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Abstract Nonlinear dynamics is a topic of permanent interest in mechanics since decades. The
authors recently published some results on a very classical topic, the dynamics of a softening Duffing
oscillator under harmonic excitation focussing especially on low frequency excitation [1]. In this
paper, it was shown that classical tools like Harmonic Balance and perturbation analysis may produce
artificial solutions when applied without extra carefulness with respect to parameter ranges in the
case of perturbation analysis or prior knowledge about the type of solution in case of Harmonic
Balance. In the present paper these results are shortly summarized as they give the starting point
for the additional investigations described herein. First, the method of slowly changing phase and
amplitude is reviewed with respect to its capability for determining asymptotic stability of stationary
solutions. It is shown, that this method can also produce artifact results when applied without extra
carefulness. As next example an extended Duffing oscillator is investigated which shows, if Harmonic
Balance is applied, ”islands” of solutions. Using the error criterion in Harmonic Balance as described
in [1] again artifact solutions can be identified.

Keywords Duffing oscillator, Harmonic Balance, perturbation analysis, artifact solutions

1 Introduction

Starting point of many fundamental investigations on nonlinear dynamics is the so-called Duffing
oscillator named after the German engineer Georg Duffing (1861-1944), who investigated in his origi-
nal work 1918 an oscillator with quadratic and cubic stiffness and linear viscous damping performing
free or forced harmonic vibrations [2]. Nowadays the term ”Duffing equation” is in general used for
any nonlinear equation of motion including a cubic stiffness term. In that sense, we are investigating
Duffing oscillators in the present paper starting from the classical one by giving a repetition of the
methods used and the results obtained in [1] and adding afterwards additional nonlinearities includ-
ing nonlinear damping and parametric excitation. A comprehensive book on scientific work done with
respect to the Duffing oscillator is the one edited by Kovacic and Brennan [2]. In the present paper
we investigate such problems using classical methods, especially the method of Harmonic Balance,
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slowly changing phase and amplitude and perturbation analysis. All these methods are described in
several textbooks as e.g. [3]. Especially the Harmonic Balance method gives, when applied to prob-
lems with a low number of degrees of freedom, results in a very rapid manner and often these results
are at least qualitatively correct. In these cases they give a fast survey on the variety of solutions
which is in nonlinear dynamics of essential importance, as multiple solutions can coexist. Therefore
this method is very popular and still often applied. Compared to Harmonic Balance perturbation
analysis is in general more difficult to apply, but often gives same or similar results. A big advantage
of perturbation analysis compared to Harmonic Balance is, that there is no (or at least much less)
need of prior knowledge of the structure of the solution. Perturbation analysis needs a careful check-
ing of the order of the respective terms and is therefore often limited to certain parameter and initial
condition ranges. On the other hand, if these points are carefully considered, results with high quality
can be expected. Both methods are limited to stationary behavior and cannot be used for transient
vibrations. As a simple method, that of slowly changing phase and amplitude can be applied in the
transient case. This method will also be considered in this paper. Finally the method of multiple time
scales as described broadly e.g. in [4] shall be mentioned combining the capabilities of perturbation
analysis and slowly changing phase and amplitude, but very rapidly resulting in lengthy analytical
calculations. Asymptotically stable solutions as a result of all mentioned methods can be verified
using numerical integration in time, but variations of initial conditions must be performed, when
multiple of such solutions coexist.

The present paper describes artifacts i.e. qualitatively wrong results, which can be produced by
using the methods of Harmonic Balance, perturbation analysis and slowly changing phase and am-
plitudes for (modified) Duffing oscillators. An error criterion is used to identify these artifacts. Some
of the mentioned points and methods were already investigated and applied in the paper [1] by the
same authors for the case of a simple softening Duffing oscillator with harmonic excitation focusing
on perturbation analysis and Harmonic Balance. In the present paper a section on artificial results
which can be obtained by slowly changing phase and amplitude when applied for the aforementioned
problem is included. In the following a modified Duffing oscillator is considered, which is capable to
show ”island”-like solutions when Harmonic Balance method is applied. These solutions are again
investigated by using an error criterion.

2 Artifact solution in classic softening Duffing oscillator

Starting point of the following investigations will be the results described in the paper [1] by the same
authors as the present one, which will therefore be described in a short summary in the following.
Herein artifact and existing solutions of the classic Duffing oscillator containing damping and a
softening cubic nonlinearity under harmonic excitation are described. The corresponding equation
of motion reads as

mẍ+ dẋ+ cx+ αx3 = F0 cosΩt (1)

with m being the oscillator mass, d the damping coefficient, c the linear stiffness, α the coefficient
of the nonlinear stiffness, F0 the excitation force amplitude and Ω the circular excitation frequency.
For the softening Duffing oscillator α is negative, while m, d, c and F0 are positive. This equation
is rewritten by introducing the circular frequency of the undamped free linear vibrations ω2

0 = c/m,
the damping ratio D = d/(2

√
cm) and the dimensionless time τ = ω0t as

x′′(τ) + 2Dx′(τ) + x(τ) + εx3(τ) = f cos(ητ) (2)

with ()′ = d()/dτ , ε = α/(mω2
0), f = F0/(mω

2
0) and η = Ω/ω0.

In [1] it was shown, that solutions obtained by Harmonic Balance or perturbation analysis in
the range of low excitation frequencies can be identified being artifacts. Considering the Harmonic
Balance method for the solution of (2), x(τ) is represented by the truncated Fourier series

x(τ) =
n∑
k=1

(ak cos(kητ) + bk sin(kητ)) . (3)
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Introducing this in the Duffing equation (2) and expansion as Fourier series yields

n∑
k=1

(
ãk cos(kητ) + b̃k sin(kητ)

)
= f cos(ητ)−

3n∑
k=n+1

(
ãk cos(kητ) + b̃k sin(kητ)

)
(4)

where the coefficients ãk, b̃k are nonlinear functions of the original ansatz coefficients ak, bk. Fol-
lowing Harmonic Balance, the higher order frequency terms

3n∑
k=n+1

(
ãk cos(kητ) + b̃k sin(kητ)

)
(5)

in (4) are neglected and the coefficients ak, bk are calculated from the thereby modified equation
(4). In [1] the neglected terms (5) are used as a measure for the approximation error. These terms
can be calculated from the found solution ak, bk. As an error it was chosen

ê = max
0≤τ≤ 2π

η(n+1)

{
3n∑

k=n+1

(
ãk cos(kητ) + b̃k sin(kητ)

)}
. (6)

In the meanwhile we found, that a similar error criterion (and other ones) was also used in [5] and in
referring work e.g. [6], [7]. It is important to be aware that this term assesses how well a found solution
satisfies the differential equation and not how large the distance to an exact solution is. Therefore
a small value of the error ê does not necessarily imply that the found solution has converged to the
exact solution as it is also discussed in [7]. Additionally, for finding potential additional solutions,
which were not found with the Harmonic Balance ansatz (3), a refined perturbation analysis for low
excitation frequencies was used in [1]. Therefore τ was considered to be

τ = Ωt. (7)

Considering small excitation frequencies, the frequency ratio η can then be considered to be small
and is therefore replaced by ε = η. With this the equation

ε2x′′(τ) + ε 2Dx′(τ) + x(τ) + βx3(τ) = εf̂ cos(τ) (8)

with β = α/(mω2
0) being negative and f = εf̂ is considered. Performing perturbation analysis the

following solutions were obtained in [1]

x01(τ) = −

√
− 1

β
− 1

2
f cos(τ), x02(τ) = f cos(τ), x03(τ) =

√
− 1

β
− 1

2
f cos(τ). (9)

Hereby, the solutions x01 and x03 are vibrations about nonzero (unstable) equilibrium positions. The
highest derivative term in equation (8) being of order ε2 (”singular perturbation analysis”) does in
that case not cause any problems as only forced vibrations (and not free) are considered.

Based on this a refined Harmonic Balance ansatz for solving the original equation (2) is used in
[1]

x(τ) = a0 +
n∑
k=1

(ak cos(kητ) + bk sin(kητ)) (10)

by adding a constant a0. Corresponding results taken from [1] are shown in Figure 1, with the
following parameters in equation (2)

D = 0.06, ε = −0.1 and f = 0.2. (11)

These results are presented with their absolut value, i.e. 3© represents the two solutions x01 and
x03 from (9). From the error analysis performed in [1] the solutions 1© (with zero mean value) and
4© (with non-zero mean value) can be identified as artifacts while 2© represents the well known
zero mean solution of the Duffing oscillator. This is an important result as the artifact result of
type 1© can be found in many textbooks on nonlinear dynamics. Considering them as an existing
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Fig. 1 Maximum displacements |x|max and errors ê for different types of solutions with refined Harmonic
Balance according to (10) for n = 1 [1]

Fig. 2 Basins of attraction for η = 0.02. White points correspond to initial conditions at τ = 0 leading to the
solution 2© in Figure 1, blue points denote initial conditions for unbounded solutions drifting to plus or minus
infinity. The two black points denote displacement and velocity for τ = 0 of solutions 3© in Figure 1 i.e. x01
and x03 from equation (9). Results from [1].

physical solution, stability analysis are also performed in several textbooks, where e.g. in [8] a Kryloff
Bogoljuboff method is used therefore. Usually in these cases the result is, that the upper branch of
the ”nose” solution is stable, and the lower branch is unstable [2]. It shall also be mentioned, that
there are examples, where applying such an error criterion may result at the right end of the nose of
type 1© to low errors and therefore existing (and even stable) solutions, see [6].

Finally for this repetition from [1] the stability of the solutions 3© shall be discussed by Figure 2
where solutions resulting from the respective initial conditions are plotted as follows: White points
correspond to initial conditions at τ = 0 leading to the solution 2© in Figure 1, while blue points
denote initial conditions for unbounded solutions drifting to plus or minus infinity. The two black
points denote displacement and velocity for τ = 0 of solutions 3© in Figure 1 i.e. x01 and x03 from
equation (9). As these two solutions are on the borderline of the two solution types marked by blue
and white it can be concluded that these solutions are unstable.

Based on these methods and results from [1] in the upcoming sections the following results are
presented. The next section will contain a stability analysis of the found solutions performed by the
method of slowly changing phase and amplitude. It is remarkable that this analysis will also lead to
a wrong result, i.e. also will produce an artifact. In the next section an extended Duffing oscillator
with additional nonlinear terms is investigated producing ”island”-like solutions in classical Harmonic
Balance. Using the described methods, it is investigated, whether these solutions are artifacts or not.
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3 Artifacts in stability analysis by the method of slowly changing phase and amplitude

In the following, the solution x03 in (9) shall be recalculated and the stability be investigated by using
the method of slowly changing phase and amplitude. Therefore, in equation (8) the transformation

x(τ) =

√
− 1

β
+ y(τ) (12)

is introduced. This results in the nonlinear differential equation for y(τ)

ε2y′′(τ) + ε 2Dy′(τ)− 2y(τ) + 3γy2(τ)− γ2y3(τ) = εf̂ cos(τ). (13)

with γ =
√
−β. Following the method of slowly changing phase and amplitude y and y′ are replaced

by amplitude a and phase ψ by

y = a cos(τ + ψ); y′ = −a sin(τ + ψ) (14)

respectively

a =

√
y2 + y′2; ψ = arctan

(
−y
′

y

)
− τ (15)

taking into consideration, that the excitation is proportional to cos τ . Performing the coordinate
transformation to phase and amplitude results in

ψ′ = −1 + sin2(τ + ψ)− 2D

ε
sin(τ + ψ) cos(τ + ψ)− 2

ε2
cos2(τ + ψ)

+
3γa

ε2
cos3(τ + ψ)− γ2a2

ε2
cos4(τ + ψ)− f̂

εa
cos(τ + ψ) cos τ (16)

and

a′ = a

(
−1− 2

ε2

)
sin(τ + ψ) cos(τ + ψ)− 2Da

ε
sin2(τ + ψ) +

3γa2

ε2
cos2(τ + ψ) sin(τ + ψ)

−γ
2a3

ε2
cos3(τ + ψ) sin(τ + ψ)− f̂

ε
cos τ sin(τ + ψ). (17)

Up to this point, the calculation is exact. Following the method of slowly changing phase and am-
plitude, the right hand side of equations (16) and (17) is averaged in that way that the integral
1
2π

∫ 2π

0 (...) dτ is calculated. This results in the simplified equations

ψ′ = − 1

ε2
− 1

2
− 3

8

γ2a2

ε2
− f̂

2εa
cosψ (18)

a′ = −Da
ε
− 1

2

f̂

ε
sinψ (19)

From equations (18) and (19) the stationary solution, i.e. a solution with constant phase and ampli-
tude ψ′ = 0, a′ = 0 can be calculated. Considering only the lowest order terms in ε and linearizing
gives the results

a = −1

2
εf̂ = −1

2
f, ψ = 0 (20)

or

a =
1

2
εf̂ =

1

2
f, ψ = π (21)

i.e. in both cases the same result as obtained as the the zeroth approximation x03 by the perturbation
analysis in (9). Using the parameters from (11) and the frequency ratio η = ε = 0.1, the tool
Mathematica in fact provides numerically the real solutions of (18) and (19) as a = 0.0961809, ψ =
0.00577088 or a = −0.0961809, ψ = 3.13582, which is very close to the approximate solutions (20)
and (21) (f/2 = 0.1 in this case).
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Fig. 3 Numerical integration of equations (16) and (17) with initial conditions a(0) = −0.1, ψ = 0.
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Fig. 4 Numerical integration of equations (18) and (19) with initial conditions a(0) = −0.1, ψ = 0.

While the stationary solution of the approximation by slowly changing phase and amplitude is
very close to the one calculated by Harmonic Balance or perturbation analysis this does not hold
for the found stability behavior. In fact it was shown in section 2 and especially figure 2 that this
solution is unstable. This point shall be first investigated by some results of numerical integration in
Figures 3 and 4.

Results in Figure 3 clearly shows, that we have a solution drifting away. The instability of the
solution (9) can be clearly seen also here. This changes, if we now consider the result of the numerical
integration of equations (18) and (19) as displayed in Figure 4. Here the solution converges approx-
imately to the stationary solution (20), i.e. the solution shows an asymptotically stable behavior for
the same initial conditions.

A corresponding systematic stability analysis shall now be performed based on the averaged
equations (18) and (19). Linearizing with respect to the solution (20) with deviations ∆ψ,∆a from
this solution gives an equation of the form

(
∆ψ′

∆a′

)
=

(
0 3

8
f̂γ2

ε + 2
f̂ε3

−1
2
f̂
ε −Dε

)(
∆ψ
∆a

)
+

(
−1

2 + 3
24γ

2f̂2

0

)
or (22)

r′ = Ar + v (23)

where the constant vector v results from the fact, that (20) is only an approximate solution of the
equations (18) and (19). Analyzing matrix A now for their eigenvalues gives the result observed
already in numerical integration, that (20) is asymptotically stable! This result is obviously wrong
and an artifact of the method of slowly changing phase and amplitude!

In fact the same effect can be already observed, when a simple linear undamped oscillator with
negative restoring is considered:

y′′ − y = f cos τ. (24)
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Conducting the transformation (14) results in the equations for phase and amplitude

ψ′ = −1 + sin2(τ + ψ)− cos2(τ + ψ)− f

a
cos(τ + ψ) cos τ, (25)

a′ = −2a sin(τ + ψ) cos(τ + ψ)− f sin(τ + ψ) cos τ. (26)

Performing again the averaging by calculating the integrals 1
2π

∫ 2π

0 (...) dτ of the right hand sides
result in

ψ′ = −1− 1

2

f

a
cosψ, (27)

a′ = −1

2
f sinψ. (28)

Again from this the stationary solution, i.e. the solution with constant phase and amplitude ψ′ =
0, a′ = 0 can be calculated. This results in

a = −1

2
f, ψ = 0 (29)

which is in fact an exact (particular) solution of the original equation (24). Obviously this solution
is unstable, as can be easily checked by considering the original linear equation. Linearizing now
equations (27) and (28) with respect to (29) results in(

∆ψ′

∆a′

)
=

(
0 2

f

−1
2f 0

)(
∆ψ
∆a

)
or (30)

r′ = Ar (31)

and via an eigenvalue analysis it can be seen, that the solution (29) should be stable! Again the
method of slowly changing phase and amplitude fails here in case of negative restoring with respect
to stability analysis. For both examples considered in this section the stationary solution is exact
in the linear case or matches with perturbation analysis in the nonlinear case respectively while the
transient behavior is qualitatively wrong! At this point it should be remembered, how such methods
are usually introduced, e.g. in [3] oder [9]. Herein an equation of type

ẍ+ ω2
0x = f(x, ẋ) (32)

i.e. with positive restoring is considered, with the assumption of a small right hand side. In fact, the
basic assumption of ”slowly changing phase and amplitude” is violated in the presence case of an
unstable solution.

4 Modified Duffing oscillator with ”island” solutions

In the following a modified Duffing oscillator will be investigated with the methods introduced in
section 2. The corresponding equation of motion is given by

x′′ + 2Dx′ + x+ ε1x
3 + ε2x

2x′ = f1 cos(ητ) + f2x
2 cos(ητ). (33)

where the same denominations are used as in (2). Herein the classic Duffing Oscillator with the cubic
nonlinearity with parameter ε1 is complemented with a cubic damping term x2x′ with parameter ε2
and the harmonic excitation with intensity f1 is supplemented by a nonlinear parameter excitation
term with constant f2. Following e.g. [10] such an equation can be obtained, when piezoceramic
continua are modeled with nonlinear as well conservative as non-conservative additions in their con-
stitutive equations with respect to elastic and electro-mechanical coupling terms. This does not mean,
that the parameter chosen here represent a real piezoceramic. Depending on the chosen parameters
there may be a variety of different solutions including amplitude/frequency regions with solutions
separated from other solutions. Those solutions are in the following called as in some literature, e.g.
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[11], solution ”islands”. In the following, the equation (33) is considered for several parameter sets
and the solutions are subsequently investigated for artifacts with the method described in section 2.

Equation (33) is solved approximately by again using the Harmonic Balance ansatz

x(τ) =
n∑
k=1

(ak cos(kητ) + bk sin(kητ)) . (34)

While in [1] special attention was given to solutions which contain an additional constant term a0,
this is neglected in the actual case as we want to focus on a new type of solutions, the ”island”
solutions which have zero mean values.

Introducing (34) into (33) and neglecting higher order terms results in a system of nonlinear
algebraic equations for the ak and bk. From this, in order to visualize the solutions from Harmonic
Balance, x̂ is defined as

x̂ = max
0≤τ≤ 2π

η

{
n∑
k=1

(ak cos(kητ) + bk sin(kητ))

}
. (35)

As in the earlier case of the ”pure” Duffing oscillator, the coefficients ãk, b̃k of the neglected higher
oder terms can be calculated having obtained a solution for ak, bk and an error ê is defined from this
by

ê = max
0≤τ≤ 2π

η

{
3n∑

k=n+1

(
ãk cos(kητ) + b̃k sin(kητ)

)}
. (36)

Finally a relative error ẽ is introduced as

ẽ =
ê

x̂
. (37)

1

1

2

3

4
n = 1

η

x̂

1

0.5

1

1.5 n = 1

η

ê

Fig. 5 Solutions for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of n = 1.
x̂ according to (35) (left) and error ê according to (36) (right). Parameter: ε1 = −0.1, ε2 = −0.25, D = 0.1,
f1 = 0.1 and f2 = 0.

Figures 5 and 6 show corresponding results in the case of n = 1 in ansatz (34) for the parameter
ε1 = −0.1, ε2 = −0.25, D = 0.1, f1 = 0.1 and f2 = 0. It can be observed that additional to the
resonance peak and the ”nose”-like solution, there is an additional solution ”island” in the frequency
range between the two aforementioned solutions (Figure 5 (left)). Based on the results from before,
it can be expected, that the ”nose” solution is an artifact but what is about the ”island” solution?
In fact the error analysis (Figure 5 (right)) shows, that the error ê is somewhat large in that case,
but lower than in the case of the ”nose” solution. This is also confirmed, when the relative error ẽ
(Figure 6 (right)) is considered. Finally introducing an error limit of 1 % for ẽ results in the color
code in Figure 6 (left) highlighting that also in the resonance peak the error is somewhat high. With
blue, solutions with ẽ lower than 1% are marked while red color denotes solutions with larger relative
error.
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ẽ [%]

Fig. 6 Solutions for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of n = 1.
x̂ according to (35) (left), where solutions with relative error larger than 1% are marked with red and lower
than 1% by blue color. Relative error ẽ according to (37)(right). Parameter: ε1 = −0.1, ε2 = −0.25, D = 0.1,
f1 = 0.1 and f2 = 0.

1
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n = 3

η

x̂
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5

7 n = 3

η
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Fig. 7 Solutions for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of n = 3.
x̂ according to (35)(left) and error ẽ according to (37) (right). For x̂ red denotes solutions with large errors and
blue solutions with low errors. Parameter: ε1 = −0.1, ε2 = −0.25, D = 0.1, f1 = 0.1 and f2 = 0.

1

1
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n = 5

η

x̂

1

1
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3

4
n = 15

η

x̂

Fig. 8 Solutions for extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of n = 5 (left)
and n = 15 (right). x̂ according to (35) where solutions with relative error larger than 1% are marked with red
color. Solutions with relative error lower than 1% are marked by blue color in case of stable and grey color in
case of unstable ones. Parameter: ε1 = −0.1, ε2 = −0.25, D = 0.1, f1 = 0.1 and f2 = 0.

In the following, the ansatz order is increased to n = 3. Figure 7 shows corresponding results for
x̂ (left) and ẽ (right). The results doesn’t change qualitatively but there is a remarkable decrease
of the error of the ”island” solution. Nevertheless relative errors ẽ are still larger than 1% in the
”island” solution as can be seen by red color of this solution in Figure 7 (left). If the ansatz order
is increased to n = 5 the relative error of the ”island” solution further decreases and becomes lower
than 1%. This is displayed in Figure 8 (left). Solutions with ẽ lower than 1% are now also checked
for their stability by introducing them into the original equation and linearizing with respect to this
solution. This results in a linear second order differential equation with time dependent coefficients
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Fig. 9 Left: same result as in Figure 8 but with marked ”island” solutions at η = 0.87. Right: Basins of
attraction for η = 0.87. White points correspond to initial conditions at τ = 0 leading to the regular stable
solution, blue points denote initial conditions for unbounded solutions drifting to plus or minus infinity. The
two black points denote displacement and velocity for τ = 0 for the two solutions marked on the left side.

whose trivial solution is checked for stability by Floquet theory. Unstable low error solutions are
marked with grey color while blue is used for stable solutions. Increasing the ansatz order to n = 15
doesn’t show any more dramatic changes in this behavior with the final result, that the ”island”
solution seems to exist but is unstable and the ”nose”-like solution vanishes completely for higher
ansatz orders and is therefore an artifact. This result is shown in Figure 8 (right). This can be also
seen in Figure 9 where on the left hand side the two ”island” solutions are marked for η = 0.87. On
the right hand it can be clearly seen, that these two solutions are located on the separatrix separating
basins of attraction of the stable regular solution and the solutions drifting to plus or minus infinity.

In the following a slightly different parameter set is investigated namely ε1 = −0.1, ε2 = −0.2,
D = 0.1, f1 = 0.1 and f2 = 0.1 which shows in parts a different behavior. Only the figures displaying
x̂ using the color code: red are solutions with relative error larger than 1%, grey are low error unstable
solutions and blue are low error stable solutions are shown.
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η

x̂

Fig. 10 Solutions x̂ for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of
n = 1 (left) and n = 3 (right). Red denotes solutions with large errors, grey unstable solutions with low errors
and blue stable solutions with low errors. Parameter: ε1 = −0.1, ε2 = −0.2, D = 0.1, f1 = 0.1 and f2 = 0.1.

As can be seen in Figure 10 (left) for ansatz order n = 1 again a ”nose”-like and an ”island”
solution occurs. The case n = 3 in Figure 10 (right) shows that these two solutions merge for this
higher ansatz order. Again for the higher ansatz orders n = 9 and n = 13 parts of this new ”island”
solution have small errors and are in general unstable, but there is also a small range of frequencies
close to η = 1 where there is a stable solution. Compared to other parameter results considered in the
following, the used method shows a comparably slow convergence of the shape and the characteristics
of the solutions. Therefore also higher ansatz numbers up to n = 59 are considered. Corresponding
results are shown in Figure 12 for n = 49 and n = 59. Here it can be seen that aside the left end of
the former ”nose” and ”island” there exist unstable solutions.
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Fig. 11 Solutions x̂ for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of
n = 9 (left) and n = 13 (right). Red denotes solutions with large errors, grey unstable solutions with low errors
and blue stable solutions with low errors. Parameter: ε1 = −0.1, ε2 = −0.2, D = 0.1, f1 = 0.1 and f2 = 0.1.
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Fig. 12 Solutions x̂ for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of
n = 49 (left) and n = 59 (right). Red denotes solutions with large errors, grey unstable solutions with low
errors and blue stable solutions with low errors. Parameter: ε1 = −0.1, ε2 = −0.2, D = 0.1, f1 = 0.1 and
f2 = 0.1.

Coming back to convergence of the results our experience so far is, that in regions with arti-
facts (large relative errors), the solutions change their shape with increasing ansatz order and the
coefficients ak and bk do not converge. On the other hand, low relative errors go along with rapidly
converging ak and bk in the Harmonic Balance ansatz (34). The solutions with high ansatz order also
confirm that the solutions showing low errors in low ansatz orders are reliable. On the other hand
for regions of solutions showing large errors in low ansatz orders higher orders must be calculated in
order to get a true picture of the behavior.

Finally two other parameter sets shall be considered. As for these parameter sets the proposed
method shows a much faster convergence with respect to shape and characteristic of the solutions,
the ansatz orders are limited to lower numbers than in the example before. While the two parameter
sets looked on so far show both a softening characteristic together with an ”island” solution we will in
the following look first on a stiffening case. The corresponding parameter set is ε1 = 0.1, ε2 = −0.25,
D = 0.1, f1 = 0.1 and f2 = 0.1. The results are shown in Figures 13 and 14 for ansatz dimensions
n = 1, 3, 5 and 7. Also in this case, a solution ”island” can be observed. This solution remains almost
unchanged when increasing the ansatz order but the error can significantly be reduced with the final
result, that the ”island” solution seems to exist, but is unstable.

The next parameter set is ε1 = 0.0, ε2 = −0.2, D = 0.1, f1 = 0.1 and f2 = 0.1 where the
vanishing ε1 is resulting in neither a stiffening nor a softening characteristic. The results are shown
in Figures 15 and 16 for ansatz dimensions n = 1, 3, 5 and 7. Also in this case an ”island” solution
exist and the increasing order in Harmonic Balance again result in a decreasing error. Parts of the
”island” solution are determined for having small error and being stable (blue color) in case of ansatz
order n = 3 or 5. In fact the result for n = 7 (Figure 16 (right)) shows, that the complete ”island”
solution is unstable.
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Fig. 13 Solutions x̂ for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of
n = 1 (left) and n = 3 (right). Red denotes solutions with large errors, grey unstable solutions with low errors
and blue stable solutions with low errors. Parameter: ε1 = 0.1, ε2 = −0.25, D = 0.1, f1 = 0.1 and f2 = 0.1.
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Fig. 14 Solutions x̂ for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of
n = 5 (left) and n = 7 (right). Red denotes solutions with large errors, grey unstable solutions with low errors
and blue stable solutions with low errors. Parameter: ε1 = 0.1, ε2 = −0.25, D = 0.1, f1 = 0.1 and f2 = 0.1.
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Fig. 15 Solutions x̂ for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of
n = 1 (left) and n = 3 (right). Red denotes solutions with large errors, grey unstable solutions with low errors
and blue stable solutions with low errors. Parameter: ε1 = 0.0, ε2 = −0.2, D = 0.1, f1 = 0.1 and f2 = 0.1.

5 Conclusions

In this paper we considered solutions for simple and modified Duffing oscillators obtained by the
methods of Harmonic Balance and slowly changing phase and amplitude. The results were especially
investigated with respect to potential artifacts. After an introduction of the basic method used in
[1] using Harmonic Balance and an error definition first the method of slowly changing phase and
amplitude is used to determine stability of non-zero mean solutions from a softening Duffing oscillator.
It can be shown, that this method is resulting in a definitely wrong stability statement in this case due
to the violation of the basic assumption, i.e. a slowly changing phase and amplitude which does not
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Fig. 16 Solutions x̂ for the extended Duffing oscillator (33) with Harmonic Balance ansatz (34) in case of
n = 5 (left) and n = 7 (right). Red denotes solutions with large errors, grey unstable solutions with low errors
and blue stable solutions with low errors. Parameter: ε1 = 0.0, ε2 = −0.2, D = 0.1, f1 = 0.1 and f2 = 0.1.

hold any more in that case. Next, an extended Duffing oscillator adding a nonconservative cubic term
and a nonlinear parametric excitation is investigated using Harmonic Balance and error criterion.
This equation of motion shows additional separated new ”island” solutions, which are considered for
their error, and, if existing (i.e. small errors), for their stability. It could be shown, that the solution
figure may change significantly when increasing the solution order and taking into account the error
criterion.

Actually we are investigating further nonlinear dynamical systems with this method. For example
the equation

x′′ + 2Dx′ + x+ ε1x
3 + ε2x

′3(τ − τ0) = f cos(ητ), (38)

where, as an additional nonlinearity, a cubic velocity term with a time shift τ ′ is introduced. Such
equations are considered in control and can be found e.g. in [12] or [13]. This equation also show ”is-
land” solutions, but stability is harder to determine due to the time shift. Additionally bistable piezo
beam energy harvesting systems are investigated, where the discretized nonlinear beam equation(s)
are coupled with a linear differential equation for the electric circuit. In that case, for higher ansatz
orders, numerous solutions are found by Harmonic Balance. Following the procedures described in
the present paper, artifacts and unstable solutions can be identified and a clear figure of possible
(stable) solutions is derived.
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