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Stage-specific Plasmodium falciparum 
immune responses in afebrile adults 
and children living in the Greater Accra Region 
of Ghana
Festus K. Acquah1,2, Aminata C. Lo1,3, Kwadwo Akyea‑Mensah1, Hamza B. Abagna1, Babacar Faye4, 
Michael Theisen5,6, Ben A. Gyan1 and Linda E. Amoah1,2* 

Abstract 

Background: Asymptomatic carriage of Plasmodium falciparum is widespread in adults and children living in 
malaria‑endemic countries. This study identified the prevalence of malaria parasites and the corresponding levels 
of naturally acquired anti‑parasite antibody levels in afebrile adults living in two communities in the Greater Accra 
Region of Ghana.

Methods: Two cross‑sectional studies conducted in January and February 2016 and repeated in July and August 
2016 recruited subjects aged between 6 and 75 years from high parasite prevalence (Obom) and low parasite 
prevalence (Asutsuare) communities. Whole blood (5 ml) was collected from each volunteer, plasma was aliquoted 
and frozen until needed. An aliquot (10 µl) of the blood was used to prepare thick and thin blood smears, 100 µl was 
preserved in Trizol and the rest was separated into plasma and blood cells and each stored at − 20 °C until needed. 
Anti‑MSP3 and Pfs230 antibody levels were measured using ELISA.

Results: Asexual parasite and gametocyte prevalence were higher in Obom than Asutsuare. Antibody (IgG, IgG1, 
IgG3, IgM) responses against the asexual parasite antigen MSP3 and gametocyte antigen Pfs230 were higher in 
Obom during the course of the study except for IgM responses against Pfs230, which was higher in Asutsuare than in 
Obom during the rainy season. Antibody responses in Asutsuare were more significantly associated with age than the 
responses measured in Obom.

Conclusion: The pattern of antibody responses measured in people living in the high and low malaria transmission 
setting was similar. All antibody responses measured against the asexual antigen MSP3 increased, however, IgG and 
IgG1 responses against gametocyte antigen Pfs230 decreased in moving from the dry to the peak season in both 
sites. Whilst asexual and gametocyte prevalence was similar between the seasons in the low transmission setting, 
in the high transmission setting asexual parasite prevalence increased but gametocyte prevalence decreased in the 
rainy season relative to the dry season.
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Background
Asymptomatic carriage of malaria parasites has been 
associated with the development of immunity to malaria 
mainly due to continuous exposure of the host’s immune 
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system to the Plasmodium parasites [1]. Low parasite 
density in low transmission settings as well as frequent 
exposure to similar parasite isolates in high transmission 
settings have been suggested to enhance the establish-
ment of asymptomatic infections [2]. The level of expo-
sure and rate at which antibodies against both the asexual 
and sexual stage (gametocytes) parasites are acquired and 
boosted may be different for people living in different 
malaria transmission settings [1].

The propagation of Plasmodium parasites within the 
human erythrocyte, which is critical for the survival of 
the parasite is initiated by the merozoite. The merozoite 
is one of several daughter cells released from a mature 
schizont, which proceed to invade a new host erythro-
cyte and continue the asexual erythrocytic cycle of the 
parasite [3]. Merozoites are not contained within eryth-
rocytes and as such their surface antigens are exposed 
directly to the host’s immune system. A number of anti-
gens expressed on the surface of the Plasmodium falcipa-
rum merozoite, including the merozoite surface protein 
1 (MSP1) and 3 (MSP3) have been validated as malaria 
vaccine candidates [4, 5] due to their ability to induce 
protective antibodies against malaria. Antibodies spe-
cific to MSP3 exert anti-parasite effects, either through 
inhibition of the merozoite invasion in erythrocytes or in 
cooperation with mononuclear cells through antibody-
dependent cellular inhibition and opsonic phagocytosis 
[6, 7]. During the erythrocytic cycle, some of the asexual 
parasites develop into sexual forms: gametocytes. Anti-
gens, including Pfs230 and Pfs48/45, which are expressed 
during gametocytogenesis have been found to be immu-
nogenic [8, 9]. Pfs230 is a gamete surface antigen [10–12] 
and marked as a transmission blocking vaccine candidate 
[13]. Antibodies against Pfs230 have been detected in 
populations naturally exposed to malaria parasites [14, 
15]. Such antibodies together with specific antibodies 
generated in small rodents have been shown to inhibit 
parasite development in the standard membrane-feeding 
assay (SMFA) considered the ‘gold standard’ assay for 
functional transmission-blocking antibodies [16–18]. 
These antibodies, however, have been suggested to be 
very short lived, peaking during the transmission season 
[19] and are more prevalent in children than in adults 
[15].

Immunoglobulin G (IgG) antibodies have been shown 
to be a very important component of humoral immunity 

in the fight against Plasmodium infections as they have 
associated with protections against infection [20–22] 
and transmission-reducing immunity [23, 24]. Cyt-
ophilic antibodies (IgG1 and IgG3) have been shown to 
be particularly important in anti-malarial immunity and 
associated with protection from the disease [25–29]. 
Monitoring antibody responses in asymptomatic indi-
viduals is thus a valuable tool for monitoring the acqui-
sition of anti-disease immunity as well as the frequency 
and magnitude of parasite infection [1]. A few earlier 
studies have characterized natural antibody responses 
to both asexual and sexual stage antigens, however these 
studies have only looked into immune responses in 
asymptomatic children below the age of 12 years [15] or 
in a symptomatic population [30]. Other studies on afe-
brile individuals have characterized antibody responses 
against sporozoite [31], asexual [32, 33] or only sexual 
stage [34] antibody responses amongst a cohort of Gha-
naians. This current study goes further to compare the 
characteristics of naturally acquired immune responses 
to asexual parasite antigen MSP3 and sexual stage anti-
gen Pfs230 in both afebrile adults and children living in 
two communities with different malaria parasite preva-
lence and transmission intensities.

Methods
Ethics statement
The Institutional Review Board (IRB) of Noguchi Memo-
rial Institute for Medical Research granted ethical 
approval for the study (Study number 089/14-15). Writ-
ten informed consent was obtained individually from all 
participants before they were enrolled into the study.

Study site
This study was carried out in Obom and Asutsuare 
(Fig.  1), both in the Greater Accra Region of Ghana 
[35]. Obom is a semi-rural community in the Ga South 
Municipality. Malaria transmission in Obom is perennial, 
although it has a peak transmission period from May to 
September. According to ongoing mapping studies in the 
community, malaria parasite prevalence in Obom was 
estimated at 41% during the peak transmission period in 
2014 [15]. Asutsuare is a semi-rural community located 
in the Shai-Osudoku district of Dangme West Municipal-
ity. Malaria transmission is low but perennial, and peaks 
slightly during and immediately after the major rainy 

Fig. 1 A map of Ghana projecting study sites located within the Greater Accra Region. The map was created using shapefiles from the Survey 
Department of the Ghana Statistical Services and ArcMap GIS v10.5 (no administrative permissions were needed to access the shapefiles). Courtesy 
Mr Richard Adade, GIS and Remote Sensing Unit, Department of Fisheries and Aquatic Sciences, Centre for Coastal Management, University of Cape 
Coast, Cape Coast, Ghana

(See figure on next page.)
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season (April to July) and is lowest during the dry season 
[36].

Sample collection
Volunteers aged between 6 and 75  years old and with-
out any symptom of malaria were recruited into a cross-
sectional study in February 2016 (dry season), which 
included 264 volunteers from Obom and 230 volunteers 
from Asutsuare. In July 2016 (rainy season) a second set 
of volunteers was recruited, 192 from Obom and 174 
from Asutsuare, which included 120 volunteers from the 
off-peak season sample collection for both sites. Venous 
blood (5 ml) was collected from each volunteer into acid 
dextrose vacutainer tubes on the day of recruitment. An 
aliquot (10 µl) of the blood was used to prepare thick and 
thin blood smears, 100 µl was preserved in Trizol and the 
rest was separated into plasma and blood cells via centrif-
ugation and independently stored at − 20 °C until used.

Parasite detection
The thin and thick blood smears were processed and 
used to identify and quantify the presence of P. falcipa-
rum parasites [37]. Briefly, thin smears were air dried, 
fixed in 100% methanol and then stained for 15 min in a 
10% Giemsa stain solution. Thick smears were air dried 
and stained in 10% Giemsa for 15 min. Both set of slides 
were subsequently observed using 100× oil immersion 
microscope. Parasite density was estimated based on the 
total number of parasites counted per 200 white blood 
cells (WBCs). Two independent microscopists read the 
stained slides.

Gametocyte detection
RNA was isolated from the Trizol-preserved whole blood 
using the Quick RNA miniprep kit (Zymo Research, 
USA) according to manufacturer’s instructions and sub-
sequently converted into cDNA using the Protoscript II 
first strand cDNA synthesis kit (NEB, UK) as previously 
described [38]. Genomic DNA contamination of each 
extracted RNA was assessed as previously described 
[39]. A semi-quantitative Pfs25 mRNA RT-PCR method 
similar to that described by Ayanful-Torgby et al. [39, 40] 
was used to determine gametocyte prevalence. Briefly, 
300 nM of Pfs25 F and R primers were added to 2 ul of 
cDNA (1:10) and fast  SYBR® Green 2X master mix RT-
PCR kit (Applied Biosystems). The reactions were run in 
triplicate on a QuantStudio 3™ Real-Time PCR System 
(Thermo Scientific, USA). The primer validation and all 
positive and negative controls used in this experiment 
have been previously described [39, 40].

Enzyme‑linked immunosorbent assay (ELISA)
Antibody responses including IgG, IgM, IgG1, and IgG3 
against recombinant P. falciparum sexual stage and 
asexual stage antigens were quantified using an indirect 
ELISA protocol [41]. The antigens used in this study 
include Pfs230 [14] and MSP3 [30] produced in Lacto-
coccus lactis. Briefly Pfs230 antigen was diluted to 1 µg/
ml in carbonate buffer [14, 15] and MSP3 diluted to 1 µg/
ml in phosphate-buffered saline (1X PBS, pH7.2) [15, 30] 
and 100  µl/well of the diluted antigen was used to coat 
the wells of Maxisorp NUNC plates (Nunc Maxisorp, 
UK) overnight at 4  °C. The plates were subsequently 
washed with wash buffer (PBST; 1X PBS supplemented 
with 0.05% Tween 20 at pH7.2), blocked with 3% non-
fat skimmed milk (Marvel, UK) in1X PBS and incubated 
at room temperature (RT) for 1 h. The plates were then 
incubated with 100  µl/well of plasma diluted to 1:200 
for IgG and IgM and 1:100 for IgG1 and IgG3 in 1% of 
non-fat skimmed milk in 1X PBS. Two pools of sera, one 
previously determined to have high concentrations of 
antibodies against MSP3 and the other against Pfs48/45, 
were used separately as a standard calibrator. The stand-
ards were used at a starting dilution of 1:400 for IgG and 
IgM and 1:100 for the cytophilic sub-classes IgG1 and 
IgG3 and serially diluted two-fold for an additional seven 
concentrations. Plasma samples were incubated for 1 h at 
RT for IgG and IgM and 37 °C for IgG1 and IgG3. Each 
plate was washed three times with wash buffer after every 
incubation step. The plates were subsequently incubated 
with 100  µl/well of goat anti-human IgG or IgM at a 
1:3000 dilution or 100  µl/well of goat anti-human IgG1 
or IgG3 at a dilution of 1:1000 for 1 h at RT, followed by 
a final wash step. The plates were then incubated with 
50 µl/well of TMB plus2 for 15 min. Colour development 
was stopped by the addition of 50 µl/well of 0.2 M  H2SO4 
and optical densities (OD) read at 450 nm using a 96-well 
ELISA plate reader (Biotek, VT, USA).

Statistical and data analysis
The cut-off for positivity for gametocyte presence by 
RT-PCR as determined by the no template control was 
‘undetermined’. Any sample that yielded a CT value other 
than ‘undetermined’ was scored as positive.

For each measured antibody, OD data were normal-
ized against the standard calibrator. OD data were con-
verted into concentration in arbitrary units using the 
4-parameter logistic curve-fitting program, ADAMSEL 
(version b040; Ed Remarque™). Log10-transformed OD 
data from naïve malaria volunteers from the two seasons 
were used to define a common cut-off from which sero-
prevalence was calculated as the population of sample 
with Log10-transformed ODs higher than the common 
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cut-off. Analysis of data and graphics was performed 
using Kruskal–Wallis test, Spearman correlation and 
other statistical tests (Graph Pad Prism version 7). Sta-
tistical significance was set as P ≤ 0.05, unless otherwise 
stated.

Results
Study participants
The study recruited 230 and 174 volunteers from Asut-
suare during the dry (January–February) and rainy 
(July–August) seasons, respectively, and 264 and 192 vol-
unteers from Obom during the dry (January–February) 
and rainy (July–August) seasons, respectively. Volunteers 
aged 10  years and below were the least represented in 
both sites at both sampling time points, and participants 
aged above 15 years were the most represented in Asut-
suare at both sampling time points (Table  1). Age data 
were not captured for some of the samples, making the 
sum of samples analysed in the three cohorts (age-strati-
fied data) less than the total number of samples recruited. 
Gametocyte prevalence by microscopy was very low in 
both communities, with the prevalence ranging between 
0.4 and 0.6%. Asexual stage parasite prevalence and den-
sity was much higher in Obom than in Asutsuare during 
both the dry and rainy seasons (Table  1). Whilst there 
was an increase in the prevalence of asymptomatic para-
site carriers from the dry to the rainy season in Obom, 
asymptomatic parasite prevalence in Asutsuare remained 
relatively the same at the two time points (Table 1).

Asexual antibody responses
At the community level, total IgG for naturally induced 
antibodies against MSP3 increased significantly in the 
rainy season compared to the dry season for both sites 

(Fig.  2a), with the increase in Asutsuare being greater 
than in Obom (Kruskal–Wallis test, p < 0.001 in Asutsu-
are and p < 0.01 in Obom). Total IgG levels in Obom were 
significantly higher than in Asutsuare at all time points 
(Kruskal–Wallis test, p < 0.05, Additional file 1: Table S1). 
A similar trend was observed for naturally induced IgM, 
IgG1 and IgG3 antibodies against MSP3 (Figs. 2b and 3a, 
b), where all responses measured in Obom were signifi-
cantly higher than those recorded in Asutsuare (Addi-
tional file  1) and the rainy season having higher levels 
compared to the dry season (Figs. 2a, b and 3a, b).

During the dry season, age was found to correlate with 
IgG1 as well as IgG3 responses against MSP3 in both 
Obom and Asutsuare. In Obom, the correlation was sig-
nificant but weak; Spearman r = 0.1514, p = 0.0228 (IgG1) 
and Spearman r = 0.2633, p = 0.0001 (IgG3), whilst in 
Asutsuare, the correlations although higher than Obom 
were still weak; Spearman r = 0.3341 (IgG1), Spearman 
r = 0.4057 (IgG3), p < 0.0001 for both) (Additional file 1).

Significant differences in IgG1 as well as IgG3 
responses against MSP3 amongst the three age groups at 
each site were noted (Fig. 3a, b). IgG1 responses against 
MSP3 in Obom were significantly lower (Dunn’s Multiple 
Comparison Test, p < 0.05) in young children (≤ 10 years) 
than in the older children (11–15  years). The measured 
IgG3 responses against MSP3 in the young children 
(≤ 10  years) were significantly lower (Dunn’s Multiple 
Comparison Test, p < 0.01) than responses measured in 
the adults (≥ 16 years) (Fig. 3b).

In Asutsuare, IgG1 responses against MSP3 (Fig.  3a) 
were significantly higher in the adults (≥ 16  years) 
compared to both young children (≤ 10  years) and the 
older children (11–15  years) (Dunn’s Multiple Com-
parison Test, p < 0.01 and 0.001, respectively). A similar 

Table 1 Demographic characteristics and parasitological indices of study participants

N number in counts, p/µl parasites per µl of blood, Min minimum, Max maximum, IQR interquartile range, PD parasite density

The sites are listed with the number of study participants in brackets. The values in the table represent frequency as counts (N) and % in brackets of the total 
population at each site during each time point. Study participants were stratified into three age groups, ≤ 10 years, 11–15 years and ≥ 16 years. N number of people. 
Asexual parasite prevalence was detected by light microscopy and gametocyte prevalence by Pfs25 mRNA RT-PCR

Obom Asutsuare

Dry (264) Rainy (192) Dry (230) Rainy (174)

Age/years

 ≤ 10 years (N(%)) 36 (13.6) 35 (18.2) 22 (9.6) 18 (7.8)

 11–15 years (N(%)) 117 (44.3) 78 (40.6) 58 (25.2) 42 (24.1)

 ≥ 16 years (N(%)) 101 (38.3) 73 (38.0) 141 (61.3) 113 (64.9)

 Asexual carriers 32 (12.1) 62 (32.3) 8 (3.5) 7 (4.0)

PD (p/µl)

 Min–Max 16–5080 16–4219 40–280 16–1553

 Median (IQR) 120 (80–350) 112 (48–528) 40 (40–170) 400 (32–955)

 Gametocyte carriers 47 (17.8) 30 (15.6) 3 (1.3) 3 (1.7)
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Fig. 2 Age‑stratified IgG and IgM responses. Antibody responses: IgG responses against MSP3 (a) and Pfs230 (c) and IgM responses against MSP3 
(b) and Pfs230 (d) in the study participants were stratified into children 10 years old and below (≤ 10 years), children between 11 and 15 years 
(11–15 years) and adults 16 years and above (≥ 16 years). Measurements were made in both the dry and rainy season from Obom and Asutsuare. 
Antibody concentrations are presented in arbitrary units (AU) on a Tukey box‑and‑whiskers plot
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Fig. 3 Age‑stratified IgG1 and IgG3 responses. IgG1 responses against MSP3 (a) and Pfs230 (c) and IgG3 responses against MSP3 (b) and Pfs230 
(d) in the study participants were stratified into children 10 years old and below (≤ 10 years), children between 11 and 15 years (11–15 years) 
and adults 16 years and above (≥ 16 years). Measurements were made in both the dry and rainy season from Obom and Asutsuare. Antibody 
concentrations are presented in arbitrary units (AU) on a Tukey box‑and‑whiskers plot



Page 7 of 11Acquah et al. Malar J           (2020) 19:64  

observation was made for anti-MSP3 IgG3 responses 
where the adults had significantly higher responses than 
both young children and older children (Dunn’s Multiple 
Comparison Test, p < 0.05 and 0.001, respectively).

During the rainy season, total IgG (Spearman 
r = 0.2027, p = 0.0207) (Fig.  2a) and IgG3 (Spearman 
r = 0.2449, p = 0.0059) against MSP3 in volunteers from 
Obom showed a positive but weak correlation with age. 
In Asutsuare, total IgG (Spearman r = 0.3672, p < 0.0001), 
IgG1 (Spearman r = 0.3962, p < 0.0001) and IgG3 (Spear-
man r = 0.4485, p < 0.0001) responses against MSP3 
(Fig.  3a, b) significantly correlated weakly but positively 
with age. Anti-MSP3 IgM antibodies correlated inversely 
with age in Asutsuare (Spearman r = − 0.1788, p < 0.05) 
but not in Obom (Fig. 2b).

Anti-IgG3 responses measured in Obom against 
MSP3 remained significantly lower in the young children 
(≤ 10 years) compared to the adults (≥ 16 years) (Dunn’s 
Multiple Comparison Test, p < 0.05), however, IgG, IgG3 
and IgM levels across the three age groups were similar 
during the rainy season (Figs. 2a, b and 3a, b). In Asut-
suare, anti-IgG1 and IgG3 responses measured against 
MSP3 was significantly higher in adults than those meas-
ured in the young and older children (Dunn’s Multiple 
Comparison Test, p < 0.05 (young children) and p < 0.001 
(older children) for both). Total IgG responses were sig-
nificantly higher in adults (Dunn’s Multiple Comparison 
Test, p < 0.001) than in older children, whilst no differ-
ences in IgM responses were measured between the three 
groups (Dunn’s Multiple Comparison Test, p > 0.05 for all 
combinations).

Contribution of the measured cytophilic antibodies to 
variations in measured total IgG was assessed by fitting a 
linear regression model using IgG1 and IgG3 as explana-
tory variables for total IgG concentrations against MSP3. 
The results showed that in the dry season, the independ-
ent variables (anti-IgG1 and IgG3) could not explain the 
variations observed in total IgG responses in Obom and 
could only account for 3.3% of the variations in total IgG 
observed in Asutsuare (Table 2). In the rainy season how-
ever, about 70% (for Asutsuare) and 71% (for Obom) of 
the variations in total anti-MSP3 IgG could be explained 
by variations in the measured IgG1 and IgG3  (R2 = 0.699, 
p < 0.001 and  R2 = 0.709, p < 0.001 for Asutsuare and 
Obom, respectively). All variance inflation factors (VIFs) 
for all the analyses were less than 1.8 (Additional file 2).

Sexual stage (Pfs230) antibody responses
Within the community, all antibody responses measured 
against Pfs230 in Obom were significantly (Kruskal–
Wallis test, p < 0.001) higher than that measured in 
Asutsuare. Moving from the dry to the rainy seasons, nat-
urally induced IgG responses against Pfs230 decreased 

significantly (Kruskal–Wallis test p < 0.001) (Fig.  2c), 
whilst anti-IgM increased significantly (Kruskal–Wal-
lis test, p < 0.001) in both sites. Anti-IgM levels in 
Obom were significantly (Kruskal–Wallis test, p < 0.001) 
(Fig.  2d) higher than those measured in Asutsuare in 
the dry season but in the rainy season, IgM responses 
measured in Obom were significantly (Kruskal–Wal-
lis test, p < 0.001) lower than those measured in Asut-
suare (Fig.  2d). Anti-IgG1 responses measured in both 
sites were similar to that of total IgG, with a decrease 
observed in moving from the dry to the rainy season. 
Anti-IgG1 levels measured in Obom in the rainy season 
were significantly (Kruskal–Wallis test, p < 0.001) higher 
than measured in Asutsuare in the same season but anti-
IgG1 responses measured in the dry season were similar 
at both sites (Fig. 3c). Anti-IgG3 responses against Pfs230 
were similar between seasons in both sites (Fig. 3d).

During the dry season, age was not found to correlate 
with any of the Pfs230 antibody responses measured in 
Obom, however a significant (Spearman r = − 0.020, 
p = 0.0029) very weak negative correlation was observed 
between age and IgM responses in Asutsuare.

During the rainy season, age positively (Spearman 
r = 0.1718, p = 0.0172) correlated with anti-Pfs230 total 
IgG in volunteers from Obom, whilst age correlated sig-
nificantly (Spearman r = 0.2582, p = 0.0007) with IgG3 
responses in Asutsuare. Anti-IgG1 responses against 
Pfs230 from both sites correlated negatively with age but 
the correlation was not significant (Spearman r = − 0.169, 
p = 0.8233 for Obom and Spearman r = − 0.0571, 
p = 0.5011 for Asutsuare).

The weak correlation of antibody responses with age 
was reinforced when no significant differences were 
observed between all the various antibody responses 
measured against Pfs230 in the young children, the older 

Table 2 Multivariate linear regression relating total IgG 
with IgG1 and IgG3

R2 coefficient of determination; P p value

Independent variables IgG1 and IgG3

R2 P

MSP3

 Asutsuare (dry) 0.033 0.018

 Asutsuare (rainy) 0.699 < 0.001

 Obom (dry) − 0.006 0.426

 Obom (rainy) 0.709 < 0.001

Pfs230

 Asutsuary (dry) 0.455 < 0.001

 Asutsuary (rainy) 0.111 < 0.001

 Obom (dry) 0.313 < 0.001

 Obom (rainy) 0.003 0.301
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children and the adults from both Obom and Asutsuare 
during both the dry and rainy season (Figs. 2c, d and 3c, 
d). Similar to the asexual stage antibodies against MSP3, 
variations in measured anti-IgG1 and IgG3 against 
Pfs230 could not account for the variations in IgG meas-
ure in Obom but could account for 11% of the IgG vari-
ations measured in Asutsuare (Table 2). However, during 
the dry season, the  R2 increased to 0.455 (p < 0.001 for 
Asutsuare) and 0.313 (p < 0.001 for Obom) (Table 2). All 
VIFs were approximately 1.

The parasite density of samples collected from Obom 
during both the dry and rainy season did not correlate 
with any of the measured antibody (asexual stage or the 
gametocyte) responses. There were too few samples with 
microscopic densities of parasites in Asutsuare to do any 
statistical analysis (Additional file 3).

Discussion
Asymptomatic carriage of P. falciparum parasites 
exposes the host to both asexual disease-causing para-
sites as well as the sexual transmissible forms of the 
parasite. This primes as well as boosts the host’s immune 
system to produce antibodies against both asexual and 
sexual (gametocyte) forms of the parasite. Inhabitants 
of malaria-endemic countries, especially children, are 
highly at risk of being infected with the malaria parasite 
and have previously been the focus of earlier studies to 
understand and identify differences in asymptomatic par-
asite carriage in high and low malaria transmission com-
munities in Ghana [15, 40]. In this study, afebrile adults 
and children were recruited from communities of varying 
malaria transmission intensities and parasite prevalence 
to enable the comparison of naturally acquired immune 
responses against asexual and sexual stage antigens in 
both the dry and subsequent rainy season.

As anticipated, the prevalence of asymptomatic carri-
ers was significantly higher in Obom, the high parasite 
prevalence setting, than in Asutsuare where P. falcipa-
rum parasite prevalence has been reported to be very low 
for over a decade [34, 36]. No significant difference was 
observed in asexual parasite carriage between the dry 
and rainy season in Asutsuare, mainly because malaria is 
low and perennial [36] and supports an earlier report on 
asexual parasite prevalence in another low malaria para-
site intensity setting of Ghana [40]. However, there was 
an almost two-fold increase in microscopic levels of asex-
ual parasite carriage in moving from the dry to the rainy 
season in Obom, where malaria is high and seasonal. 
Gametocyte carriage in Obom significantly reduced in 
moving from the dry to the rainy season. A similar find-
ing of reduced gametocyte carriage in the peak relative to 
the off-peak season has been reported in young children 
from Obom [40]. The absence of variation in gametocyte 

carriage across the dry and rainy season in Asutsuare is 
supportive of the very low year-round malaria trans-
mission recorded in Asutsuare. The low gametocyte 
prevalence identified in the participants from Asutsuare 
supports a recent report that identified low gametocyte 
prevalence amongst children and adults, including preg-
nant women in Asutsuare [34].

A significant increase in the community-wide levels of 
anti-MSP3 IgM was anticipated and confirmed in moving 
from the dry to the rainy season in Obom, where there 
was a subsequent increase in asexual parasite prevalence. 
Interestingly, a similar significant increase in anti-MSP3 
IgM was observed in Asutsuare, although asymptomatic 
carriage of microscopic densities of P. falciparum para-
sites remained the same in moving from the dry to rainy 
season. One possible explanation for the increase in IgM 
in rainy season could be an increase in the prevalence 
of sub-microscopic density infections in the rainy sea-
son that was not captured by microscopy but has been 
reported using more sensitive tools [42]. In Asutsuare, 
anti-MSP3 IgG did not correlate with age, however the 
levels in adults during the rainy season were higher than 
in the children. It is not clear why no age correlation was 
observed, however, IgG antibody levels have not always 
been found to correlate with age [43].

Cytophilic (IgG1 and IgG3) responses against MSP3 
in Asutsuare were similar in both the dry and rainy sea-
son, where the adults had significantly higher levels than 
both groups of children. This result suggests that more 
frequent exposure is likely to be required to mature cyt-
ophilic antibody responses [7], buttressing the results 
observed in Obom, where the cytophilic IgG responses 
were lower in the young children compared with the 
older children and adults. Multivariate linear regression 
of the total IgG concentration using the IgG1 and IgG3 
concentrations revealed that in the rainy season, IgG1 
and IgG3 concentrations accounted for most of the meas-
ured total IgG. The differences observed in the rainy sea-
son relative to the dry season could be due to the increase 
in the prevalence of asexual parasites during the rainy 
season relative to the dry season since IgG1 and IgG3 are 
known to be potent activators of complement and phago-
cytic cells [44].

The reduction in the levels of Pfs230 IgG in moving 
from the dry to the rainy season observed in both Obom 
and Asutsuare could be due to a reduction in the num-
ber of gametocyte carrier, especially in Obom were fewer 
participants with active gametocyte infections were iden-
tified in the rainy relative to the dry season. The higher 
levels of Pfs230 IgM observed in Asutsuare relative to 
Obom in the rainy season could be due to very recent 
gametocyte infections in some participants in Asutsuare 
as antibody responses to gametocyte antigens have been 
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suggested to develop rapidly after exposure [45]. Simi-
larly, the high IgM levels in the rainy season could have 
helped with antibody clearance of the mature gameto-
cytes from circulation, thereby causing a reduction in the 
detected levels gametocyte in the rainy season.

The decrease in anti-Pfs230 IgG and IgG1 with 
increased exposure was not unexpected as antibody 
responses to gametocyte antigens have been suggested 
to be influenced more by recent exposure compared 
with cumulative exposure [17]. Although IgG1 antibod-
ies are known to have a longer half-life than IgG3 [46], 
the relatively unchanged levels of IgG3 but significantly 
decreased levels of IgG1 suggests that IgG1 might be the 
preferred IgG subclass required to clear mature gameto-
cytes from circulation although further studies must be 
done to ascertain this.

Conclusion
The pattern of antibody responses measured in people 
living in the high and low malaria transmission setting 
was similar. All antibody responses measured against the 
asexual antigen, MSP3 increased, however, IgG and IgG1 
responses against gametocyte antigen Pfs230 decreased 
in moving from the dry to the peak season in both sites 
likely due to requirement of IgG1 to clear gametocytes 
from circulation. Whilst asexual and gametocyte preva-
lence was similar between the seasons in the low trans-
mission setting, in the high transmission setting asexual 
parasite prevalence increased but gametocyte prevalence 
decreased in the rainy season relative to the dry season.
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