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1. Introduction and purpose

1.1. Background
Medical x-ray computed tomography (CT) images of patients with metal implants often display major 
corruption from streak artifacts (Bal and Spies 2006, Jäkel and Reiss 2007), which affects both the visual quality 
of the images and the quantitative CT value accuracy. The latter is a potential hazard in radiotherapy (RT), where 
the CT values are used in treatment planning to provide electron density and relative stopping power estimates 
(Andersson et al 2014, Giantsoudi et al 2017). This is of particular concern in head-and-neck RT, where dental 
implants and fillings occur frequently and are simultaneously close to both the tumor site and critical organs. 
In this situation, metal artifact reduction (MAR) plays an important role in error management (Kim and Tomé 
2007, Dietlicher et al 2014, Kwon et al 2015, Maerz et al 2015).

MAR is in general a difficult problem, as demonstrated by its approximately 40 year long history that has 
spawned numerous algorithmic approaches (Koehler et al 2011, Andersson et al 2014, Gjesteby et al 2016). A 
reason for this difficulty is the origin of the artifacts, which arise from multiple contributions that are amplified 
in the presence of metal (Beister et al 2012, Gjesteby et al 2016). Some of these contributions stem from incor-
rect assumptions in the CT reconstruction model that relates the image coefficients to the x-ray projection data 
(sinogram) (Goldman 2007, Buzug 2008). In particular, the mono-energetic approximation of the x-ray source 
spectrum in, e.g. the wide-spread filtered back projection (FBP) algorithm leads to incorrect modelling of the 
projections that are acquired through metal, and thus beam hardening artifacts (Stonestrom et al 1981, Hsieh 
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Abstract
Metal artifact reduction (MAR) algorithms reduce the errors caused by metal implants in x-ray 
computed tomography (CT) images and are an important part of error management in radiotherapy. 
A promising MAR approach is to leverage the information in magnetic resonance (MR) images 
that can be acquired for organ or tumor delineation. This is however complicated by the ambiguous 
relationship between CT values and conventional-sequence MR intensities as well as potential 
co-registration issues. In order to address these issues, this paper proposes a self-tuning Bayesian 
model for MR-based MAR that combines knowledge of the MR image intensities in local spatial 
neighborhoods with the information in an initial, corrupted CT reconstructed using filtered back 
projection. We demonstrate the potential of the resulting model in three widely-used MAR scenarios: 
image inpainting, sinogram inpainting and model-based iterative reconstruction. Compared to 
conventional alternatives in a retrospective study on nine head-and-neck patients with CT and 
T1-weighted MR scans, we find improvements in terms of image quality and quantitative CT value 
accuracy within each scenario. We conclude that the proposed model provides a versatile way to use 
the anatomical information in a co-acquired MR scan to boost the performance of MAR algorithms.
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et al 2000). Other contributions are more model-independent, such as the photon starvation in the metal projec-
tions that leads to noise artifacts (Nuyts et al 1998, Gjesteby et al 2016).

MAR algorithms may be categorized into three overall approaches. Image inpainting algorithms replace cor-
rupted CT values with better estimates by post-processing already reconstructed images (Lell et al 2013). Sino-
gram inpainting algorithms, on the other hand, replace metal projections by estimates that fit the reconstruction 
model to a higher degree, which may be particularly effective in dealing with photon starvation (Kalender et al 
1987, Meyer et al 2009, Zhang et al 2011, Lell et al 2012, Meyer et al 2012). Finally, model based iterative reconstruc-
tion (MBIR) algorithms change the CT reconstruction model itself to a more complex probabilistic forward 
model that better accounts for the artifact sources, at the cost of having to optimize a generally non-linear image 
functional in a slow, iterative algorithm (De Man et al 2000, 2001, Elbakri and Fessler 2002, Thibault et al 2007, 
Hamelin et al 2008, Stayman et al 2012, Van Slambrouck and Nuyts 2012, Nuyts et al 2013, Tilley et al 2016, Jin 
et al 2015, Stille et al 2016, Fu et al 2017).

An important part of many MAR algorithms is the inclusion of prior information about the image that is 
being estimated. While this is especially true for image inpainting algorithms, which impose such information 
directly in image space, prior information is also used in some of the most successful sinogram inpainting algo-
rithms. An example is the ‘normalized MAR’ (nMAR) method (Meyer et al 2009, 2012), which replaces metal 
projections by (scaled) projection estimates simulated from a template image. MBIR models also include prior 
information as they consist of two parts: a sinogram data likelihood that addresses, e.g. noise and beam harden-
ing artifacts by modelling the detector noise, the x-ray source spectrum and the implant material; and an image 
prior distribution that may be used to guide the reconstruction with statistical knowledge about the image being 
reconstructed (De Man et al 2001, Elbakri and Fessler 2002, Hamelin et al 2008, Van Slambrouck and Nuyts 2012, 
Nuyts et al 2013, Tilley et al 2016, Fu et al 2017).

In a general CT setting, the quality of the available prior information is rather limited. In sinogram inpaint-
ing, for example, the required template is typically generated by post-processing a CT image reconstruction that 
is heavily corrupted by metal artifacts (Meyer et al 2009, Lell et al 2012, Meyer et al 2012). Being generated from 
corrupted data, the resulting prior information may itself be compromised, thereby introducing new artifacts in 
complex, highly corrupted regions such as the head and neck near the teeth and oral cavity. Similarly, in MBIR the 
limited availability of accurate prior information often motivates the use of relatively simple functional priors 
that merely impose mathematical regularities in the reconstructed image (De Man et al 2000, Webster Stayman 
and Fessler 2001, Pan et al 2010, Makeev and Glick 2013).

1.2. Contributions of this paper
In the specific context of RT, a potential source of prior information for improved MAR is the magnetic resonance 
(MR) image that is commonly co-acquired for tumor- and normal tissue delineation. Since metal artifacts are 
often more localized in MR compared to CT (Park et al 2015, Bell and Bashir 2018), the MR scan can provide 
superior anatomical prior information in regions that are heavily corrupted in CT (Jonsson et al 2010, Bell and 
Bashir 2018). Furthermore, since co-registration and acquisition of the MR and CT scans in the same patient 
fixation is already part of the tumor-delineation process, this can be done with minimal interruption to the 
existing clinical workflow.

Despite the obvious potential, to the best of our knowledge only a few prior attempts have been made to use 
MR for reducing CT metal artifacts, most notably the image inpainting algorithms described in Anderla et al 
(2013), Delso et al (2013), Park et al (2015). The principal difficulty faced by such MR-based approaches to CT 
MAR lies in the image contrast disparities between the two modalities, especially between bone and air, which 
are easily distinguishable in the CT but not in the MR scan unless dedicated sequences are used (Delso et al 2013). 
Additional difficulties arise from co-registration issues, mainly due to to inter-acquisitional motion, which limit 
the accuracy of MR-based predictions.

In order to overcome these difficulties, we propose a novel Bayesian algorithm to predict uncorrupted CT val-
ues from a combination of corrupted CT measurements and corresponding MR intensities. The contributions of 
this work can be summarized as follows:

 1.  Due to the contrast disparity between MR and CT, single-voxel MR intensities are poor CT value 
predictors. In contrast to prior work, our model therefore relies on MR image patches (Andreasen et al 
2015, 2016) instead, i.e. collections of MR intensities taken from local spatial neighborhoods that encode 
higher-order anatomical features.

 2.  In contrast to existing methods that simply replace CT values that are deemed to be corrupt with entirely 
new values (Anderla et al 2013, Delso et al 2013, Park et al 2015), our method automatically blends MR-
based predictions with the original, corrupted CT values. As we demonstrate experimentally, this way 
of retaining the information of the original CT helps to discern bone from air as well as to address co-
registration issues.

Phys. Med. Biol. 64 (2019) 245012 (20pp)
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 3.  Rather than directly targetting only one particular MAR strategy such as image inpainting (Anderla et al 
2013, Delso et al 2013, Park et al 2015), the predictive model developed here can be used flexibly within 
several widely-used MAR scenarios. In particular, we demonstrate experimentally the benefit of using the 
proposed model to directly calculate blended CT value replacements and thus perform image inpainting; 
to generate a template for sinogram inpainting; and to define an image reconstruction prior for MBIR.

 4.  In order to facilitate clinical adoption, our model uses data from only the patient under consideration 
and automatically tunes its parameters to fit this specific patient. We demonstrate how the model thereby 
accounts for variations in patient-specific features, such as the severity of the artifact corruption as well 
as variations in the MR sequence parameters. It also removes the need for external training data of well-
aligned MR and CT image pairs that is commonly required for MR-based CT prediction in the literature 
(Dowling et al 2012, Andreasen et al 2015, Torrado-Carvajal et al 2015, Han 2017, Torrado-Carvajal et al 
2019).

The paper is structured as follows. We first derive and discuss the proposed predictive model, cover the automatic 
parameter estimation and present three MAR algorithms that are based on this model (section 2 ‘Methods’). 
Next, (in section 3 ‘Experiments’) we describe the practical implementation of the three MAR algorithms, and 
benchmark their performance in comparison to conventional alternatives; the results are afterwards presented 
in sequence for the three MAR algorithms (section 4 ‘Results’). We end with a final summary of our findings 
and main conclusions, followed by a discussion of, in particular, the potential of clinical implementation of our 
methods (section 5 ‘Conclusion and Discussion’).

An early version of our approach, with only qualitative (visual) results on a small set of patients, was previ-
ously presented (Nielsen et al 2018). The current manuscript provides substantially more technical derivations 
and analysis, in particular putting more focus on the self-tuning of the model parameters; proposes a novel sino-
gram inpainting variant as well as an improved MBIR algorithm; and contains detailed quantitative results on a 
larger set of patients.

2. Methods

2.1. Predictive model
Let a set of voxels covering a patient volume be assigned indices i from the index set T  (i ∈ T ), and denote the 
voxel center locations as {xi}i∈T . To avoid cluttered notation, we will suppress the index set and use {·} ≡ {·}i∈T  
in the remaining. Consider now a CT volume reconstructed using FBP (Buzug 2008), with per-voxel FBP values 
{ti}. Assuming the availability of an MR image that is co-registered with the FBP reconstruction, we extract a 
set of small cuboidal MR volumes (‘patches’) centered at {xi}, with intensities stacked in the vectors {mi}. The 
values in {ti} are potentially corrupted by metal artifacts, and our task is to estimate the underlying true CT 
values, {y i}, given the observation of {ti, mi}.

To accomplish this, we infer the posterior predictive distribution p({yi}|{ti, mi},σ), where σ denotes the set of 
model parameters, from a generative, probabilistic model of the corrupted CT values contingent on the observed 
MR scan. We specifically model the two-step process by which the uncorrupted CT values are first sampled from 
a prior distribution, assumedly in an independent fashion for each voxel:

p({yi}|{mi},σ) =
∏
i∈T

p(yi|mi,σ),

and then corrupted by sampling from a noise model p({ti}|{yi}), again independently for each voxel:

p({ti}|{yi},σ) =
∏
i∈T

p(ti|yi,σ).

Under this generative model, applying Bayes’ rule yields:

p({yi}|{ti, mi},σ) =
∏
i∈T

p(yi|ti, mi,σ), (1)

where p(yi|ti, mi,σ) = Z−1p(ti|yi,σ) p(yi|mi,σ) (2)

with Z =

∫ ∞

−∞
p(ti|yi,σ) p(yi|mi,σ)dyi. (3)

The predictive distribution of equation (1) depends on an FBP-dependent likelihood function p(ti|yi,σ) and an 
MR-determined prior distribution p(yi|mi,σ), which we detail below.

Phys. Med. Biol. 64 (2019) 245012 (20pp)



4

J S Nielsen et al

2.1.1. Likelihood
The likelihood p(ti|yi,σ) models the distribution of the corrupted CT value given the underlying true CT value. 

Introducing the maximal noise variance σ∗
t

2, we model the artifact corruption as additive Gaussian noise with 
variance σ2

t  smoothly decreasing with the distance to the implants, such that it is equal to σ∗
t

2 within the implants 

but 0 far away where the FBP is free of artifacts. In particular:

p(ti|yi,σ) = N (ti|yi,σ
2
t ) with σ2

t = σ∗
t

2f (xi) (4)

and f (xi) = 1 + tanh(−D2
⊥(xi)

κ
). (5)

Here, D⊥(xi) is the perpendicular spatial distance to a segmentation of the metal implants; N (·|ψ, ν2) denotes 
a Gaussian with mean ψ and variance ν2; and κ sets the decrease rate of the sigmoidal function f (xi). As an 
illustration, consider the two voxels at different distances to the metal in figure 1(a), for which the noise models 
(figure 1(b)) have different widths due to the modulation with f (xi) (figure 1(c)).

The metal segmentation and κ parameter must be defined by the user; section 3.2 will present the definitions 

used for our experiments. The maximal artifact noise variance σ∗
t

2 will however be chosen automatically given 
the observed data, as described in section 2.3.

2.1.2. Prior
Letting Tu ⊆ T  denote an assumed uncorrupted part of the patient volume (see figure 2(a)), we learn the prior 
distribution p(yi|mi,σ) from all matched CT/MR pairs {yn, mn}n∈Tu in Tu using kernel regression (Bishop 
2006). In particular, we estimate the joint distribution p(yi, mi|σ) with kernel density estimation (Bishop 2006) 
using Gaussian kernels with diagonal covariance matrices:

p(yi, mi|σ)

= |Tu|−1
∑
n∈Tu

N (yi|yn,σ2
y )N (mi|mn,σ2

mIM), (6)

and obtain the prior distribution p(yi|mi,σ) accordingly:

p(yi|mi,σ) =
p(yi, mi|σ)

p(mi|σ)
=

∑
n∈Tu

wi
nN (yi|yn,σ2

y ) (7)

with wi
n =

N (mi|mn,σ2
mIM)∑

n′∈Tu
N (mi|mn′ ,σ2

mIM)
. (8)

Here, N (·|ψ,Σ) denotes a multivariate Gaussian with mean ψ and covariance matrix Σ, IM  is the identity 

matrix of dimension M (the number of voxels in a patch) and | · | denotes set cardinality. σ2
y  and σ2

m are the kernel 
variances, which, together with the artifact noise variance σ∗

t
2 (see section 2.1), will be automatically estimated 

given the observed data as described in section 2.3. We obtain the required uncorrupted part of the patient 
volume Tu (as well as its complement Tc ) by thresholding f (xi) as shown in figure 1(c), leading to the following 
sets:

Tu ≡ {i ∈ T |f (xi) � 0.5} and Tc ≡ T \ Tu, (9)

which are illustrated in figure 2(c).

Figure 1. Illustrations of the artifact noise model. (a) Two points, A and B, at different distances to the metal implants. (b) The 
Gaussian artifact noise models for points A and B. (c) The sigmoidal function used to scale the variance with distance to the metal. 
Also shown is a thresholding at f   =  0.5, useful for automatic distinction of corrupted and uncorrupted regions.

Phys. Med. Biol. 64 (2019) 245012 (20pp)
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The kernel regression process is illustrated in figure 2(b) for the special case where 1x1x1 patches are used. 
After estimating p(yi, mi|σ) using uncorrupted CT/MR samples {yn, mn}, the prior distribution p(yi|mi,σ) 
corresponds to drawing a trace at the observed mi  and normalizing, leading to a one-dimensional Gaussian mix-
ture model that displays several peaks along the CT-axis. The mixture contains a large number of Gaussians, i.e. 
one for every sample in {yn, mn}n∈Tu. Since the samples in practice are clustered corresponding to tissue types, 
as illustrated in figure 2(b), the effective number of modes is however automatically reduced. In this way, kernel 
regression automatically performs an implicit tissue classification and reflects it in the prior model.

The expectation value of p(yi|mi,σ) presents a way to calculate a (Bayesian) prior estimate of the uncor-
rupted CT:

ŷpCTi ≡
∫ ∞

−∞
yip(yi|mi,σ)dyi =

∑
n∈Tu

wi
nyn, ∀i ∈ T . (10)

Figure 2. Illustration of the kernel regression on an uncorrupted part of the patient volume. (a) Illustration of the regression points 
{yn, mn}n∈Tu; shown are a few particularly good matches that would have a large weight in the prior model. (b) On the regression 
point set, kernel density estimation is used to define the joint distribution p(yi, mi|σ) (shown as a surface for 1 × 1 × 1 patches). The 
red curve corresponds to p(yi|mi,σ), results from kernel regression and is a normalized trace on the kernel density estimate surface at 
a specific mi . (c) Illustration of the corrupted voxel set Tc  (equation (9)), with the uncorrupted set Tu as its complement.

Phys. Med. Biol. 64 (2019) 245012 (20pp)
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This straighforward pseudo-CT (Andreasen et al 2015, Hofmann et al 2008) (pCT) estimate, which is dependent 
only on the MR scan, will serve as a baseline for our experiments.

2.2. Posterior predictive distribution
Using the prior and likelihood that we have now defined, the posterior in equation (1) may be calculated. Defining 
the parameter set σ ≡ {σ∗

t ,σy,σm} and plugging in equations (7) and (4):

p(yi|ti, mn,σ) = Z−1
∑
n∈Tu

wi
nN (yi|yn,σ2

y )N (ti|yi,σ
2
t ). (11)

Using that:

N (ti|yi,σ
2
t )N (yi|yn,σ2

y )

= N (yi|µi
n, (σ−2

t + σ−2
y )−1)N (ti|yn,σ2

t + σ2
y )

 (12)

with

µi
n ≡ 1

1 + σ2
t

σ2
y

ti +
1

1 +
σ2

y

σ2
t

yn, (13)

the normalizing factor (equation (3)) becomes:

Z =
∑

n′∈Tu

wi
nN (ti|yn,σ2

t + σ2
y )

and we get:

p(yi|ti, mi,σ) =
∑
n∈Tu

vi
nN (yi|µi

n, (σ−2
y + σ−2

t )−1), (14)

with weights:

vi
n ≡

wi
nN (ti|yn,σ2

t + σ2
y )∑

n′∈Tu
wi

n′N (ti|yn′ ,σ2
t + σ2

y )
. (15)

Equation (14) is our main result. We will later use it to calculate a Bayesian estimate of {y i} via its expectation:

ŷi ≡
∫ ∞

−∞
yip(yi|ti, mi,σ)dyi =

∑
n∈Tu

vi
nµ

i
n, ∀i ∈ T , (16)

which will be used in the proposed MAR methods.

2.2.1. Interpreting the posterior
The means and weights {µi

n, vi
n}n∈Tu in the Gaussian mixture of equation (14) are similar to the ones in the prior 

model of equation (7), but are now determined by both the potentially corrupted FBP value ti and the regression 
points {yn, mn}n∈Tu. How the two are blended is determined by the exact values of the parameters σ, which are 
therefore critical for the shape of the posterior.

Kernel regression parameters

The influence of the kernel regression variances σ2
y  and σ2

m is isolated to the prior p(yi|mi,σ), and is as illustrated 
in figure 3(a).

The σ2
y  parameter controls the width of the Gaussians in the mixture of equation (7). This affects the model-

led CT value variance within the implicit tissue classes defined by the kernel regression, which is reflected by the 
width of the peaks in the prior.

The σ2
m parameter scales the squared MR image patch differences in the Gaussian weights wi

n , such that 
decreasing it translates to more weight on a smaller set of Gaussians with smaller ‖mi − mn‖. Compared to larger 
settings (figure 3(a), right), a small value (figure 3(a), left) means that only patches in uncorrupted areas that have 
very similar intensity profiles contribute to the prediction, which shows as an amplification of the corresponding 
peaks in the prior.

Artifact noise variance

The influence of σ∗
t

2 is isolated to the likelihood p(ti|yi,σ) and governs the expected level of corruption near 
the metal voxels (near the metal, σ2

t ≈ σ∗
t

2). For a given voxel, σ2
t  directly determines the width of the likelihood 

and thus how the prior is modified to yield the posterior. Typical values of σ2
t  lead to posteriors such as those in 

figure 3(b), where peaks near the observed FBP value ti are amplified.

Phys. Med. Biol. 64 (2019) 245012 (20pp)
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In the special case where σ2
t  is very large, however, the likelihood becomes effectively a constant, so that the 

prior dominates the estimate and µi
n ≈ yi

n, vi
n ≈ wi

n, and the estimate in equation (16) therefore approaches the 

pCT in equation (10) ( ŷi ≈ ŷpCTi ). The purely MR-based pCT thus arises as a special case of equation (16).
In the other extreme where σ2

t → 0, the likelihood becomes a sharp function, while µi
n → ti and ŷi → ti . In 

that scenario the estimate therefore simply copies the FBP without reference to the MR scan. The FBP is thus 
another special case of equation (16).

2.3. Automatic parameter tuning
2.3.1. Parameter tuning
As we have seen, the σ parameters critically alter the shape of the posterior as well as the predictions derived from 
it, and so it is important that they are chosen appropriately. The observed data themselves may be used as a guide 

for this process; for instance, a highly corrupted FBP would suggest a large σ∗
t

2 while a certain degree of CT value 
variation between voxels containing the same tissue type would suggest a certain setting for σ2

y . We will now use a 

Bayesian method to automatically pick the parameters that best explain the observed data given our probabilistic 
model.

Equations (6) and (4) together define a joint distribution over the observed data {ti, mi} together with the 
unobserved variables {y i}:

p({ti, mi, yi}|σ) =
∏
i∈T

p(ti, mi, yi|σ)

with p(ti, mi, yi|σ) = p(yi, mi|σ) p(ti|yi,σ).
 

(17)

Marginalizing equation (17) over the unobserved variables {y i}, using equations (6) and (4) for the components, 
yields

p({ti, mi}|σ) =
∏
i∈T

p(ti, mi|σ) with

p(ti, mi|σ) =
∫ ∞

−∞
p(ti, mi, yi|σ)dyi

= |Tu|−1
∑
n∈Tu

N (mi|mn,σ2
mIM)

[∫ ∞

−∞
N (ti|yi, f (xi)σ

∗
t

2)N (yi|yn,σ2
y )dyi

]

= |Tu|−1
∑
n∈Tu

N (ti|yn, f (xi)σ
∗
t

2 + σ2
y )N (mi|mn,σ2

mIM).

 

(18)

In the last step, we used equation (12) to carry out the integral. Given the observed variables {ti, mi}, appropriate 
parameter values σ may now be obtained by maximizing equation (18), effectively fitting the model to the 
available data.

We perform the optimization using an iterative expectation-maximization (EM) algorithm (Demp-
ster et al 1977) that only requires closed-form updates. Starting from an initial setting of σ, EM alternately 

Figure 3. Influence of the parameter settings on the posterior for a single voxel. Each plot is for a different combination of the CT 

and MR image kernel variances σ2
y  and σ2

m, whose values increase respectively from top to bottom and left to right. The FBP value 
in the voxel, ti, is indicated. (a) The posterior for σ∗

t
2 → ∞, corresponding to the MR-based prior model; (b) the posterior for an 

appropriately chosen σ∗
t

2 (see section 2.3).

Phys. Med. Biol. 64 (2019) 245012 (20pp)
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applies an expectation (E) and a maximization (M) step. In the E-step, a lower bound to the objective function 
log p({ti, mi}|σ) is constructed given the current estimate of σ, derived directly from Jensen’s inequality (Bor-
man 2009):

log p({ti, mi}|σ) =
∑
i∈T

log
∑
n∈Tu

φi
n

=
∑
i∈T

log
∑
n∈Tu

vi
n

(
φi

n

vi
n

)

�
∑
i∈T

∑
n∈Tu

vi
n log

(
φi

n

vi
n

)

︸ ︷︷ ︸
(∗)

,

where vi
n are the weights in equation (15) and we defined:

φi
n = |Tu|−1N (ti|yn, f (xi)σ

∗
t

2 + σ2
y )N (mi|mn,σ2

mIM).

The lower bound (∗) is, by design, equal to log p({ti, mi}|σ) at the current parameter estimate, so when it is 
maximized during the M-step, the objective is guaranteed to increase (Dempster et al 1977). In general, the non-
analytic f (xi) prevents a closed-form formulation of this maximization, and so we simplify the objective by 
thresholding at f   =  0.5, as illustrated in figure 15. This removes f (xi) from the equations while splitting T  into 
the corrupted and uncorrupted sets Tc  and Tu, leading to a closed-form M-step and algorithm 1:

Algorithm 1. Automatic parameter estimation.

1: Choose an initial estimate of the parameters

  (σ ← {106, 106, 106}), and set δ ← 1.

2: while δ > 10−3 do

3:      σ0 ← σ

4:      E-step: Calculate vi
n, ∀i ∈ T  and ∀n ∈ Tu,

   using equation (15).

5:      M-step: Update the parameter estimates:

6:

      [σy]
2 ← 1

|Tu|
∑

i∈Tu

∑
n∈Tu

vi
n(ti − yn)

2

      [σt
∗]2 ← 1

|Tc|
∑

i∈Tc

∑
n∈Tu

vi
n(ti − yn)

2 − [σy]
2

      [σm]
2 ← 1

|T |
∑

i∈T
∑

n∈Tu
vi

n
‖(mi−mn)‖2

M .

7:   δ ← ‖σ − σ0‖/3

8: end while

The calculation of vi
n in the E-step may be viewed as a probabilistic assignment of the data points to the tissue 

classes that were implicitly defined during kernel regression. Given this classification, the update equations in the 
M-step estimate the within-class variance, over different parts of the patient volume:

 •  σ2
y  is calculated over the uncorrupted set Tu, which reflects the observed noise in the CT values within a tissue 

class in the absence of the metal artifacts.

 •  σ∗
t

2 updates to the additional variance in the metal artifact corrupted volume Tc , reflecting the level of artifact 
corruption.

 •  σ2
m updates to the MR image patch variance over the entire volume.

During the iterations, the update of the parameters in the M-step improves the soft classification in the E-step 
as the model increasingly fits the data, which in turn improves the parameter estimates. This continues until the 
objective is maximized and the parameters stop changing.

2.4. Application to MAR: three algorithms
We propose to use the posterior predictive distribution p(yi|ti, mi,σ), specified in equation (14) and with 
parameters σ automatically tuned using algorithm 1, as the basis for three different MAR algorithms. Specifically, 
we define an image inpainting method that simply uses the mean of the predictive distribution; a sinogram 

5 Since f (xi) displays a relatively sharp drop-off, this approximation does not notably change the results, as we also verified 
experimentally.
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inpainting method that uses the image inpainting result as a template to estimate the metal projections; and an 
MBIR algorithm that uses the full distribution p(yi|ti, mi,σ) as a reconstruction prior together with a Poisson 
likelihood model of the x-ray intensity measurements.

2.4.1. Image inpainting
The image inpainting method that we propose, which we will call kernel regression MAR (kerMAR) in the 
remainder, directly calculates a CT estimate as the mean of p(yi|ti, mi,σ), which is given by equation (16), with 
one exception: the metal implants, as segmented for the definition of f (xi) (see section 2.1), are left untouched. 
For a comparative evaluation of our model, we also define a similar algorithm that we call pCT, which instead 
uses the mean of p(yi|mi,σ), given by equation (10). This latter algorithm is entirely MR-dependent, effectively 
ignoring the information in the available FBP reconstruction.

2.4.2. Sinogram inpainting
The sinogram inpainting method we propose builds upon the nMAR algorithm (Meyer et al 2009, 2012), which 
uses simulations on a template image to replace the metal projections. Rather than directly replacing the metal 
projections, nMAR smoothly integrates the simulated metal projections in the sinogram as follows: the ratio 
of the original sinogram and the simulation is calculated. In the ‘sinogram’ of ratios, the metal projections, 
labelled by a similar projection simulation on a binary mask derived from the metal implant segmentation, 
are then linearly interpolated between the nearest-lying values. This provides a set of weights that reflect the 
deviations between the simulation and original. These are used to weigh the simulated metal projections to 
smooth the transition over the metal implants between the original projections and the simulated ones. The 
resulting, inpainted sinogram is finally used for a reconstruction with FBP, and the image is post-processed: in 
particular, since the template does not in general reproduce the metal implants accurately, their contribution to 
the metal projections is not accurately simulated, leading to errors near and in the metal implants. The implant 
segmentation is therefore used to reintroduce the original metal CT values, upon which a frequency split (Meyer 
et al 2012) is performed to preserve high frequency information (details) near the implants.

Our MR-based method, nMAR-k, simply uses our inpainted kerMAR image as the template within the estab-
lished nMAR framework. For comparison, we also apply the nMAR algorithm with a conventionally generated 
FBP-derived template, calculated by thresholding using K-means clustering (Bishop 2006) on an initial linear 
interpolation MAR (liMAR) (Kalender et al 1987) image, followed by bulk CT value assignment (Meyer et al 
2009, Lell et al 2012, Meyer et al 2012).

2.4.3. MBIR
MBIR maximizes the posterior distribution of a CT reconstruction given the acquired x-ray intensity data and a 
reconstruction prior, for which we propose to use our predictive distribution:

p({yi}|{nj}) ∝ p({nj}|{yi})
∏
i∈T

p(yi|ti, mi,σ), (19)

where p(yi|ti, mi,σ) is given by equation (14). Here {nj } is the set of x-ray intensity measurements for difference 
paths through the patient volume. Following (Nuyts et al 1998), we use a Poisson likelihood:

p({nj}|{yi}) =
∏

j

p(nj|{yi}),

p(nj|{yi}) = Poisson{λj}, λj = Γje
−

∑
i∈T lj,iyi ,

where Γj  is the emitted x-ray count toward detector j , and L is the system matrix whose entry lj ,i defines the 
intersection between the x-ray path j  and voxel i. To maximize the reconstruction posterior in equation (19) 
we use the iterative MLTR algorithm (Nuyts et al 1998, Van Slambrouck and Nuyts 2012) in its extended form 
De Man et al (2000), De Man (2001), which allows for a general reconstruction prior. Starting from an initial 
reconstruction estimate, the algorithm maximizes the log-posterior by iteratively applying an additive term. In 
addition to the x-ray data likelihood, this term depends on the first and second derivatives of the log-prior (De 
Man et al 2000, De Man 2001), which in our case become

ln( p(yi|ti, mi,σ))
′ = (σ−2

t + σ−2
y )[

∑
n∈Tu

ṽi
nµ

i
n − yi] and (20)

ln( p(yi|ti, mi,σ))
′′

= (σ−2
t + σ−2

y )2

( ∑
n∈Tu

ṽi
nµ

i
n

2 − [
∑
n∈Tu

ṽi
nµ

i
n]

2

)
− (σ−2

t + σ−2
y )

 (21)
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where ṽi
n =

vi
nN (yi|µi

n, (σ−2
t + σ−2

y )−1)∑
n′∈Tu

vi
n′N (yi|µi

n′ , (σ−2
t + σ−2

y )−1)
. (22)

We will refer to the resulting reconstruction algorithm as MLTR-k.

3. Experiments

3.1. Materials
We evaluated the three proposed algorithms on an anonymized retrospective data set of nine head-and-
neck radiotherapy patients containing dental implants and/or fillings. The image sets had a resolution of 
1.2 × 1.2 × 2.0 mm (CT) and 0.5 × 0.5 × 5.5 mm (MR). The MR images were resampled to the CT resolution 
after rigid, multi-modal co-registration by mutual information (Wells et al 1996, Maes et al 1997) using the 
MatLab (version R2019a) image processing toolbox (Mathworks 2019). The CT scanner was a Philips Brilliance 
Big Bore with kVp120, the MR scanner a Philips Panorama 1.0T HFO. The patients were MR scanned with a T1-
weighting 2D spin-echo sequence at TE  =10 ms and TR  =520.2–572.2 ms (varying between scans). The patients 
were positioned in the same fixation for both MR and CT scans. For MBIR and sinogram inpainting, we exported 
the sinograms from the CT scanner.

3.2. Practical implementation
A generic procedure for implementing the three MAR algorithms is described in algorithm 2:

Algorithm 2. Summary of implementation.

1: Calculate the FBP.

2: Segment the metal implants.

3: Calculate f (xi) according to equation (5).

4: Obtain the uncorrupted set Tu by thresholding

  f (xi) at 0.5 (see equation (9)).

5: Estimate σ using algorithm 1, then calculate the

   weights {wi
n}n∈Tu using equation (8) and {µi

n, vi
n}n∈Tu

   using equations (13) and (15), ∀i ∈ T .

6: Apply the three MAR algorithms:

      1. For image inpainting, use equation (16) and the metal segmentation of step 2.

      2. For sinogram inpainting, use the image inpainting result as a template and proceed as outlined in section 2.4.

      3. For MBIR, use the derivatives in equations (20) and (21) along with equation (22) in an MLTR implementation.

For our experiments, we implemented the various steps as follows:

 Step 1:  We acquired the FBPs as reconstructed by the vendor-provided scanner software.
 Step 2:  We performed the metal segmentation automatically using Otsu’s method (Otsu 1979).
 Step 3:  We found the exact value of κ in the expression for f (xi) to be non-critical, and used κ = (10 mm)2 

for all our head-and-neck patients.
 Step 5:  The vast majority of the weights {wi

n}n∈Tu will in practice attain very small values and therefore not 
contribute to the model in a meaningful way. In order to speed up computations, we therefore used 
a fast patch matching algorithm (Ta et al 2014) to identify 200 regression points for each voxel i with 
particularly small patch differences ‖mn − mi‖ and therefore large weights wi

n , effectively clamping 
the weights of all other regression points to zero. We used 5 × 5 × 5 patches, i.e. 6 × 6 × 10 mm.

 Step 6:  For sinogram inpainting, we used 3D spiral forward projection to detect the metal projections 
and calculate the prior projections. For the interpolation of the metal projections, we used 2D 
barycentric linear interpolation over the cylindrical detector array on a triangular grid. For image 
reconstruction, since the MBIR implementation in particularrequired numerous slow but highly 
parallellizable forward and back projection operations, speed was a priority both for potential clinical 
implementation and to facilitate the experiments. We therefore used the GPU-accelerated primitives 
in the ASTRA (van Aarle et al 2015, 2016) package, as well as the bundled FBP implementation (with a 
Shepp–Logan filter). We performed the reconstructions in 2D, after rebinning and interpolating the 3D 
spiral sinograms from the scanner to sets of 2D sinograms with a linear detector geometry.

  We initialized the iterative reconstruction process in MBIR with uniform images with an attenuation 
coefficient of 10−6 mm−1. We stopped iterating once the voxel-averaged change between iterations fell 
below 10−6 mm−1.
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Our entire computational framework used Python. The MAR algorithms, parameter estimation algorithm and 
sinogram rebinning methods in particular used NumPy and SciPy, while the reconstruction algorithms used 
ASTRA in its Python-wrapped form.

3.3. Quantitative evaluation
For each MAR algorithm, we evaluated the quantitative accuracy of the artifact-reduced CT images as follows: 
first, we acquired manual delineations of the oral cavity and the teeth for each patient, drawn in the FBP CT 
images guided by the MR scans. We split these delineations into a corrupted and uncorrupted part using our 
definitions of Tc  and Tu, and calculated reference mean CT values for each structure and each patient using the 
CT values in the uncorrupted parts. Around these mean values, we calculated the CT value standard deviations 
(STDs) over the corrupted parts; this provided an image quality metric for each structure, with each MAR, and 
for each patient. We performed the calculations in Hounsfield Units (HU) (Buzug 2008). We finally contrasted 
the STD observations for the different MAR algorithms using a repeat measurements Student’s t-test, and report 
the patient-averaged STD results for all MAR algorithms and structures, as well as the p-values of the tests.

The use of the STD metric as an image quality metric relies on the assumption that different partitions of 
each ROI do not display large differences in mean HU values in the absence of artifacts as a result of large ana-
tomical variations; such differences would lead to a systematic error in the reference mean, directly affecting the 

Figure 4. H&N image results. Gold circles indicate the metal implants and patient numbers are shown below the images. (a) and (b) 
FBP (top) and kerMAR (bottom) at different window levels. (a) A narrow, soft tissue enhancing window level. The arrows indicate 
regions where the anatomical information in the MR scan led to artifact reduction, while the red circles indicate compromised areas 
due to poor CT/MR co-registration. (b) A wider window level. (c) The T1w MR images.
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STD results. To estimate the magnitude of this error, we used the uncorrupted parts of our nine-patient cohort 
to emulate the artifact-free tissue distributions in the oral cavity and teeth. Using that the corrupted and uncor-
rupted sets in our experiments were, on average, not far from equal-sized, we then created 106 random bipartions 
of the extracted set of CT values, for each calculating the difference in mean between the partitions. These differ-
ences between means turned out to be near-Gaussian distributed; for the oral cavity the average was  ∼0 HU and 
the standard deviation 1.1 HU, while for the teeth the average was  ∼0 HU and standard deviation 6.3 HU. Even 
after multiplying the standard deviations by a factor 10 for a more conservative estimate, the error on the refer-
ence means in our experiments should thus be in the tens of HU, which is an order of magnitude smaller than 
the variations between MAR algorithms that we present in the following section. Consequently, the STD metric 
appears to be a valid indicator of artifact suppression.

4. Results

We now report our results in sequence for the proposed image inpainting, sinogram inpainting and MBIR 
algorithms.

4.1. Image inpainting
Figure 4 shows visual results of the MR-based image inpainting algorithm kerMAR for representative head-and-
neck patients, at a narrow, soft tissue enhanced window level (a) and a wider level (b). The T1w MR images are 
shown in (c). The green arrows in (a) indicate regions where kerMAR provided notable artifact reduction by 
suppressing both high and low intensity streaks, while at the same time preserving complex structures where the 
CT values are difficult to predict from the MR scan, such as the teeth.

The region where kerMAR was least successful was the windpipe, indicated by the rings. Here, the sometimes 
severe misalignments of the CT and MR images, due to inter-scan patient motion, led to a highly inaccurate MR-
based prior and thus anatomical errors. However, in similar but less severe cases, such as with smaller misalign-
ments, mechanisms in the kerMAR algorithm allowed it to avoid such anatomical errors. In particular, as we saw 

in section 2.2.1, the kerMAR image is an intermediate between the extreme special cases of pCT (σ∗
t

2 → ∞) and 
FBP (σ∗

t
2 → 0), and thus corresponds to a non-trivial blending of the FBP and MR-based prediction. Figure 5 

shows the kerMAR image along with these two special cases for a patient where the MR and CT scans were mis-
aligned in the teeth. In this less severe case of misalignment, while we see poor pCT performance and thus a poor 
prior-based prediction, the blending with the FBP led to a much improved kerMAR. Similar results occurred in 
the spinal cord (red square), where similar inaccuracies led to an apparent introduction of MR features in the 
pCT, which were successfully suppressed in the kerMAR.

Figure 5. Axial slices of kerMAR and its special cases, i.e. the MR-based pCT (kerMAR with infinite artifact noise variance) and 
the FBP (kerMAR with 0 noise variance). Results are shown at a wide (top) and narrow, tissue enhancing (bottom) window level. 
The kerMAR simultaneously displays artifact reduction, improved anatomical fidelity in difficult bone and air regions (rings) and 
handling of co-registration errors due to inter-scan motion (arrows). The squares focus on a slice of the spinal cord, where the 
kerMAR noticeably improves upon the pCT by referencing the FBP.
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To summarize the results of the visual inspection, we saw (1) clear visual artifact reduction with both ker-
MAR and pCT and (2) a clear performance difference in bone and air regions between the two MAR algorithms. 
For the quantitative analysis of the oral cavity and teeth, these observations are reflected in the STDs shown in  
figure 6, which measure the CT value standard deviation in the corrupted parts of the structures around the 
mean intensity in the uncorrupted parts. In the oral cavity, kerMAR and pCT were equally effective, with sig-
nificant STD reductions relative to the FBP of  ∼150 HU. In the teeth, however, the pCT did not improve on the 
FBP, consistent with our observations of poor pCT performance in such thick, bony regions. Here, only kerMAR 
showed a benefit, providing a significant improvement over the pCT of  ∼100 HU.

4.1.1. Influence of automatic parameter tuning
We finally considered the influence of the automatic patient-specific parameter tuning (algorithm 1) by 
intentionally swapping the estimated parameters between patients. Figure 7 shows the results for two 
representative patient-pairs, where we swapped the parameters for patient 1 and 3 with those of patient 2 and 4, 

respectively. Patients 1 and 3 displayed relatively smaller settings of σ2
y  and σ∗

t
2, and swapping the parameters with 

those of patient 2 and 4 therefore led to increased σ2
y  and σ∗

t
2. This substantially altered the predictive model; as 

illustrated in figure 3, a σy
2 increase widens the prior peaks while a σ∗

t
2 increase widens the likelihood, leading to a 

prediction that was both less precise and less accurate in areas where the MR-based prediction was compromised. 
These changes in the predictive model caused errors especially in the teeth (rings and arrow), as well as blur for 
patient 1, as compared to the automatically tuned parameters.

Patients 2 and 4 correspondingly displayed larger settings of σ2
y  and σ∗

t
2. Upon swapping, the ensuing decrease 

in σ2
y  and σ∗

t
2, and thus narrowing of the posterior, led to image noise and less effective artifact reduction; this is 

clearly visible for patient 2. Along with the larger σ∗
t

2 and σy
2, patients 2 and 4 further displayed smaller values of 

Figure 6. Results of the quantitative analysis in the oral cavity and teeth for FBP, purely MR-based pCT and our kerMAR algorithm. 
The error bars are standard deviations.

Figure 7. kerMAR calculated for four head-and-neck patients using tuned parameters σ (top) and with these parameters 
intentionally swapped between patients with different tunings; in particular, 1 with 2 and 3 with 4 (bottom). The rings and circles 
highlight the most substantial differences owed to the parameter swaps.

Phys. Med. Biol. 64 (2019) 245012 (20pp)



14

J S Nielsen et al

σ2
m. The swap therefore also led to an increase in σ2

m and thus a prior model with a less sensitive MR patch-based 
distinction between its regression points. Compared to using the automatically tuned parameters, this led to 
errors for patient 2 in the thick molars indicated by the circles, where the relevant MR patch differences are subtle.

4.2. Sinogram inpainting
Figure 8 shows visual results of the proposed MR-based sinogram inpainting method nMAR-k, alongside those 
produced with a standard nMAR implementation based on a conventional, FBP-based template image. As seen at 
the narrow, soft tissue enhancing window level in figure 8(a), nMAR and nMAR-k performed similarly in terms 
of artifact reduction; neither algorithm reconstructed an artifact-free oral cavity, while both reduced artifacts 
elsewhere to similar degrees (see regions indicated by arrows).

Figure 8. Head-and-neck results at different window levels for (top) standard nMAR, where a conventional FBP-based template 
is used for projection estimation and (bottom) the proposed nMAR-k where we used the MR-based kerMAR as template. Golden 
circles indicate the metal implants, and patient numbers are shown beneath the images. (a) A narrow, soft tissue enhancing window 
level. (b) A wider window level. Arrows point to artifacts introduced in conventional nMAR due to errors in the CT-based template.
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At the wider window level in figure 8(b), we see a clearer difference between nMAR and nMAR-k: The some-
times lower quality of the FBP-based template in standard nMAR led to the visible artifacts (arrows), which are 
absent using the proposed MR-based method. A clear benefit of using the higher quality MR-based template thus 
appears to be to avoid certain artifacts introduced by the CT-based one. The influence of such improvements on 
the quantitative STD metric was comparatively minor, as figure 9 shows significant improvement of both meth-
ods over the FBP, but little quantitative difference between them.

4.3. Model-based iterative reconstruction
In order to evaluate the benefit of including the predictive distribution p({yi}|{ti, mi},σ) as an image 
reconstruction prior in the MLTR algorithm, we ran the algorithm both with (the proposed MLTR-k algorithm) 
and without this prior (referred to in the remainder as simply ‘MLTR’). We ran each algorithm until the voxel-
averaged difference accross two subsequent iterations of the reconstructed image decreased below a predefined 
threshold (10−6). Figure 10 displays the obtained reconstructions at the specified convergence threshold for both 
methods in five representative patients. Results are shown at a soft tissue enhancing window level (a) and at a 
wider level (b). At the narrow window level, the main detectable benefit of MLTR-k compared to MLTR was 
less blurry reconstructions, which indicate that the algorithm was closer to full convergence; in terms of artifact 
reduction, MLTR-k more successfully eliminated low intensity streaks but did not wholly eliminate high intensity 
ones. At the wider window level, MLTR-k more clearly improved the MAR over MLTR (arrows in (b)), although 
these benefits came, in a few cases, at the expense of some newly introduced artifacts in the teeth (see black rings), 
that however were not a general trend.

Figure 11(a) further shows the logarithm of the voxel-averaged difference used as convergence criterion for 
both algorithms and our nine patients across iterations. As we can see, the rate of convergence is universally 
larger for MLTR-k with the MR-based prior, as compared to the purely likelihood-based MLTR. In particular, the 
convergence speed was essentially doubled with MLTR-k, decreasing the number of iterations from  ∼400–600 
to  ∼200–300.

Visually, MLTR-k with its MR-based prior thus provided superior MAR to the prior-free MLTR, as well as 
an image closer to full convergence at the specified convergence threshold. These results are supported by the 
quantitative results in figure 11(b) that show significant standard deviation improvements compared to MLTR, 
in both the oral cavity and teeth, of respectively  ∼200 HU and  ∼150 HU.

4.4. Comparison to gold standard
The nMAR sinogram inpainting algorithm (with the CT-based template) may be used as a gold standard for 
benchmarking and comparing the three proposed MR-based algorithms between themselves. To more easily 
perform this comparison, we summarize the results of our quantitative evaluations in figure 12 along with 
p-values of the comparison to nMAR; the results for the MR-based results are highlighted. We see no case of 
significantly worse performance compared to the gold standard of the three MR-based algorithms, and further 
see a quantitative improvement in the oral cavity using the image space approach (kerMAR). Additionally, the 
quantitative results should be taken together with the visual comparison, and when we compared the sinogram 
inpainting method (nMAR-k) to nMAR in section 4.2, we found the negligible quantitative results to be 
accompanied by visual improvements. The comparison is more difficult with the MBIR approach (MLTR-k), 
where we again see insignificant STD results but where, as we saw in section 4.3, the visual quality may have been 
compromised by additional artifacts.

Figure 9. Quantitative analysis in the oral cavity and teeth for the FBP, conventional nMAR and our nMAR-k. The error bars are 
standard deviations.
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In summary, the image and sinogram inpainting algorithms at least show benefits over the gold standard 
nMAR algorithm, while the MBIR results are more inconclusive.

5. Conclusion and discussion

We have presented a novel Bayesian approach to MR-based MAR, and in particular derived a predictive 
distribution of an ideal, uncorrupted CT from a corrupted FBP CT and a co-registered, conventional-sequence 
MR scan. We used the obtained predictive distribution to define three automatic MAR approaches:

Figure 10. MLTR (MBIR without a prior, middle) and MLTR-k (MBIR with MR-based prior, bottom) head-and-neck image 
results shown alongside the FBP images (top) at different window levels. Golden circles indicate the metal implants, and patient 
numbers are shown beneath the images. (a) A narrow, soft tissue enhancing window level. (b) A wider window level. Arrows point to 
improved artifact reduction with MLTR-k, while the black rings in the teeth show a few artifacts introduced with MLTR-k.
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 1.  The image inpainting algorithm kerMAR seamlessly blends MR-derived predictions with information 
from the corrupted FBP CT, the former leading to substantial artifact reduction and the latter helping 
especially with bone/air disambiguation and correcting co-registration errors.

 2.  The sinogram inpainting algorithm nMAR-k uses the kerMAR result as the template in the well-known 
nMAR algorithm. In our experiments, this led to improvements over using a conventional, FBP-based 
template by introducing fewer artifacts and improving the artifact reduction.

 3.  MLTR-k uses the proposed predictive distribution as an image reconstruction prior in the MBIR 
algorithm MLTR. This led to improvements in terms of both speed (of  ∼50%) and the quality of the 
reconstructed image, especially in terms of artifact reduction.

We conclude that the proposed approach provides a versatile way to use the anatomical information in the MR 
scan to boost the performance of MAR.

An important aspect of the proposed approach is that its parameters are automatically tuned in a patient-spe-
cific manner, which makes it well-suited for potential clinical implementation. The automatic tuning accounts 
for inter-patient variations, in particular the extent of the artifact corruption, which is an important robust-
ness benefit that allows for application to diverse cases and especially reduces potential over-correction in less  

Figure 11. (a) Convergence plot of MLTR and MLTR-k for the nine patients. Solid and dashed curves show the log of the absolute, 
voxel averaged change between iterations k  −  1 and k for MLTR and MLTR-k respectively. (b) Quantitative analysis in the oral 
cavity and teeth for the FBP; conventional, prior-free MLTR; and MLTR-k, which uses the proposed predictive distribution as a 
reconstruction prior.

Figure 12. Summary of the quantative evaluation. Shown side-by-side are the results for image inpainting, sinogram inpainting and 
MBIR in respectively the oral cavity (left) and teeth (right). The results for our MR-based algorithms are shown in yellow with green 
text indicating the type of algorithm. The p-values are from a repeat measurements t-test comparing the MR-based results to the 
nMAR gold standard.

Phys. Med. Biol. 64 (2019) 245012 (20pp)



18

J S Nielsen et al

corrupted cases. The tuning also accounts for variations in the imaging settings; we saw this in the consistent per-
formance of our algorithms despite variations in the MR sequence parameters.

5.1. Study limitations
While our MR-based method is applicable whenever an MR scan is co-acquired with a CT, it should be noted that 
such cases may be of limited frequency outside of head-and-neck radiotherapy, as MR at the time of this study 
is only used infrequently in the case of metal artifacts at other sites, such as hip implants. Due to the continually 
increasing importance of MR in radiotherapy, this may however change in the future (Lagendijk et al 2014).

5.2. Future work
The inclusion of the FBP for the CT value prediction in our image inpainting algorithm kerMAR helped to 
mitigate co-registration and alignment issues between the MR and CT images, but for clinical adoption the 
associated errors in especially the windpipe should probably further reduced (see figures 4(a) and (b)). A 
straightforward way to achieve this is to improve the co-registration, e.g. by using a deformable registration 
methods, which are routinely used in modern radiotherapy clinics. Further accuracy gains may be achieved by 
improving the noise model, which in its current form simply assumes that the noise introduced by the artifacts 
decreases sigmoidally with the distance to the metal implants. This is a rough assumption as especially streak 
artifacts may persist throughout the entire CT image (see, for instance, figure 4(a)). Our current model may 
also not translate well to other types of implants, such as metallic dual hip prostheses, where the severity of the 
artifacts also depends heavily on whether or not they are located between the prostheses. Future experiments may 
therefore investigate different formulations of the function f (xi) that better capture the spatial dependency of 
the artifact noise.

In order to successfully translate the proposed techniques into clinical routine, the required computation 
time will need to be further reduced. The most time-consuming part of our model is the calculation of patch 
distances over regression points, which is currently implemented on a subset of 200 points ∀i ∈ T , found using 
a patch matching algorithm (Ta et al 2014). In our current Python implementation on a single CPU core (Intel 
Core i7-4712HQ @ 2.30 GHz), this process takes between 10–30 min. The algorithm is however parallelizable, 
and on a similar-sized dataset, Ta et al report results on the order of  ∼1 min on a multi-CPU cluster (Ta et al 
2014). In the future, we therefore intend to speed up our algorithm in a similar manner.

Our MBIR experiments used a relatively simple Poisson likelihood. While this model helps address the arti-
facts stemming from photon starvation of the metal projections (Nuyts et al 1998, Buzug 2008), it does not 
account for e.g. the important effect of beam hardening. This may have been the source of the artifacts that were 
sometimes introduced with MLTR-k (see e.g. the black rings in figure 10) (Nuyts et al 1998, De Man et al 2000, 
2001, Buzug 2008, Van Slambrouck and Nuyts 2012). Future work may therefore consider using a more accurate 
likelihood model for the MBIR technique.
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