
Designing Declarative Language Tutorials:
A Guided and Individualized Approach
Anael Kuperwajs Cohen
Macalester College, St Paul, MN, USA
akuperwa@macalester.edu

Wode Ni
Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
http://www.cs.cmu.edu/~woden/
woden@cs.cmu.edu

Joshua Sunshine
Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
https://www.cs.cmu.edu/~jssunshi/
sunshine@cs.cmu.edu

Abstract
The ability to declare what a program should include rather than how these features should be
implemented makes declarative languages very useful in many visual output programs. The wide-
ranging uses of these programs, in domains ranging from architecture to web programming to data
visualization, encourages us to find an effective method to teach them. Traditional tutorial systems
are usually non-interactive and have a gap between the learning and application. This can leave the
user frustrated without a way to move forward in the learning process. A general lack of guidance
can lead the student down an incorrect path. To prevent these difficulties, we propose a guided
tour followed by novel question types that both direct the student’s learning and creates a focused
environment to practice individual skills. Lastly, we propose a study to test the hypothesis that this
tutorial is quicker to complete and results in a greater understanding of the declarative language.

2012 ACM Subject Classification Applied computing → Interactive learning environments

Keywords and phrases Declarative Programming, Programming Language Tutorial, Visualizations

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2019.4

1 Introduction

Declarative languages have been successful in many domains because of the multiple advant-
ages they possess. The readability [1], succinct composition, and unordered nature of the
code can make them easier to use [6]. For creating programs with visual output, declarative
languages are especially prevalent. There are many examples that are widely used, including
HTML, CSS, D3, and others. The reason for that is the ability to declare what the aspects
of the visualization should be rather than how they should be built [11]. Due to the common
usage of declarative languages and their prominence with visualizations, we are investigating
how to effectively teach a declarative language. We are conducting this investigation within
the context of a mathematical diagramming and education system called Penrose, which
utilizes a declarative language, Substance, that resembles standard mathematical notation.
An uncomplicated, accessible way to learn Substance would support the system overall. As
a solution to our primary research question, we propose using a guided tour followed by a
series of novel question designs that provide targeted, focused application practice.

A guided tour is a context-sensitive tutorial that uses constraints and checkpoints to
guide the user through the different aspects of the program. Many video games use guided
tours instead of multi-page manuals because there is less frustration among users [2]. Each
time there is a new skill to be learned, the tutorial will show the player how to complete

© Anael Kuperwajs Cohen, Wode Ni, and Joshua Sunshine;
licensed under Creative Commons License CC-BY

10th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2019).
Editors: Sarah Chasins, Elena Glassman, and Joshua Sunshine; Article No. 4; pp. 4:1–4:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/288802236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:akuperwa@macalester.edu
http://www.cs.cmu.edu/~woden/
mailto:woden@cs.cmu.edu
https://www.cs.cmu.edu/~jssunshi/
mailto:sunshine@cs.cmu.edu
https://doi.org/10.4230/OASIcs.PLATEAU.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Designing Declarative Language Tutorials: A Guided and Individualized Approach

the action through instruction and practice, followed by a checkpoint. The tasks are smaller
pieces of the overall game, so they build upon each other to complete the tutorial. Both
video games and declarative languages consist of many small pieces and skills that build up
into proficiency, therefore it is likely a guided tour will be an effective strategy for declarative
languages. The possible downfalls that this method avoids, however, are seen with traditional
programming language tutorials. The mixture of textual instructions followed by exercises
leads to a gap between learning and applying. Removing this gap should result in faster
learning [7].

To secure a smooth transition into using the system freely, there will be practice questions
that follow the guided tour. These questions come in a set of novel designs that are more
focused on honing individual skills. Typical models, on the other hand, have exercises that
slowly build to an activity that encompasses all of the learned skills. This does not take into
account the needs of the student and which areas require more practice. Providing targeted
feedback through specific questions, with the appropriate level of difficulty, will ensure the
student effectively learns all the necessary skills for using the declarative language [12].

Along with this design, having a visualization as an aid can be extremely useful in
the field of education. Due to the undeniable connection between visual outputs and
declarative languages, the educational benefits of diagrams are important as well. External
representations, such as diagrams, portray the information in an alternative way and assist
the learning process. Often, seeing the information visually, as opposed to textually, promotes
better reasoning and problem solving [9]. Additionally, inferring information from visuals is
easier due to their emergent properties [8]. When visualizations are paired accurately with a
student’s current capabilities and the task at hand, which is the aim of the practice problems,
there are cognitive benefits that enhance learning [3].

In the following sections we introduce our ongoing efforts of designing a tutorial for
declarative languages. We start by presenting the design of a guided tour that teaches the
declarative language of Penrose, Substance. Following that, we will show the designs of
the novel problem types that provide focused but unconstrained practice within the Penrose
system. Finally, we propose a user study that evaluates our design.

2 Tutorial Design

A successful tutorial ensures that the student can understand and utilize the content they
just learned. Teaching a language, specifically, entails covering all aspects of the language
that might be used afterwards. Programming languages often have formal descriptions of the
grammar that it implements, such as the BNF. When looking at a declarative, domain-specific
language, however, the size of the grammar is smaller, limiting the space of possible programs.
Our system can leverage an explicit specification of the language constructs to automatically

predicate
predicate

 VectorSpace

 Vector



 In: Vector * VectorSpace V

 LinearlyDependent: Vector * Vector


type
type

-- Predicates



-- Type Constructors



Figure 1 Domain Program.



A.K. Cohen, W. Ni, and J. Sunshine 4:3

generate instructional content such as guided tasks and practice problems. The system derives
examples and counterexamples from the high-level grammar to create practice problems
that target a specific language construct. In our example, Penrose defines a mathematical
domain with a Domain program written in a simple metalanguage that declares all the
types and operators available (see Figure 1). By sampling the space of possible Substance
programs defined by Domain, the system generates various types of diagrammatic practice
problems.

We have not yet generated problems from Domain and there are many open research
questions to solve to do so effectively. For example, when generating incorrect answers for
multiple choice questions we will want to replicate plausible errors that students might make.
Addressing these research questions is future work.

With our system, the guided tour consists of a set of tasks that covers different parts of
the domain. Each task is broken up into a series of small steps. In order for the user to learn
exactly what is intended, we guide the user through each step and constrain how the user
can interact with the interface to ensure completion. We direct the user’s attention towards
a particular part of the question to show the next step via arrows, changes to the opacity
of components in the user interface, and precise directions. Furthermore, the user cannot
proceed without completing each step.

Question 1 of 5

Objective

Show two linearly dependent vectors

1

2

3

4

5

6

7

8

9

Run Check

Diagram - Click ‘Run’

Autolabel all

VectorSpace U

In(A, U)

In(B, U)



Vector A

Vector B

Add linear dependency, type 
“LinearlyDependent(A, B)”

(a) Guided Tour Step 3

Question 1 of 5

Objective

Show two linearly dependent vectors

1

2

3

4

5

6

7

8

9

Run Check

Diagram - Click ‘Run’

Autolabel all

VectorSpace U

In(A, U)

In(B, U)



Vector A

Vector B

LinearlyDependent(A, B)

Click ‘Run’

(b) Guided Tour Step 4

Figure 2 Guided Tour.

The purpose of using instructions at every step is to avoid frustration. Without personal
assistance, advancing in the face of difficulties is a challenging task. In a system such as
Penrose, where the purpose is creating mathematical diagrams with ease, we aim to support
users without any programming experience. Our goal in the guided tour is that the user
should know exactly what they need to do at each step, and thereby increase retention rates
[13]. At the same time, combining instruction with the physical task of writing code aids
retention [2].

An example task for the guided tour (see Figure 2) has the prompt: “show two linearly
dependent vectors”, separated into smaller steps:

Add the first vector, type Vector A
Add a second vector, labeled B
Add linear dependency, type LinearlyDependent(A, B)
Click Run
If the diagram looks linearly dependent, click Check

PLATEAU 2019



4:4 Designing Declarative Language Tutorials: A Guided and Individualized Approach

As seen in Figure 2, the opacity of the screen is lower, except for the instructions and the
spot where the arrow is pointing. The instructions are contained within a boldly outlined
ellipse, and the arrow points to where those instructions should be applied, which is also
outlined. All these elements directs the attention of the user.

After progressing through the tasks, users naturally continue practicing with a set of
novel question types. These questions utilize the Penrose system, as described earlier in
this section, and visualizations to emphasize the learning that occurs during the guided tour.
The questions are focused on practicing specific skills and target the areas where the student
is not as strong. The two categories of questions include recognition and recall.

(a) Recognition (b) Recall

Figure 3 Novel Question Types.

Recognition is a category of problems that requires the student to recognize associations
between the program outputs and the source programs. The methodology would be analyzing
and working with the diagrams from the system. One type of problem that falls into this
category is a multiple choice question where users match the code or prompt to the correct
diagram (see Figure 3a). The prompt might ask for two linearly independent vectors, where
two out of the four options are correct. Another question type is adjusting a diagram to
match the code that is provided, meaning the user corrects the error. An extension of this
problem is building the diagram from a bank of shapes.

Recall questions strengthen a student’s ability to recall language constructs of the DSL.
This involves a diagram that is already produced and constructing the answer. Our design
supports this in two ways, correcting existing code and writing new code. For the former,
there is an error in the code that the user has to find and fix. The latter is starting from
the beginning and writing the code that answers the prompt (see Figure 3b). If the prompt
requests two linearly dependent vectors, the user must write the code that creates that
diagram.

3 Study Design

Implementing a study could provide evidence that supports this tutorial design. The purpose
of an evaluation is to show the benefits of the previously described design, mainly that it is a
faster and more efficient way of learning a declarative language. We hypothesize that this
method will increase the understanding of the user.

Our tentative evaluation plan consists of students with a range of computer science
backgrounds split into two groups, control and experimental. The control group learns
Substance with textual instructions, and have full access to the system. The experimental
group uses the guided tour and the novel question types. The dependent measures are the



A.K. Cohen, W. Ni, and J. Sunshine 4:5

time it took to complete the tutorial and the understanding, which is assessed through a
quiz. The quiz will involve a combination of answering questions about example Substance
programs and writing Substance code. This will be evaluated for accuracy. Every participant
completes a pre and post-survey, followed by a debrief of the study.

4 Related Work

There are two main categories of related work that are correlated to our research question:
visual learning and language tutorials.

Visual Learning

One focus of visual learning is how to improve visualizations to help students the most. The
question’s presentation has one of the largest impacts [3]. For example, effective instructions
displayed alongside the external representation greatly increases understanding. Furthermore,
the student must have enough experience to fully utilize the diagram. Grounded feedback is
one way to use a student’s prior knowledge [12], where they solve problems using a symbolic
representation followed by the answer presented in a feedback representation. This second
representation is a more concrete, familiar visualization and encourages students to interpret
their answer’s accuracy. Grounded feedback is a great tool for teaching, yet making the
feedback individual is difficult to implement.

Visualizations can also be used as examples. Along with visual learning, example-based
learning has become more common within computer science [5]. Unfortunately, visualizations
and examples can be ineffective if they do not engage the student [10].

Language Tutorials

The most common way to learn a new language is through non-interactive methods, such
as written text and videos, similar to Khan Academy.1 Often, practice exercises and do-
it-yourself tasks follow the explanations, leaving a gap where information can be forgotten.
More interactive tutorials include websites such as Scrimba2 and A Tour of Go,3 that mix
textual instructions and videos with practice questions. In Scrimba, students can interact
with the code as the video is playing, making it easier to test out concepts as they are being
taught. A Tour of Go is similar, but with textual instructions instead.

DrScheme [4] (now known as Racket) and the stencils-based tutorial for Alice [7] are
examples of teaching within programming environments. DrScheme’s purpose is to easily
correct the errors many users run into. Experienced users have created work-arounds for
these problems, but beginners get stuck. The stencils tutorial for Alice is similar to the guided
tour, but focuses on teaching the system rather than a declarative language. This tutorial
uses translucent stencils that direct attention to a hole that is regularly colored. Virtual
sticky notes display the instructions. After comparing their new tutorial to a traditional one,
they found that fewer errors were committed and it was a faster and easier experience overall.
The main downside is that users who completed the stencils tutorial were less confident they
could work with the program, even though they were more confident that they completed
the tutorial correctly.

1 https://www.khanacademy.org
2 https://scrimba.com
3 https://tour.golang.org

PLATEAU 2019

https://www.khanacademy.org
https://scrimba.com
https://tour.golang.org


4:6 Designing Declarative Language Tutorials: A Guided and Individualized Approach

5 Conclusion

Since declarative languages are so widely utilized by users of all skill levels, teaching them
efficiently is an important problem to investigate. Combining a guided tour and practice
problems with new designs that focus on building individual skills suggests a more effective
method. A future study could confirm this hypothesis, by looking for how fast the tutorial is
completed and overall understanding of the content. This would improve the visual output
systems that depend on declarative languages by providing more guidance for students
without requiring personal assistance.

References
1 UW Interactive Data Lab | Papers. URL: http://idl.cs.washington.edu/papers/d3/.
2 Erik Andersen, Eleanor O’Rourke, Yun-En Liu, Rich Snider, Jeff Lowdermilk, David Truong,

Seth Cooper, and Zoran Popovic. The impact of tutorials on games of varying complexity. In
Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems -
CHI ’12, page 59, Austin, Texas, USA, 2012. ACM Press. doi:10.1145/2207676.2207687.

3 Julie L. Booth and Kenneth R. Koedinger. Are diagrams always helpful tools? developmental
and individual differences in the effect of presentation format on student problem solving.
The British Journal of Educational Psychology, 82(Pt 3):492–511, September 2012. doi:
10.1111/j.2044-8279.2011.02041.x.

4 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krish-
namurthi, Paul Steckler, and Matthias Felleisen. DrScheme: a programming environment for
Scheme. J. Funct. Program., 12:159–182, 2002. doi:10.1017/S0956796801004208.

5 Sumit Gulwani. Example-based Learning in Computer-aided STEM Education. Commun.
ACM, 57(8):70–80, August 2014. doi:10.1145/2634273.

6 J Heer and M Bostock. Declarative Language Design for Interactive Visualization. IEEE
Transactions on Visualization and Computer Graphics, 16(6):1149–1156, November 2010.
doi:10.1109/TVCG.2010.144.

7 Caitlin Kelleher and Randy Pausch. Stencils-based tutorials: design and evaluation. In
Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’05,
page 541, Portland, Oregon, USA, 2005. ACM Press. doi:10.1145/1054972.1055047.

8 Kenneth R. Koedinger. Emergent properties and structural constraints: Advantages of
diagrammatic representations for reasoning and learning. In Proc. AAAI Spring Symposium
on Reasoning with Diagrammatic Representations, pages 154–169, 1992. URL: http://www.
aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-031.pdf.

9 Jill H. Larkin and Herbert A. Simon. Why a Diagram is (Sometimes) Worth Ten Thou-
sand Words. Cognitive Science, 11(1):65–100, January 1987. doi:10.1016/S0364-0213(87)
80026-5.

10 Thomas L Naps, Rudolf Fleischer, Myles McNally, and Alma College. Exploring the Role of
Visualization and Engagement in Computer Science Education.

11 Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. Declarative Interaction
Design for Data Visualization. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST ’14, pages 669–678, New York, NY, USA, 2014. ACM.
event-place: Honolulu, Hawaii, USA. doi:10.1145/2642918.2647360.

12 Eliane S. Wiese and Kenneth R. Koedinger. Designing Grounded Feedback: Criteria for
Using Linked Representations to Support Learning of Abstract Symbols. International
Journal of Artificial Intelligence in Education, 27(3):448–474, September 2017. doi:10.1007/
s40593-016-0133-9.

13 A. Yan, M. J. Lee, and A. J. Ko. Predicting abandonment in online coding tutorials. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages
191–199, October 2017. doi:10.1109/VLHCC.2017.8103467.

http://idl.cs.washington.edu/papers/d3/
https://doi.org/10.1145/2207676.2207687
https://doi.org/10.1111/j.2044-8279.2011.02041.x
https://doi.org/10.1111/j.2044-8279.2011.02041.x
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/2634273
https://doi.org/10.1109/TVCG.2010.144
https://doi.org/10.1145/1054972.1055047
http://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-031.pdf
http://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-031.pdf
https://doi.org/10.1016/S0364-0213(87)80026-5
https://doi.org/10.1016/S0364-0213(87)80026-5
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1007/s40593-016-0133-9
https://doi.org/10.1007/s40593-016-0133-9
https://doi.org/10.1109/VLHCC.2017.8103467

	Introduction
	Tutorial Design
	Study Design
	Related Work
	Conclusion

