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Abstract 

We report on the mechanism and efficiencies of singlet oxygen O2(
1
∆g) generation of 

nanoparticles (NP) of the conjugated polymer (CP) poly(9,9-dioctylfluorene-alt-

benzothiadiazole) (F8BT) doped with platinum octaethylporphyrin (PtOEP) suspended 

in water. A detailed study of the photophysics of these NP, using stationary and time-

resolved absorption and emission techniques, indicates that O2(
1
∆g) is generated by the 

triplet excited state of F8BT and not by that of PtOEP, as previously observed for other 

porphyrin doped CP NP. O2(
1
∆g) quantum yields (Φ∆) were measured by quantifying 

the characteristic phosphorescence of O2(
1
∆g) in the NIR region (~ 1268 nm). It was 

found that incorporation of relatively small amounts of PtOEP to F8BT NP results in a 

significant increase of Φ∆. NP containing 10% PtOEP (w/w) show a Φ∆ ~ 0.24, which is 

3 times larger than that observed for undoped F8BT NP, and larger than the reported for 

most water-soluble porphyrins. Φ∆ were also calculated from the oxidation rates (v0) of 

3-10-(2-carboxyethyl) anthracene (ADPA), a well-known chemical O2(
1
∆g) trap. 

Unexpectedly, this method was found to significantly overestimate the Φ∆ values due to 

the adsorption of ADPA on the surface of NP. The ADPA / NP adsorption process was 

characterized using a simple adsorption model yielding an (average) equilibrium 

constant of ~8x103 M-1 and an (average) number of NP-binding sites of ∼14000. These 
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results necessarily caution about the use of ADPA as a probe to evaluate Φ∆ in these NP 

systems. In addition, the interaction of F8BT NP with other anionic, cationic and 

zwitterionic dyes (dissolved in water) was studied. It was found that even at nano-molar 

concentrations all the dyes efficiently adsorb on the NP surface. This general and simple 

self-assembly strategy can be used to prepare superficially-dye-doped CP NP with 

potentially interesting technological applications. 

 

Keywords.  

conjugated polymer nanoparticles; metallated porphyrin; photosensitization; singlet 

oxygen quantum yield; dye adsorption;  
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1.  Introduction 

Conjugated polymers (CP) are formed by monomers linked together by alternating 

single and double (or triple) bonds along the backbone chain. This extended conjugation 

structure gives these materials unique properties that allow their application in organic-

electronic devices such as solar cells [1,2], organic light emitting diodes (OLED) [3], 

fluorescence-based sensors [4–6], etc. Nanoparticles of conjugated polymers (CP NP) 

show small size (<100 nm), extraordinarily large excitation cross-sections, high 

brightness, photochemical stability and several other appealing photophysical properties 

that make them useful in the development of fluorescence based chemical, physical and 

biological nano-sensors [7–16]. Comprehensive reviews on CP NP characteristics and 

applications have been recently published [17–20]. In particular, the exceptional light 

harvesting and energy transfer properties of CP NP have been exploited in the 

development of novel O2(
1∆g) photosensitizer materials used for anticancer and 

antibacterial treatments [18,21–31]. In these particles the polymer matrix acts as 

efficient antenna by collecting visible (or NIR) photons and efficiently transferring 

excitation energy to photosensitizing dopant molecules (PS) amplifying their intrinsic 

O2(
1∆g) generation efficiencies [17]. However, the search for optimized CP NP for 

photodynamic (PDT) and photothermal cancer therapy remains very active. Recently, 

Wu et al. [25,26] reported the synthesis and characterization of CP NP made of 

poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) doped with tetraphenylporphyrin 

free base (TPP) as PS (F8BT-TPP NP). According to these studies, upon excitation of 

F8BT-TTP NP the CP can efficiently transfer (singlet) excitation energy to TPP, which 

efficiently generates the porphyrin triplet excited state (3TPP*). In turn, 3TPP* can be 

intercepted by molecular oxygen to give O2(
1∆g). Thus, these TPP doped CP NP were 

shown to photosensitize the formation of O2(
1∆g) and were successfully used for in vitro 

and in vivo PDT experiments. The reported Φ∆ (∼0.3-0.5) for these particles was 

estimated using an indirect method based on the consumption of a water soluble 

anthracene derivative that reacts efficiently with O2(
1∆g) [25,26]. 

We report herein the synthesis and an exhaustive photophysical/photochemical 

characterization of F8BT NP doped with platinum octaethylporphyrin (PtOEP). As in 

the case of TPP, PtOEP can photosensitize O2(
1∆g) formation quite efficiently [32] and 

therefore, a significant increase in Φ∆ was expected upon PtOEP doping. The Φ∆ of 

undoped and PtOEP doped F8BT NP suspended in water was measured using direct 
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(singlet oxygen phosphorescence detection) and indirect (comparative rates for 

chemical traps oxidation) methods. Indirect methods to asses O2(
1∆g) production, which 

are based on the chemical transformation of an organic substrate upon reaction with 

O2(
1∆g), are widely used because they are simple and inexpensive [33–39]. However, 

we prove here that indirect methods can significantly overestimate Φ∆ due to the 

adsorption of the O2(
1∆g) trap (substrate) on the NP´s surface. Thus, our results caution 

about the use of this method for measuring Φ∆ in these systems. However, this 

combined organic substrate adsorption and enhanced photosensitized oxidation capacity 

of these PtOEP doped F8BT NP bodes well for their use in PDT and in organic water 

pollutants photoremediation strategies. Additionally, we demonstrate that the efficient 

and spontaneous adsorption of other organic molecules containing ionizable groups 

(anionic, cationic and zwitterionic organic dyes) to the surface of F8BT NP in water at 

nanomolar concentrations can be used as a simple and general strategy to achieve 

superficial dye doping of these conjugated polymer nanoparticles.  

 

2.  Experimental 

2.1.  Materials. 3-10-(2-carboxyethyl)anthracene (ADPA, 99%, Sigma-Aldrich) and 

9,10-dimethylanthracene (DMA, 99%, Sigma-Aldrich), furfuryl alcohol (FFA, 98%, 

Sigma-Aldrich), rhodamine-B (95%, Aldrich), platinum octaethylporphyrin (PtOEP, 

>95%, Frontier Scientific), poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT, 

MW=70000 g/mol, PDI=2.4, American Dye Source Inc.), methylene blue (MB, 82%, 

Aldrich), rose bengal (RB, 95%, Aldrich), rhodamine B (RhB, 95%, Sigma-Aldrich), 

acetonitrile (MeCN, HPLC grade, Sintorgan), deuterium oxide (D2O, 99.9%, Sigma-

Aldrich), were used as received. Chemical structures of the dyes F8BT, PtOEP, MB and 

RB are shown in Scheme 1. Tetrahydrofuran (THF, HPLC grade, Cicarelli) was 

refluxed for 5 hs with potassium hydroxide pellets (KOH, pro-analysis grade, Taurus) 

and subsequently distilled over freshly activated molecular sieves (4 Å, Aldrich). 

Double-distill water was further purified by an ELGA PURELAB Classic UV system 

(~18.2 MΩ/cm) to remove ions, organic and particulate matter (0.2 µM filter). Argon 

(Ar, 99.998 %, Linde) was used as received. 

2.2.  Nanoparticle Synthesis. NP were prepared by the re-precipitation method [40–42]. 

For neat F8BT nanoparticles (F8BT NP), F8BT was dissolved (with the aid of 
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sonication and mild heating ~ 40° C) in freshly distilled THF to a concentration of ~ 

500 mg/L. The solution was filtered with a 0.2 µm pore-size PTFE membrane syringe 

filter (Iso-Disc, Sigma-Aldrich) to remove any undissolved polymer. The concentration 

of the filtered solution was recalculated by comparing absorption spectra before and 

after filtration, and the resulting solution was diluted to a final concentration of 100 

mg/L. A small volume (300 µL) of this solution was quickly injected into a vial 

containing 2.5 mL of either pure water or a low ionic strength buffer solution or 

acetonitrile under vigorous stirring. Upon contact with water (or acetonitrile) the 

polymer chains collapse forming nanoparticles containing of one or several chains 

(nanoaggregates) [42]. PtOEP doped nanoparticles (F8BT-PtOEP NP) were prepared in 

an analogous manner using THF solutions containing both F8BT (100 mg/L) and 

PtOEP (10 mg/L). The null solubility of PtOEP in water ensures that the dye is trapped 

within the polymer matrix (where it is stabilized by van der Waals' interactions) during 

the formation of the NP. Varying degrees of doping are indicated as F8BT-#PtOEP NP 

where # is the PtOEP/F8BT % weight ratio.  

 

Scheme 1. Molecular structures of F8BT conjugated polymer, PtOEP porphyrin 

photosensitizer, RB, MB and RhB ionic dyes at neutral pH. 

2.3.  Steady-state absorption and emission spectroscopy. UV-Vis absorption spectra 

were recorded on a Diode-Array spectrophotometer (HP 8452A, Agilent Hewlett-

Packard) in 1 cm cuvettes at room temperature. Emission spectra were obtained with a 
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spectrofluorometer (FluoroMax-4, Horiba). Unless other conditions are specified, 

emission and excitation spectra were acquired from dilute solutions (Absmax < 0.1) using 

the following parameters: 2 nm slits for both the excitation and emission 

monochromators, 0.1 s integration time per point. Spectra were corrected for the 

spectral instrument response. The emission spectra were measured in 1 cm cuvettes at 

room temperature and with excitation at the absorption maximum. Fluorescence 

quantum yields (ΦF) were measured with the comparative method using RhB in ethanol 

at room temperature (ΦF = 0.7 in ethanol) [43] as the reference.  

Steady-state singlet oxygen phosphorescence measurements were carried-out using a 

NIR PMT Module H10330-45 (Hamamatsu) coupled to a single-photon-counting 

equipment FL3 TCSPC-SP (Horiba Jobin Yvon) fitted with a Xe (CW 450 W) lamp, 

excitation (FL-1004 with a 1200 groove per mm, 330 nm blaze grating) and emission 

(FL-1004 with a 600 groove per mm, 1000 nm blaze grating) monochromators. 

Absorbance of NP samples and reference (Eosin Y, Φ∆ = 0.58 in D2O) [44] were 

matched at 487 nm and O2(
1∆g) phosphorescence was detected at 90° with respect to the 

excitation beam. Corrected emission spectra obtained with excitation at 487 nm were 

recorded between 950 and 1400 nm and the total integrated phosphorescence intensities 

were calculated by integrating the emission band centered at 1268 nm. All experiments 

were performed in D2O at room temperature.  

2.4. Time-resolved Emission Spectroscopy. Fluorescence lifetimes measurements were 

performed using the Single Photon Counting (TC-SPC) technique in Edinburgh 

Analytical Instruments FL- 900 CDT spectrofluorometer equipped with a pulsed light 

emitting diode (LEDs, PLS450, PicoQuant). The diode used has emission centered at 

450 nm (FWHM~ 10 nm) and a typical pulse width of ~ 0.8 ns FWHM. 

2.5.  Time-resolved Absorption Spectroscopy. Nanosecond laser flash photolysis 

experiments were performed in air or Ar saturated solutions by exciting at 355 nm 

(pulse width FWHM ~ 15 ns and energy ~ 2 mJ) and sweeping the absorption spectra 

between 400 and 640 nm. The instrument has been previously described [45]. Sample 

absorption at the excitation wavelength was ~ 0.3. Data analysis was carried out using 

the program ASUFIT, available at http://www.public. 

asu.edu/laserweb/asufit/asufit.html).  

2.6.  Single Particle Fluorescence measurements. Nanoparticles suspensions were spin 

coated on freshly cleaned coverslips to an average surface concentration < 0.1 
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particle/µm2 to allow for individual particle identification. The samples were studied in 

a homemade inverted fluorescence microscope assembled on a Thorlabs optical table 

equipped with: EM- CCD (Andor, iXonEM+ 897), Argon ion laser (Modu-Laser, Stellar 

Pro L 300), dichroic (Edmund #86-331), emission filter (Semrock, BLP01-458R-25), 

60X objective lens (Nikon, CFI Apo TIRF Oil 60X NA=1.49) and tube lens (Nikon, 

ITL200 # Thorlabs) [46]. Typical excitation intensity at the sample plane was 50 

mW/cm2 at 458 nm. 

2.7.  Atomic Force Microscope (AFM) measurements. Samples were prepared by spin 

casting (3000 rpm, 60 s, acceleration ~ 57 rad/s2) nanoparticle suspensions (10.7 mg of 

F8BT/L) on freshly cleaved mica substrates (Grade V-1 Muscovite, SPI). AFM images 

were obtained on an Agilent 5400 AFM microscope in tapping mode operating at a scan 

rate of 12.05 microns/s, with resolution of 512x512 pixels and a physical image size of 

15x15 microns, using a cantilever (µMasch NSC15/AIBS) with nominal frequency of 

vibration of 325 kHz, radius of curvature < 10 nm and force constant of 46 N/m. Images 

(approximately 10 frames per sample) were processed with the Gwyddion program 

[47]: field curvature effects were first removed using the "Remove Polynomial 

Background", "Correct lines by matching height median" and "Level data by mean 

plane subtraction" functions. The resulting images were then analyzed with the same 

program to select particles using the "Mark grains by threshold" function and finally to 

obtain the maximum height of each identified particle the "Grain Distributions" function 

was used. The resulting data was used to build nanoparticle height histograms.  

2.8.  Dynamic Light Scattering (DLS) measurements. Measurements were performed 

with a Zeta-Sizer Nano ZS90 Instrument, at a temperature of 25 °C. Light scattering 

results were analyzed with Zetasizer software (provided by the manufacturer) to obtain 

hydrodynamic radius distributions by number. Particle suspensions for DLS were 

prepared with water filtered through 0.2 µm pore filters right before data acquisition. 

Extreme care was taken to reduce the contamination by dust. 

2.9.  Estimation of NP molar concentration ([NP]). [NP] was estimated from the F8BT 

polymer mass concentration (Pmass), Avogadro's number (NA), polymer density (ρ = 0.75 

kg/L) [48] and assuming spherical NP with constant diameter (d), according to Eq. 1: 

A

mass

Nd

P

πρ3

6
]NP[ =   (1) 
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With d = 22 nm (average height measured by AFM, see Section 2.7) and Pmass = 2.14 

mg F8BT/L, we obtain [NP] ∼ 0.87 nM. 

2.10.  Photooxidation of anthracene derivatives. Photooxidation experiments were 

conducted by placing solutions of ADPA in water or DMA in MeCN, containing CP NP 

inside a fluorescence cuvette. It is well known that anthracene derivatives with 

substituents in the 9 and 10 positions, such as ADPA and DMA, react efficiently with 

O2(
1∆g) (e.g. the rate for the quenching of O2(

1∆g) by ADPA water and DMA in MeCN 

are kt
ADPA = 8.2 x 107 M-1 s-1 and kt

DMA = 8.8 x 107 M-1 s-1, respectively) to form the 

corresponding endoperoxides (ADPA-O2 and DMA-O2) [33,35,36]. Samples were 

irradiated either with a wavelength-selective photoexcitation system (PTI, composed of 

a 75W xenon lamp and a reflection grating monochromator) or with two blue LEDs 

(λex~ 467 nm, FWHM ~ 28 nm, total optical power ~ 14 mW) while simultaneously 

monitoring the changes in absorbance of ADPA (or DMA) as function of time. It is 

important to note that the excitation source selectively excites the polymer NP and do 

not photoexcite either ADPA or DMA. Absorption spectra of the solutions were 

automatically collected at specific time intervals using a UV-Vis spectrophotometer 

equipped with a kinetic software module. The molar extinction coefficients of the 

endoperoxides, ADPA-O2 in water at 400 nm or DMA-O2 in MeCN at 377 nm, are 

considered to be negligible (e.g. εDMA-O2
377< 10 M-1 cm-1) as compared to that of ADPA 

or DMA in the same conditions (e.g. εDMA
377 ~ 10000 M-1 cm-1) [37]. Thus, the 

oxidation reaction (ADPA+ O2(
1∆g) → ADPA-O2 or DMA+ O2(

1∆g) → DMA-O2) is 

conveniently followed by monitoring changes in absorption at 400 nm or 377 nm and 

directly assigning these changes to variations in ADPA or DMA concentrations, 

respectively. Kinetic traces were constructed by monitoring the absorption, at the 

previously mentioned wavelengths, as a function of time (t). Each absorption value was 

first corrected by subtracting the initial absorption of the sensitizing NP at the same 

wavelength, and the resulting values were later normalized to the absorption at t = 0 s 

(Abs0) and plotted as Abs/Abs0 vs. t. Control experiments in the absence of substrate 

showed that the absorption of NP sensitizers at the measured wavelengths remains 

constant through the irradiation time. During measurements, ADPA or DMA solutions 

were continuously purged with either argon or open to the atmosphere as indicated. 

Argon was previously saturated with water (for ADPA experiments) or MeCN (for 

DMA experiments) to prevent evaporation of solvent in the reaction cuvette.  
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2.11.  Oxygen consumption. Measurements were carried out with a Clark-type oxygen 

sensing microelectrode (Lazar, DO-166MT-1). The photosensitized oxidation kinetics 

of FFA (a O2(
1∆g) chemical trap) was monitored by measuring consumption of oxygen 

dissolved in solution during selective photoirradiation of NP. It is well known that FFA 

reacts specifically with O2(
1∆g) to yield the corresponding endoperoxide (FFA-O2) [38]. 

The dissolved O2(
3∑g-) concentration in solution was followed potentiometrically with 

the Clark-type microelectrode as a function of the photoirradiation time. Initial 

concentrations of NP and FFA were 10.7 mg/L (4.3 nM) and 50 µM, respectively. 

Microelectrode calibration was performed before each experiment using air saturated 

water at room temperature. 

 

3.  Results  

3.1.  Particle size distribution. Nanoparticles were prepared as described in the 

Experimental section and the size distribution was characterized using DLS and AFM. 

Fig. 1a shows an AFM image of F8BT NP deposited on a mica substrate. In Fig. 1d, the 

height distribution of particles it is displayed together with a Gaussian fit to the data 

yielding a mean particle height of 22 nm and σ = 3 nm. Figure 1c shows the 

hydrodynamic diameter (dh) distribution ofF8BT NP measured by DLS yielding a mean 

dh of ~ 40 nm. The lack of agreement between AFM and DLS results can be 

rationalized considering that particle height measured over mica surfaces might not be 

equivalent to its diameter due to potential deformations induced by particle-mica 

interactions. Additionally, hydrodynamic diameters are usually larger than particle 

heights measured in dry conditions due to particle solvation shell and particle shape 

deviations from perfect spherical symmetry assumed in the former [49]. Figure 1b 

shows a fluorescence micrograph of F8BT NP deposited over a glass coverslip. 

Diffraction limited fluorescence spots are assigned to the emission from individual NP. 

Overall the results confirm that the synthesized particles have nanometric dimensions 

and a relatively narrow size distribution and that are detectable at the single particle 

level using fluorescence microscopy. 
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Figure 1. NP characterization: a) AFM micrograph of F8BT NP deposited over a 

freshly cleaved mica substrate. Scale bar: 1 µm. False color height scale in nm. b) 

Fluorescence micrograph of F8BT NP deposited over a glass coverslip. Scale bar: 10 

µm. False color fluorescence intensity scale in arbitrary counts. c) Hydrodynamic radius 

size distribution measured by DLS for F8BT NP suspended in water. d) Height 

distribution (bars) of F8BT NP over mica measured by AFM. The solid line represents 

the Gaussian fit to the data. See text for details. 

 

3.2.  Photophysical and electrochemical characterization. F8BT NP and F8BT-

10PtOEP NP were characterized by steady state absorption and steady state and time 

resolved emission spectroscopy. Fig. 2 shows the absorption and emission spectra of 

F8BT NP and F8BT-10PtOEP NP suspended in water and those of PtOEP and F8BT in 

THF solutions. The absorption spectrum of F8BT NP (Fig. 1a, solid black line) is 

slightly red-shifted compared to that of F8BT in THF solution (Fig. 1b, solid black 

line). The emission spectrum of the NP (Fig. 1a, dashed black line) is also 

bathochromically shifted compared to that of the polymer chains in THF (Fig. 1b, 

dashed black line). The fluorescence quantum yield of F8BT NP suspended in water 

and that of F8BT dissolved in THF were measured as: ΦF
NP(H20) = 0.31 and ΦF

THF= 0.70, 
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respectively, in good agreement with previously reported values [50]. The fluorescence 

decay of F8BT NP in air equilibrated and Ar saturated aqueous suspensions are nearly 

identical (see Fig. S1) indicating that the singlet excited state of the polymer is not 

significantly quenched by oxygen. The decay signals were successfully fitted to a 

biexponential function with τ1 = 2 ns (60%) and τ2 = 0.8 ns (40%). From these values, 

an average lifetime of ~1.52 ns is calculated. In THF the emission of F8BT decays 

monoexponentially with an associated τ ~ 2.7 ns (data not shown). 

 

Figure 2. a) Absorption (solid lines) and emission (dash lines) spectra of F8BT NP 

(black) and F8BT-10PtOEP NP (grey) suspensions in water (Ar saturated). b) 

Absorption (solid lines) and emission (dash lines) spectra of F8BT (black) and PtOEP 

(grey) in Ar saturated THF solution. Absorption spectrum of PtOEP in F8BT matrix 

(grey dotted line) estimated as described in the text. 

 

The absorption spectrum of F8BT-10PtOEP NP (Fig. 2a, solid grey line) clearly shows 

absorption peaks corresponding to the Soret and Q bands of the porphyrin. The 

absorption of PtOEP in the F8BT polymer matrix (Fig. 2b, dotted grey line) was 

estimated by subtracting the absorption spectrum of F8BT NP (Fig. 2a, solid black line) 

to that of F8BT-10PtOEP NP (Fig. 2a, solid grey line). The resulting spectrum is similar 

to that of PtOEP in THF solution (Fig. 2b, solid grey line) suggesting good interaction 

between the polymer matrix and the PtOEP ring, and no evidence for the formation of 

porphyrin aggregates within the NP. PtOEP aggregation has been previously observed 

in polystyrene (and other polymer matrixes) at 10% w/w doping and it was evidenced 

by the appearance of a new absorption peak at ~ 412 nm [51]. The emission spectrum of 
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the doped NP (Fig. 2a, dashed grey line) is identical in shape to that of F8BT NP, but ~ 

100 fold less intense. As expected, the quenching of F8BT emission in the F8BT-

#PtOEP NP increases (linearly) with increasing degree of porphyrin doping (Fig. S2). 

The apparent Stern-Volmer type constant obtained is KSVa= (1800 ± 200) (moles of 

P8FT monomer units / moles of porphyrin), and it can be interpreted as the number of 

polymer monomer units quenched by half by the presence of a single PtOEP molecule. 

This extraordinarily high quenching efficiency has been previously interpreted in 

analogous systems as consequence of efficient energy transfer among polymer 

chromophores (exciton diffusion) towards dopant molecules [17,50,52,53]. On the other 

hand, the excitation of PtOEP in air equilibrated THF solutions generates the porphyrin 

triplet excited state (3PtOEP) with nearly unitary efficiency [54]. 3PtOEP subsequently 

decays regenerating the porphyrin ground state by phosphorescence emission (ΦP = 

0.38, τP ~ 50-90 µs in deoxygenated THF) [51,54]. The phosphorescence spectrum of 
3PtOEP in deoxygenated THF solution is shown in Fig. 2b (dashed grey line). However, 

for F8BT-10PtOEP NP suspended in deoxygenated water, porphyrin phosphorescence 

(∼ 640 nm) is not observed (see Fig. 2a, dashed grey line).  

The energies of first singlet excited states (ES) of F8BT (1F8BT*) and PtOEP (1PtOEP*) 

were calculated by averaging the energy of the longest wavelength absorption and 

shortest wavelength emission maxima. The calculations indicate that 1F8BT* and 
1PtOEP* lie at ∼2.48 eV and ∼2.30 eV above the corresponding ground states, 

respectively. The energy of the lowest triplet states 3F8BT* (1.62 eV) [55] and 3PtOEP* 

(2.00 eV) [56] where obtained from bibliography. The reported 3PtOEP energy is 

consistent with that estimated from the high-energy edge of PtOEP phosphorescence 

spectrum (grey dashed line in Fig. 2b). The oxidation potential of F8BT in MeCN 

(+1.65 V vs. SCE) was measured by cyclic voltammetry (see Fig. S3). The reduction 

potential of PtOEP in dichloromethane was reported to be -1.35 V vs. SCE [57].  

The generation and dynamics of F8BT and PtOEP triplet excited states upon excitation 

of undoped and doped NP was investigated using the laser flash photolysis technique. 

Fig. 3 shows the transient (difference) absorption spectra of F8BT in THF (circles) and 

F8BT NP suspended in water (squares). Samples were deoxygenated as described in the 

experimental section. The transient spectrum of F8BT in THF shows positive transient 

absorption between 500-850 nm and a negative transient absorption band centered ∼ 

450 nm. The transient negative absorption signal matches well the absorption spectrum 
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of F8BT in THF (black solid line, Fig. 3) and therefore, it is assigned to the bleaching of 

the polymer ground state. The inset in Fig. 3 shows that the kinetic absorption profiles 

obtained at 460 nm (ground state recovery) and 740 nm follow a first order kinetics with 

identical lifetimes (~ 120 µs). This agreement indicates that repopulation of the ground 

state occurs by decay of the species responsible for the transient absorption between 

500-850 nm. Furthermore, since both transient absorptions disappear when the 

experiment is carried-out in the presence of oxygen, the positive transient absorption 

signal at λ > 500 nm is assigned to the triplet excited state of the polymer (T1→Tn 

transitions) and thus, the 120 µs decay component is associated with 3F8BT* lifetime 

(τT). 

 

Figure 3. Time evolution of the transient absorption spectra of deoxygenated solutions 

of F8BT in THF (circles) and F8BT NP in water (squares) observed at: 1 (black), 25 

(dark grey), 50 (light grey) and 100 (white) µs after the laser pulse (355 nm, FWHM~ 

15 ns, PP ~ 2 mJ). The black solid line shows the normalized inverted steady state 

absorption of F8BT in THF. Inset: kinetic profiles observed at 460 nm (dark grey line, 

F8BT ground state recovery) and 740 nm (light grey line, F8BT triplet excited state 

decay) and exponential fit to the data (black lines) 

 

Using the ground state depletion (GSD) method [59] the absorption coefficient of 
3F8BT* was estimated as εT

740 ~ 54 L g-1 cm-1. Unexpectedly, no transient absorption is 

observed for F8BT NP in deoxygenated water (see Fig. 3, squares) when studied in the 

same time window (~1-200 µs). Analogous results were obtained for F8BT-10PtOEP 
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NP where no evidence was found either for the formation of 3F8BT* or the porphyrin 

triplet excited state. 3PtOEP* has been reported to show a strong transient triplet-triplet 

absorption around 400-490 nm and a less intense band at 550-700 nm [60]. A 

mechanism that accounts for the lack of triplet excited states formation in the NP 

suspensions is discussed in Section 5. 

The most relevant photophysical properties of F8BT and PtOEP in TFH solutions and 

of doped and undoped F8BT NP suspensions in water (or D2O) are collected in Table 1. 

 

Table 1. Photophysical, photochemical and electrochemical properties of 
F8BT doped and undoped NP 

 F8BT 
(in THF) 

PtOEP 
(in THF) 

F8BT NP 
(in water) 

F8BT-10PtOEP NP 
(in water) 

ES (eV) 2.48 2.30 (2.48) (2.30) 
ET (eV) 1.62 2.00 (1.62) (1.62) 

 ΦF 0.75 - 0.32 <0.01 
ΦP n.o. 0.38e n.o. n.o. 

 τS (ns) 2.7 - 1.52 n.o. 
 τT (µs) 120 50-99e n.o. n.o. 

Eoxi (V vs.SCE) +1.65c - (+1.65) - 
Ered (V vs. SCE) -1.99c -1.35f - (-1.35) 

Φ∆
a 0.07d ~1.00g 0.09h 0.24h 

Φ∆
b - - 0.22h 0.66h 

n.o.: not observed. 
a Quantum yield for O2(

1∆g) sensitization obtained from steady state emission spectroscopy. 
b Quantum yield for O2(

1∆g) sensitization obtained from ADPA consumption experiments. 
c films over Pt electrode in MeCN, see Supporting Information for details. 
d in aerated benzene from reference [58]. 
e from references [51,54]. 
f in dichoromethane from reference [57]. 
g estimated from reference [54] assuming that 3PtOEP* quenching by O2(

3Σg-) is dominated by energy 
transfer leading to the formation of O2(

1∆g). 
h in aerated D2O. 
 

3.3.  Photosensitized O2(
1∆∆∆∆g) generation by F8BT and F8BT-PtOEP NP. 

3.3.1.  O2(
1∆g) phosphorescence measurements. Direct evidence of the formation of 

O2(
1∆g) upon irradiation of nanoparticles in D2O were obtained by steady state emission 

spectroscopy. These measurements allow to determine directly the presence of O2(
1∆g) 

by detecting its characteristic phosphorescence in the near infrared (NIR) spectral range 

(maximum at ~ 1268 nm [61]). Fig. 4 shows the O2(
1∆g) stationary emission spectrum 

of a F8BT NP and F8BT-10PtOEP NP suspensions in D2O upon excitation at 487 nm. 

NP fluorescence background signals were obtained from similar experiments in Ar 
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saturated solutions. Relative quantum yields for O2(
1∆g) generation (Φ∆) were estimated 

by comparing the phosphorescence intensities measured for NP samples with those 

produced by Eosin Y (Φ∆ = 0.58 in D2O) [44]. From these experiments, values of Φ∆ ∼ 

0.09 and 0.24 were obtained for F8BT NP and F8BT-10PtOEP NP, respectively. A 

value of Φ∆ ∼ 0.07 has been previously reported for F8BT in benzene [58]. 

 

Figure 4. Steady-state emission spectrum in the NIR region generated by Eosin Y 

(black solid line), F8BT NP (green solid line) and F8BT-10PtOEP NP (red solid line) in 

aerated D2O solutions. NP fluorescence emission backgrounds are shown as dashed 

lines, see SI for details. Inset: O2(
1∆g) emission spectrum obtained by subtraction of the 

sample signals and the corresponding fluorescence backgrounds. The vertical dotted 

line shows the emission maximum at ~ 1268 nm.  

3.3.2.  Substrate consumption. Approximated values of Φ∆ can be also estimated by 

studying the rate of oxidation of organic substrates (ADPA or DMA) by O2(
1∆g) 

[33,35–37]. In this case, F8BT NP or F8BT-10PtOEP NP act as the O2(
1∆g) 

photosensitizers (S). Figure 5a shows the consumption of ADPA in the presence of 

F8BT NP (blue dots), F8BT-10PtOEP NP (red dots) and the reference Eosin Y (EY) 

(black dots) as a function of irradiation time with (quasi)monochromatic light at 487 

nm. These changes are associated with the photosensitized production of O2(
1∆g) by the 

NP and subsequent oxidation of ADPA to give the corresponding endoperoxide 

(ADPA-O2, Fig. 5a inset). Formation of DMA-O2 as the main photoproduct (> 95%,) 

upon irradiation of F8BT NP in acetonitrile was confirmed by HPLC (see Fig. S4). 

Accordingly, ADPA is not consumed when experiments are carried-out on suspensions 

saturated with Ar. Control experiments in the absence of sensitizer (not shown) 
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demonstrate that auto-photosensitization of ADPA is negligible under the experimental 

conditions due to the lack of significant absorption of ADPA at the excitation 

wavelength (487 nm). As shown in Fig. 5a, ADPA consumption in samples with F8BT-

10PtOEP NP is faster than in samples of undoped F8BT NP. Furthermore, the velocity 

of ADPA consumption clearly increases with increasing degree of porphyrin doping of 

the F8BT particles as shown in Fig. S5. Figure 5c shows the absorption spectra of 

ADPA in the presence of F8BT-10PtOEP NP before (black line) and after irradiation 

for 1500 s (grey line). In both cases, the spectrum of the NP remains unchanged after 

irradiation (compare black and grey lines above 420 nm) suggesting that these particle 

sensitizers are resistant to ROS induced oxidation/degradation processes usually seen 

for conventional photosensitizers. 

 

Figure 5. a) ADPA consumption as a function of irradiation time (λex = 487nm, using a 

wavelength-selective photoexcitation system, see experimental section for details) in 

presence of F8BT NP (red circles) and F8BT-10PtOEP NP (blue circles) and Eosin Y 

(black circles) in air equilibrated water suspensions and corresponding linear fits. 

[ADPA]0 = 40 µM, [NP] ~ 4.3 nM and [EY] ~ 10 µM. Inset: Reaction of ADPA with 

O2(
1∆g) to yield ADPA-O2, b) Absorption spectra of sample containing ADPA and 

F8BT-10PtOEP NP at 0 s (black line) and after 1500 s (grey line) of irradiation. c) 
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Absorption (black line) and emission-excitation (gray line) spectra of F8BT NP 

suspended in water (~2 mg/L) with ADPA (~20 µM) and emission-excitation spectrum 

of F8BT NP suspended in neat water (solid black line). Excitation spectra were 

collected by monitoring emission at 590 nm and were normalized to the absorption peak 

of F8BT NP (456nm). 

 

Scheme 2 shows a simplified mechanism for the oxidation of ADPA (A) 

photosensitized by NP (S). Assuming steady state for [O2(
1∆g)], the initial rate (v0) for 

ADPA consumption is given by Eq. 2 [62] :  

[ ]
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Ak
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dt
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τ
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





−= ∆   (2) 

where [A]0 is the initial substrate concentration, Φ∆ is the quantum yield of O2(
1
∆g) 

generation, Ia is the intensity of light absorbed at the excitation wavelength, τ0 (1/kd) is 

the lifetime of O2(
1
∆g) in the absence of substrate, kr is the reaction rate constant of 

O2(
1
∆g) associated exclusively with formation of endoperoxide (A-O2) and kt is the total 

rate constant of O2(
1
∆g) quenching (kt = kr + kq , where kq is the physical deactivation 

rate constant of O2(
1
∆g) induced by the substrate).  

 

Scheme 2. Simplified mechanism for photosensitized ADPA oxidation. 

 

Experiments were designed so that the rate of photon absorption (Ia) by all samples is 

identical (and constant) during irradiation (see Fig. S6), additional details are provided 

in the SI. Considering that in water ktτ0 ∼ 2.5x102 M-1 [62] and [A]0 = [ADPA]0 = 50 

µM, it follows that ktτ0[A]0 << 1. Thus, for the experiments shown in Fig. 5a, v0 can be 

written as:   
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which allows to calculate relative Φ∆ according to: v0
NP/v0

EY ∼ Φ∆
NP/Φ∆

EY. Hence, 

taking into account that in air equilibrated water solutions Φ∆
EY = 0.57 [63] , values of 

Φ∆ ∼ 0.22 and ~0.66 are calculated for F8BT NP and F8BT-10PtOEP NP, respectively. 

Surprisingly, these Φ∆ are ~3 times larger than those estimated directly from O2(
1
∆g) 

phosphoresce (Section 3.3.1). Thus, we conclude that either the mechanism assumed for 

NP photoinduced oxidation of ADPA (Scheme 2) or the approximations leading to Eq. 

3 must be incorrect. Similar conclusions were reached by studying the solvent isotopic 

effects on the oxidation process, see Fig. S7. Isotopic effects are primarily associated 

with the differences in intrinsic lifetimes of O2(
1∆g) in the studied solvent. According to 

Eq. 3, the ratio of the initial oxidation rates measured in D2O and H2O should be: 

v0
D2O/v0

H2O ≅ τ0
D2O/τ0

H2O ∼ 10 [64,65]. However, the experimental v0
D2O/v0

H2O ∼ 2 (see 

Fig. S8) is significantly smaller than the expected. To further investigate this unusual 

behavior of F8BT NP as photosensitizers, the dependence of v0 on the initial 

concentration of ADPA was studied in H2O and MeCN. Note that Eq. 2 can be rewritten 

as: 

( ) [ ] 
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



+= −

∆

−

0

01
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1
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k
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τφτ   (4) 

thus, a plot of v0
-1 vs. [A]0

-1 can be used to estimate the value of ktτ0. Such plots are 

shown in Fig. S8. Fitting the experimental data to Eq. 4, provides values of ktτ0 ∼ 

1.3x104 M-1 and ∼ 5.2x104 M-1 for the oxidation of ADPA by O2(
1
∆g) in H2O and 

MeCN, respectively. Interestingly, although the double reciprocal plots are linear, the 

calculated ktτ0 are considerably larger than those reported previously for the oxidation 

of ADPA by O2(
1
∆g); i.e. ktτ0 ∼ 2.5x102 M-1 (in H2O) and 7.1x103 M-1 (in MeCN) [62]. 

At this point, we speculate that the adsorption of ADPA on the NP surface could 

explain these unexpected results, this hypothesis will be tested and discussed in detail in 

Section 3.4.1. 

3.3.3. Molecular oxygen consumption. This method evaluates the kinetics of 

photosensitized oxidation of FFA by measuring consumption of molecular oxygen in 

the ground state (O2(
3∑g-)) dissolved in solution during selective photoirradiation of 

F8BT-NP or F8BT-10PtOEP NP. Furfuryl alcohol reacts with O2(
1∆g) as shown in Fig. 
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7 (insert) consuming O2(
3∑g-) and generating FFA-O2 which is thermally unstable and 

acts as an intermediate for the formation of oxidation products [38,39]. O2(
3∑g-) 

concentration was measured potentiometrically, using a specific microelectrode, as a 

function of irradiation time. The results are shown in Fig. 7. For both samples 

containing FFA and F8BT NP or F8BT-10PtOEP NP a considerable oxygen 

consumption (dash traces) is observed in a brief period which can be attributed to the 

photosensitized generation of O2(
1∆g) by the NP and subsequent reaction with FFA. 

Samples containing F8BT-10PtOEP NP show faster O2(
3∑g-) consumption than those 

with F8BT NP consistently with substrate consumption experiments. Additional oxygen 

consumption experiments were run in NP suspension without FFA to evaluate the 

photochemical stability of the particles against O2(
1∆g). The results of these experiments 

(Fig. 7, solid lines) show that under these conditions oxygen concentration does not 

change suggesting that O2(
1∆g) generated during photoirradiation of NP does not 

chemically react with the NP to give oxidized products. These observations are 

consistent with the lack of significant particle absorbance bleaching in substrate 

consumption experiments (Section 3.5) confirming the excellent photostability of the 

developed NP sensitizers.  

 

Figure 7. Molecular oxygen consumption as a function of irradiation time for water 

suspensions of F8BT NP (black lines) or F8BT-10PtOEP NP (grey lines) in the 

presence (dashed lines) and absence (solid lines) of FFA. [NP] = 6 mg/L, [FFA] = 50 

µM. Insert: Reaction of FFA with O2(
1∆g) to yield FFA-O2. Selective NP irradiation 

was provided by blue LEDs, see experimental section for details. 

 

3.4.  Adsorption of water soluble organic molecules onto F8BT NP. 
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3.4.1.   ADPA adsorption.  As mentioned in Section 3.3.2, the unexpected results 

obtained for the oxidation of ADPA photosensitized by F8BT NP suggested adsorption 

of the substrate onto the particles. If a fraction of ADPA is bound to the NP, the 

resulting increased local [ADPA] at the NP surface (where O2(
1
∆g) is generated) should 

favor O2(
1
∆g) trapping. This is equivalent to considering that the apparent concentration 

of ADPA found by O2(
1
∆g) is larger than [A]0, making the approximation ktτ0 [A] 0 << 1 

invalid (see Section 3.3.2, Eq. 2 and Eq. 3). To test this hypothesis, we studied the 

energy transfer (ET) from 1ADPA* to F8BT NP using steady state absorption and 

fluorescence spectroscopy. Figure 5c shows the absorption (black line) and corrected 

emission excitation spectra (grey line, collected at 550 nm where only F8BT emits) of 

an aqueous solution containing F8BT NP (~2 mg/L) and ADPA (~20 µM). The 

excitation spectrum of F8BT NP suspended in water without ADPA is also shown for 

comparison (blue line). The corrected excitation spectrum in presence of ADPA (solid 

grey line) clearly shows spectral features of ADPA absorption (peaks in the 350-410 nm 

region) confirming the occurrence of the singlet-singlet ET process. This ET process 

can occur through Förster or Dexter mechanisms, for the latter being necessary that 

APDA and F8BT NP to be essentially in contact (to achieve optimal wavefunction 

overlap between reactants) [66] . On the other hand, for Förster ET to be effective, 

ADPA and F8BT NP must be (on average) at a distance close or below the Förster 

radius (R0). Based on previous considerations, a critical energy acceptor concentration 

([C]c) can be defined below which Förster ET between freely diffusing molecules in 

solution is negligible. Equation 5 describes the relationship between [C]c and R0 [67] . 

0
2/3c 2

3000
]C[

RNAπ
=

  (5) 

where NA is Avogadro's number and [C]c is given in mol/L when R0 is expressed in cm. 

Using this equation and assuming an upper limit of 100 Å for R0 in our system (typical 

R0 values for donor/acceptor pairs where ET is highly efficient are < 100 Å) [68] we 

calculate [C]c > 0.45 mM. Since the estimated F8BT NP concentration ([NP] < 0.87 

nM, Section 2.9) is more than six orders of magnitude lower than [C]c we conclude that 

ADPA and F8BT NP in these experiments are not independently diffusing in solution 

but that (at least) a fraction of the ADPA must be adsorbed to the NP to account for the 

observed ET process. The nature of the ADPA/NP adsorption process is not easy to 

explain, particularly considering that at neutral pH, F8BT NP are negatively charged 
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(the zeta-potential has been determined to be –(26±2) mV in deionized water [69]) and 

that a significant fraction of ADPA (α~0.5) must be ionized. To study the ET from 
1ADPA* to F8BT NP process and the adsorption phenomenon in more detail, additional 

experiments were performed measuring fluorescence excitation spectra at various 

ADPA analytical concentrations ([Ai]0) (see SI for details and Fig. S9). The results were 

interpreted assuming the Langmuir model, according to Eq 6 [70]: 

[ ] [ ]
N

A

NKA

A free

adad

free += 1

  (6) 

where Aad are the moles of ADPA adsorbed onto the surface of the NP per gram of 

F8BT and [A] free is the molar concentration of free (non-bound) ADPA, Kad is the 

(average) associated adsorption equilibrium constant and N is the (average) moles of 

binding sites per gram of F8BT. Aad and [A] free can be calculated (see details in the SI) 

from fluorescence excitation experiments (assuming 100% energy transfer efficiency 

from excited Aad to F8BT), [A]0 and the solution volume (V). From this data a modified 

Langmuir plot ([A] free/Aad vs. [A] free) was constructed (Fig. 6) and a linear fit to the data 

using Eq. 6 was used to calculate N = (5.5±0.7) x 10-3 mol(sites)/g(F8BT) and Kad = (8±1) x 

103 M-1. Considering that in these experiments the estimated concentration of NP is 0.87 

nM, the (average) number of adsorption sites per NP must be ~14000. Figure 6 inset 

shows a plot of the (molar) concentration of ADPA “sequestered” by the NP ([A]ad = 

[A]0 -[A] free), as a function of the analytical concentration of [A]0. As shown, the plot is 

linear within the interval of [A]0 studied (from 6 to 40 µM). This result is important 

since it explains the linear dependence of v0
-1 vs. [A]0

-1 plots shown in Fig. S7. This is, 

the apparent concentration of ADPA bound to the NP surface is a (nearly) constant 

fraction of [A]0. In the inset of Fig. 6, it is also shown that the dependence of the 

occupied binding sites' fraction (θ = Aad/N) with [A]0. The plot is linear suggesting that 

the equilibrium is in the linear regime of the Langmuir isotherm. 
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Figure 6. Modified Langmuir plot for the adsorption of ADPA on the surface of F8BT 

NP. Insert: dependence of the fraction of F8BT occupied sites (θ, grey data points) and 

the molar concentration of sequestered ADPA (see text for details) with [A]0. 

 

3.4.2.  Dye adsorption. Further evidence of the unusual capacity of F8BT NP to adsorb 

water-soluble organic molecules was obtained by studying the quenching of F8BT NP 

fluorescence by zwitterionic, anionic and cationic dyes. The structure of the dyes used 

for these studies are shown in Scheme 1. Details for these experiments are discussed in 

detail in the SI. As shown in Fig. S10, addition of RhB to a F8BT NP suspension in 

water leads to the efficient quenching of the NP emission (540 nm) together with the 

appearance of dye emission at ∼577 nm. A simple Stern-Volmer treatment of the 

experimental data (inset Fig. S10) at concentrations of [RhB] < 15 nM, shows a 

“superquenching” effect [5] producing an apparent Stern-Volmer constant of KSV-RhB = 

5.8 x107 M-1. Comparable results were obtained for the quenching by RB and MB, 

yielding KSV-RB = 4.5x107 M-1 and KSV-MB = 1.7x107 M-1, respectively (see Fig. S11 and 

Fig. S12) . Considering Eq. 5 and the low concentrations of NP ([NP] = 0.87 nM) and 

dye-quenchers ([Q] ≤ 0.3 µM) used in these experiments, it can be concluded that the 

significant quenching observed must be due to the adsorption of the quencher dyes (Q) 

to the NP surface. Therefore, these experiments corroborate that the NP can adsorb 

different substrates independently of their net charges. Interestingly this efficient 

adsorption of a wide range of water soluble (ionic) dyes (present at very low 

concentrations) onto F8BT NP in aqueous suspension provides a simple and versatile 

method to achieve superficial dye-doping of these particles. Moreover, this type of 

doping favours vectorial energy transfer from the particle core towards its (dye 

decorated) surface. Thus such NP systems display high photon collection capacity and 
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efficient funnelling of excitation energy towards the particle surface can be useful in 

applications requiring a high flux of readily available excitation energy to drive physical 

or chemical transformations. 

 

4.  Discussion.  

The experiments described in Section 3 demonstrate that the studied NP have a rich and 

complex photophysics. In conjugated polymers, the effective length of the delocalized 

orbital associated with a π-π* transition is usually assumed to be restricted to chain 

segments containing only few monomer repeat units. Each of these segments is 

considered a chromophore and the associated excited state a molecular (or Frenkel) 

exciton [71,72]. Thus, each polymer chain is formed by a series of linked independent 

chromophores having different conjugation lengths. The photophysical properties of 

individual polymer chains and NP (composed by one or many collapsed chains) are 

affected by several conformation-dependent factors including: chromophores´ 

conjugation-length and spatial distribution, and energy and electron transfer among 

nearby chromophores (also described as exciton diffusion) [73]. As shown in Table 1, 

the ΦF and τF of undoped F8TB NP suspension in water are smaller than the observed 

for the conjugated polymer in THF (Table 1). This is attributed to fast intra-particle 

energy transfer processes that allow efficient funneling of excitation energy to weakly 

fluorescent polymer "traps" acting as fluorescence quenchers [50]. These energy 

transfer/quenching processes are favored by the folding and close packing of the 

polymer chains upon nano-aggregates formation. The complex emission decay observed 

also agrees with the existence of an assembly of fluorophores affected by different 

deactivation processes. Similar behavior has been described for many other micro-

heterogeneous systems [45]. F8BT NP capacity to generate O2(
1∆g) is small and similar 

to that observed for F8BT in benzene (Table 1). The detected O2(
1∆g) must arise from 

the quenching of 3F8BT* by molecular oxygen. However, 3F8BT* formation in F8BT 

NP cannot be detected in the flash photolysis experiments (Fig. 3). The lack of 3F8BT* 

transient signals can be rationalized considering that, after multiple photon excitation, 

triplet excitons annihilate efficiently due to the confined nature of the NP system. 

Excited states annihilation processes in F8BT NP (and other conjugated polymer NP) 

have been already reported in the literature [74–77]. Triplet-triplet (T-T) annihilation 

are second order (diffusion controlled) reactions and therefore, the rate of these 
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processes depend on the laser energy (strictly, on Ia
2). In fluid media, T-T annihilation is 

observed even at moderate laser intensities. In the confined NP system, fast T-T 

annihilation must be occurring in a time scale not accessible with our flash-photolysis 

equipment (< 200 ns) leading to a maximum concentration of approximately one triplet 

exciton per particle [74–78]. The singlet exciton size (conjugation length) of F8BT has 

been estimated as ~5 monomeric units [74,79]. If singlet and triplet exciton sizes are 

approximately the same and considering the maximum triplet concentration equal to the 

particle concentration (~10-9 M) the maximum expected transient absorption signal 

(after the annihilation process) for 3F8BT* NP is estimated to be ∆A~ 6x10-4 (see 

details in SI), which is clearly below the detection limit of our instrument. As 

mentioned before, T-T annihilation processes should be only important in laser flash 

photolysis experiments. At the low irradiation intensities used in stationary photolysis 

experiments with LEDs irradiation, most 3F8BT* should survive and be available for 

quenching by O2. 

The model proposed for the interpretation of the kinetic and spectroscopic data of 

F8BT-10PtOEP NP is shown in Scheme 3, which displays the relevant high-energy 

states (Table 1) and kinetic pathways for the system. When excited with blue light (456 

nm), F8BT-PtOEP NP preferentially form the 1F8BT*-PtOEP singlet excited state (hν, 

Scheme 3). As shown in Fig. 2a, in the presence of PtOEP, the emission of the polymer 

is almost completely quenched. Possible deactivation mechanisms for 1F8BT*-PtOEP 

are electron transfer (eT) and ET processes (Scheme 3). The energy of the F8BT•+-

PtOEP•– charge-separated state was estimated to be at ∼ 2.9 eV (disregarding 

Coulombic and solvation effects) based on the oxidation and reduction potentials 

collected in Table 1. This energy lies ~ 0.4 eV above 1F8BT*-PtOEP, thus quenching of 

the polymer singlet excited state via an electron transfer mechanism (kCT, Scheme 3) 

should not be significant. On the other hand, the good spectral overlap between 1F8BT* 

emission and PtOEP absorption (see Fig. 2a and 2b) suggests efficient singlet-singlet 

energy transfer from 1F8BT* to the tetrapyrrole ring, yielding 1PtOET* (kSS-ET, Scheme 

3) as the possible quenching mechanism. Intersystem crossing is highly efficient in 
1PtOET* (ΦISC ~ 1) [54] thus F8BT-1PtOET* is assumed to decay almost exclusively 

through this path yielding F8BT-3PtOET* (kISC,2 Scheme 3). As mentioned before, in 

(deoxygenated) THF solution 3PtOEP* decays efficiently to regenerate the ground state 

by emission of phosphorescence (ΦP = 0.38 [54] kP, Scheme 3). However, in 
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deoxygenated F8BT-PtOEP NP water suspensions porphyrin phosphorescent emission 

is not observed (see Fig. 1a) suggesting that F8BT-3PtOEP* must be efficiently 

deactivated by another mechanism. Taking into account that the energy of the triplet 

excited state of F8BT (ET ~ 1.62 eV, Table 1) is lower than that of PtOEP (~ 2.00 eV), a 

triplet-triplet energy transfer process to give 3F8BT*-PtOEP NP (kTT-ET, Scheme 3) 

would be thermodynamically favorable, explaining the lack of detection of the F8BT-
3PtOEP* emission signal. As explained before, attempts to confirm the formation of 
3F8BT*-PtOEP using transient absorption spectroscopy were unsuccessful, presumably 

because a fast T-T annihilation process takes place under the photoirradiation conditions 

used in the flash photolysis experiments. At this point, it seems interesting to compare 

the mechanism of O2(
1∆g) generation proposed here for F8BT-PtOET NP with that 

proposed by Wu et al. for F8BT-TPP NP. [25,26]. According to these authors, F8BT 

TPP NP generate O2(
1∆g) from 3TPP*. In principle, this mechanism can be justified 

thermodynamically considering that ET of TPP (~1.44 eV) [80–82] is much lower than 

that of F8BT (ET
 (3F8BT*) ~1.62 eV), so 3TPP* must be the lowest-lying triplet state in 

TPP-doped F8BT NP.  

 

Scheme 3. F8BT-PtOEP NP energy diagram. 

 

The higher Φ∆ of F8BT-PtOEP NP relative to that of F8BT NP (Table 1) is rationalized 

considering also the model described in Scheme 3. The presence of porphyrin in these 

NP increases the formation yield of 3F8BT* via a sequential ET mechanism involving 
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the following steps: i) S-S ET (1F8BT*-PtOEP→ F8BT-1PtOEP*), ii) intersystem 

crossing (F8BT-1PtOEP* → F8BT-3PtOEP*) and iii) T-T ET (F8BT-3PtOEP* 

→3F8BT*-PtOEP). In turn, the resulting high 3F8BT* quantum yield leads to increased 

singlet oxygen sensitization efficiency.  

It is important to note that although the Φ∆ (0.24) of F8BT-PtOET NP is not particularly 

high, the particles display a remarkably high efficiency as sensitizers in the 

photooxidation of singlet-oxygen chemical-trap substrates (ADPA and DMA). This 

effect is a consequence of substrate adsorption on the NP surface increasing its local 

concentration and accelerating its oxidation rate. Furthermore, for analogous particles 

our group has confirmed a related high efficiency as sensitizers in Photo Dynamic 

Therapy (PDT) inducing death in cancer cell lines (in vitro), these results will be 

published elsewhere. 

 

5. Conclusions  

In summary, we reported on the synthesis and characterization of F8BT NP doped with 

PtOEP able to efficiently photosensitize the formation of O2(
1∆g). The mechanism of 

O2(
1∆g) generation was investigated in detail by using absorption and emission 

stationary and time-depend techniques. The quantum yields for O2(
1∆g) generation 

sensitized by doped and neat NP were calculated using direct and indirect methods. The 

results indicate that that for these conjugated polymer NP sensitizers indirect methods, 

based on evaluation of oxidation rates of O2(
1∆g) chemical traps, tend to overestimate 

the Φ∆. Conclusive evidence is provided to show that the discrepancy in Φ∆ obtained 

from direct and indirect methods is due to the adsorption of the O2(
1∆g) chemical traps 

on the NP surface. Furthermore, we present unequivocal evidence for the adsorption of 

a variety of water soluble dyes onto the NP surface indicating that adsorption of ionic 

organic molecules on these particles in highly dilute conditions is a common 

phenomenon that might be exploited for the preparation of superficially dye doped 

conjugated polymer nanoparticles. These superficially doped particles might be 

particularly interesting in applications requiring high photon collection and vectorial 

energy funneling to efficiently generate excitation energy on the particle surface where 

is readily available. 
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