h(p, v) = (f* ) (p, V).
When v = 2n + 1we obtain:

it 0 — _ 2 _ 4 v .
hp ) == ——rs [ F oy )8 (o v)[(p pLZ P plpz] {(p—i0)2
e p

2

. _ _ 27
x[w(”;1)+%+1n[(” P Py 4p1p2+io]]—(p+i0)é

p
[w(l/ — 1) " i i 1n[_(f’ — p;— py)? — 4p.p, + io”}dpl dp,. (4.1.2)
2 2 P
For the Minkowskian case one can also employ Laurent’s expansion
h(p, v) = i h (p) (v — vo)™ (4.1.3)
m=—1

and therefore, again, we have for the convolution the result:

hl/o(p) = h(O)(p)' (4.1.4)

Thus, in the ring with zero divisors S; , we have defined a product of distributions.

4.2. Examples
As an example of the use of (4.1. 1) we will consider the convolution of two Dirac’s 6-distributions, §(p). The result is

v=3 .

7 e’m{’/T(3 V)

vl 2

[(p — 0y 2(p + i0)'2" + ™ =D(p + i0) z(p — i0)'2"]. (4.2.1)

Simplifying terms we obtain:

™

h(P, v)=

v—3
T2 we-wn. 3 — U 4 iTw-2) v—4
h(p, v) = 21/716 ) F( 5 )[er2 +e 2 pr]. (4.2.2)
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Thus, in four dimensions:
ha(p) = 6(p) * 6(p) = ZSgn(p). (4.2.3)

Note that this convolution does not make sense in a four-dimensional Euclidean space, since in that case
&(p) = 0.
As asecond example we calculate the convolution § (p — m?) * §(p — m?). In this case we have

72 wen (3 — v
)
2v—1 2

[(p — i0) 2(p — 2m? + i0)'2" + e™=2(p + i0) 2(p — 2m? — i0)"]. (4.2.4)

h(p, v) =

When v = 4 we obtain
8(p — m?) * 6(p — m?)
= %[(p —i0)"2(p — 2m? 4 i0)z + ™D (p + i0) "2 (p — 2m? — i0)2]. (4.2.5)

5. The convolution of n massless Feynman’s propagators

5.1. The Minkowskian space case
Let us now calculate the convolution of n massless Feynman’s propagators (1 > 2). For this purpose we take
into account that

FMfxfy 5 oxf) = @OV f, - of, (5.1.1)
Accordingto [66], we have

5o

FY(p + i0y !} = %zwzwr(% - 1)(x —i0)'%, (5.1.2)
T

and therefore,

FH(p+i0) % (p+i0)x- - % (p+i0)7}

5 (

—T(y—1)n n
Ay (A IURC o A | f NPV CO RO (5.1.3)
Qm)" 2

Using again [66] we have now

Flx — i0y0-)

7%(’/71) 2 v v v
= eizwzﬂ(l’z)mr[ﬂ + n(l - K)](p + i0yr(5=1)-5, (5.1. 4)
F[n(% — 1)] 2 2
with which we obtain
(p +i0) % (p 4 i0) " % - - (p 4 i0)7!
e~ 3=D=1 v " v v ’ ”
SR — L 1“(E - 1) r >+ n(l - 5) (p + i0)5=1)-5, (5.1.5)

ofn(s - 1)]

We have then, for the convolution of n massless Feynman’s propagators, the result

i(p+i0) ' xi(p+i0) k- xi(p + i0)7!
o3 == =1

I I L )] [z ( _z)] 0yils-1)-%. 1
e T

After a tedious calculation we obtain the corresponding Laurent’s expansion around v = 4:

o o 2ippypne2
i(p 4+ 0y L *i(p+ 0L xi(p+ i0) lzm
im2(n=1 pn=2 ‘ . n n
Tl — 1 [ln(p +10) — im + In(m) + - 11/1(1) - 11/1(”)
— Y — DI+ > an(p)(v — H™ (5.1.7)

m=1
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The independent v — 4 term is the result of the convolution in four dimensions

[i(p + 0y % i(p 4+ i0) 1k - - % i(p + i0) s
_ M[ 0 e
=TTt =D In(p + i0) — im + In(7) + p— 11#(1) — 1¢(71)
—¢(n - D] (5.1.8)

5.2. The Euclidean space case
Let us now calculate the convolution of n massless Feynman’s propagators (n > 2) in Euclidean space, using
again (5.1. 1). According to [66], we obtain

FYk2) = ﬁzw%ér(% - 1).rH (5.2.1)
T 14

For n propagators we have then

F Y25k 2% xk2)

(n—1)v n
_ (2?2) ) - 2(1/72)717.[."2" l:]_"(% _ 1)] rn(Z*V). (52 2)
TV

Appealing again to [66] , we can evaluate the corresponding Fourier Transform
_7:{ rn(zfu)}
= 72%%(1’5)7{21“[% + n(l — %)]W”W. (5.2.3)

Thus,

kK 2xk 2% -x k2
S5n=1)

el e e G20

Let p = k*. We have then for the convolution of n massless Feynman’s propagators the result

pfl*pfl*'”*p*l

e LRI R (I

By recourse to Laurent’s expansion we obtain

NS

(5.2.5)

S 2(_1)n71ﬂ.2(n71)pn72
[P — 4)
(_l)nflﬂ.Z(nfl)pan

I'mI'(n — 1)
— = DI+ Y an(p)(v — H™ (5.2.6)

m=1

ptEpT E

n

¥ (n)

[In(p) +In(m) + ——(1) —
n—1 n—1

The result of the convolution in four dimensions is then

R e T

B (l)nlﬂ_Z(nl)anI: n B n
= T [ I () = )

—Y(n — D). (5.2.7)

We emphasize that the results of this section are completely original.

7
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6. The convolution of massless Wheeler’s propagators

6.1. The convolution of two massless Wheeler’s propagators

A Plastino and M C Rocca

The Wheeler’s massless propagator is given by (note that this propagator can not be defined in Euclidean space)

[ 1 1
W(p) = - —+—
21 p+10 p — 10

and can be written in the form:

i
w = — w6(p).
(») P (»)
Therefore, we have
i i i
W(p) * W(p) = * — 2mw6(p) * + 725(p) * 6(p).
(p) (p) PR (p) S0 (p) * 6(p)
After along and tedious calculation, using (4.1. 1) we obtain
i —ir? (3 -V
—27o * = —e”r( 2 )F(—)F v—2)I'G —v
0 x — =S5 re - 216 - v

X {[1 + eiﬂ'(llfz)][l _ e*l‘ﬂ(f‘*p)]H(p)p%,l

v=2

+2e7(2) [ — 11H (—p)(—p)i 2},

This last equation can be re-written in the form
T erGVcosT (—V 5 2 )

bt+i0 21/*@(%1) sinw(%) sin v

=27 (p) *

{cosw(u ; Z)H(p)pgfl _ ei’r(”z)H(—p)(_p)ZZ}.

For the first convolution of (6.1. 3), we have from (5.1. 6), withn = 2

. . iITB—v), Y 2
i - ! _ = e e [F(Z _ 1)] p(z - Z)(p 1 i0)2,
p+10 p+10 'v—2) 2 2

This equation can be re-written in the form:

i. . i. _ B
p+i0  p+1i0 ZVF(Ilgl)sinwu

3377 cos (—" - 3)
(p + i0)z2.

When v = 4, the sum of (6.1. 5) and (6.1. 7) has as a result

1

*
p+i0  p+i0

Using now (4.2. 3), we find

1
— 276 * = mH(—
w6 (p) S0 T H (—p)

3
W(p) * W(p) = %

6.1.1)

(6.1.2)

(6.1.3)

(6.1. 4)

(6.1.5)

(6.1.6)

(6.1.7)

(6.1.8)

(6.1.9)

This result was obtained in the [3], formula (6.12) using the convolution of even Tempered Ultradistributions.
The coincidence of (6.1. 9) with (6.12) of [3] confirms the validity of the results obtained in section 6 of this paper.

We emphasize that the present results are obtained in a manner considerably simpler to that of [3].

6.2. The convolution of n massless Wheeler’s propagators
Accordingto [66], we have

{i(”7 1) 2 v
—i———ﬂ%ﬂwﬂ(ﬂ-—lyx—im“z

F Y +i0y 1) ==

Q) 2
F( —m)%—éﬁiﬁ@”ﬁﬂﬁ—lyw+m‘5
r Q) 2 ’

6.2.1)

(6.2.2)
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Thus,

FUW(p)) = (::)VZ(VZ)F(% - 1)sin(”2—”)xf%, (6.2.3)

As a consequence we obtain for n Wheeler’s propagators

FHW(p) * W(p) x---x W(p)}

e Y I v
= |15 ) () 62.9
)

Resorting again to [66] we have:
].'{x:l_(l_%)} — W%*lz(lfn)v+2n1"(n +1— ﬂ)r[ﬂ _ (fl - I)V:l
2 2
1 —1 —(n—1)% . —1)¥— % —(n—1% . —1)Z—
®—{6 nr[n (n 1)2](p_ Z())(n D5—n _|_ez7r[n (n 1)2](p+ 10)(n D3 n} (6.2. 5)
2

Using (6.2. 5) we obtain finally:
Wi(p) * W(p) * - x W(p)

in5(n—1)—1 n _
- [F(K — 1)] F(n +1 - ﬂ)r[n _ =Dy 1)l/]sin" (ﬂ)
2 2 2 2 2

® {emln==D5](p 4 i0)n-D5—n 4 emin[n—(=D5](p — jo)n-DI—m) (6.2.6)

We see that formula (6.2. 6) hasa zero of order n — 2 for v > 4, veven, and consequently cancels for those
dimensionswhen n > 3. Thus we can affirm that forv = 4

W(p) * W(p) - W(p)=0 (6.2.7)

whenn > 3.

7. Discussion

In QFT, when we use perturbative expansions, we are dealing with products of distributions in configuration
space or, what is the same, with convolutions of distributions in momentum space.

In four earlier papers [1-4] we have demonstrated the existence of the convolution of JSS Ultradistributions.
This convolution allows us to treat non renormalizable QFT’s, but has the disadvantage of being extremely complex.

Following a procedure similar to those of the previously mentioned papers, we defined the convolution of
Lorentz Invariant Temperatd Distributions using the DR of BG.

Using this convolution we have obtained, for example, the convolution of n massless Feynman’s propagators
both in Minkowskian and Euclidean spaces and the convolution of two massless Wheeler’s propagators.

It is our hope that this convolution will allow one to treat non-renormalizable QFT’s.

Appendix

The purpose of this appendix is to compare the generalization of the DR obtained in this paper with the usual BG
DR and show the differences between them. For this we consider the convolution of two massless propagators in
Euclidean space. We start then with the usual formula for the convolution in four dimensions:

d
(o % p ey = fﬁH—H
p*(p — k)
The generalization of the previous convolution to v dimensions is

d’p
gt 2P (A.2)
ptert=f G - by

(A1)

Using the Feynman’s parameters:

1 ! dx
AB j; [Ax + B0 — I (A-3)
we can write the convolution as:
ptapt= [ap [ R e— . A4
0 [(p — Kk)x+p*(1 —x))P o (P — k)% + p2(1 — x)P
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or more simply:

ol = [ dax dp (A.5)
f f[(p kx)> + k x(l — )

Making the change of variable: s = p — kx and callinga = k x(l — x) we obtain:

f f(s + a)*’ (A0

equivalently:
2mr [l o vl
=2 [a [ s A7
P P F(K) 0 o (s2+ a)? 4.7)
2
Making the change of variable y = s° we have:
pie = I f e (A8)
Grar” '
Using [68] we can calculate the previous 1ntegral. The result is:
1
plxpl= 77%1“(2 - Z) f a2 2dx, (A.9)
2) Yo
or in an equivalent way:
1
plxpl= W%P(Z - %)pgfzf [x(1 — x)]z2dx (A.10)
0
By recourse again to the results given in [68] we have:
2
W;[F(% - 1)] pi? y
plxpTl= F(Z — —) (A.11)
T'(v—2) 2
We notice now that (A.11) can be written in the form:
2 00
plxpl= L w2 [np + In7T — P(2)] + Z ap(v — 4)k (A.12)
- k=1

We see that the four-dimensional convolution is not univocally defined from the v-dimensional convolution
since there are several ways to choose its finite part.

If we resort to our generalization and select the independent term of v — 4 we get for the four-dimensional
convolution:

[p' % p ey = —[Inp + Inw — $(2)] (A13)

which coincides for n = 2 with our result given in (5.2. 7).

We should note that the calculation made in this appendix is more complex than the one obtained with our
generalization of the DR for n masless propagators. In fact, if we wanted to evaluate the convolution of n
massless propagators with the usual method of DR used in this appendix, we would have to perform a verylong
calculation that would involve a large number of integrals. Even if we where able to obtain the correct result, the
four-dimensional convolution would not be completely determined.
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