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In this work we investigate the dependence of spin observables, like the total spin align-
ment and the spin squeezing factor, for electrons confined inside an elliptic quantum15

corral and interacting with a pair of impurities located on the semi-major axis of the el-
lipse. The results suggest that such a system exhibits some of the characteristic features17

of a qubit, concerning the persistence of the orientation and squeezing of a component
of the total spin.19
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1. Introduction

The design of quantum computers relies strongly upon practical realization of23

atomic systems where the information could be kept long enough to be transferred

without significant losses. The ultimate realization of such a device would be the25

measurement of a single-trapped atom. Recently, Moon et al. have shown that a sin-

gle atom, confined to the interior of a quantum corral, can indeed become a control27

gate for quantum phases. The elliptical resonator of Moon, Lutz and Manoharan,

was meant to manipulate degenerate wavefunctions, which are obtained as solutions29

of Schroedinger equation in a hard-walled ellipse. The same idea was applied by

Crommie et al.,2 to investigate the confinement of electrons in quantum corrals on31

a metal surface. To these works one may add the work of Manoharan et al.3 on the

observation of quantum mirages formed by coherent projection of electronic struc-33

tures consisting of two-dimensional surface state electrons confined in an elliptical

quantum corral.35

The important results reported by the above mentioned groups1–3 demonstrate

that it would be possible to manipulate quantum states of confined particles.37
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Therefore, in this context, it may be useful to further explore the properties of1

quantum corrals, to see the extent to which the manipulation of states preserves,

for instance, the orientation of the total spin or its fluctuations along a given direc-3

tion. The present study aims at the calculation of such properties by assuming that

the spin of the confined particles (electrons) interacts with the spin of impurities5

located in the interior of the quantum corral, with a specific geometry and at a

given energy range for the spectrum of the confined electrons.7

The theoretical description of static and dynamical properties of quantum cor-

rals has been reported in a series of papers.4,5 For the purpose of the present work9

we shall focus on Ref. 3, where the spectral response of electrons placed in an

elliptic quantum corral has been investigated. In the work of Ref. 3 the surface11

electrons (two-dimensional electrons on Cu(111)) were trapped inside a quantum

corral made of Co atoms. The motion of the electrons would then be described by13

single particle states (free-electron gas within an energy band near the Fermi en-

ergy) in the interior of the elliptical quantum corral. Like in Ref. 3 we shall assume15

that the confining atoms are immersed in the electron-sea, and thus they will not

appear explicitly in the calculations. In the present scenario we shall not take the17

interaction of the “free” electrons with the excitations of the electron sea. For each

of the associated wavefunctions we shall then restrict our configuration space to19

these with quantum numbers (and degeneracy) compatible with the actual value of

the Fermi energy (see next section).21

Motivated by the results of Refs. 1–3 and by the studies of Refs. 4 and 5 we

have adopted the techniques developed in our previous works,6–8 on the atomic23

response to spin probes, to calculate spin-observables and the spin squeezing factor

of a device consisting of confined electrons interacting with a pair of impurities25

located on the semi-major axis of an elliptical quantum corral. Instead of localized

electronic wavefunctions (or spin sites on a lattice) we shall use the wavefunctions27

resulting from the treatment of the elliptic quantum corral, to calculate the radial

integrals appearing in the expectation values of the relevant spin operators. As we29

shall discuss later on, these wavefunctions are labeled by two quantum numbers, the

“radial” quantum number assigned to the number of nodes crossing the semi-minor31

axis of the ellipse and the “angular momentum” quantum number which counts

half the number of nodal intersections along the perimeter corresponding to the33

“radial” number of nodes.

In order to evaluate spin observables, we have solved the eigenvalue problem35

of such a system, and selected some of the eigenfunctions. Particularly, we have

chosen those wavefunctions whose properties have been reported in Ref. 3, in order37

to compare our results with some of the experimentally studied configurations of

a quantum corral. By this we want to test our results against the ones of Ref. 3,39

concerning the shapes of the wavefunctions and spacial density distributions, to

check the accuracy of the numerical procedure which we have followed to calculate41

these components of the system. Then, we have calculated the expectation value of

the total spin, on the states whose quantum numbers have been determined by the43
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measured densities,3 by adding the spin interactions with a pair of impurities placed1

along the semi-major axis, near the focuses of the elliptical corral, and calculated the

spin-squeezing factor and its time evolution. From these results, we have discussed3

the revival of the spin-squeezing, and the alignment of the total spin.

The details of the formalism are presented in Sec. 2, the results are presented5

and discussed in Sec. 3, and the conclusions are drawn in Sec. 4.

2. Formalism7

We shall begin with the definition of the Hamiltonian, which includes the electronic

and impurity degrees of freedom, and solve the eigenvalue problem subject to the9

boundary conditions of an elliptic corral. As described in the following subsection,

we have selected the eigenfunctions which closely reproduce the features shown in11

Ref. 3 about the spatial density distribution of the confined electrons. Next, we

introduce spin observables, like the time evolution of the spin squeezing factor,13

to study the persistence of the total spin and its fluctuations, depending on the

couplings which are contained in the Hamiltonian.15

2.1. The Hamiltonian of the system

A method for confining electrons to artificial structures has been presented in Ref. 217

and 3. In the work of Ref. 2, 3 surface state electrons on a Cu(111) surface were

confined to closed structures, that is quantum corrals of a given geometry, defined19

by barriers built from atoms.2,3

From the point of view of the calculations, to obtain the associated wavefunc-21

tions for the confined electrons, we shall define the geometry of the confinement,

assumed that it is of the hard-wall type at the boundaries, and that out of the23

solutions we shall work only with those with eigenvalues near the Fermi surface

(determined externally by the density of electrons and by the energy spacing of25

the spectrum). In this manner we shall avoid further interactions (like particle-hole

excitations, pair formation, electron-electron interactions), since we shall deal with27

these “valence” electrons as free-single-particle excitations. In this respect the ap-

proximations are similar to those of other quantum many body systems (like the29

atomic nuclear problem) where the leading order structure is determined by few

free “quasi-nucleons” which can be treated as single-particle excitations of a self-31

bounded potential, which originates on nucleon–nucleon interactions, neglecting

residual particle–particle interactions, particle-vibrations couplings or particle-hole33

excitations. The works of Ref. 1–3 give a nice example of this realization, together

with the set of relevant parameters associated to the picture, some of which have35

been determined experimentally. In the present context, and speaking about the

impurities and other possible scatterers inside the ellipse, taking only the spin in-37

teractions and neglecting the Kondo effect, we are referring to the work of Ref. 3

which supports this approximation, since in the words of Ref. 3 removing the Kondo39

effect along the wall does not influence the essential physics of the quantum mirage.
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The Hamiltonian of the system includes the contributions of the electrons and

impurities, as well as the interactions among them. The electron-sector of the prob-

lem consists of surface-electrons confined to the interior of an elliptical domain with

an infinite boundary. The corresponding Schroedinger equation is solved in ellip-

tical coordinates and it yields eigenvalues which can be labeled by the quantum

numbers n, which is the number of nodes crossing the semi-minor axis of the el-

lipse, and l, which is half the number of nodal intersections along the perimeter

of the ellipse. Both numbers can be mapped onto the orbital angular-momentum

quantum-number in a circle.9–11 The solutions are ordered by the energy, and we

shall select those which are in the proximity of the Fermi energy. Following the

results of Refs. 2 and 3 we shall then work with the wavefunctions ϕn,l, which be-

longs to the states with n = 4, l = 4 and n = 2, l = 7. For simplicity, we shall

indicate these two configurations by the sub-index α. We shall consider that the

two impurities, which are denoted by their spin Si, are located near the focuses of

the ellipse, along it semi-major axis, and that the coupling between the impurities

and the spin of the electrons, σ, is weighted by the wavefunctions of the electrons

taken at the site of the impurities. The Hamiltonian of the system is written

H = H0 +Hint , (1)

where H0 is the unperturbed Hamiltonian of the electrons and impurities, and Hint

is the interaction among them, that is

H0 =
∑

α

ǫα(nα,↑ + nα,↓) +
∑

i

∆iS
z
i ,

Hint = J
∑

i

σiSi ,
(2)

The electron-spin operators are represented in terms of creation and annihilation

operators, weighted by the radial wavefunctions of the electrons ϕ∗
iα, calculated at

the site of the impurities.

σz
i =

1

2

∑

α,β

ϕ∗
iαϕiβ(c

†
α↑cβ↑ − c†α↓cβ↓) ,

σ+
i =

1

2

∑

α,β

ϕ∗
iαϕiβc

†
α↑cβ↓ ,

σ−
i =

1

2

∑

α,β

ϕ∗
iαϕiβc

†
β↓cα↑

(3)

and

nα,↑(↓) = c†α↑(↓)cα↑(↓) , (4)

In Eq. (2) the quantities ǫα and ∆i are the energies of the electrons and impurities,1

and in Eq. (3) the sub-index i indicates that the electron wavefunctions are evalu-

ated at r = ri, which is the site of the impurities. In solving the eigenvalue problem3
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we have taken advantage of the symmetries of the problem.9–11 The solutions of1

the electron-sector of Hamiltonian H0, are obtained by the diagonalization of the

kinetic energy term and the confining one-body potential consisting of an infinite3

wall located at the borders of the ellipse. They are expanded in the basis of elliptical

functions.9–11 To these solutions we add the interactions between the spin of the5

electrons and the pair of impurities. Some features of the solutions are discussed

next.7

2.2. Eigenvalues and eigenfunctions

The geometry of the elliptical corral, and the associated coordinates, are sketched in9

Fig. 1. The coordinates ξ and η are, respectively, associated to radial and angular

motion η being perpendicular to the ellipse defined by ξ. ξ = 0 represent the11

horizontal semi-major axis, η = 0 is the intersection with the positive semi-major

axis and for any nonzero value of ξ one has η = π/2, intersection with the semi-13

minor axis of the ellipse, η = π is the intersection with the negative semi-major axis

of the ellipse, etc. The eigenmodes (two-dimensional standing waves in the interior15

of the ellipse) are then functions of these two coordinates, and in the notation of

regular Mathieu functions,11 they are identified by the pair of quantum numbers17

(n, l). As pointed out in Ref. 3 the description advanced so far is supported by the

experimental data. Following the same arguments discussed in Ref. 3 we shall look19

at wavefunctions with correspondence to states near the Fermi energy, and take the

corresponding parameters from data.21

y

f

a

b

x= 

=  /2

=0

=constant

=constant

=3   /2

Fig. 1. Coordinates of the elliptical corral; (a) and (b) are the semi-axis of the ellipse, the focuses,
radial and angular coordinates are denoted by f , ξ and η, respectively.
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Fig. 2. Eigenvalues of the system near the Fermi energy ǫf , as a function of the ratio J/∆ and
for ∆i = ∆. The impurities are located in an antiparallel configuration (total spin channel S = 0)
on the major semi-axis, as explained in the text.

The eigenvalues of the Hamiltonian (2), depend on the ratio between the1

coupling-strengths J and ∆. For simplicity we have taken ∆i = ∆. As an ex-

ample, the dependence of the eigenvalues with the ratio J/∆, for values in the3

vicinity of the Fermi energy, is shown in Fig. 2. The configuration corresponding

to this spectrum consists of the impurities placed along the major semi-axis of5

the ellipse, near the focuses, with their spins coupled to total spin S = 0 in an

antiparallel configuration. The spectrum for the impurities in a parallel array is7

shown in Fig. 3. As seen from these figures, the degeneracy of H0 is broken by the

interactions between the spin of the electrons and the spin of the impurities. The9

complexity of the spectrum becomes manifest in the strong coupling limit. There

the spectrum becomes increasingly dense, a feature which may be of some relevance11

for the experimental identification of the states. In the following we shall show the

results of the diagonalization of the Hamiltonian, and discuss some features of the13

adopted wavefunctions. Figures 4 and 5 show the wavefunction and the probability

spatial distribution, for four different cases corresponding to values of (n, l) = (3, 4),15

and (1, 8), and (n, l) = (2, 7), and (4, 4), respectively. The first two configurations

are shown for the sake of comparison with the results reported in Ref. 3. These17

results support the notion that a localized density distribution in the interior of the
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Fig. 3. Eigenvalues of the system, near the Fermi energy ǫf , as a function of the ratio J/∆. The
impurities are located in a parallel configuration (total spin channel S = 1) on the major semi-axis
of the ellipse.

quantum corral, for the impurities in a given configuration, may indeed be obtained1

by searching for the appropriate eigenvectors. Figure 6 shows the spatial dependence

of the wavefunction, along the major axis of the ellipse, for the configurations with3

(nl) = (2, 7), and (4, 4). The symmetry of the spatial distribution is such that the

impurities feel out-of-phase (case (nl) = (2, 7)) and in-phase (case (nl) = (4, 4)),5

spatial overlaps in their couplings to the electrons.

2.3. Spin observables7

Spin squeezed states are quantum states with reduced fluctuations in one of the spin

components.12,13 If Sn is the spin in the direction of the unit vector n ≡ (sin θ cosφ,

sin θ sinφ, cos θ), perpendicular to the direction of the mean value of the total spin

S, that is 〈S〉. n = 0, then the squeezing factor is defined as12,13

ζ2 =
2(∆Sn)

2

|〈S〉|
, (5)

where (∆Sn)
2 = 〈S2

n〉−〈Sn〉
2 is the quadratic deviation of the spin in the direction

specified by n. Thus, the expectation value of Sn is squeezed if ζ2 < 1. The definition9

1450117-7



1st Reading
April 15, 2014 11:19 WSPC/Guidelines-IJMPB S0217979214501173

O. Civitarese, M. Reboiro & D. Tielas

Fig. 4. Spatial amplitude ψnl(x, y) and probability |ψnl(x, y)|
2, of the configurations with (nl) =

(3, 4), and (1, 8). The coordinates (x, y) are measured along the semi-axis of the ellipse, as shown
in the figure.

given in Eq. (5) assumes SU(2) invariance.14 We are interested in the persistence1

of the orientation of the spin along the direction defined by the impurities, which

are assumed to be aligned by the application of an external field, we shall analyze3

the time evolution of the quadratic deviation of the component of the total spin

along the direction n. In this scheme, the optimal squeezing is achieved when the5

quantum fluctuations of the z-component of the spin are minimal.

In the present calculations we have considered the state

|I〉 = ezS+ |0〉 ,

z = e−i(φ0−π) tan(θ0/2) ,
(6)

as the initial condition. This coherent spin state is not an eigenstate of the Hamil-7

tonian, and it is defined by the orientation angles φ0 and θ0, of a general unit

vector n = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0). We shall then follow the time evolu-9

tion of the total spin respect to the direction n.6–8 The operator S+ is the total
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Fig. 5. Spatial amplitude ψnl(x, y) and probability |ψnl(x, y)|
2, for the configurations with (nl) =

(2, 7), and (4, 4).

spin-raising operator S+ =
∑N

i=1 s+,i, where N is the number of the spin-sites (in1

this case N = 2).

In the basis of eigenvectors of H , the time evolution of a given operator O is

expressed as6–8

O(t) = U †(t)OU(t), U(t) = e−iHt/~ . (7)

The expectation value 〈O(t)〉 is then written

〈O(t)〉 = Tr(ρ(t)O)

=
∑

β,γ

〈γ|I〉〈I|β〉〈β|O|γ〉e−i(Eβ−Eγ)t/~ , (8)

where we have defined the density operator ρ(t) = U †(t)ρ(0)U(t), being ρ(0) =3

|I〉〈I|; the state |I〉 is the initial state, while {Eβ} and {|β〉} are the βth eigenvalue

and eigenvector of the total Hamiltonian.5
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Fig. 6. wavefunctions along the major axis (the x-axis) of the ellipse, for two different pair of
quantum numbers (n, l). The position of the impurities is shown by vertical dashed-lines.

The expression (8) can be written in a more compact form in terms of the

overlap of the initial state |I〉 with the eigenvectors {|β〉}, that is7

〈O(t)〉 =
∑

n,m

T ∗(n)〈n|O|m〉T (m) ,

T (m) =
∑

βn

c∗βncβm〈n|I〉eiEβt/~ .
(9)

In the above equation |n〉 is an element of the basis, and the coefficient cβn is the1

amplitude of |n〉 in the eigenstate |β〉 of the Hamiltonian.

3. Results and Discussion3

The dimensions of the confining, elliptic quantum corral are fixed at the values

a = 78.5 Å, and b = 55 Å, for the semi-axis of the ellipse, e = 1.42 for the eccen-5

tricity, and the parameters of the interaction are taken from Ref. 3. The resulting
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Fig. 7. Spin-squeezing factor, ζ2, calculated for the spectrum of Fig. 2, as explained in the text,
and for impurities placed, on the major semi-axis, near the focuses of the ellipse (xf = ±38.2 Å).
The time is measured in units of inverse-energy (since ~ = 1).
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Fig. 8. Time dependence of the polar orientation angle, θ(t), associated to the results shown in
Fig. 7.
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Fermi energy is of the order of 445 meV, and the electron effective mass was fixed1

at the value m∗/m0 = 0.38. The coupling constant J was varied between 0 meV

and 10 meV, and the gap ∆ was fixed at the value ∆ = 1 meV. With the ob-3

tained eigenvectors we have constructed the density matrix needed to calculate the

expectation value of a given operator. The technique is rather simple, it has been5

presented in detail in Refs. 6–8, and we shall avoid repeating it here. Figure 7 shows

the time evolution of the squeezing factor obtained by using the eigenvalues and7

eigenvectors corresponding to the spectrum of Fig. 2. The results correspond to cal-

culations performed with the parameters J = 0.1, and ∆ = 1 meV. The amplitudes9

of the electron-wavefunctions at the site of the impurities are the ones shown in

Fig. 6. Concerning the squeezing, see Fig. 7, it becomes manifest with a pattern of11

revival with a first minimum at t ≈ 4000, which is correlated with the minimum of

the orientation angle θ. This is supported by the results shown in Fig. 8, where the13

polar angle reaches a vanishing value at the same time t ≈ 4000. It is seen, from

the time evolution of the polar angle θ(t), that the fluctuations of the standard15

deviation of the spin in the direction of n are minimized for an average orientation

angle θ̄(t) ≈ π/8. The time dependence of the polar angle coincides with the pat-17

tern of revival of the spin squeezing factor. In Figs. 7 and 8 the time is given in

units of inverse-energy, since we have adopted the value ~ = 1 consistently in the19

calculations.

4. Conclusions21

In this work we have calculated the spectrum of a system of confined electrons

and impurities, with the boundary conditions of an elliptic quantum corral. We23

have searched for signals of the persistence of the orientation of the total spin

of the system. We found a definite degree of squeezing, which is correlated with25

a sharp spin orientation at zero polar angle and which displays a clear pattern

of revival. These results depend on the position of the impurities, the adopted27

wavefunctions and the strength of the couplings. However, as we have verified in

performing the calculations, it is indeed possible to find out a set of highly localized29

spacial density distributions for which the spin squeezing phenomena may appear.

The time dependence of the calculated spin squeezing factor shows a pattern of31

revival. The time scale of the revival is then fixed by the strength of the couplings

between the impurities and the electrons, as well by the density of eigenvalues of33

the Hamiltonian. However, since the Kondo effect has not been considered, the spin

orientation and squeezing found in the present calculations may be affected and/or35

competing with the spin polarization eventually produced by the Kondo resonance,

as suggested in Ref. 3.37
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