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Facing privacy in neuroimaging: removing facial features degrades
performance of image analysis methods
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Abstract
Background Recent studies have created awareness that facial features can be reconstructed from high-resolution MRI.
Therefore, data sharing in neuroimaging requires special attention to protect participants’ privacy. Facial features removal
(FFR) could alleviate these concerns. We assessed the impact of three FFR methods on subsequent automated image analysis
to obtain clinically relevant outcome measurements in three clinical groups.
Methods FFR was performed using QuickShear, FaceMasking, and Defacing. In 110 subjects of Alzheimer’s Disease
Neuroimaging Initiative, normalized brain volumes (NBV) were measured by SIENAX. In 70 multiple sclerosis patients of
the MAGNIMS Study Group, lesion volumes (WMLV) were measured by lesion prediction algorithm in lesion segmentation
toolbox. In 84 glioblastoma patients of the PICTURE Study Group, tumor volumes (GBV) were measured by BraTumIA. Failed
analyses on FFR-processed images were recorded. Only cases in which all image analyses completed successfully were analyzed.
Differences between outcomes obtained from FFR-processed and full images were assessed, by quantifying the intra-class
correlation coefficient (ICC) for absolute agreement and by testing for systematic differences using paired t tests.
Results Automated analysis methods failed in 0–19% of cases in FFR-processed images versus 0–2% of cases in full images.
ICC for absolute agreement ranged from 0.312 (GBV after FaceMasking) to 0.998 (WMLV after Defacing). FaceMasking
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yielded higher NBV (p = 0.003) and WMLV (p ≤ 0.001). GBV was lower after QuickShear and Defacing (both p < 0.001).
Conclusions All three outcome measures were affected differently by FFR, including failure of analysis methods and both
Brandom^ variation and systematic differences. Further study is warranted to ensure high-quality neuroimaging research while
protecting participants’ privacy.
Key Points
• Protecting participants’ privacy when sharing MRI data is important.
• Impact of three facial features removal methods on subsequent analysis was assessed in three clinical groups.
• Removing facial features degrades performance of image analysis methods.

Keywords Magnetic resonance imaging . Ethics . Database . Neuroimaging . Privacy

Abbreviations
AD Alzheimer’s disease
BV Unnormalized brain volume
EDSS Expanded Disability Status Scale
FFR Facial features removal
FLAIR Fluid-attenuated inversion recovery
FN False negative
FP False positive
GBV Tumor volume of glioblastoma patients
ICC Intra-class correlation coefficient
LST-LPA Lesion prediction algorithm in lesion segmenta-

tion toolbox
MCI Mild cognitive impairment
MPRAGE Magnetization-prepared rapid acquisition gradi-

ent echo
MR Magnetic resonance
MRI Magnetic resonance imaging
MS Multiple sclerosis
NBV Normalized brain volume
SI Dice’s similarity index
T Tesla
WML White matter lesion
WMLV White matter lesion volume

Introduction

Sharing participant image data can offer many benefits to
neuroradiological research: a better understanding of diseases
can be achieved by access to larger participant populations in
combined multicenter datasets; researchers without access to
their own data on a specific disease can still contribute to its
understanding by using shared datasets; and methodological
improvements can be stimulated by publicly shared bench-
mark datasets.

However, for shared data, it is crucial to protect participants’
privacy. Image files should not contain identifying information
such as name, date of birth, or any national or hospital-based
registration numbers. Such data are often saved in metadata or
even filenames of magnetic resonance (MR) images and
should be removed before sharing. Unfortunately, this is not

enough to alleviate privacy concerns, since typical structural
magnetic resonance imaging (MRI) provides good enough
skin to air contrast and spatial resolution to perform facial
recognition from a 3D-rendered version of the image, whether
by the human eye or using facial recognition software [1–5].
Therefore, in addition to identifying metadata, it has been sug-
gested that facial features should also be removed, and this has
been widely embraced [6–9]. However, it is not yet clear
whether the removal of the facial features affects subsequent
measurement of quantitative indices of brain pathology.

Therefore, the current study assessed the impact of facial
features removal (FFR) on clinically relevant outcome mea-
surements. We selected three FFR methods that are publicly
available, well documented, and have been used in data shar-
ing initiatives [10, 11]: QuickShear [12], FaceMasking [13],
and Defacing [14]. We assessed their effects on clinically rel-
evant outcome measures in three different diseases: normal-
ized brain volumes (NBV) in Alzheimer’s disease (AD), white
matter lesion volumes (WMLV) in multiple sclerosis (MS),
and tumor volumes (GBV) in glioblastoma patients.

Materials and methods

Subject

Subjects in this study were obtained from three different
dataset: for AD, a dataset from the ADNI study (http://adni.
loni.usc.edu/) [15]; for MS, a multicenter dataset from the
MAGNIMS Study Group (https://www.magnims.eu/) [16];
and for treatment-naïve glioblastoma patients, a clinical
dataset from the PICTURE project collected in the
Amsterdam UMC, location VUmc, in Amsterdam, the
Netherlands. Primary studies were approved by the respective
local ethics committee for all three datasets. A summary of the
demographics is given in Supplementary Table 1.

Alzheimer’s disease

Data used in the preparation of this article were obtained from
the ADNI database. The ADNI was launched in 2003 as a
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public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, positron emission tomography,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s dis-
ease (AD).

From the ADNI1 dataset, we selected the subset of subjects
who had a 3-Tesla (T) magnetization-prepared rapid acquisi-
tion gradient echo (MPRAGE) baseline MRI, which is a sub-
set of the 562 subjects that are in the ADNI1 dataset [15, 17].
This subset included in total 110 (23% female) subjects with
an average age of 75 (range 60–87) years. This dataset includ-
ed 39 healthy elderly controls, 52 patients with mild cognitive
impairment, and 19 patients with AD.

Multiple sclerosis

For MS, a multicenter dataset of the MAGNIMS Study Group
was previously used to study iron accumulation in deep gray
matter [18] and lesion segmentation software performance
[16]. The dataset consisted of 70 patients (67% female),
scanned in six different MAGNIMS centers. On average, the
age was 34.9 (range 17–52) years. The mean disease duration
from onset was 7.6 (range 1–28) years and the disease severity
was measured using the Expanded Disability Status Scale
(EDSS) on the day of scanning; patients had a median
EDSS score of 2 (range 0.0–6.5) [19].

Glioblastoma

For glioblastoma, a total of 84 (38% female) patients were
selected from a cohort treated at the Neurosurgical Center of
the Amsterdam UMC, location VUmc, Amsterdam, the
Netherlands, in 2012 and 2013. On average, the age was
61.4 (range 21–84) years. All patients had histopathologically
confirmed WHO grade IV glioblastoma. The preoperative
MRI was made on average within 1 week before resection.

MRI procedure

In the MS and AD datasets, all imaging was performed on 3-T
whole-bodyMR systems, and for imaging of the glioblastoma
dataset on 1.5- and 3-T MR systems. The protocol for the AD
dataset included a 3D T1-weighted sequence, while the pro-
tocol for MS included a 3D T1-weighted sequence, as well as
a 2D fluid-attenuated inversion recovery (FLAIR) sequence.
The protocol for glioblastoma contained a 3D T1-weighted
post contrast–enhanced scan, 3D FLAIR, and 2D T2-
weighted and non-enhanced 2D T1-weighted sequence. In
Table 1, more details are listed on data acquisition of the
datasets.

Facial features removal methods

Three publicly available methods were selected: QuickShear
[12], FaceMasking [13], and Defacing [14] (Fig. 1). For all
three methods, default settings were used in this study.
FaceMasking was applied on all MR modalities separately.
QuickShear and Defacing can only remove facial features
from 3D T1 images. To remove the facial features from the
other images, the full 3D T1 image of each subject was regis-
tered to the other full images of the same subject, using FSL-
FLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT [20]),
with 12 degrees of freedom before applying the FFR
methods. Using the resulting transformation matrices, the 3D
T1 image without facial features was transformed to each of
the other image spaces, and subsequently binarized and used
as a mask to remove the face from the other images.

QuickShear

Starting from a user-supplied brain mask, QuickShear [12]
uses two algorithms [21, 22] to create a plane that divides
the MRI into two parts. One part contains the facial features,
and the other part contains the remainder of the head, includ-
ing the brain. After finding this plane, the intensity of all
voxels on the Bfacial features^ side of the plane is set to zero.

In this study, the brain mask was made with FSL-BET
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) using previously
determined optimal settings [23, 24].

FaceMasking

FaceMasking [13] deforms the surface of the face with a filter.
In this study, the normalized filtering method was used, which
is the recommended filter. The method first selects the bound-
ary of the skull and the face, and registers the image volume to
an atlas with annotated face coordinates; then, the identified
face region of interest layer is normalized and filtered and,
finally, transformed back to the original image.

Defacing

Defacing [14] uses an algorithm that calculates the probability
of voxels being brain tissue or part of the face, based on 10
annotated atlases of healthy controls. Voxels that are labeled
as part of the face and have zero probability of being brain
tissue are considered to contain facial features, and their signal
intensities are set to zero in order to remove the facial features.

Clinical research outcome measurements

For all three datasets, commonly used, previously validated
automated methods were used to obtain clinically relevant
outcome measures on the full images (i.e., images without
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FFR processing) as well as on all images after FFR. In the AD
dataset, NBVand unnormalized brain volume (BV)were mea-
sured with SIENAX [23]. In the MS dataset, WMLV was
measured by segmenting the lesions on the FLAIR images
with the lesion prediction algorithm in the lesion segmentation
toolbox (LST-LPA) software [25]. In the glioblastoma dataset,
the GBV was measured by taking the union of the segmenta-
tion of the glioblastoma necrotic core and enhancing tumor
generated by BraTumIA [26]. A short description of the
methods is provided in the supplementary data.

To provide context to any observed differences between
results from full images and images after FFR, reproducibility
of SIENAX, LST-LPA, and BraTumIA was assessed. This
was done by repeating the analysis on 10 native images per
dataset, selected based on the results from the analyses of
images after FFR to include in each case 5 images with large
effects of FFR and 5 images with small effects of FFR.

Statistical analyses

First, we investigated whether the FFR methods would suc-
cessfully process the data, and if the automated methods could

successfully process the data after FFR. A method was con-
sidered to have failed on a particular input image if the method
gave an error or no output. Images were not excluded if the
output quality was considered bad by human observers. The
percentages of images for which the FFR methods produced
output and the percentages of images for which FFR-
processed images could be analyzed by the automated
methods were calculated.

Next, the impact of the FFR on the outcome measures was
evaluated. In order to allow a direct and fair comparison of
metrics between FFR methods, only the subjects for whom all
three FFR methods produced output and for which both the
full images and all FFR-processed images could be analyzed
by the subsequent image analysis method were included.

Volumetric analyses

The effect of FFR on volumes was evaluated by assessing
changes in NBVand BV (AD dataset), WMLV (MS dataset),
and GBV (glioblastoma dataset) in three different ways: in
data distribution, variability, and systematic differences.
First, to assess data distribution, histogram characteristics

Table 1 Details on the data acquisition of the AD, MS, and glioblastoma datasets

Sequence parameters

Dataset Scanner brands Scanner types Field strength
(Tesla)

Sequence TR (ms) TE (ms) TI (ms) Slice
thickness (mm)

AD Siemens
GE Medical Systems
Philips

Not known 3 3D T1 2300–3000 2.98 853–900 1.2

MS Siemens
Philips

Trio
Achieva

3 2D FLAIR
3D T1

8000–11,000
6.9–2300

69–136
2.8–298

2400–2800
815–900

3.0
1.0

Glioblastoma Siemens
GE Medical Systems
Toshiba
Philips

Sonata or Avanto
Signa HDxt or

DISCOVERY
MR750

Titan3T
Panorama HFO

or Achieva

1.5 and 3 2D FLAIR
3D T1*
2D T1
2D T2

6500
2300–2700
520–600
5190–8670

355
4.5–5.0
8.0–12.0
93–101

2200
950

1.3
1.0–1.5
5
5

*Post contrast (0.2 mmol/kg)

AD, Alzheimer’s disease; MS, multiple sclerosis; FLAIR, fluid-attenuated inversion recovery; TR, repetition time; TE, echo time; TI, inversion time

Fig. 1 Example 3D-rendered MRI: full (a) and after removal of facial features with QuickShear (b), FaceMasking (c), and Defacing (d). The subject
gave written informed consent for using data and for displaying rendering in this figure
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(median, first and third quartiles, means, and standard devia-
tion) were calculated for four images (1 full; 3 FFR-processed)
and difference characteristics (mL and percentage difference)
were calculated for 3 FFR-processed images compared with
the full image, and scatter plots and Bland-Altman plots were
made. Second, to assess variability in the data, whether ran-
dom we analyzed intra-class correlation coefficient (ICC) for
absolute agreement between volumes obtained from full and
FFR-processed images [27, 28] with the lower and upper
bounds of 95% confidence interval [CI] in parentheses.
Third, to assess systematic differences, two-tailed paired t tests
were performed between volumes measured in full images
and those obtained from each of the FFR-processed images,
using a Bonferroni-corrected p = 0.05 as threshold for statisti-
cal significance.

Overlap analysis (MS and glioblastoma datasets)

In MS and glioblastoma datasets, we also compared
voxelwise differences between the segmentations obtained
with and without FFR, because the image analysis methods
used in these datasets produce location-sensitive segmenta-
tions of the structures of interest. The full dataset is used as
Bgold standard^ and is compared with each of the three FFR-
processed datasets separately, quantifying spatial agreement
using Dice’s similarity index (SI) [29]:

SI ¼ 2� TPð Þ= 2� TPþ FPþ FNð Þ
where TP, FP, and FN are, respectively, true positive, false
positive, and false negative volumes. SI can range from 0 to
1 and SI = 0 means no overlap and SI = 1, a perfect overlap.
We calculated the median and first and third quartiles of SI,
FP, and FN.

Results

Failure of pipelines

A simplified flowchart summarizing the study steps is shown
in Fig. 2. An overview of the percentages of images for which
the FFR methods and automated methods did not fail, i.e.,
executed without error and with output, is shown for each
dataset in Table 2. FFR failed only in the glioblastoma dataset,
specifically in 2% of cases for QuickShear and 1% of cases for
FaceMasking. Automated method failures varied: while
SIENAX completed successfully on all FFR-processed im-
ages (AD dataset), LST-LPA produced errors in 4% of cases
for QuickShear and 19% of cases for Defacing (MS dataset);
and BraTumIA in 17% of cases with QuickShear, 2% with
FaceMasking, and 1% with Defacing (glioblastoma dataset).
We excluded a subject from further analyses if at least one

FFR method failed on this subject. This resulted in 110, 55,
and 66 subjects in the AD, MS, and GB datasets, respectively.

Volumetric analysis

Full image results

In all datasets, outcome measures obtained from the full im-
ages were in the expected range and showed expected distri-
butions. The methods showed good reproducibility, as shown
in Table 3, on 10 subjects per dataset, ICC (lower-upper band
of 95% CI) of 0.988 (0.973–0.992), 0.998 (0.992–1.000),
0.996 (0.971–0.999), and 0.998 (0.998–1.000) for, respective-
ly, the AD (NBVand BV),MS, and GB datasets. The top rows
of Tables 4 and 5 provide the measured values of NBV, BV,
WMLV, and GBV for the full images.

AD dataset

Both NBVand BV were affected by FFR processing, in terms
of both variability and systematic differences. In Fig. 3, an
example of effected SIENAX by FFR processing is given.
Figure 4 a and b show scatter plots of NBV and BV for
FFR-processed images versus full images in the AD dataset;
corresponding Bland-Altman plots are provided in the supple-
mentary section. These results suggest that FFR affected NBV
variability more than BV variability, which is confirmed by
the ICCs (Table 4): absolute agreement of NBV between FFR-
processed images and full images ranged from 0.715
(Defacing) to 0.896 (FaceMasking), while for BV, absolute
agreement ranged from 0.933 (Defacing) to 0.982
(QuickShear). Pairwise comparisons showed that NBV was
typically overestimated after processing data with QuickShear
(median [1st and 3rd quartiles] 1.26 [− 4.40; 8.62] mL) and
FaceMasking (5.91 [− 1.57; 16.38] mL), and underestimated
after Defacing (− 2.17 [− 10.80; 7.81] mL). BV was typically
underestimated after FFR, with median [1st and 3rd quartiles]
volume differences of − 2.44 [− 5.11; − 1.22] mL
(QuickShear), − 0.52 [− 2.47; 1.10] mL (FaceMasking), and
− 7.60 [− 12.13; − 4.71] mL (Defacing). The supplementary
section provides means and standard deviations.

MS dataset

For WMLV, absolute agreement between FFR-processed im-
ages and full images was high, but there were small but sig-
nificant systematic differences. In Fig. 5, an example of affect-
ed lesion segmentation by FFR processing is given. Figure 4c
shows the WMLV scatter plot; corresponding Bland-Altman
plots are provided in the supplementary section. The corre-
sponding ICCs in Table 5 are all ≥ 0.988. The median [1st and
3rd quartiles] WMLV values after FFR were 2.94 [1.35; 8.12]
mL (QuickShear), 3.15 [1.60; 8.15] mL (FaceMasking), and
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2.77 [1.21; 7.77] mL (Defacing). For the full image, the
WMLV value was 2.71 [1.32; 7.76] mL. In the case of
FaceMasking, the WMLV is significantly higher than the
WMLVof full images, Bonferroni-corrected p < 0.001. The
supplementary section provides means and standard
deviations.

Glioblastoma dataset

GBVappeared to be the outcome measure that is most strong-
ly affected by FFR, with low to poor agreement and system-
atic volume underestimation after FFR by FaceMasking. In

Fig. 6, an example of affected glioblastoma segmentation by
FFR processing is given. The scatter plot in Fig. 4d, the cor-
responding Bland-Altman plots in the supplementary section,
and the ICCs in Table 5 show that FFR was affected, irrespec-
tive of tumor size. ICCs of 0.843, 0.312, and 0.810 between
the full and FFR-processed images for QuickShear,
FaceMasking, and Defacing indicate substantial effects of
FFR. GBV were lower after FFR: differences with full image
values were − 2.46 [− 7.08; − 0.54] mL (QuickShear), − 1.31
[− 7.74; 0.57] mL (FaceMasking), and Defacing − 3.28 [−
8.16; − 0.72] mL (Defacing). The supplementary section pro-
vides means and standard deviations.

Fig. 2 A flowchart summarizing the study steps. Starting with 3 datasets which are FFR-processed, followed with automated (segmentation) methods,
selection subjects, and comparing outcome measurements of the FFR-processed images with native images

Table 2 Amount and percentage of images for which FFR methods completed successfully (left half of table) and for which the automated methods
SIENAX, LST-LPA, and BraTumIA completed successfully (right half of table)

Facial features removal Measurement

AD (n = 110) MS (n = 70) Glioblastoma (n = 84) AD (n = 110)
SIENAX

MS (n = 70)
LST-LPA

Glioblastoma (n = 84)
BraTumIA

Full 110/110
100%

70/70
100%

83/84
99%

QuickShear 110/110
100%

70/70
100%

82/84
98%

110/110
100%

67/70
96%

68/82
83%

FaceMasking 110/110
100%

70/70
100%

83/84
99%

110/110
100%

70/70
100%

81/83
98%

Defacing 110/100
100%

70/70
100%

84/84
100%

110/110
100%

57/70
81%

83/84
99%

AD, Alzheimer’s disease; MS, multiple sclerosis
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Overlap analysis

MS dataset

Table 5 also presents the spatial agreement of the WM
lesion (WML) segmentations. The median [1st and 3rd
quartiles] SI values of the WML segmentations from
FFR-processed images with the corresponding segmenta-
t ions from ful l images were 0.93 [0.86; 0.95]
(QuickShear), 0.90 [0.72; 0.94] (FaceMasking), and
0.86 [0.39; 0.94] (Defacing). The FN volumes of FFR-
p roces sed images were 0 .27 [0 .11 ; 0 .76] mL
(QuickShear), 0.24 [0.09; 0.66] mL (FaceMasking), and
0.59 [0.17; 1.35] mL (Defacing). The FP volumes were
0.24 [0.11; 0.74] mL (QuickShear), 0.58 [0.12; 2.01] mL
(FaceMasking), and 0.48 [0.20; 1.10] mL (Defacing).
The supplementary section provides means and standard
deviations.

Glioblastoma dataset

The SI, FN, and FP of the glioblastoma segmentation
are shown in Table 5. The median [1st and 3rd quar-
tiles] SI values of the FFR-processed glioblastoma seg-
mentations with full image segmentations were 0.87
[0 .75 ; 0 .92 ] (Qu ickShear ) , 0 .86 [0 .74 ; 0 .92]
(FaceMasking), and 0.86 [0.74; 0.92] (Defacing). The
FN volumes were 5.33 [2.70; 9.74] mL (QuickShear),
4.81 [2.00; 11.75] mL (FaceMasking), and 5.94 [2.79;
9.75] mL (Defacing). The FP volumes were 1.89 [0.79;
3.80] mL (QuickShear) , 2.91 [1.79; 4.77] mL
(FaceMasking), and 1.85 [0.79; 3.21] mL (Defacing).
The supplementary section provides means and standard
deviations.

Discussion

When sharing MRI data between research institutions, it is
crucial to protect the privacy of participants. In addition to
removing identifying metadata from MRI, facial features
should also be removed. The current study evaluated how
three publicly available FFRmethods affect clinically relevant
imaging outcome measures in AD, MS, and glioblastoma as
derived using commonly used automated methods. Our re-
sults showed that the commonly used FFR methods can lead
to subsequent failures of automated volumetric pipelines.
Moreover, FFR can lead to substantial changes—both random
(low ICC) and systematic (significant differences)—in vol-
umes obtained by automated methods. The observed differ-
ences in outcome measures between full images and images
after FFR cannot be attributed to random variation of
SIENAX, LST-LPA, or BraTumIA, because the reproducibil-
ity of those methods was high.

The automated methods LST-LPA for WMLV and
BraTumIA for GBV failed to successfully execute on multiple
FFR-processed images. It should be mentioned that we ap-
plied the automated methods with their default settings and
did not attempt to remedy the errors. We did, however, assess
the failures and we suspect that the failures were related to
image registration steps, because registration methods can be
susceptible to (disease related) artifacts as recently highlighted
by Dadar et al [30]. This recent study showed that registration
used in the automated methods could have problems with
higher levels of noise and non-uniformity in images and that
head size could have an effect on registration methods. It is
conceivable that if the face is removed or deformed, the level
of noise and non-uniformity could change and lead to failures.

The possible importance of image registration in causing
changes after FFR is further suggested by the higher variabil-
ity of NBV compared with BV after FFR. To compute the

Table 3 Reproducibility of automated methods on 10 subjects per
dataset. From left to right, the table lists median [1st and 3rd quartiles]
for volumes; mean ± std for volumes; p values for the pairwise
comparison of volumes from first and second time processed full

images; ICC (absolute agreement (lower-upper band of 95% CI))
between volumes from full and FFR-processed images; and Dice’s sim-
ilarity index between segmentation from first and second time processed
full images

N = 10 Volume p value ICC SI

AD NBV (L) First 1.34 [1.29; 1.38] 1.32 ± 0.10

Second 1.34 [1.30; 1.40] 1.34 ± 0.07 0.30 0.988 (0.973–0.992)

AD BV (L) First 1.09 [1.00; 1.13] 1.06 ± 0.13

Second 1.08 [1.30; 1.40] 1.07 ± 0.14 0.35 0.998 (0.992–1.000)

MS LV (mL) First 3.00 [1.64; 8.08] 6.39 ± 6.87

Second 3.82 [2.11; 8.35] 6.68 ± 6.74 0.16 0.996 (0.971–0.999) 0.95 [0.84–0.98]

GB GBV (mL) First 39.89 [25.11; 85.92] 68.50 ± 69.66

Second 40.65 [25.28; 86.61] 69.38 ± 70.16 0.06 0.998 (0.998–1.000) 0.94 [0.89–0.96]

ICC, intra-class correlation coefficient; N = amount of subjects; std, standard deviation; AD, Alzheimer’s disease; MS, multiple sclerosis; SI, Dice’s
similarity index; FN, false negative; FP, false positive
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NBV, SIENAXmultiplies the BV (calculated in native subject
space) by a volumetric scaling factor obtained from a linear
registration of the brain image to a standard brain image, ad-
ditionally using a derived skull image. FFR could affect the
removal of non-brain tissue and identification of the skull, and

thereby cause a different registration result, culminating in
altered NBV values. Differences in shapes of the head and
face between people (related to, e.g., sex or ethnicity) may
affect performance of standard FFR algorithms which may
have ramifications especially for subsequent analysis methods

Fig. 4 Scatter plots of the normalized brain volume (a), brain volume (b),
white matter lesion volume (c), and glioblastoma volume (d). The facial
removal datasets are plotted against the full scan; QuickShear, blue
diamond; FaceMasking, red cross; and Defacing, green plus sign. All

scatter plots have an identity line indicating perfect agreement. NBV,
normalized brain volume; BV, brain volume; FFR, facial features
removal; WMLV, white matter lesion volume; GBV, tumor volume;
mL, milliliter; L, liter

Fig. 3 An example of SIENAX
affecting the BV by FFR
processing showing 3D T1
images (a), 3D T1 images with
the brain tissue segmentation
shown in red (1.04 L) on the full
image (b), and 3DT1 images with
the brain tissue segmentation
shown in red (0.87 L) on the FFR-
processed image with Defacing
(c)
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that use the skull such as SIENAX. However, there are also
cases in which the NBV was not affected by FFR, so maybe
there is a cutoff on how much of the head can be removed
without affecting the NBVmeasurement. In a further study, an
optimum could be determined between the amount of facial
features that should be removed for de-identification and the
amount that should remain for correct analyses with automat-
ed methods.

Therefore, it would be interesting to study in more detail
the effect of FFRmethods on registration and other processing
steps in a systematic way. Milchenko and Marcus [13] and
Bischoff-Grethe et al [14] both addressed the effects of their
FFR method on skull stripping; however, it would be interest-
ing to analyze the effects of these methods on other processing
steps as well as multiple skull stripping methods, all in the
same dataset for an objective comparison. Next, to remedy
those errors, analysis methods and processing steps should
be made robust against the absence or distortion of facial
features. As an example, facial features could be removed
from fixed reference images in registration steps or in refer-
ence templates (e.g., of tissue probabilities) in image

processing pipelines. Moreover, it would also be helpful to
study if changing the default settings of the automated
methods improves the segmentation.

The measured volumes of the automated methods are
affected—both random (low ICC) and systematic (significant
differences). The random effects are mostly visible in the vol-
ume change of the NBV and GBV after FFR processing and
the significant differences are visible in the volume change of
BVand GBV. The Bland-Altman plots show that the volume
changes are not dependent on the measured volumes. FFR
affects not only the measured volumes of the automated
methods but also the extent and precise spatial location of
theWML and the glioblastomas, as demonstrated by the over-
lap analyses. For the WML in MS, median FP and FN frac-
tions ranged between about 10 and 25% of the median total
WMLV. Similar effects were observed for glioblastoma, with
median FN fractions between about 15 and 20%, and median
FP fractions between about 6 and 9%. Both the volumetric and
spatial results indicate that the differences between full image
segmentations and FFR-processed segmentations are substan-
tial. This is unexpected, especially for LV and GBV, as given

Fig. 6 An example of glioblastoma segmentation affected by FFR
processing showing 3D T1 post contrast images (a), 3D T1 post
contrast images with the glioblastoma segmentation shown in red
(69.99 mL) on full image (b), and 3D T1 post contrast images with the

glioblastoma segmentation shown in red (22.87 mL) on FFR-processed
image with QuickShear (c). Dice’s similarity index between the complete
3D segmentations obtained from the full image and FFR-processed image
was 0.48

Fig. 5 An example of lesion
segmentation affected by FFR
processing showing 2D FLAIR
image (a), 2D FLAIR image with
the lesion segmentation shown in
red (8.30 mL) on full image (b),
and 2D FLAIR image with the
lesion segmentation shown in red
(15.91 mL) on FFR-processed
image with Defacing (c). Dice’s
similarity index between the
complete 3D segmentations ob-
tained from the full image and
FFR-processed image was 0.48

Eur Radiol (2020) 30:1062–1074 1071



that both the MS lesions and the glioblastoma are located
within the region occupied by brain tissue that should not
be, and judging from our visual inspections indeed was not,
affected by the FFR methods. Both in MS and glioblastoma,
the exact location and extent of pathological changes are of
importance; therefore, these artifactual post FFR segmentation
changes should be investigated in more detail and methods
should be devised and tested to mitigate these effects.

Our results showed that the effects of FFR on current
methods are a common problem across domains: brain vol-
umes, MS lesion volumes, and glioblastoma volumes were all
to some degree affected by FFR. The next step would be to
investigate how to overcome such issues for SIENAX, LST-
LPA, and BraTumIA, or in a broader sense, to study and
mitigate sources of error after FFR for multiple methods
aimed at brain volume, MS lesion, or glioblastoma segmenta-
tion. Another option would be to consider removing the facial
features from fixed reference images in registration steps or in
reference templates (e.g., of tissue probabilities) in image pro-
cessing pipelines.

It should be noted that in this study, we did not test if the
FFR methods indeed made the participant unrecognizable.
However, we observed that the FFR methods in some cases
seemed to leave parts of the face intact. We did not assess
whether this made the person recognizable, because this
would require a more rigorous setup outside the scope of this
study. However, it would be important to establish guidelines
on how to make participants unrecognizable, specifically
which parts of the face should be removed or otherwise proc-
essed to ensure participants’ privacy. Moreover, for protecting
participants’ privacy, it may be important to take into account
that reconstruction of removed or deformed facial features
may be possible [31].

In conclusion, this study highlighted a new challenge to the
neuroimaging research community, which is to ensure high-
quality neuroimaging research while protecting participants’ pri-
vacy. Our results demonstrate that facial features removal of
brain MRI can lead both to failure of automated analysis
methods (mostly by LST-LPA and BraTumIA) and to changes
in volumes obtained by the analysis methods, including both
Brandom^ variation (mostly by NBVand GBV) and systematic
differences (mostly by BV and GBV). Therefore, volumetric
image analysis methods need to be carefully assessed and opti-
mized with regard to FFR methods, in order to ensure the reli-
ability of clinical research outcomes while protecting partici-
pants’ privacy in multicentric, collaborative studies. This could
be done by improving image registration accuracy after FFR,
addressing in more detail the effect of FFR methods on other
processing steps or by developing methods that are tailored to
images from which facial features have been removed.
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Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was obtained for primary
studies from all subjects (patients) in this study.

Ethical approval Institutional Review Board approval was obtained for
primary studies.

Study subjects or cohorts overlap Some study subjects or cohorts have
been previously reported inWyman et al (2013) and de Sitter et al (2017).
All patients of the paper from de Sitter et al (2017) were used and a subset
of the data published in Wyman et al (2013). The difference in this study
is that we use the dataset to study the effect of facial features removal,
what is not done with this data yet.

Methodology
• prospective
• observational
• multicenter study

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.
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