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The depinning transition of elastic interfaces with an elastic interaction kernel decaying as 1/rd+σ

is characterized by critical exponents which continuously vary with σ. These exponents are expected
to be unique and universal, except in the fully coupled (−d < σ ≤ 0) limit, where they depend on
the “smooth” or “cuspy” nature of the microscopic pinning potential. By accurately comparing the
depinning transition for cuspy and smooth potentials in a specially devised depinning model, we
explain such peculiar limit in terms of the vanishing of the critical region for smooth potentials, as
we decrease σ from the short-range (σ ≥ 2) to the fully coupled case. Our results have practical
implications for the determination of critical depinning exponents and identification of depinning
universality classes in concrete experimental depinning systems with non-local elasticity, such as
contact lines of liquids and fractures.

I. INTRODUCTION

Many dissipative disordered systems display a collec-
tive depinning transition, from an almost static (or in-
active) to a sliding (or active) regime at a threshold
value of a driving force. Examples range from field
driven domain walls in ferromagnetic [1–3] or ferroelec-
tric materials [4, 5], crack propagation under stress in
heterogeneous materials [6, 7], contact lines of liquids on
a rough substrate [8, 9], imbibition of fluids in porous
and fractured media [10], reaction fronts in porous me-
dia [11], solid-solid friction [12], sheared amorphous solids
or yield stress fluids [13], dislocation arrays in sheared
crystals [14], current driven vortex lattices in supercon-
ductors [15–17], skyrmion lattices in ferromagnets [18],
to even collective cell migration during wound healing
or cancer invasion [19]. The collective nature of the de-
pinning transition is often spectacularly manifested at
low temperatures through some kind of “crackling noise”
which, well beyond the lab scale, much resembles earth-
quakes, motivating also their study within the very same
framework [20, 21].

A very fruitful analogy of this problem with equi-
librium phase transitions emerges when considering the
driving force as the control parameter and the mean slid-
ing velocity as the order parameter. This analogy has
been useful in pointing out directions for seeking univer-
sal behaviour, and inspiring new methodologies [22, 23].
The analogy has also been useful to point out the rel-
evance of genuine non equilibrium effects [24], and to
detect non standard features of the transition [25–27].
Among the very different models that can be proposed,
the depinning transition of elastic manifolds in random
media has become a paradigmatic basic problem as it
presents the essential ingredients for a non trivial uni-
versal behaviour, together with an advantageous combi-
nation of analytical [28] and numerical [29] tractability.
Moreover, it is directly relevant for predicting universal-
ity classes of various concrete systems where the elastic
approximation can be justified, notably magnetic domain
walls and contact lines of liquids menisci.

The depinning transition at zero temperature of an
overdamped elastic interface in a random potential is
continuous, non hysteretic, and occurs at a characteristic
threshold force fc. Close enough and above the thresh-
old the mean velocity v of the interface in the direction of
the force is well described by the putative depinning law
v ∼ (f − fc)β , with β a non-trivial critical exponent. A
divergent correlation length l ∼ (f − fc)−ν and a diver-
gent correlation time τ ∼ lz characterize the jerky motion
as we approach fc from above. Concomitantly, the rough
geometry of the interface becomes self-affine with the dis-
placement field growing as u ∼ xζ for length-scales x be-
low l. Hence v ∼ lζ−z and β = ν(z − ζ). In this regime,
the spatio-temporal fluctuations also display universal
behaviour and are controlled by avalanches with a broad
distribution of sizes S (and durations T ∼ Sz/(1+ζ)), such
that P (S) ∼ S−τ , with τ = 2− (ζ + 1/ν)/(d+ ζ) in the
quasistatic limit. The critical exponents can be estimated
analytically [30, 31] and numerically [32–37] to determine
the different universality classes. These are determined
by d, the range [38–42] or nature [43] of the elastic in-
teractions, the anisotropic [44] or isotropic correlations
of the pinning force [45, 46], and by the presence of ad-
ditional (i.e. apart from the pinning force) non-linear
terms [24, 44, 47–50]. Boundary [51] or ac driven [52]
depinning of elastic interfaces have been also studied. If
the so called statistical tilt symmetry holds, only two ex-
ponents are needed to fully characterize the depinning
universality class. In any case, it is very convenient to
consider separately the purely geometric ζ or ν, which do
not involve time scaling, from z or β which do.

In order to quantify the universal properties of the de-
pinning transition for a concrete experimental system (or
microscopic model with a yet unknown coarse grained
dynamics) it is important to determine the critical expo-
nents accurately enough so to be able, at least, to differ-
entiate between different candidate universality classes.
Unfortunately, testing the depinning law is in general a
rather difficult task experimentally, and in many cases
also numerically. On one hand [53], fitting accurately
β certainly requires an accurate estimation of the non-
universal threshold force fc. In that respect it is impor-
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tant to note that the depinning force fc displays impor-
tant sample to sample fluctuations in finite systems [54],

with [fc − fc]2 ∼ L
−2/νFS

0 , where L0 is the linear size of
the system and νFS ≥ 2/(d + ζ) [30]. The thermody-
namic limit L0 → ∞ is also delicate as the value of fc
can be strongly affected by the anisotropic sample aspect-
ratio scaling we keep in such limit [54, 55]. On the other
hand, even if we are able to get a sharply defined fc, we
are faced to the fact that the depinning law is expected to
work only in an unknown critical region of size ∼ ∆fcrit,
such that the asymptotic power law scaling for v fully
develops only for (f − fc) . ∆fcrit. Knowing roughly
∆fcrit is thus fundamental for practical applications of
the theory. Little is known however about ∆fcrit for the
depinning transition, except that it is non-universal. How
does the critical region depend on the microscopic shape
of the disorder, the range of the elastic interactions or the
dimensionality d? Do scaling corrections produce inter-
mediate power-laws with effective exponents? If so, are
the effective exponents expected to be larger or smaller
than the true ones? Do they violate the expected asymp-
totic scaling relations among exponents?

In this paper we try to answer some of the above men-
tioned practical questions by performing numerical sim-
ulations on different microscopic models. We study de-
pinning models with isotropic uncorrelated disorder and
harmonic long-range elasticity, with elasticity kernel de-
caying with distance as 1/rd+σ. We vary the range of
the elastic interactions from the (σ ≤ 0) fully coupled
case to the (σ ≥ 2) short-range cases and compare the
critical behaviour of the velocity-force characteristics for
two different forms of the microscopic disorder. They
are termed the “smooth” case (in which the force origi-
nated in the disorder does not have any discontinuities),
and the ”cuspy” case (in which the force has an abrupt
jump at the transition point between different potential
basins). For the cuspy potential the extent of the critical
region tends to be large and rather independent on the
value of σ. For the smooth potential the critical region
where universality holds (i.e. where we get the same ex-
ponents than in the the cuspy case), decreases by increas-
ing the range of elastic interactions and strictly vanishes,
∆fcrit → 0, in the fully coupled limit. In such limit scal-
ing corrections are not anymore “corrections” but con-
trol the ultimate asymptotic scaling. This explains the
peculiar non-universality of the fully coupled model in
the strong pinning phase (i.e. with fc > 0), which dis-
plays two different exponents, β = 3/2 and β = 1, for
the smooth and cuspy cases, respectively (as it is well
known from the equivalent and exactly solvable Prandtl-
Tomlinson model). For σ > 0, where a unique value
of β is the “right” one [56] , our results show neverthe-
less the great importance of scaling corrections and the
emergence of dangerous effective power-laws which par-
ticularly affect the obtention of the asymptotic dynamical
exponents β or z as compared with the roughness expo-
nent ζ which is found to be more robust. These correc-
tions are particularly relevant for a successful experimen-

tal (and also numerical) identification of depinning uni-
versality classes in elastic systems with long-range inter-
actions (0 < σ < 2) and to explain quantitative discrep-
ancies with theory. To arrive to these results we devise
a convenient model for comparing the critical behaviour
of cuspy and smooth microscopic disorders accurately.

II. GENERALITIES OF THE BASIC MODEL

We model a d-dimensional interface embedded on a
d + 1 disordered material as a collection of blocks i =
1, . . . , N , located at sites of a d-dimensional regular lat-
tice, and characterized by a continuous displacement
u1, . . . , uN in the d + 1 transverse direction. We will
assume an overdamped Equation of motion,

u̇i(t) =

N∑
j=1

Gij (uj − ui) + Fi(ui) + f. (1)

where the terms on the right hand side represent the sum
of the elastic couplings, the disorder, and the uniform and
constant pulling force, respectively.

The G term in Eq. (1) accounts for the harmonic elas-
tic interactions, with Gij being the spring constant asso-
ciated with the blocks i and j. In order to model long-
range elastic interactions we use Gij = κ/|i− j|d+σ, with
the normalizing constant κ used to obtain

∑
j Gij = 1

(note that the value of Gii does not influence Eq. (1),
and is taken as zero). The G term just described implies
the convex elastic energy

∑
ij Gij(ui − uj)2/2.

When σ ≥ 2 the elastic kernel represents a short-range
elastic interaction, while for −d < σ ≤ 0, it represents
the fully coupled case that can be exactly solved using
mean field techniques. Periodic boundary conditions can
be taken into account by summing the elementary kernel
over periodic images of the finite system and by using its
Fourier representation to obtain the elastic forces at each
step of time integration through a numerically efficient
convolution.

The second term in Eq.(1) (the only non-linear term of
the equation of motion) accounts for the pinning forces.
For the moment we will just assume it is statistically
characterized by Fi(u) = 0, Fi(u)Fj(u′) = ∆(u − u′)δij ,
where · · · stands for the average over disorder realizations
and ∆(u) is a short-ranged function with ∆(0) measuring
the strength of the disorder.

The motion described by Eq.(1), with its convex elastic
energy is characterized by a unique critical force fc in the
large-size limit [57]. This critical force is important in de-
termining the fate of the system at very long times. If f <
fc the system reaches a static solution such that u̇i(t) = 0
∀i. For f > fc it reaches a unique steady-state with
u̇i(t) ≥ 0 univocally defined up to a global time shift,

with the mean velocity defined as v ≡ N−1
∑N
j=1 u̇i(t)

or, by v ≡ limt→∞ (Nt)−1
∑N
j=1(ui(t)− ui(0)) thanks to

self-averaging. The properties just described are conse-
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FIG. 1. Schematic illustration of the peculiar, non-universal,
fully-coupled limit in the strong pinning phase. The velocity
exponent β is universal (i.e. independent of the shape of the
microscopic potential), from its short-range value for σ ≥ 2,
varying continuously to its mean-field value for σ ≤ d/2. In
the region σ ≤ 0 the universality is suddenly broken: the
smooth potential β (solid red line) does not coincide with its
cuspy potential value (solid blue line). How does this affect
the critical region for the long-range depinning transitions?

quences of the Middleton theorems [58] which assure that
the dynamics described by Eq.(1) with its convex elas-
tic energy converges for f ≥ fc to a unique “Middleton
attractor”. The properties of this attractor can be ex-
ploited to devise smart algorithms to target the critical
force and critical configuration in finite samples with-
out solving the true dynamics [59, 60]. It also allows
to cleanly visualize the convergence towards the steady-
state by reparametrizing the time with the system center

of mass u(t) ≡ N−1
∑Ld

j=1 ui(t) [61]. In this paper we will

rely (apart from the unicity of the dynamical attractor)
on the general property u̇i(t) ≥ 0, valid in the f ≥ fc
steady-state. This will be particularly important in rela-
tion to the model discussed in Sec.IV B.

It is also worth remarking here that the so called sta-
tistical tilt symmetry (STS) holds for Eq.(1), so ν =
1/(σ − ζ) for d/2 ≤ σ ≤ 2, ν = 1/(2− ζ) for σ ≥ 2, and
ν = 1/2 for σ < d/2 [23]. Therefore only two exponents
are needed to fully characterize the depinning universal-
ity class. [62] Using the STS, in this work we will con-
sider separately ζ and β, to characterize the universality
classes. As we will discuss later this arbitrary separa-
tion is nevertheless quite convenient, as ζ (and ν) has a
purely geometric origin unlike β (and z) which are related
with time-scaling and thus affected by local non-universal
bottlenecks. This has important consequences from the
practical point of view. For instance, it is easier to get
much more accurate values for ζ (or ν) by exploiting dif-
ferent methods which do not involve a true temporal evo-
lution, such as the variant Monte Carlo algorithm [59, 60]
or the metastable configurations obtained by relaxing a
flat configuration below the depinning threshold [63].

For f � fc the effect of the disorder can be treated as a
perturbation. At first order disorder mimics an effective
temperature proportional to v−1. In this so called “fast

flow” regime the interface can be fairly described by the
forced Edwards-Wilkinson equation and v ≈ f [64]. For
the low velocity critical regime f & fc we are interested
in, perturbation theory fails. Numerical simulations and
the functional renormalization group (FRG) approach
applied to Equation (1) teach us that, for σ > 0, the
above description uniquely determines the critical depin-
ning exponents of the model. Their values depend on
d, and smoothly evolve with decreasing σ, from their
short-range values for σ ≥ 2, to the mean field value
for σ ≤ d/2 or equivalently d ≥ dc(σ), with dc = 2σ the
upper critical dimension [65]. The exact “shape” of the
microscopic pinning force Fi is believed to be unimpor-
tant in many respects. Indeed, FRG tells us that for the
model of Equation (1), the bare correlator of the pin-
ning force ∆(u) flows, under coarse graining above the
fundamental Larkin scale Lc, towards a correlator with
a “cuspy” singularity. The existence of such cusp nicely
accounts for the existence of a critical force, and also for
the existence of avalanches. The fixed point of the renor-
malization flow equations for the pinning correlator func-
tion gives us access to unique values of β ≡ β(d, σ) and
ζ ≡ ζ(d, σ), which completely characterize the depinning
universality class of our model. These FRG calculations
are performed assuming in principle a small separation
ε � 1 from the upper critical dimension, ε = dc(σ) − d,
with dc = 2σ. One may thus question their validity for
the experimentally relevant case d = 1 for instance. Nu-
merical simulations by Rosso et.al. [36] fairly confirm
however the FRG picture for one-dimensional interfaces
with short-range elastic interactions (σ ≥ 2), showing its
validity for the extreme ε = 3 case.

The above picture, valid for σ > 0 and in principle
any dimension d ≥ 1, sharply contrasts with the σ ≤ 0
fully coupled limit, where the depinning model becomes
equivalent to the exactly solvable one-particle Prandtl-
Tomlinson model, one of the most popular models in
nanotribology [66]. For the strong pinning phase of this
model, which has fc > 0 (see e.g. Ref. [67]), the crit-
ical behaviour of the velocity v ∼ (f − fc)

β becomes
non-universal for different microscopic potentials. On
one hand for a smooth random potential Vi such that
Fi(u) = −(d/du)Vi(u) does not have jumps, one has
β = 3/2. On the other hand, for a cuspy random po-
tential with force discontinuities β = 1 is obtained, a
value that coincides with the mean field value expected
from FRG for d ≤ dc(σ). One may thus ask: what is
exactly happening in the σ = 0+ limit of the smooth
potential case? (See Fig.1)

III. ORGANIZATION OF THE PAPER

To clarify the last issue and discuss its practical conse-
quences we will focus on the d = 1 model with long-range
interactions (the d > 1 short range case will be discussed
in the appendix). First, in Section IV A we will con-
sider the standard model with continous displacements,
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FIG. 2. Typical forms of the pinning potentials we analyze.
Transition points for a particle moving to the right are indi-
cated by stars. (a) A cuspy potential, in which there is a jump
of the force at the transition point. (b) A smooth potential,
in which the potential itself and its derivatives (up to second
order at least) are continuous.

and compare the critical behaviour of smooth and cuspy
microscopic pinning potentials. This will allow us to il-
lustrate the kind of effects that can be expected in the
critical region for σ > 0 in both cases. In Section IV B we
will propose an alternative model to compare the same
two pinning cases but much more accurately, using dis-
crete displacements and an effective microscopic poten-
tial described by traps and suitable transition rates. In
Section VI we summarize our results and discuss their
practical implications for the study of the depinning tran-
sition.

IV. RESULTS

A. Numerical results: Continuous potentials

It is convenient to see the actual results of direct nu-
merical simulations of Eq. 1 to have a first clear picture
of the differences that appear between smooth and cuspy
pinning potentials.

In concrete, the numerical potentials we used are de-
fined as follows (see Fig. 2) For each site i a potential
Vi(ui) is constructed. The generic potential V (u) is con-
structed piecewise, by dividing the u axis in segments
through a set of values an. In each interval an-an+1
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1.0
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f

(a)

v

 

 

FIG. 3. Velocity as a function of force for a systems ofN = 216

sites, for different values of σ, using cuspy (a) and smooth (b)
pinning potentials. Curves with the same value of σ display
apparently larger values of β in (b) than in (a).

(defining a ≡ (an+1 + an)/2, and ∆ ≡ an+1 − an) the
potential is defined as

V (u) =
[
(u− a)2 −∆2

]
(2)

for the cuspy case, and

V (u) = −3∆2

2π2

[
1 + cos

(
2π(u− a)

∆

)]
(3)

for the smooth case. Note that even in the smooth
case the potential is not analytic, but it has a continu-
ous second derivative, which is enough for our purposes.
The separation ∆ between an and an+1 is stochastically
chosen from a flat distribution between ∆min = 1 and
∆max = 2.

In Fig. 3(a) we see the value of v as a function of f for
the case of cuspy potentials for a few values of σ going
from nearest neighbor interaction (σ →∞) to mean field
interaction (σ → 0). The plot in logarithmic scale with
respect to the critical force fc (Fig. 4) (fitting in each
case the value of fc) displays a robust critical region in
which the β exponent can be defined. The value of β
as a function of σ (reported also in Fig. 4) increases
when σ moves from large values to σ = 0. Moreover, the
actual values of β obtained for different σ accurately fit
those known from the literature.[68] This represents the
“standard” behavior that is compatible with the analysis
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FIG. 4. The data in Fig. 3(a) plotted in logarithmic scale,
fitting the critical force for each value of σ. The value of the
β exponent is obtained as the slope of the asymptotic straight
behavior, as indicated.

using renormalization group techniques.
The results of simulations using smooth potentials are

shown in Fig. 3(b). They apparently show larger values
of β than the values for cuspy potentials at the same σ
(Fig. 3(a)). For instance, the curve for σ = 1 seems to
have a slope close to one, instead of displaying β ' 0.62
as in the cuspy case.

As we have anticipated, the way out of this conundrum
is to realize that the critical region at which the results
for smooth potentials should coincide with those of cuspy
potentials may be small, and we might not be observing
it in Fig. 3(b). The critical region should become observ-
able when plotting the results of Fig. 3(b) in logarithmic
scale with respect to the critical force fc. However, the
identification of the critical region and the true value of
β relies on the accurate determination of the value of fc,
and this has to be done at the same time that fitting the
value of β, so it is very difficult to get reliable values of
β if the critical region is expected to be very small. To
overcome this difficulty and try to set this point, we have
done simulations in a modified model, that is described
in the next section.

B. Numerical results: Discrete pinning potential

The results for the flow curves contained in the previ-
ous section (Figs. 3 and 4) suggest that there are strong
non-universal effects associated to the form of the pin-
ning potential that is used. These non-universal effects
can mask the true critical behavior (that must be inde-
pendent of the form of the potential for σ > 0), and so
they have a great practical importance. Yet to determine
accurately the behavior close to the critical force fc we
face the problem mentioned at the end of the previous
section: The value of the critical force is not known in
advance, and it has to be determined during the fitting
process itself. This may be quite inconvenient when the
extent of the critical region is very small, as a slight un-

certainty in the critical force can completely alter the
results in this critical region.

In this Section we present a modification of the model
used in the previous Section IV A that does not have
this drawback, and allows a more precise characteriza-
tion of the effects we are studying. In addition, it also
allows a very precise determination of other exponents of
the transition, in particular the dynamical exponent z,
something that we are also interested in.

We start by defining this modified model, that was
already introduced in the context of thermal creep in
[27]. Its main characteristic is that the position of the
interface at each spatial location is not continuous (as
in the previous section) but discrete. We first define the
applied force fapp at site i as

f
app
i =

N∑
j=1

Gij (uj − ui) + f. (4)

The interface jumps between successive discrete posi-
tions (that are taken completely random, with an aver-
age separation of 0.1) when fappi exceeds the local critical
force, fthi (for simplicity in the simulations we take the
values of fthi as constant: fth = 2.5). The jump itself
is considered to be instantaneous, but the transition be-
tween consecutive positions does not occur immediately
after the critical force is exceeded. Instead, a transition
rate is considered. In this version of the model, the cuspy
and smooth cases of the model in the previous section can
be simulated by considering different forms of the tran-
sition rate. In fact, as it will be further discussed below,
the cuspy and smooth cases of the previous section differ
mainly in the time it takes for a particle that has ex-
ceeded the stability limit of one potential well to reach
the next equilibrium point at the next well. In the case of
cuspy potentials this time is roughly constant, indepen-
dent of the extent by which the threshold force has been
exceeded. In the case of smooth potentials this time goes
as ∼ (f − fth)−1/2, typical of saddle-node bifurcations.
We can model this behavior by assigning a constant tran-
sition rate λ ∼ cte to mimic the effect of cuspy potentials
(this will be referred to as the “constant rate” case), and
a rate that depends on applied force as λ ∼ (f − fth)1/2
to simulate the case of smooth potentials (this will be
referred to as the “variable rate” case). In the concrete
implementation, we consider all unstable sites for which
fappi > fth, and calculate an expected time τi for each site
to jump, taken from a Poisson distribution with the cor-
responding rate λi. The lowest of all τi is chosen and this
is the site that is actually moved. Time is advanced by
this minimum τi, elastic forces are re-calculated and the
process is continued. Average velocity is simply calcu-
lated as (u(t)−u(0))/t, in a run over a long time interval
t.

The advantage of the discrete potential model is that
its quasistatic properties are completely independent of
the rate law that is used. In fact, let us consider for in-
stance two avalanches in the system that start from the
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FIG. 5. (a) Flow curves of the discrete pinning potential
model with constant transition rate for different values of σ.
(b) Same data in logarithmic scale, fitting the value of fc in
each case. From these curves the value of the β exponent can
be determined.

same configuration but that evolve according to two dif-
ferent rate laws. Since the effect of any forward jump
of any portion of the interface is to increase the force
over any other site in the system, the avalanches will be
exactly the same whatever the rate law is, the only pos-
sible difference is in the order and time of activation of
different sites, by virtue of the Middleton theorems. This
means at once that all static critical exponents such as τ ,
ζ, ν... must be independent of the rate law. In addition,
the critical force will also be independent of the rate law,
which is very convenient from the point of view of ac-
curacy of the simulations, as explained previously. The
only exponents that can depend on the rate law are those
that sense temporal properties of the dynamics. They are
the flow exponent β and the dynamical exponent z.

The flow curves obtained at constant rate for different
values of σ are shown in Fig. 5. There is a clear difference
in the flow curves between Figs. 5 and 3 for large values
of f , which is a consequence of the details of the models
(the discrete pinning model does not have a “fast flow”
regime, but a velocity saturation at large forces. How-
ever, the values of the β exponent determined from the
logarithmic plots (panel (b)) are in excellent agreement
with those in Fig. 4, showing that the discrete model
with constant rated in fact reproduces the behavior of
the continuous cuspy pinning potential.

Fig. 6(a) displays the flow curves in the variable rate

2.3 2.4 2.5 2.6
0.00
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10-4 10-3 10-2 10-1 100
10-5

10-4
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10-2
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 0
 0.5
 1
 1.5
 inf

f

 

 

v

(b)10.92

0.62

0.37

v

 

f-f
c

0.25

FIG. 6. (a) Flow curves of the discrete pinning potential
model with rate transition λ that depend on stress as λ ∼
(f − f th)1/2, for different values of the long range interaction
exponent σ. (b) Same data in logarithmic scale, using the
value of fc previously used in Fig. 5(b). The continuous
straight lines have the same slope than in the previous Figure.

case, namely λ ∼ (f−fth)1/2, mimicking the smooth con-
tinuous potential case. Comparing Figs. 6(a) and 5(a)
we observe again (as between Figs. 3(a) and 3(b)) a clear
difference in the overall form of the curves with values of
β that look larger in Fig. 6(a) than in Fig. 5(a). In order
to quantify this difference in more detail it is necessary to
look close to the critical force. It was already mentioned
that the great advantage of the discrete pinning model
is that the values of critical force for the curves in Fig.
6(a) are the same values as for the curves in Fig. 5(a),
which were already fitted to construct Fig. 5(b). Using
those values we construct the plot in Fig. 6(b). We note
that as far as σ > 0 the curves eventually reach the same
exponent than in Fig. 5 when approaching the critical
force. However, the force range in which this limiting
behavior is obtained shrinks as σ is reduced, and we are
actually unable to observe it clearly once σ . 0.5. Our
conclusion is that the critical region with the same β as
in the constant rate case remains finite for all σ > 0, but
shrinks as σ is reduced, vanishing for σ ≤ 0, where the
mean field value β = 3/2 is re-obtained.

An alternative way to look at the effect just described
is to plot the ratio R between the velocities for variable
and constant rates (note that this has sense only in the
present case in which the critical force is the same for
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FIG. 7. Ratio R between the velocities for variable and con-
stant rate, as a function of the separation from the critical
force. Linear (a) and logarithmic (b) scales. The limiting
value C for f − fc → 0 is plotted in the inset.

the two different rates). The results contained in Fig. 7
show a remarkable systematic trend. As a function of
∆f ≡ f − fc, the velocity ratio R behaves as R ∼ C +
A∆f1/2. The value ofA is almost independent of the long
range interaction exponent σ, but C has a systematic
dependence, reducing as σ decreases, and vanishing at
σ = 0. For any σ > 0 the finite value of C implies
the coincidence of the β values for constant and variable
rate. However, as C decreases, the range to observe this
coincidence decreases also, and for σ = 0 (i.e., C = 0)
the value β = 3/2 is obtained for variable rate, instead
of the β = 1 that is obtained for constant rate.

The estimation we have for R allows to quantify the
extent of the critical region. We can say that the
critical region extends roughly up to the point where
C(σ) ∼ A∆f1/2. This provides ∆fcrit ∼ C(σ)2. As C
is observed to be roughly linear with σ, we finally obtain
∆fcrit ∼ σ2.

V. IMPLICATIONS ON THE AVALANCHE
DYNAMICS

The discrete pinning potential model is also useful to
make an accurate determination of avalanche statistics.
In order to analyze it, we did simulations using a qua-
sistatic algorithm, consisting in progressively reducing
the value of the external force f in Eq.(4) as dynam-
ics proceeds. Namely, each time a site jump from ui to
ui + δ, f is reduced to f − δ/N . In this way, f eventu-

10-2
10-1
100
101
102
103

L

        N
 218

 215

 213

 210

 

S

L1.39

FIG. 8. Size S vs spatial extent L of individual avalanches
(small dots) obtained in quasistatic simulations of the discrete
pinning potential model, at σ = 1. Averaging over small L
intervals the continuous lines are obtained for different sys-
tem sizes, which allows to determine the value of the critical
exponents ζ. The value obtained ζ ' 0.39 coincides with the
one reported in the literature.

ally becomes lower than fc and the dynamic stops. At
this point f is increased up to the point in which one
site becomes unstable. This allows to analyze individual
avalanches in the system at fc. In this way we generated
large sequences of avalanches in the system, to which we
can calculate duration T , size S (calculated as the dif-
ference between

∑
i ui after and before the avalanche),

and spatial extent L (which is the number of sites that
jumped during the avalanche). The statistical behavior
of these three quantities allows to determine some impor-
tant critical exponents of the transition. For instance, the
(average) relation between S and L allows to determine
the roughness exponent ζ through S ∼ Ld+ζ . In addition
the relation between T and L determines the dynamical
exponent z: T ∼ Lz.

In Fig. 8, S vs L is plotted for the “standard” long
range case σ = 1, which is particularly relevant for prop-
agating fractures, contact lines of liquids or “magneti-
cally charged” domain walls [39]. By construction of the
model, this plot is valid both for constant, and also for
variable rates. Although the individual data points are
quite scattered, averaging over small intervals of L allows
to obtain a good estimation of ζ. The value obtained
(ζ ' 0.39) perfectly coincides within the error bar with
the value reported in the literature (see e.g. Ref. [ 40]).

We now focus on the duration T vs spatial extent L re-
lation, determining the dynamical exponent z as T ∼ Lz.
This result depends on the form of the rates. For constant
rate the result is shown in Fig. 9(a), and is consistent
with the expected value of z, namely z ' 0.77 [38, 41].
The results in Figs. 8 and 9(a) further support the claim
that the constant rate discrete pinning potential is a re-
alization of the cuspy continuous potential case.

The results for T vs L for the variable rate case are
presented in Fig. 9(b). The first thing that is observed
is that data for individual avalanches (small dots) are
much more scattered compared to Fig. 9(a). This be-
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FIG. 9. Duration vs spatial extent of avalanches obtained in
quasistatic simulations of the discrete pinning potential model
with constant (a) and variable (b) transition rate, at σ = 1.

havior is clearly related to the variable rate: whereas
for constant rate the avalanche duration is at most of
the order of avalanche size, for variable rate even small
avalanches can last for quite long, as a single site may
take a very long time to be activated if it is only slightly
above the local critical force. The next observation in
Fig. 9(b) is that a relation T ∼ Lz with z being the
same exponent as in Fig. 9(a) is obtained, but only for
sufficiently large avalanches. This is in fact consistent
with our view that the critical region for the variable
rate case is much smaller than for the constant rate case,
and only large avalanches display the correct critical T
vs L dependence. For small avalanches this dependence
deviates towards larger values of T . Interestingly, cracks
experiments [6] also show an“excess duration” for small
avalanches, suggesting the non-universal effect of smooth
microscopic disorder or “variable rate” local instabilities.
Note also that for these small avalanches the typical dura-
tion depends also on the system size N , an effect that was
already discussed in Ref.69 in the context of the yielding
transition.

Since the results for the flow curve support the idea
that the size of the critical region shrinks to zero as σ →
0, the question naturally arises of what is the nature of
the T vs L dependence and the value of z in this limit,
for constant and variable rates. To address this point
we generated avalanches in a mean field case (σ = 0),
and plot the results in Fig. 10, both for constant and
variable rate, for system of different sizes. The results
for constant rate are consistent with the standard value
of z in mean field, namely z = 1/2. However, results
for variable rate sharply deviate of this behavior. We
obtain a value of z = 1/4 instead, and also an overall

101 102 103 104
100
101
102
103
104
105

L1/4

L1/2

T
variable rate

         N
216

213

210

27

 

 

L

constant rate

FIG. 10. Duration vs spatial extent of avalanches obtained
in quasistatic simulations of the discrete pinning potential
model, in a mean field situation (σ = 0). For constant tran-
sition rate the expected result z = 1/2 is obtained, and there
are no dependences on system size besides the appearance of
progressively larger avalanches as system size increases. For
variable transition rate the value z = 1/4 is obtained and in

addition, a global dependence on system size of the form N1/2

is observed.
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σ= d/20σ=

βeff

σ=2

3/2

1

σ

Fully Coupled

Long−Range Short−Range

Mean−Field

β ∆

σ

σ2
f
crit

V

FIG. 11. Schematic illustration of the answer to the puzzle
posed in Fig. 1. The extent of the critical region for smooth
potentials (measured by ∆f crit) reduces continuously to zero
as σ = 0 is approached. In the region σ ≤ 0 the non-universal
critical exponent β = 3/2 is observed. This raises the pos-
sibility (in experiments or numerical simulations) to observe
strong corrections to scaling in the smooth potential case, spe-
cially at low values of σ, that may induce to adjust effective
values of the β exponent (roughly indicated by the hatched
region), that are expected to be larger than the true values.

dependence on the system size, in such a way that we
can write T ∼ L1/4N1/2. This last relation can in fact
be obtained analytically [70].

VI. CONCLUSIONS

In Fig.11 we summarize the picture that emerges from
our results. The peculiar breakdown of universality in the
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FIG. 12. Estimations of β and fc from the raw data points
of Fig.6 for σ = 1 corresponding to the smooth microscopic
pinning or variable jump rate case. The best pairs fc and β are
obtained from least squares fits to log v = β log(f − fc) + cte
varying the number Np of points considered from the lowest f .
From (a) we choose the values that minimize the fit parameter
error ∆β, and obtain the fit shown in (c) (the effective β is
shown by a dashed line in (a)) From (b) we choose the values
that minimize the standard deviation χ of the fit and obtain
the fit shown in (d) (the effective β is shown by a dashed
line in (b)). The obtained values must be compared with the
asymptotic ones β = 0.62 (shown with a solid line in (a) and
(b)), and fc = 2.37670.

σ → 0 limit is explained in terms of a vanishing critical
region for smooth potentials (whenever disorder is strong
enough to have a finite fc in such limit). We argue that
the vanishing of the critical region has practical implica-
tions for the analysis of long-range depinning. Since the
fully-coupled model has a β = 3/2 exponent for smooth
potentials, larger than the universal β = 1 for cuspy po-
tentials, effective values 3/2 > βeff > 1 are plausible to
be observed for σ & 0, but also for even larger σ we expect
an excess, i.e. βeff(σ) > β(σ). The difference between
the effective and the right exponents are found to be more
important for the dynamical exponents, β and z, than for
the geometric exponents, ζ and ν. From a simple micro-
scopic model we have shown that this is related to the
competition between the characteristic time τ1 associated
to single particle instabilities, with the time associated to
collective instabilities, τ ∼ (f − fc)−zν , which is roughly
controlled by the number of active particles involved in
the spreading of correlations at lengths l ∼ (f − fc)−ν .
This competition is made more clear when we analyze
avalanche dynamics in the quasistatic limit.

To illustrate the kind of effects we can expect from the
non-universal corrections to scaling arising from smooth
microscopic pinning potentials, in Fig.12 we show esti-
mations of β and fc from the raw data points of Fig.6
for σ = 1 corresponding to the variable jump rate case
discussed in Section IV B. We use two fitting meth-
ods which are often used in the literature. The best
pairs fc and β are obtained from least squares fits to
log v = β log(f − fc) + cte varying the number Np of
points considered, starting from the three lowest values
of f . For each case we slowly decrease fc from the low-
est value of f . In Fig.12(a) we show that for each Np
(labels for each Np are shared with Fig.12(b)) the fit pa-
rameter error ∆β displays a minimum for a given value
of fc. If we choose the values corresponding to this min-
imum we obtain the fairly good fit of the data shown in
Fig.12(c). If instead we choose the values corresponding
to the minimum of the standard deviation χ of the fit we
obtain the fit shown in Fig.12(c) (note that in this case,
the optimum Np and fc are different than with the pre-
vious criteria). The obtained values must be compared
with those obtained from the more robust constant rate
simulations (Fig. 5) β = 0.62, and fc = 2.37670. It is
worth noting that in either case the effective β is larger
than its true asymptotic value, which is accurately ob-
tained by using the constant rate discrete model.

Our results motivate a reexamination of the empiri-
cal experimental and numerical (smooth potential) long
range depinning data analysis. In Ref.[7] the depinning
exponent β ≈ 0.8 was directly measured for cracks prop-
agating in an elastic inhomogeneous material. A less di-
rect estimate, also for propagating cracks, can be ob-
tained from the experimental results for the avalanche
duration exponent γ = 1.67 reported in Ref. [42]. Using
that γ ≈ β + ζ/(1 + ζ) and assuming ζ = 0.39 [40, 41]
we get β ≈ 0.72. Both values appear to be larger than
the ones predicted for the universality class of one di-
mensional elastic interfaces with σ = 1 long-range elas-
tic couplings and uncorrelated isotropic disorder, where
β ≈ 0.63 [41, 42] and β ≈ 0.68 [38] were found numer-
ically using “cuspy” or cellular automata lattice models.
One can thus argue that the excess in the effective value
of β may arise, in part, from the strong corrections to
scaling we expect for long-range depinning with smooth
microscopic pinning potentials, due to the vanishing of
the critical region approaching the fully-coupled limit.

ACKNOWLEDGMENTS

We thank A. Rosso for enlightening discussions.
A.B.K. acknowledges hospitality at LPTMS-Université
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Appendix A: Results in higher dimensions

In addition to considering a long range interaction in a
one dimensional system, there is a second standard way
to move towards the mean field limit. This is to consider
the short range depinning problem in progressively larger
number of dimensions. For short range interactions, the
critical dimension of the depinning problem is dc = 4,
i.e, for d > dc we expect mean field critical exponents,
in particular β = 1. The short range case in dc = 4
corresponds to the σ = 1/2 case of a 1D system. It
is then natural to ask if increasing the dimension d we
observe the same trends we observe by decreasing the
exponent σ, particularly in the flow curves.

We have found that the answer to this question is af-
firmative. The relevant results are contained in Figs. 13,
14, and 15 (which should be directly compared to Figs.
5, 6, and 7). There we present simulations of the discrete

pinning potential model, in different number of spatial
dimensions, namely d = 1, 2, 3, 4 and 6, with interac-
tions only among nearest neighbor sites (corresponding
to σ → ∞). In order to compare different dimensions
more easily, and to have a well defined limit as d → ∞,
here the elastic interaction Gij (in Eq. 1) is normalized
differently, namely we take the value of Gij for neighbor
sites as 2/d. The trend we observe as dimension is in-
creased is equivalent to what we have obtained as σ is
reduced, in one dimension: For constant rate a robust
critical region is obtained and the value of β increases
with the number of dimensions, reaching the mean field
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FIG. 14. Same as previous figure for variable transition rates.

value β = 1 for d = 4. For variable rates the extent of the
critical region is smaller, and is reduced as d increases.
Note however that the critical region does not vanish at
the upper critical dimension d = 4: our data are con-
sistent with the critical region vanishing only as d → ∞
where the mean field value (β = 3/2) is fully observed.
As in the case of varying σ, here we can estimate the
extent of the critical region as a function of d (see Fig.
15) and the result is ∆fcrit ∼ d−1.
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