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MINIMAL HERMITIAN MATRICES WITH FIXED ENTRIES

OUTSIDE THE DIAGONAL

E. ANDRUCHOW, L. E. MATA-LORENZO, A. MENDOZA, L. RECHT, AND A. VARELA

Dedicated to the memory of Mischa Cotlar. Teacher and friend.

Abstract. We survey some results concerning the problem of finding the
complex hermitian matrix or matrices of least supremum norm with variable
diagonal. Some qualitative general results are given and more specific de-
scriptions are shown for the 3 × 3 case. We also comment some results and
examples concerning this approximation problem.
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1. Notation and Preliminaries

The problem of finding a complex hermitian matrix of least supremum norm
with variable diagonal originally aroused when describing short curves in certain
flag manifolds. A finite dimensional flag manifold is one such that its elements are
chains of vector spaces included strictly. That is

{0}  Vr  Vs...  Vk ⊂ Cn

where dimVi = i. The metric considered here is the invariant Finsler metric that
will be described further on.

We will be interested in the special case of complete flags, that is when k = n.
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18 ANDRUCHOW, MATA-LORENZO, MENDOZA, RECHT AND VARELA

The flags could be seen from different points of view. For example if we choose
bases for the respective subspaces (that can be taken orthonormal), that is if

Vi = [w1, · · · , wi]

we can describe the previous chain listing the elements of the base in order (loosing
the unicity of the representation).

They can also be described choosing sets of orthonormal projections of rank one
which sum gives the identity, that is:

{P1, P2, · · · , Pn} such that
n

∑

i=1

Pi = ICn

Yet another way of representing flag manifolds is by the quotient between the
group of n× n unitary complex matrices U over the subgroup of the unitary diag-
onals Udiag:

U /Udiag =

{

[v] : x ∈ [v] ⇔
x = u.v, with u ∈ Udiag

}

.

Therefore the elements of U /Udiag are the classes [v] with elements of the form
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0
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We will use the following notation

Mn×n(C), Mh
n×n(C), Mah

n×n(C)

for the n × n algebra of matrices of complex coefficients, the hermitian and the
anti-hermitian respectively.

We will also denote with

Dn×n, Dh
n×n, Dah

n×n,

the subagebra of the diagonal matrices of Mn×n(C), the hermitian (that is real)
and anti-hermitian respectively. Observe that Dah

n×n = iDh
n×n.

We will consider the quotient spaces

Mh
n×n(C)

/

Dh
n×n , Mah

n×n(C)
/

Dah
n×n

with the usual quotient norm for M ∈ Mh
n×n(C):

| [M ] |q = inf
D∈Dh

n×n

||M + D ||, (1)

where || · || is the usual operator (supremum) norm (respectively M ∈ Mah
n×n(C)

and D ∈ Dah
n×n for the anti-hermitian case).

The quotient space Mah
n×n(C)

/

Dah
n×n can be identified with the tangent of the

space U /Udiag in the base point 1, since U /Udiag is an homogeneous space under
the natural action of left multiplication of elements of U :

T (U /Udiag )[1] = T (U)[1] /T (Udiag )[1]
∼= Mah

n×n(C)/Dah
n×n.
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MINIMAL HERMITIAN MATRICES 19

Moreover, the Finsler metric considered in T (U /Udiag )[1] coincides with the

quotient norm (1) of Mah
n×n(C)/Dah

n×n.
This will let us link geometric results to the problem we are interested to describe

in this article. For instance, in theorem 1 of the next section, the existence of
matrices D reaching the minimum of the norm quotient (1) is related with the
existence of curves in U /Udiag of the shortest posible length. In section 7, an
example in 4×4 of infinite different curves of the shortest length joining arbitrarily
close points is shown.

Operator approximation problems consist of finding, for a given operator, the
element in some special class nearest to it, when distance is measured with a norm.
These problems have been treated in the case of hermitian, positive and unitary
approximants using different norms in [5], [6], [7], and others. The survey article
[8] is related to matrix nearness. There, explicit formulas of operator approxima-
tion solutions are presented. Uniqueness results and algorithms for computing or
estimating the minimal norm attained are also described, as well as the matrix or
matrices sought in different contexts. Nevertheless, in that paper, the operator or
supremum norm is not considered.

The problem of finding the minimum of ‖M + D‖ for a given matrix M ∈
Mh

n×n(C) among all the diagonal matrices D ∈ Dh
n×n, and finding the matrix or

matrices D that realize the minimum, is indeed an operator approximation problem.
It has a trivial translation to the problem of finding a real diagonal matrix D′ that
satisfies that M + D′ ≥ 0 and that ‖M + D′‖ is minimum.

In the n × n case, some bounds of this minimum were obtained in [3]. In that
work the calculation of this minimum is related to the estimation of bounds of the
norm of the operator O : Mn×n(C) → Mn×n(C) that for any n × n matrix replaces
all its diagonal entries by zeroes.

Definition 1. We will call a matrix Z ∈ Mh
n×n(C) minimal hermitian if

‖Z‖ ≤ ‖Z + D‖, for all D ∈ Dh
n×n.

or equivalently if

‖Z‖ = |[Z]|q.

for [Z] ∈ Mh
n×n(C)/Dh

n×n. In a similar way it can be defined a minimal antiher-
mitian matrix.

Remark 1. If Z ∈ Mh
n×n(C) is a minimal hermitian matrix and

||Z|| = λ (> 0)

then

(1) i.Z is a minimal antihermitian matrix.
(2) ±λ are eigenvalues of Z.
(3) The diameter of the spectrum of Z is 2λ.
(4) If Z is of 3 × 3 then σ(Z) = {λ,−λ, µ} with µ = Tr(Z).
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2. Previous results

In Theorem I of [4], Durán, Mata-Lorenzo and Recht proved a result that, in
the context of matrices, can be stated as follows:

Theorem 1. Let [M ] ∈ U /Udiag and [X ] ∈ Mah
n×n(C)

/

Dah
n×n

∼= T (U /Udiag )[M ].

If there exists a antihermitian minimal matrix Z ∈ Mah
n×n(C) that projects in [X ],

that is, [Z] = [X ] and ||Z|| = |[X ]|q, then the curve

γ(t) = LetZ · [M ] = [etZM ]

has minimum length in the class of all the curves in U /Udiag that join γ(0) with
γ(t) for each t with |t| ≤ π

2||Z|| .

Remark 2. Note that this theorem implies that, in order to find the curve of
minimum length such that γ̇(0) = [X ], we have to find the matrix Z with the same
off-diagonal entries as X and with a diagonal that makes Z a minimal hermitian
matrix.

This result shows the importance of the set of minimal matrices in the study of
the shortest curves (in the geometric sense) in these homogeneus spaces.

With the ideas of Section 5 of [4], resctricted to the context of matrices, the
following characterization of minimal hermitian matrices can be obtained:

Theorem 2. A hermitian matrix Z ∈ Mh
n×n is minimal, if and only if, there exists

a positive matrix P ∈ Mn×n(C) such that,

• P.Z2 = λ2 P , where ||Z|| = λ.
• The diagonal elements of the product P.Z are all zero.

3. Description of minimal hermitian matrices of 3 × 3

The previous theorem about minimal matrices together with auxiliary results in
C3 (see [1]), allow the following characterization:

Theorem 3. Let Z ∈ Mh
3×3(C) with ||Z|| = λ > 0. Then Z is minimal, if and

only if, there exist two unitary eigenvectors,

(1) v+ for the eigenvalue λ, and
(2) v− for the eigenvalue −λ,

such that their respective coordinates have the same absolute value

|(v+)i| = |(v−)i|, with 1 ≤ i ≤ 3.

Remark 3. Under these hypotheses, it can be proved that the eigenvectors v+ and

v− are triangular, that is, |v1|
2
, |v2|

2
and |v3|

2
can represent the sides of a triangle

(the sum of any two of them is always greater than the other one, see figure 1).
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MINIMAL HERMITIAN MATRICES 21

Parametrization of the set of minimal
matrices of 3 × 3

Definition 2. Let M ∈ Mh
3×3(C). We will say that M is of extremal type if there

exist

(1) η ∈ [0, 2π),
(2) λ > 0,
(3) µ ∈ R with |µ| ≤ λ,

such that M is some of the following three matrices:




µ 0 0
0 0 λ ei η

0 λ e−i η 0



 ;





0 0 λ e−i η

0 µ 0
λ ei η 0 0



 ;





0 λ e−i η 0
λ ei η 0 0

0 0 µ





Definition 3. Let M ∈ Mh
3×3(C). We will say that M is of non extremal type

if there exist:

(1) η, ξ ∈ [0, 2π),
(2) λ, µ ∈ R with λ > 0, |µ| ≤ λ,

(3) α, β, χ ∈ R≥0, with:







α + β + χ = 1
2 ,

α + β > 0, β + χ > 0,
α + χ > 0.

such that

M = µ





2α n12 n31

n12 2β n23

n31 n23 2χ



 + λ





0 m12 m31

m12 0 m23

m31 m23 0





where:
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>
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>

>

>

>

:

n12 =
−2α β ± i

√
2α β χ

p

(α + χ)(β + χ)
e−iη

n31 =
−2α χ ± i

√
2 α β χ

p

(α + β)(β + χ)
e−iξ

n23 =
−2β χ ± i

√
2α β χ

p

(α + β)(α + χ)
e−i(ξ−η)

8

>

>

>

>

>

>

>

>
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<

>

>

>

>

>

>

>

>

>

:

m12 =
χ ± i

√
2α β χ

p

(α + χ)(β + χ)
e−iη

m31 =
β ± i

√
2α β χ

p

(α + β)(β + χ)
e−iξ

m23 =
α ± i

√
2α β χ

p

(α + β)(α + χ)
e−i(ξ−η)

for one of the two corresponding choices of the signs.

Remark 4. For matrices of both types (extremals and non extremals), the param-
eters λ > 0 and µ give the norm of M , ||M || = λ, and the trace of M , Tr(M) = µ.

In the previous Theorem 3 we have seen that M ∈ Mh
3×3(C), with ‖M‖ = λ is

minimal, if and only if, there exist unitary eigenvalues v+ and v− of λ and −λ such
that their coordinates have equal absolute value.

The following theorem gives a description of all the minimal hermitian matrices
of 3 × 3 in terms of the parameters α, β, χ, η, ξ, λ and µ.
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22 ANDRUCHOW, MATA-LORENZO, MENDOZA, RECHT AND VARELA

Figure 1. Construction of α, β and χ appearing in the
parametrization.

Theorem 4. [Parametrization theorem] Let Z ∈ Mh
3×3(C), then, Z is mini-

mal, if and only if, verifies any of the following mutually exclusive cases:

(1) The eigenvector v+ of λ has a
zero coordinate and Z is of ex-
tremal type.

(2) The eigenvector v+ of λ has no
zero coordinates and Z is of non
extremal type.

4. Minimal matrices in a class

Every matrix M ∈ Mh
3×3(C) can be writen in the form,

M =





a x ȳ
x̄ b z
y z̄ c



 ,

where a , b , c ∈ R and x , y , z ∈ C.
We already observed that, if M is minimal hermitian (not null), the eigenvalues

of M are λ = ‖M‖, −λ and µ = Tr(M) (with |µ| ≤ λ).
If we consider the characteristic polynomial of M :

det(M − ΛI) = −Λ3 + u Λ2 + v Λ + w

these properties impose necessary conditions on the coefficients u, v and w:














u v + w = 0
v = ‖M‖2

u = Tr(M)
u2 ≤ v

Then for specific class of a matrix [M0] (that is for x, y and z fixed)

M0 =





0 x ȳ
x̄ 0 z
y z̄ 0



 ,

we consider the real manifold of R3 given by the equation:

∆ := u v + w = 0
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or, in terms of the matrix coefficients a, b and c:

∆ := (a + b)(a + c)(b + c)− (a + b)|x|2 − (a + c)|y|2 − (b + c)|z|2 − 2 Re(x y z) = 0.

Let us call with ∆ this manifold.
Every minimal matrix M of [M0] must belong to this manifold and must mini-

mize

λ2 := ‖M‖2 = |x|2 + |y|2 + |z|2 − ab − ac − bc

with the restriction u2 ≤ v.
To simplify the expression of the map ∆, the following linear change of variables

can be introduced,

a = (r + s − t)/2 , b = (t + r − s)/2 , c = (s + t − r)/2.

The equations above change to give a new description of ∆

∆ := r s t − r |x|2 − s |y|2 − t |z|2 + 2 Re(x y z) = 0,

and a new expression for the function to minimize λ2,

λ2(r, s, t) =
1

4
(r2 + s2 + t2) −

1

2
(r s + r t + s t) + |x|2 + |y|2 + |z|2.

5. Different cases

To find the minimal matrix (or matrices) in the class [M0] we have to minimize
λ2 on ∆. We shall consider four cases depending on the triple (x, y, z). Figures
representing ∆ using the r, s and t variables are shown in each case. It can be
proved that only in the fourth case there might be multiple minima in the given
class [M0]. Two rounded surfaces, shown in the first three figures, do not belong
to ∆, they represent the bounding surfaces µ = ±λ in between which the (unique)
minimum is located.

(1) When Im(x y z) 6= 0.

In this case the surface ∆ is regu-
lar (a smooth manifold) and the
method of Lagrange multipliers
can be used to find the unique
minimum in the class. In the fig-
ure to the right, the middle por-
tion represents the component
satisfying u2 ≤ v, and the dark
point indicates the minimum.

(2) When Im(x y z) = 0 and Re(x y z) 6= 0.
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In this case the surface ∆ is not
regular, has one singular point
which is the unique minimum
in the class. In the figure to
the right, two components of ∆
touch at the singular point which
is the minimum.

(3) When exactly one coordinate of (x, y, z) is null.

In this case the surface ∆ is reg-
ular; the class has a unique min-
imum at the origin, (r, s, t) =
(0, 0, 0) = (a, b, c). Observe that
in the figure the vertical t-axis
lies in ∆.

(4) When exactly two coordinates of (x, y, z) are null.

In this case the surface ∆ is not
regular along two curves, the two
branches of the hyperbola shown
in the figure, and the class has
multiple minima, represented by
the segment shown in the figure
joining the two branches of the
hyperbola.

Remark 1. Despite this last case, there is no multiplicity of minimal curves of
matrices in 3 × 3 and all multiple minimal matrices Z produce the same curve
γ(t) = [etZM ] for M ∈ U /Udiag .
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If the matrix M is real with zero diagonal and we suppose that there is a diagonal
D that reaches the minimum of ||M + D|| and such that M + D has all of its
eigenvalues of equal absolute value (that is, the spectrum of M + D is {±λ} and λ
or −λ has double multiplicity), then a precise formula of D can be found in terms
of the entries of M (this proposition is proved in [10] motivated by results of [9]).
We state it here as the following remark:

Remark 2. Let M =





0 c a
c 0 b
a b 0



, with a, b, c 6= 0, be a matrix in R3×3 and

D ∈ R3×3 be a diagonal such that ||M + D|| is minimum and the eigenvalues of
M + D have equal absolute value. Then D must be of the form

D =





− 1
2 ( bc

a
+ ab

c
− ac

b
) 0 0

0 − 1
2 (− bc

a
+ ab

c
+ ac

b
) 0

0 0 − 1
2 ( bc

a
− ab

c
+ ac

b
)



 .

6. The topology of the set of minimal matrices of 3 × 3

Using the theorem of parametrization and considering the sets

Σ = { (α, β, χ) ∈ R3 : α + β + χ =
1

2
, α ≥ 0, β ≥ 0, χ ≥ 0 } ,

and

C =
{

(µ , λ) ∈ R2 : λ > 0, |µ| ≤ λ
}

,

we define

W = Σ × S1 × S1 × C,

where S1 is the unitary circle in the complex plane and

∇ = W+ ⊔ W−,

is the disjoint union of two copies of W .
Let us consider in ∇ the smallest equivalent relation ‘∼’ that identifies the

elements of ∇ that give the same matrix in the theorem of parametrization. Then,
it can be proved that the set ∇ /∼ is homemophic to the set of minimal hermitian
matrices.

The following is a representation of the set of minimal hermitian matrices through
∇ /∼ .
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7. An example in 4 × 4 using minimal matrices

We have remarked that in 3 × 3, despite of the existence of matrices that allow
infinite minimizing diagonals, there are no multiplicity of short curves. This is not
the case in 4 × 4.

Let us consider the manifold

S ⊂ P(4) = U4×4

/

(Udiag)4×4

defined by

S = (SU(2) × SU(2))
/

(SU(2) × SU(2))diag

∼=
(

SU(2)
/

SU(2)diag

)

×
(

SU(2)
/

SU(2)diag

)

where SU(2) is the special unitary group (unitary complex matrices with determi-
nant equal to 1) and with the Finsler metric in P(4) as in the 3 × 3 case.

Using a suitable description (see [2] and [11] for details) we can consider S ∼=
S2 × S2, where S2 is the unit sphere in R3. This gives a better geometrical view
of the example. Let us outline which are the properties of the curves mentioned at
the beginning of the section.

Let N = (N, N) ∈ S2 × S2 be the point whose coordinates are both the North
Pole, N ∈ S2. Let Q = (Q1, Q2) ∈ S2 × S2 be any point such that Q1 has higher
latitude than Q2 in S2 (Q1 is closer to N than Q2).

Q is going to be fixed so that Q2 is above the equator line (and
Q1 is even higher). In [2], using the characterizations of mini-
mal matrices seen previously, a family of minimal curves Γβ(t) =
(γ1,β(t), γ2(t)), for t ∈ [0, 1], was constructed, all joining N to Q,
with the following properties.

• The curve γ2(t) in S2 will trace the smaller arc of the great
circle that contains N and Q2.

• The family of curves γ1,β(t) will vary continuously with the
parameter β.

• Each of the curves of the family γ1,β(t) will parameterize the
smaller arc of some circle in S2 that joins N to Q1; the arcs
will not be great circles but for β = 0.

• The curve γ2(t) runs over a great circle in S2.
• The curve γ1,β(t) varies continuously with the parameter β.
• The curve γ1,β(t) has constant speed in S2.
• The curve γ2(t) has constant speed in S2.

The following is a representation of these curves in S2 × S2:
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