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Abstract

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate and

invertebrate nervous system. GABAA receptors are activated by GABA and their agonists,

and modulated by a wide variety of recognized drugs, including barbiturates, anesthetics,

and benzodiazepines. The phenols propofol, thymol, chlorothymol, carvacrol and eugenol

act as positive allosteric modulators on GABAA-R receptor. These GABAergic phenols inter-

act with the lipid membrane, therefore, their anesthetic activity could be the combined result

of their specific activity (with receptor proteins) as well as nonspecific interactions (with sur-

rounding lipid molecules) modulating the supramolecular organization of the receptor envi-

ronment. Therefore, we aimed to contribute to a description of the molecular events that

occur at the membrane level as part of the mechanism of general anesthesia, using a

molecular dynamic simulation approach. Equilibrium molecular dynamics simulations indi-

cate that the presence of GABAergic phenols in a DPPC bilayer orders lipid acyl chains for

carbons near the interface and their effect is not significant at the bilayer center. Phenols

interacts with the polar interface of phospholipid bilayer, particularly forming hydrogen

bonds with the glycerol and phosphate group. Also, potential of mean force calculations

using umbrella sampling show that propofol partition is mainly enthalpic driven at the polar

region and entropic driven at the hydrocarbon chains. Finally, potential of mean force indi-

cates that propofol partition into a gel DPPC phase is not favorable. Our in silico results

were positively contrasted with previous experimental data.

Introduction

GABAA receptors (GABA-Rs) are ligand-gated ion channels that mediate rapid synaptic inhi-

bition and they constitute the main inhibitory receptors of the Central Nervous System.

GABA-Rs are membrane intrinsic proteins with specific binding sites for drugs other than the
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neurotransmitter GABA, that includes benzodiazepines, barbiturates, and the convulsant

picrotoxinin, which behave as allosteric modulators or channel blockers [1]. Propofol (PRF) is

a phenol widely used as intravenous general anesthetic [2]. PRF and the related phenol thymol

have been shown to act on R-GABA as allosteric modulators at low concentrations or to have

a direct effect on the channel opening at high concentrations. These activities are mediated by

their interaction with a specific site in the GABA-R [3, 4]. However, a non-specific effect on

the receptor modulation cannot be discarded taking into account the lipophilicity of these

compounds and their interaction with the membrane surrounding the receptor [5, 6]. In fact,

it is known that the activity of this receptor may be affected by surface-active compounds and

by physical changes in the membrane [7–9].

Physicochemical properties of anesthetics are important to elucidate their action mechanism

[10]. Anesthetics activity may involve modification of membrane properties such as fluidity,

thickness or lateral structure [11, 12] and/or modulation of protein conformational equilibrium

through modifications in the lateral organization of the membrane [13, 14]. In this sense, the

thermodynamics of lipid liquid to gel transition and membrane–alcohol interactions have been

considered highly important for understanding the effects of general anesthetics action [15, 16].

GABAergic phenols (GP) such as PRF and thymol are relatively small molecules with a rigid

cyclic structure that partition into the hydrophobic region of the bilayer, probably locating their

hydrophilic hydroxyl group close to the interfacial region [8]. For small alcohols it has been sug-

gested that their partition into a phospholipid membrane is driven mainly by the dehydration

of the alcohol molecule, rather than from specific alcohol–membrane contacts [15, 17]. Analysis

of the temperature and composition dependence also showed that the hydrophobic effect is the

major driving force for membrane–alcohol association [15, 18]. It has been suggested by Fran-

gopol et. al, that the partitioning of alcohol into lipid membranes is governed by three major

forces, two of them that favor membrane partition, that is the hydrophobic repulsion between

alcohol and water and the attraction of the polar group of the alcohol to the head group of the

lipids. The third one is a weak repulsive effect due to the intercalation of the alcohol group into

the lipid bilayer that disfavor its partition into the bilayer [15].

Particularly for PRF, it has been proposed that a potential mode of anesthetic action involves

the modulation of lipid order in the target membranes [19, 20]. Computational studies have

demonstrated that PRF induces a cholesterol-like ordering effect on l-2-dipalmitoyl-sn-glycero-

3-phosphocholine (DPPC) in the fluid phase [21]. We have previously shown that GP, including

PRF, are able to expand the DPPC monolayer in a concentration-dependent manner, to destabi-

lize the film at high concentrations and to induce a more elastic liquid-condensed phase [8]. Epi-

fluorescence studies demonstrated the presence of GP in the membrane, probably near to the

polar head of the phospholipid molecules, change the molecular orientation and would diminish

the repulsion among phospholipid headgroups [8]. 1H-NMR spectroscopy assays have shown

that GP interact with liposomes of Egg-PC mainly in the region between the head polar group

and the first part of the acyl chains, depending on the lipophilicity of each compound [22].

Taking these experimental results into account, in the present study we have analyzed the

partition of five GP into a bilayer, including PRF (see S1 Fig), and the associated thermody-

namics changes involved in such process, using MD simulations with a DPPC model mem-

brane. This approach has allowed us to characterize these interactions at the molecular level.

Methods

Computational details

Equilibrium MD and PMF calculations were carried out using the 5.0.2 GROMACS package

with GPU acceleration [23], using computational resources from CCAD-Universidad Nacional
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de Córdoba (http://ccad.unc.edu.ar/), in particular the Mendieta Cluster. We used the AA force

field Slipids for lipids [24] and the TIP3P model [25] for water molecules. For liquid –crystaline

equilibrium MD simulations, the starting geometries were obtained from Slipids on-line

resource (http://mmkluster.fos.su.se/slipids/). Fully hydrated lipid bilayers containing 128

DPPC molecules equilibrated at 323 K were employed for equilibrium simulations.

The construction of phenols units to be used in MD simulations was made with the Ante-

Chamber module, using the protocol described before [26]. Quantum chemical calculation of

the optimized structure and RESP charges were obtained as before [24–26] with the Gaussian

03 package [27]. Phenols units were obtained using the GAFF force field [28]. The AnteCham-

ber PYthon Parser interfacE (ACPYPE) [29] was employed to translate the parameter files to

be use with GROMACS code.

For equilibrium MD, the simulation protocols were the same as in reference [24]. For each

GP, 20 molecules were randomly located in the water solvent within the simulation box with

the following dimensions in the x–y-z axes, ~68 Å × ~68 Å ~74 Å, and by removing the over-

lapping water molecules in a ratio of 2 Å. All bonds were constrained using LINCS algorithm.

The Lennard-Jones interactions were truncated at 1.0 nm. Constraining the bond lengths

allowed a time step of 2 fs to be used. The particle mesh Ewald method [30] was used to evalu-

ate the electrostatic interactions, with a real-space cutoff of 1.0 nm. The simulations were per-

formed in the NPT ensemble using a semi-isotropic compressibility (4.5e-5 and 4.5e-5). A 100

ps equilibration at 300 K was run and 400 ns of MD simulations were collected for all the sys-

tems, the final 200 ns of these simulations were employed for the analysis of density profiles,

deuterium order parameter, etc. We determined the first hydration shell for PRF along the

MD using g_trjorder and a radius cut-off of 0.435 nm. Membrane thickness was defined as the

average distance between phosphorus atoms in the opposing leaflets (P−P distance).

The PMF simulations were carried out in a fully hydrated lipid DPPC bilayer containing 64

lipid molecules. The 64 DPPC patch at the liquid phase equilibrated for 400 ns was obtained

from SLIPIDS on-line resource. The 64 DPPC patch at the gel phase (298 K) was obtained

from the 128 DPPC at 293 K patch available at Slipids on-line resource, and equilibrated for

400 ns at 298 K. PMF was calculated as a function of the distance of the phenols to the bilayer

center along the z-axis normal to the plane of the bilayer. For PMF at 323 K, a series of 20 sepa-

rate simulations of 30 ns each were performed, in which each molecule was restrained to a

given depth in the bilayer by a harmonic restraint on the z-coordinate with a pulling rate of

0.0024 nm.ns-1. For ΔG decomposition PMF calculations were calculated with 20 separate sim-

ulations, of 100 ns each. For PRF partition into the gel phase, a 200 ns simulation was per-

formed for each step. A force constant of 1000 kJ mol-1 nm-2 was used with a spacing of 0.2

nm between the centers of the biasing potentials with a pulling rate of—0.001 nm.ns-1. Two

phenols molecules were used, one per leaflet allowing error estimation. Finally, the Weighted

Histogram Analysis Method (WHAM) was used to extract the PMF [31].The error bars for

these calculations were obtained using the bootstrap method [32].

We performed two additional PMF calculations at 338 K and 353 K. The free energy of par-

tition obtained in PMF simulations was decomposed into its entropic and enthalpic compo-

nents through its temperature dependence [33], using the PMF profiles at 323, 338 and 353 K

and the following equations

� T:DS ¼
T:DG
DT

�
T

2:DT
G T þ DTð Þ � G T � DTð Þð Þ ð1Þ

DH ¼ DGþ T:DS ð2Þ
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Being T = 338 K and ΔT = 15 K. The PMFs at all three temperatures were aligned so they

had a ΔG value of zero in the water phase (3.5 nm), and thus all free energies, enthalpies, entro-

pies, and heat capacities are relative to the ones of GP in water.

All molecular visualizations were prepared with VMD [34].

Results and discussion

Calculation of the Potential of mean force of Phenols-DPPC interaction

We performed PMF calculations to determine the free energy profile of GP partition at the

bilayer as a function of the distance to the center of the bilayer along its normal axis z [ΔG(z)].

Calculations were performed at DPPC liquid-crystalline state (323 K) (Fig 1), and the curves

were aligned so that the GP relative free energy in bulk water corresponds to zero for every

GP. We performed additional PMF calculations using a different initial system setup were two

GP molecules are biased from the bilayer core to water, one per leaflet (S2 Fig). This additional

system setup was used to verify convergence of the PMF profile and to discard cooperative par-

titions as observed in ketones [35]. The PMF obtained with the reversed path used for pulling

(S2 Fig) showed no significant differences with the PMF profile originally obtained (Fig 1).

The obtained PMF profiles were similar for all compounds, with a global minimum in the

region beneath in the DPPC carbonyl group region (~1,2 nm). ΔG values of partition showed

the following order of negative increasing values: chlorothymol<PRF�thy-

mol<carvacrol<eugenol (Fig 1). This indicates that the compounds that were more favored to

partition into a DPPC bilayer were chlorothymol, PRF and thymol. In a previous work, we

have experimentally determined and correlated several lipophilic parameters for all phenols,

including log Po/w, retention data in high performance liquid chromatography (HPLC) by

using C18 or immobilized artificial membrane (IAM) columns at different temperatures, and

partition coefficients determined in phospholipid liposomes [6]. Log k values obtained by the

immobilized phosphatidylcholine (IAM columns)-HPLC method for the five compounds,

showed the following order of increasing affinity for phospholipids: chlorothymol<PRF<

thymol� carvacrol<eugenol [6]. Correlation of the Log k values previously obtained by the

IAM–HPLC method (log kIAM–W) [6], with free energies of partition obtained in biased MD

(from Fig 1) was calculated. The correlation returned a value of 0.935, indicating a close agree-

ment between experimental membrane partition coefficients and MD simulations (S3 Fig).

We have previously determined by 1H-NMR spectroscopy that all GP are able to insert in

Egg-PC phospholipid vesicles, and that they locate in the region between the choline moiety,

the glycerol and the first atoms of the acyl chains [22]. In addition, the more lipophilic com-

pounds (PRF and chlorothymol) tend to prefer a deeper bilayer insertion [22]. We can also

estimate from PMF profile, that PRF is able to translocate from one hemilayer to the other.

Other authors also proposed that thymol likely partitions into the hydrophobic region of the

bilayer with the hydrophilic hydroxyl group being close to the interfacial region [36]. Our

results reinforce these previous assays.

All atom equilibrium MD simulations

In order to characterize the interaction and partition of GP molecules into the DPPC mem-

brane, MD runs of ~400 ns each were carried out with 20 molecules of each GP inserted at ran-

dom starting positions over the membrane plane (see S4 Fig for time snapshots of system

setup and time evolution). To corroborate the proper equilibration of the simulations, the area

per lipid and membrane width were evaluated (see S1 Table) as well as number of GP mole-

cules inserted in the bilayer. The last 200 ns were used for analysis.

Gabergic phenols-membrane interaction
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Fig 1. Phenols free energy of partitioning into a DPPC bilayer. A) The partial densities of the DPPC chemical

moieties. Density profile of DPPC (black line), water (black dashed line), DPPC choline group (blue line), DPPC
phosphate group (red line), DPPC carbonyl group (green line), DPPC acyl chain (brown line). B) Potential of mean force

for different phenols into a DPPC bilayer at liquid-crystalline phase. The panels display the free energy (ΔG) at 323K.

https://doi.org/10.1371/journal.pone.0218042.g001
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We obtained the density profile of DPPC bilayers in presence of different phenols along the

z-axis to analyze the distribution of all components of the system. The peak of phenols density

in the membrane is found in the lower region of the carbonyl groups of DPPC. This indicates

that molecules are preferentially located near to carbonyl groups (Fig 2). This profile is consis-

tent also with the free energy profile, where the minimum energy for phenols is located in the

diglyceride region (Fig 1). This result is also in agreement with the location found for other

alcohols, that are predominantly bound to the region near the glycerol backbone of the phos-

pholipid [37–39].

Some density can be observed for PRF at the bilayer center, indicating that the molecule

can flip-flop from one hemi-layer to the other (Fig 2). This is consistent with the free energy

profile, where the energy for PRF at the bilayer center is negative (Fig 1). A negative free

energy at the bilayer center correlates with a more permeable compound. On the other hand,

carvacrol density in the bilayer did not reach equilibrium at 400 ns, therefore its distribution

was asymmetrical (Fig 2). This is a consequence of the difficulty of carvacrol to flip-flop from

one hemi-layer to the other (see Fig 1).

Fig 2. Schematic diagrams of the density profile of DPPC bilayers in presence of different phenols along the z-axis. The density profile of the

whole system and its relevant components are shown. Density profile of DPPC (with its main groups and water indicated, see references in Fig 1).

Each pannel correspond to different phenols: PRF (violet), thymol (maroon), chlorothymol (cyan), carvacrol (orange) and eugenol (pink).

https://doi.org/10.1371/journal.pone.0218042.g002
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The deuterium order parameter (SCD) [36], was calculated to evaluate the effect of GP in

the degree of ordering of the acyl chains of the phospholipids. Fig 3 shows a comparison of the

SCD values of sn1 and sn2 chains of a pure DPPC bilayer at fluid phase (323 K) compared to a

DPPC bilayer in presence of the different GP. It was found that both sn1 and sn2 chains show

an increase in order parameters values (Fig 3). The ordering effect of GP was slightly stronger

for the methylene groups closer to the carbonyl (Fig 3). PRF, chlorothymol and thymol show a

higher ordering effect. Previous MD simulations using a modified Berger force field, have

shown that PRF has a cholesterol-like ordering effect on DPPC in the fluid phase, on the acyl

tail carbon atoms close to the bilayer interface, and has negligible effect on the order parame-

ters of the carbon atoms near the bilayer center [21]. Also, the addition of thymol to a DMPC

fluid bilayer has been observed to lead to an increased order in the acyl chain close to the

bilayer interface [36].

For PRF, fewer hydrogen bonds were observed with water (one hydrogen bond per mole-

cule) compared to other phenols that were able to establish an average of two hydrogen bonds

per molecule (Fig 4). Spectroscopic techniques as well as high-level ab initio calculations have

shown that PRF isopropyl groups hinder the OH–water interaction, although they fail in

completely blocking the OH solvation site [40]. This explains this reduction in hydrogen

bonds when compared to other phenols, were alcohol group is less hindered.

We determined the groups involved in the hydrogen bonds between GP and DPPC along

all the simulation. Hydrogen bonds were established with both the glycerol backbone and with

the phosphate group of the lipids (Fig 5). When groups involved in hydrogen bonds are dis-

criminated, PRF- glycerol predominates over PRF- phosphate group. This indicates that PRF

is located deeper into the bilayer with its ring closer interacting with the hydrophobic core of

the bilayer. For carvacrol the inverse situation is observed, with a predomination of GP-phos-

phate group hydrogen bonds (Fig 5).

To deeper analyze the molecular orientation of the different GP, we define a set of axes

common for all molecules connecting the O atom of the alcohol group to the opposite C atom,

and another perpendicular to the former. We measure these atoms distance to the phosphate

group (see S5 Fig). This analysis indicates that the axe of PRF molecule that goes through the

OH group is perpendicular to the membrane normal, while the axe defined by the two ethyl

substitutes of the ring are parallel. Also, the hydrophobic substituents of PRF have higher dis-

tances to the phosphate group, indicating that they are deeper into the bilayer. These results,

along with the H-bond data, indicate that PRF locates in the bilayer with its CH3-CH3 substit-

uents facing the bilayer core, and its OH group H-bonding with carbonyl group (S5 Fig). The

hydrophobic substituents of thymol and chlorothymol are also deeper into the bilayer. Despite

the great similarity between thymol and carvacrol, the different location of the OH groups

(away from the isopropyl groups) (S5 Fig), results in an increased hydrogen bonds with DPPC

phosphate group for carvacrol and less hydrogen bonds with the carbonyl (see Fig 5).

We calculated the GP-water, GP-GP and GP-DPPC non-bonding interactions (S6 Fig). For

GP-GP coulombic interactions, we found two types of compounds, those with attractive forces

(carvacrol and eugenol), and those with repulsive forces (PRF, thymol and chlorothymol). The

main structural difference among these two groups is that the former are less hydrophobic

than the latter. For both groups there were found attractive Lennard-Jones interactions

between phenol and DPPC, while GP-GP Lennard-Jones interactions, they were found to be

nearly zero (S6 Fig). Finally, we determined the first hydration shell for PRF. While in the

aquose phase PRF has ~35 water molecules, at the lipid phase there is an average of ~5 water

molecules, except at translocations, were water molecules drop to cero (S7 Fig).

Gabergic phenols-membrane interaction
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PMF decomposition into enthalpic and entropic contributions

We decomposed PRF ΔG profile into their entropic and enthalpic contribution (ΔH and ΔS)

(Fig 6), with the aim to characterize the forces underlying GP membrane partition. It was evi-

denced that PRF partition is mainly enthalpic at the carboxylic region (1–1.5 nm), and entro-

pic at the center of the bilayer. The hydrophobic repulsion between isopropyl moiety and

water seems to be contributing to the entropy gained by the system as the phenols partition

deeper into the bilayer were they are dehydrated (see S7 Fig). The enthalpic contribution

observed for PRF would correspond to the formation of hydrogen bonds with the carbonyl

moiety of DPPC (see Fig 5). Previous ITC measurements of PRF incorporation in liposomal

bilayers of DPPC have indicated that partitioning of PRF is favored by enthalpy in the fluid

state [21], and a similar behavior has been reported for ethanol partition into DMPC lipo-

somes [17]. Our results are in agreement with ITC, since at the carbonyl region that corre-

sponds to the minimum of the free energy profile, the main component of ΔG is enthlapic (Fig

Fig 3. Profile of the phenols effects on the deuterium order parameters (SCD). SCD values of sn1acyl chain (upper

panel) or sn2 chain (lower paner) of DPPC in absence (black line) or in presence of PRF, thymol, chlorothymol,

carvacrol and eugenol were determined. We analyzed the time evolution of hydrogen bonds of phenols, both with

water as well as with DPPC (Fig 4). As phenols partition into the bilayer, the hydroxyl group of phenols loses hydrogen

bonds with the water, and makes hydrogen bonds with DPPC moieties (Fig 4).

https://doi.org/10.1371/journal.pone.0218042.g003
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6). This is due in part of an increased in attractive GP-DPPC Lennard-Jones interactions, as is

evidenced when Lennard-Jones and columbic interactions are analyzed in equilibrium MD

(see S6 Fig).

It has been shown for a series of n-Alcohols, that although the hydrophobic effects play a

major role in the membrane partitioning process, there is large negative enthalpy for some

compounds [39]. Rowe et al. proposed that, for these n-Alcohols, the lipid-lipid interactions

are probably contributing more to these enthalpic changes than the solute-lipid interactions

[41]. Contrary to the hypothesized by Rowe et al., when DPPC-DPPC Lennard-Jones interac-

tions were analyzed, a diminished in DPPC-DPPC attractive interactions can be observed

upon GP partition into the bilayer (see S8 Fig). We attribute the enthalpic change to Lennard-

Jones attractive GP-DPPC interactions.

PMF of PRF partition at gel phase

We performed PMF calculations to determine the free energy profile of PRF partition in the

bilayer at a gel phase (298 K). To analyze the convergence of Free Energy Profiles at 298 K, we

use PMF profiles increasing the total simulation time by 20 ns intervals until the maximum

simulation time of 200 ns (S11 Fig). PRF partition free energy profile at a bilayer at a gel phase

was positive with a global maximum, which corresponds to the core region of the bilayer and

two minima at the water phase and the other at the interface of the carbonyl moiety and the

Fig 4. Time evolution of hydrogen bonds of GP. Total number of hydrogen bonds of each GP molecules with water during equilibrium MD

(black line) compared to the number of hydrogen bonds of each GP molecules with DPPC (red line).

https://doi.org/10.1371/journal.pone.0218042.g004
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hydrocarbonated chains (Fig 7). To support the conclusions obtained in the PMF for the GEL

phase, we performed two unbiased MD simulation using the system set up used for biased MD

simulations. First, two PRF molecules were located in the aquose phase, while for a second

unbiased MD, a single PRF molecules was located inside the bilayer core. We obtained 800 ns

MD trajectories for each system set up, and analyzed the system evolution. System density

evaluation shows that PRF molecules do not partition from the aquose phase into the gel phase

(see S9 Fig), while if already inside the bilayer core, PRF resides within the region just beneath

the carbonyl region of DPPC (see S10 Fig. These results support the one obtained in biased

MD (Fig 7), since it agrees with the minimums observed and the positive ΔG of partition into

the bilayer core.

These results, along with the observation of an increased order in equilibrium MD simula-

tions, suggest that the mode of action of PRF could involve the modulation of the lipid order

in target membranes, showing a cholesterol-like ordering effect on DPPC in the fluid phase

[21] but also favoring fluid phases because of its poor partition into the gel phase. It has been

proposed that anesthetics are ideally soluble in the liquid phase of the bilayer, and are immisci-

ble in the solid phase [42].

The effects of thymol in DMPC bilayer have previously been analyzed by Phang et al. [36].

They conclude that thymol cause melting point depression and phase segregation in lipid

Fig 5. Time evolution of hydrogen bonds of GP with different DPPC groups. Total number of hydrogen bonds of each GP molecules with

DPPC Carbonyl group (black line) compared to the number of hydrogen bonds with DPPC phosphate group (red line) along MD trajectory.

https://doi.org/10.1371/journal.pone.0218042.g005
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bilayers, because of a higher solubility in the fluid bilayers than the solid bilayers. The addition

of thymol also leads to broadening of the two-phase coexistence region in a concentration

dependent manner [36]. Our results support the hypothesis that lipid-melting transitions are

lowered in the presence of anesthetics such as PRF. This effect is explained by the freezing

point depression law.

Conclusions

Equilibrium MD and PMF simulations indicate that GP interact with the polar interface of

phospholipid bilayer, particularly forming hydrogen bonds with the glycerol and phosphate

group. Previously, we have investigated the effects of the insertion and the possible preferential

location of the five phenol derivatives with GABAergic activity on membranes, using Lang-

muir monolayers and 1H-NMR spectroscopy [8, 22]. We determined that all compounds

locate in the region between the polar group (choline molecule), the glycerol and the first

atoms of the acyl chains, with the more lipophilic compounds (PRF and chlorothymol) prefer-

ring a deeper bilayer insertion [8, 22]. Our MD results, in agreement with previous experimen-

tal data, indicate that the location of the phenol molecules would allow a closer molecular

Fig 6. Enthalpic and Entropic contributions to PMF of PRF-DPPC interaction. (A) Temperature dependence of the

free energy for transferring PRF from water to a DPPC bilayer at 323 (red line), 338 (green line), and 353K (black line).

(B) Free energy of partitioning a PRF molecule from bulk water to a DPPC bilayer (black, entropic component of free

energy, -TΔS; red, enthalpic component of free energy, ΔH).

https://doi.org/10.1371/journal.pone.0218042.g006
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packing diminishing the mobility of the hydrocarbon chains. Experimental assays using Lang-

muir films in the presence of each GP indicate a combined effect of GPs condensing the LE

phase, and expanding the LC phase [8]. This effect results in a broadening of the phase transi-

tion in the Langmuir isotherm [8].

PMF calculations indicate that PRF partition into a gel DPPC phase is not favorable. This

suggests that PRF and the other GPs acts similarly to thymol, for which it has been determined

by Phang et al. [36], that cause melting point depression and phase segregation in lipid bilay-

ers, because of a higher solubility in the fluid bilayers than the solid bilayers. We have previ-

ously described, by using the fluorescent probes DPH and TMA–DPH in DPPC LUVs in the

presence of different phenolic compound, an anisotropy reduction at temperatures below the

Tm. This effect seems to indicate that these GP favor the occurrence of the liquid phase [20]

Our computational results are supported by previous experimental results that strengthen

the fact that all the compounds studied interact with membranes. Altogether, these results sug-

gest the participation of some alteration of lipid environment on the receptor modulation.

Thus, it is possible that anesthetic activity of GPs could be the combined result of the interac-

tion of the phenol molecules with specific receptor proteins (GABA-Rs) but also with the sur-

rounding lipid molecules, modulating the supramolecular organization of the receptor milieu.

Fig 7. PRF free energy of partitioning into a DPPC bilayer at gel phase. (A) Partial densities of the system at 298 K

(see references in Fig 1). (B) Potential of mean force for PRF (ΔG) at 298 K.

https://doi.org/10.1371/journal.pone.0218042.g007
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Supporting information

S1 Fig. Chemical structures of the compounds analyzed.

(TIF)

S2 Fig. PMF of Phenols free energy (ΔG) of partition into a DPPC bilayer. A) Propofol

(PRF) and B) Eugenol. We compared PMF calculations using two system set ups for PMF cal-

culations: the first system set-up is composed of two phenol molecules that are biased from

water to the bilayer core (see Fig 1 of the main manuscript), one per leaflet (black line). The

second system consist of two phenol molecules that are biased from the bilayer core to water

(the reversed path of system set-up 1), one per leaflet (red line).

(TIF)

S3 Fig. Correlation between experimental partition coefficient and simulated free energies

of partition. Experiential partition coefficient was obtained using fast immobilized artificial

membrane (IAM) columns at two temperatures (303.5 and 318.5K) [6]. Free energies of parti-

tion (ΔG) were considered as the minimum value of PMF MD simulations (see Fig 1). ΔG was

plotted against LogKIAM at 303.5K (black dot) and 318.5K (red square). Correlation coefficient

R between the experimental and ΔG of partition gave values of 0.9057 (303.5K, black line) and

0.9353 (318.5K, red line).

(TIF)

S4 Fig. System snapshots of selected frames along PRF free diffusion.

(TIF)

S5 Fig. Positions of selected atoms to determine molecular orientation. A-Chemical struc-

tures of the compounds analyzed (PRF-Thymol-Chlorothymol-Eugenol-Carvacrol) with the

selected atoms marked with the color used to show its minimal distance to the DPPC-phos-

phate group (B-F). The atoms were selected to define two of axes, one connecting the O atom

(red line) to the opposite C atom (black line), and another perpendicular to the former. B PRF;

C Thymol; D Chlorothymol; E Eugenol and F Carvacrol. Trajectories were analyzed using

g_mindist GROMACS tool.

(TIFF)

S6 Fig. Coulombic and Lennard Jones interaction. A) Propofol and B) Eugenol. Coulombic

(black line) and Lennard Jones (red line). Upper panel, Solvent-GP interactions. Middle panel,

GP-GP interactions. Lower panel, DPPC-GP interactions.

(TIF)

S7 Fig. PRF first hydration shell inside the lipid phase. A) First hydration shell was deter-

mined using g_trjorder with a radius cut-off of 0,435 nm, and compared to B) PRF position

within the bilayer.

(TIF)

S8 Fig. DPPC-DPPC interaction. Coulombic (black line) and Lennard Jones (red line).

(TIF)

S9 Fig. Schematic diagrams of the density profile of DPPC bilayers in the gel phase in pres-

ence of two PRF molecules in the aquose phase. A-The density profile of the whole system

and its relevant components are shown. Density profile of DPPC (see references in Fig 1). B-

Density profile of PRF.

(TIF)
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S10 Fig. Schematic diagrams of the density profile of DPPC bilayers in the gel phase in

presence of a single PRF molecules inside the bilayer. A-The density profile of the whole sys-

tem and its relevant components are shown. Density profile of DPPC (see references in Fig 1).

B- Density profile of PRF.

(TIF)

S11 Fig. Convergence of the PMF of PRF in the GEL phase (298K) calculated from simula-

tions increasing the total simulation time by 20 ns intervals until the maximum of 200 ns.

(TIF)

S1 Supporting Information. Topologies of each phenol unit. Propofol, thymol, chlorothy-

mol, eugenol and carvacrol .itp files.

(PDF)

S1 Table. Area per lipid (APL) of DPPC bilayer in absence or in presence of GP. The first

half of pure DPPC system corresponds to 20–100 ns and for DPPC+GP corresponds to 50–

200 ns. Second half corresponds to 100–200 ns and 200–400 ns, respectively. The values are

expressed in Å
(DOCX)
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