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Personal non-life insurance decisions and the welfare loss

from flat deductibles.

Mogens Steffensen1 and Julie Thøgersen2

1Department of Mathematical Sciences, Copenhagen University.
2Department of Mathematics, Aarhus University.

Abstract

We view the retail non-life insurance decision from the perspective of the
insured. We formalize different consumption-insurance problems depending
on the flexibility of the insurance contract. For exponential utility and power
utility we find the optimal flexible insurance decision or insurance contract.
For exponential utility we also find the optimal position in standard contracts
that are less flexible and therefore, for certain non-linear pricing rules, lead
to a welfare loss for the individual insuree compared to the optimal flexible
insurance decision. For the exponential loss distribution, we quantify a signif-
icant welfare loss. This calls for product development in the retail insurance
business.

Keywords: exponential utility, HJB equation, insurance pricing, product
design, compound Poisson loss process.

1 Introduction

The standard marketed retail insurance contract has a fixed amount deductible
where the deductible is independent of the size of the loss. This simple product
structure is sufficient but only for the simple pricing mechanism where the loading
to the expectation is a plain factor to the expectation, also called the expectation
principle. Both theoretically and practically other pricing principles are more rel-
evant but the main focus has still been on the fixed deductible. We study how this
mismatch of development between pricing and product design affects individuals in
the insurance market. We therefore formulate and solve the personal consumption-
insurance problem with respect to a non-life risk modelled by a compound Poisson
process with the objective to maximize utility of consumption. Two types of in-
surance products are considered: one with an optimal flexible, claim-dependent
deductible and one with an optimal constant fixed amount deductible (the stan-
dard product). These are compared by measuring the welfare loss of an individual,
which we define as the monetary compensation the individual requires in addition
to the standard product in order to be indifferent between that and the optimal
flexible product. For the expected value premium principle, henceforth referred to
as the linear pricing principle due to its linear relation to the expected value of
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the risk, the constant deductible is known to be optimal and there is no welfare
loss from being offered a standard constant deductible contract. For a certain for-
malization of the variance pricing principle, we find a log-power deductible to be
optimal, and for a certain formalization of the Esscher pricing principle, we find a
linear deductible to be optimal. In both of these cases a welfare loss arises if the
individual is offered a standard constant deductible contract.

Stochastic control theory has been applied intensively to decision problems in
insurance over the last decades. In life and pension insurance the applications are
in two separate directions: The Asset-Liability Management decisions of a pension
fund and an individual’s financial consumption-investment-insurance decisions. In
some formulations the two directions have much in common. In non-life insurance,
most applications are to the decision making of the insurance company. Here
the focus has been on the decisions concerning reinsurance, investments, premium
collection, and dividends paid to the owners. A standard objective is the expected
accumulated present value of future dividend payouts until ruin. There has been
less focus on the non-life insurance decisions made by the individual over her life-
cycle in the sense of personal financial consumption-investment-insurance decisions
with respect to non-life risks. Our study is a contribution in the latter direction.
To formulate an individual’s non-life risk decision, we need to think carefully about
how the wealth process is influenced by non-life risk, what can be controlled and
how, and what is the objective function. In the next three paragraphs we address
these three ingredients of the control problem one by one in order to make our
standing point clear.

The compound Poisson process is well-established as a benchmark for modelling
a portfolio of non-life risks. This is also called a collective risk model. We choose
the same model for an individual’s non-life risks. This is consistent in the sense
that if an individual risk process follows a compound Poisson process, then an
aggregation of those in a portfolio is also a compound Poisson process. If further
the individual risk processes are homogeneous across individuals, then the collective
follows a compound Poisson process with the same claim amount distribution but
with a claim intensity corresponding to the individual claim intensity times the
number of individuals.

The individual can typically control the non-life risk by the choice of a de-
ductible in her insurance contract only. In practice, most often she can choose
among different levels of a constant deductible. Choosing a deductible in an indi-
vidual’s risk process then corresponds to choosing the deductible in an Excess-of-
Loss reinsurance program for an insurance company with a collective risk process.
However, in the reinsurance program the insurance company may have other deci-
sions to make, e.g. concerning the proportion covered if only proportional reinsur-
ance is bought on top of the deductible. Typically, an individual does not have such
a decision to make. We solve different problems regarding this (lack of) flexibility
in the insurance products offered to individuals. Both problems where a constant
deductible is chosen (the realistic case) and problems where the deductible is a
general function of the loss are solved. Thereby we are able to quantify the welfare
loss that arises from giving the individual the choice of a constant deductible only.
It is a classical result in non-life insurance that the Excess-of-Loss insurance con-
tract is optimal, so therefore at first glance, there should be no welfare loss. But
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this classical result is only obtained for linear pricing rules. If pricing is non-linear,
then the result does not hold anymore and there is, indeed, a welfare loss to detect.
We solve the problem for various pricing rules, including non-linear pricing rules.

The objective function in personal financial decision making is often taken to
be aggregate utility of consumption financed by wealth, capital gains, and perhaps
labor income. This is in contrast to the classical dividend optimization problem
for a non-life company where dividends are not bent by a concave utility function
before aggregation. On the other hand, dividends run out upon ruin of the in-
surance company, which in itself forms an indirect aversion towards risk. There
exist works where dividends are measured by their utility, but the mainline re-
search counts in dividends linearly in the objective. Apart from the appearance
in the objective function with or without a utility function, the consumption of
the individual influences individual wealth in the same way as dividends influence
the insurance company’s risk process. We solve optimal insurance coverage for a
general deductible in both cases of exponential and power utility. However, we
are able to characterize the solution to the case where the deductible has to be
constant in the case of exponential utility only. Therefore, our focus is on this case
and the explicit quantification of the welfare loss arising from suboptimal insurance
contracts (constant deductible) under non-linear pricing is carried out for exponen-
tial utility only. In this type of problem it is possible for the individual to change
strategy more often than the time horizon of the objective. It is therefore natural
to consider it as a dynamic optimisation problem due to the long-term objective
combined with the short-term decisions. This is in contrast to problems where
the time horizons for the objective and the decisions are aligned, in which case a
one-period (long or short) model suffices. Only with dynamic optimization, future
optionality and impact on objectives are correctly counted in and the dependence
of state processes time and wealth are revealed. In the versions we consider, time
and/or wealth dependence disappear from the optimal controls, but it is impor-
tant to note that this independence is an endogenous feature of the solution and
not exogenously assumed. Generalizations to other cases with dependence should
naturally also be based on a dynamic perspective.

The literature on ruin probability minimization and linear dividend optimiza-
tion until ruin via optimal reinsurance and investment is exhausting. We choose
to mention only Schmidli (2002) as well as Schmidli (2008) for an overview. In-
stead we concentrate here on the somewhat smaller amount of literature where
dividends are measured by their utility because the mathematical issues there are
more closely related to ours. Hubalek and Schachermayer (2004) considered the
problem of optimizing power utility of dividend payments until ruin where the risk
process is modelled by a Brownian motion with drift. Their insurance risk process
itself is not influenced by the control as it is the case if one optimizes over reinsur-
ance decisions. Grandits et al. (2007) also considered the Brownian risk process
but optimized over exponential utility of dividends. However, instead of taking
exponential utility of dividend rates they measure exponential utility of aggregate
dividends until ruin. Thonhauser and Albrecher (2011) considered the problem of
optimizing dividend payouts measured by power utility but with transaction costs
related to payouts. Their insurance risk process is not influenced by the control.
Common for all these problems is that the dividend payout scheme is the only
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decision process.
It has been argued that the dividend decision process of the insurance company

should not be optimized with respect to a utility function as there is not one distinct
individual whose utility function can appropriately represent the corporate decision
process, see e.g. the survey paper Avanzi et al. (2016). Only from an individual’s
point of view, the optimization of utility of consumption financed by a wealth
process influenced by non-life risk, partly mitigated by the purchase of insurance
contracts, appears to be natural. And as such, it could also form the basis for
designing insurance contracts. Namely, the optimal insurance contract is the one
where adjustments according to characteristics of the individuals (age, wealth,
ect.) is an integrated part of the product design, and must be a service provided
by the insurance company according to some agreement between the company and
the policy holders, in order to make the decision process as simple as possible for
them. The worth of considering these issues are quantified by the welfare loss
from offering standardized contracts instead of optimal ones. These are the ideas
pursued in this paper.

The result that the fixed deductible contract is optimal for linear pricing is
found in e.g. Arrow (1971). A series of papers work within this setup of lin-
ear pricing. Cummins and Mahul (2004) and Zhou et al. (2010), for example,
implement an upper limitation on the insurance coverage of the fixed deductible
contract. Golubin (2016) considers instead joint decisions to be made by both the
insurance company and the individual. Aase (2017) considers a different approach
by arguing how the presence of costs in insurance impacts the design of (Pareto)
optimal insurance contracts. This is a certain form of non-linear pricing that also
creates a demand for more general deductible structures.

Finally we relate our work to other works where the individual seeks to max-
imize utility of consumption or wealth from investment and/or non-life insurance
decisions. Yang and Zhang (2005) consider the investment problems in a jump-
diffusion model for insurance risk but they control neither consumption nor in-
surance risk. Moore and Young (2006) study optimal consumption, investment,
and insurance under a diffusive financial market and compound Poisson modelled
insurance risk. Compared to that, Perera (2010) generalizes both the financial
market and the insurance risk model to a general Lévy framework whereas Zou
and Cadenillas (2014) generalize to regime shifts in both market and insurance
coefficients. Zhang and Siu (2009) control investment and insurance under model
uncertainty. Other publications in the area typically generalise the financial mar-
ket in which an investment decision is made or the preferences of the individual.
All the references of this paragraph work with more general financial markets than
we do, since we simply earn capital gains from deterministic interest and have no
investment decision to make. However, for all the references of this paragraph
where insurance is controlled, the pricing mechanism of the insurance market is
linear. This makes it optimal, as is shown and used in the references, to buy an
insurance product with, in general, a wealth dependent but more importantly in
this relation a loss size independent deductible.

The investment decision in financial markets combined with linear insurance
pricing in the references mentioned in the prior paragraph marks a clear difference
compared to the scope of our work. We concentrate fully on the insurance market,
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look for the optimal insurance position under non-linear pricing, and quantify the
financial sacrifice of being offered a flat deductible only. One may argue that since
the non-flat deductible is not offered in the retail market, the approach taken by the
references is ”correct” and our approach is ”useless”. However, both conclusions
are false. It is appealing to think that since retail marketed contracts have flat
deductibles, the pricing rule in this market is linear and all other decisions on
consumption and investment should be made on that basis. This thinking is based
on a blind belief in the market’s ability to develop optimal products. If, conversely,
the market currently contains suboptimal products only, a couple of important
questions arise. Based on the true pricing rules, whatever they are, what is then the
optimal insurance decision and how are the consumption and investment decisions
altered, respectively, compared to the case of linear pricing? Can the optimal
insurance decision inspire to product development with a generalised deductible
that actually does represent the market’s development of optimal products? And
what is the value created to the individuals following from such development of
optimal products? These are the type of questions we address in this exposition.
So, the motivation is not to repair the decisions made by individuals but rather
to repair the market she faces, or at least to start a discussion about whether and
why there is something to repair.

In order to start out with explicit and tractable calculations in this direction
of study we do make simplifying assumptions on financial markets and preferences
as well as we skip considering the investment decision as an integrated problem.
This, however, does not harm the principal discussion we start, the qualitative re-
sults that we obtain, or the illustrative power of our quantitative results. Whether
our analysis suffers more or less from our simplifying assumptions about finan-
cial markets and preferences than the analysis in the references above suffer from
simplifying assumptions about linear insurance pricing is unknown. But we con-
jecture that realistic modelling and controlling of financial risk is of second order
importance compared to realistic insurance pricing when studying optimal control
of insurance risk and optimal design of insurance contracts.

Among the more restrictive assumptions we make, we highlight already here
a few. We deal with a marginal problem and not an equilibrium problem. This
means that the insurance company does not change the pricing rule (of course,
it changes the price itself) depending on decision made by the individual. The
alternative, namely to construct a game, would be much more difficult. Further,
we consider specific pricing rules. The rules we consider are, however, well-known
and generally accepted for their relevance. In the numerical section, the coefficients
within the pricing rules are chosen to be realistic, but are not calibrated to any data
or price observation, though. Finally, we take the calculations all the way to the
end for the case of exponentially distributed losses. This is clearly very restrictive,
but this is just to reach fully explicit results in this particular case. We exploit
these results in our numerical examples. The assumptions limit our quantitative
conclusions to the cases considered. However, they do not limit the outreach of
the qualitative discussion about sub-optimality of (realistic) flat deductibles under
(realistic) non-linear pricing which is the very motivation for this exposition.

The outline of the paper is as follows. Section 2 explains how insurance affects
the individual and her wealth. Section 3 creates a general view of the optimization
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problem of the individual. Section 4 introduces in details the mechanics of pricing
by changing measure. Section 5 contains the explicit expressions needed to find
the welfare loss for the two insurance products in consideration, namely the one
with a fully flexible coverage and the one with a fixed amount deductible. Section
6 makes a numerical comparison by illustrating the welfare loss.

2 Claims Process and Insurance Contracts

We consider an individual endowed with the initial wealth x. The individual con-
sumes at rate (ct)t≥0 and all excess wealth is invested into a risk-free asset with
interest rate r. The individual is exposed to a risk that can be modelled by a
compound Poisson process (At)t≥0 with parameters (λ, F ), i.e.

At =

Nt∑
i=1

Zi,

where (Nt)t≥0 is a Poisson process with parameter λ counting the number of losses
until time t and the Zi’s represent the (positive) loss sizes assumed to be i.i.d. and
independent of (Nt)t≥0 with distribution F on (0,∞). Note that we speak of losses
rather than claims as the analysis is performed on an individual level. The losses
Zi are actually the expenses of the individual connected with ‘insurable but not
yet insured’ event number i. Thus, it has not become a claim from a policy holder
upon an insurance company yet. Before purchasing insurance the wealth of the
individual, denoted by (Xt)t≥0, develops in accordance with

dXt = (rXt − ct) dt− dAt.

This wealth process of the individual is modelled similarly to a classical surplus
process in risk theory with deterministic capital gains and absolutely continuous
dividend payments in terms of consumption. It is conventional to think of this
as the surplus process for a portfolio of insurances within an insurance company.
Here we interpret the process as the wealth process of an individual with event risk
modelled by the compound Poisson process.

The individual can reduce and manage the risk of (At)t≥0 by purchasing insur-
ance. An insurance product is described by a non-decreasing function gv : R+ →
R+ parameterized by a control v. The function gv is applied to individual losses in
the sense that for a claim of size z, gv (z) is the deductible that the individual pays
herself. Thus, when choosing the insurance contract gv, the expense of the indi-
vidual is reduced to min{z, gv(z)} in relation to a loss z. When the loss z > gv(z),
the loss is reported to the insurance company and the excess z − gv(z) is claimed
and covered.

A standard insurance contract has a fixed amount deductible characterized by
g being constant, i.e. gK(z) = K, where K ∈ R+ is the deductible level that
also parametrizes the insurance decision. The individual who we then speak of
as a policyholder, reports a claim if the occurred loss z exceeds the fixed amount
deductible K. So the policyholder covers the loss min{z,K} by herself, and the
rest of the loss, namely (z−K)+, is covered by the insurance company. Our idea is
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to leave such a restricted class of strategies. The reader may think of a deductible
which is more generally dependent on z and, possibly, t and Xt, such that a variable
amount is covered by the insured depending on the size of the claim and, possibly,
the time (age) and wealth of the policy holder.

Insurance is used by the policyholder as a tool to reduce her risk exposure
(At)t≥0 by reducing the size of the losses. Followed by the above-mentioned argu-
ments, when employing insurance characterized by gv, the policy holder’s reduced
risk can be represented by the compound Poisson process (Cv,t)t≥0 with jump rate

λ and claim sizes (min{Zi, gv(Zi)})i=1,2,..., i.e. Cv,t =
∑Nt

i=1 min{Zi, gv(Zi)}. The

compound Poisson process (Av,t)t≥0 with Av,t = At − Cv,t =
∑Nt

i=1(Zi − gv(Zi))+
then represents the risk transferred to the insurance company for which the policy
holder must pay a premium.

Throughout we adopt the idea of evaluating the premium of an insurance con-
tract by a change of measure. Pricing by a change of measure is mostly considered
to be a financial notion (also known as risk neutral pricing). Embrechts (2000)
provides a treatment of the link between financial pricing and actuarial pricing.
We restrict the focus to the equivalent measures Q such that the accumulated
claim process (Av,t)t≥0 remains a compound Poisson process under Q, but where
the characteristics are altered to (λQ, FQ). We present here how the accumulated
premium until time t then can be reduced to a premium density,

EQ[Av,1] = EQ

[
N1∑
i=1

(Zi − gv(Zi))+
]

= λQ EQ [(Z − gv(Z))+
]
, (1)

where Z is an independent copy of Z1, Z2, . . .. Since this change of measure is a
rather technical concept, we devote Section 4 to elaborate on the needed ingredi-
ents. For now, what is important for us is that we can decompose the measure
transformation into its jump part, changing the intensity from λ to λQ, and claim
size part, changing the distribution of Z from F to FQ, due to the compound Pois-
son properties being maintained under Q. The individual therefore must pay a
premium rate continuously that depends on the compound Poisson characteristics
(λQ, FQ) under Q, if she wants to buy insurance. In the view of actuarial pricing,
this approach is quite general and contains, as special examples, certain versions of
the expectation premium principle, a variance premium principle, and an Esscher
premium principle, as will be seen in Section 4.

Purchasing insurance then has the following effect on the dynamics of the in-
dividual’s wealth process

dXt = (rXt − ct) dt− d
(
EQ[Av,t]

)
− dCv,t

=
(
rXt − ct − λQEQ [(Z − gv(Z))+

])
dt− dCv,t.

(2)

With these dynamics, the infinitesimal operator of a function f(x) is

Af =
(
rx− ct − λQEQ [(Z − gv(Z))+

]) ∂f
∂x

(x)

+ λE[f(x−min{Z, gv(Z)})− f(x)].
(3)
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3 Optimization problem of the individual

At time t the individual chooses the consumption rate and the insurance strategy
in terms of gv in order to optimize her expected discounted utility of consumption,

V (t, x) = sup
c,v

Et,x
[∫ ∞

t
exp(−ρ (s− t))u(cs)ds

]
,

where Et,x denotes conditional expectation given that Xt = x. The utility function
u measures utility from the consumption rate c and ρ is a subjective utility discount
factor. We do not impose any control constraints on consumption. A natural
(and common) restriction would be c ≥ 0, but as we prioritize finding a tractable
solution, we choose to look past this. The insurance control v, on the other hand,
must satisfy that the deductible strategy gv is non-decreasing and non-negative
(as it was defined). We only put a lower limit on the deductible strategy as we
avoid any issues with upper limitations by using truncation and minimum in the
dynamics of the wealth (2). Hence, if a deductible strategy exceeds the actual loss,
then this automatically corresponds to having no insurance.

Due to the time-homogeneity of all ingredients of the state process, i.e. the
coefficients of X, and the objective, i.e. (ρ, u), the value function is a function of
wealth only and we can write

V (x) = sup
c,v

Ex
[∫ ∞

0
exp(−ρt)u(ct)dt

]
. (4)

The rate ρ is here called the utility discount rate. A different interpretation is the
mortality rate of an individual optimizing her utility of consumption until death.
Then, if an expectation is taken both with respect to time of death and insurance
risk, the expectation with respect to time of death gives a survival probability
until time t of exp(−ρt) and expectation with respect to both risks then leads to
(4). It is of course a non-realistic restriction, in that interpretation, to work with
an age-independent mortality rate. However, for now we work out the details for
the time-homogeneous case and it is beyond the scope of this presentation to han-
dle the time-inhomogeneous case. The Hamilton-Jacobi-Bellman (HJB) equation
characterizing the value function is given by

sup
c,v
{AV + u(c)} = ρV (x).

Using the infinitesimal operator in (3) the HJB equation can be written more
explicitly as

sup
c,v

{
− ρV (x) +

(
rx− c− λQEQ [(Z − gv(Z))+

])
Vx(x)

+ λE[V (x−min{gv(Z), Z})− V (x)] + u(c)

}
= 0,

(5)

where Vx(x) = ∂V
∂x (x).

For the special case of an exponential utility function, we can immediately
learn something about the structure of V . Since this case plays a crucial role in
our considerations we present at this point these principal observations.
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Proposition 3.1. Assume that the utility function is of the form

u(c) =
−1

a
exp(−ac). (6)

for a > 0. Then, for a sufficiently regular function gv(z) (in both z and the
parameter v), the value function (4) can be written by

V (x) =
−1

α
exp(−rax). (7)

The optimal consumption c∗ is affine in wealth

c∗ = rx− 1

a
log
(ra
α

)
, (8)

and the optimal insurance control v∗ solves

λ
∂

∂v

(
E[exp(ra ·min{Z, gv(Z)})]

)
= raλQ

∂

∂v

(
EQ[(Z − gv(Z))+]

)
, (9)

and is thus independent of wealth. The parameter α of the value function is deter-
mined by the relation

α = ra exp

(
1
r

(
ρ− λ (E [exp (ra ·min{Z, gv∗(Z)})]− 1)

)
−aλQEQ[(Z − gv∗(Z))+

]
− 1

)
. (10)

Proof. Consider the first order conditions of (5) with respect to consumption

−Vx(x) + exp(−ac) = 0,

and with respect to deductible

− ∂

∂v

(
λQEQ[(Z − gv(Z))+])Vx(x) + λE[V (x−min{Z, gv(Z)})]

)
= 0.

Note that in the case where the parameter v is multidimensional, the derivative
would be replaced by the gradient, which would yield the same number of first
order conditions as dimensions of v.

Conjecture that the solution to the HJB equation is of type V (x) = − exp(−ra·
x)/α. The first order condition with respect to the consumption is then

−ra
α

exp(−ra · x) + exp(−ac) = 0.

Reducing this leads to the optimal consumption

c∗ = rx− 1

a
log
(ra
α

)
,

Correspondingly for the first order condition with regards to the insurance control,

−λQ ∂

∂v

(
EQ[(Z − gv(Z))+]

)
ra

α
exp(−ra · x)

+
λ

α

∂

∂v

(
E[exp(−ra · (x−min{Z, gv(Z)}))]

)
= 0

(11)
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and the optimal deductible strategy, v∗, must therefore be a solution to

λ
∂

∂v

(
E[exp(ra ·min{Z, gv(Z)})]

)
= raλQ

∂

∂v

(
EQ[(Z − gv(Z))+]

)
.

Although not solved explicitly, it is clear that the first order condition for the
deductible strategy does not depend on wealth. Regularity of gv(z) is assumed in
the proposition to ensure existence and uniqueness of (9). Exact sufficient and
necessary conditions are not studied here.

When substituting these optimal values back into the HJB equation (5), the
supremum will be obtained and we can solve for (10), verifying that the initial
guess for the structure of the value function was correct, since α does not depend
on wealth. �

From (8) we learn that the individual stops consuming, c∗ → 0, when the
wealth approaches some lower level, x → log(ra/α)/ra. Only the insurable losses
will therefore cause the wealth to decrease below this level yielding negative con-
sumption. In relation to this, it is natural to point out that the wealth is allowed
to become negative also, but the controlled wealth grows (on average) linearly in
time since the optimal insurance control is independent of wealth and the opti-
mal consumption is linear in wealth with a factor equal to the risk free interest
rate. Hence, over-accumulation of wealth or long-term bankruptcy is not an issue
here. It can not be verified in general that the insurance control chosen by (9)
satisfies that gv∗ is non-decreasing and non-negative, so this must be taken into
consideration for the specific structures of gv and pricing measures Q.

We are going to compare the performance of the optimal decisions (c∗, v∗) with
alternative decisions, in particular with suboptimal choices of v. For this purpose
we characterize the solution to the problem (4) where supremum is taken over c
only, i.e.

V (x) = sup
c

Ex
[∫ ∞

0
exp(−ρt)u(ct)dt

]
, (12)

such that the value function is characterized by the HJB equation

sup
c
{AV + u(c)} = ρV (x).

Going through the relevant steps in the proof of Proposition 3.1, one can im-
mediately see that the structure of the solution in the exponential utility case is
preserved. The value function has again the structure (7) with a different α de-
termined by (10) with v∗ replaced by a given suboptimal deductible. It should be
mentioned that any disentanglement of the optimization over c and v is of course
true only if the deductible does not depend on wealth. Dependence on wealth, in
case of other utility functions, introduces interdependence between consumption
and insurance decisions.

We can now compare a suboptimal insurance decision with the optimal one
by comparing the two value functions arising from optimizing over (c, v) and from
optimizing over c for a given suboptimal v, respectively. Let us denote by V (1) the
value function arising from optimizing over (c, v) giving rise to the coefficient α1

and denote by V (2) the value function arising from optimizing over c for a given
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v giving rise to the coefficient α2. It is clear that V (1) ≥ V (2) and α1 ≥ α2, since
the optimal insurance decision beats the suboptimal one. In order to compare, it
is standard to transform the difference into monetary units by calculating the so-
called certainty equivalent of the loss of utility from implementing the suboptimal
insurance decision. This is the solution L to the utility indifference equality

V (1) (x− L) = V (2) (x) .

The idea of utility indifference is a generally accepted way to measure sub-optimality.
One may first think of calculating V (1)(x)−V (2)(x) as a measure of sub-optimality.
However, the nominal value of the value function does not have a meaning on its
own and therefore this difference contains no other information than which one
is preferred to the other due to its sign. But how should one then measure e.g.
significance of the difference? This is exactly what the utility indifference equality
does since when the difference between the value functions is 0, then this nominal
value has a clear economic interpretation of the indifference. Thus, the equality
translates the difference between value functions, which is non-informative, into an
informative quantity in monetary units. It answers the question, what is the loss
in monetary units from having access to only a suboptimal control compared to
being offered the optimal control?

It is immediately seen that for the exponential utility function, the solution is

L =
1

ra
log

(
α1

α2

)
. (13)

We are ultimately interested in determining this L for different suboptimal choices
of v, for different pricing measures Q, and for different distributions of Z in order
to get a general view on the loss of not having access to the optimal insurance
contract.

4 Pricing by change of measure

As briefly explained in connection to (1), we want to price insurance by a change
of measure. In a risk averse setting, the change of measure has the advantage
that one can give more weight to bad outcomes and hence assign a higher price to
larger risks. A simple example on how this affects the individual’s attitude towards
insurance coverage is presented in Appendix A.

Let the physical measure be denoted as P. Recall that under this measure the
characteristics of the compound Poisson risk process (At)t≥0 can be summarized
by (λ, F ). Let β : R+ → R be a Borel measurable mapping, henceforth referred
to as the pricing measure function, satisfying E[exp(β(Z))] < ∞. Delbaen and
Haezendonck (1989) define the Radon-Nikodym derivative

Mβ
t = exp

(
Nt∑
i=1

β(Zi)− λtE[exp(β(Z))− 1]

)
. (14)

Let (Ft)t≥0 denote the filtration generated by the compound Poisson process
(At)t≥0. Delbaen and Haezendonck (1989) argues that the measure Q(β) defined

by Mβ
t = E[ dQ(β)/dP | Ft] satisfies that
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• Q(β) and P are progressively equivalent, i.e. have the same null sets.

• (At)t≥0 is a Q(β)-compound Poisson process with characteristics (λQ(β), FQ(β))
given by

λQ(β) = λE[exp(β(Z))], FQ(β)(dz) =
exp(β(z))

E[exp(β(Z))]
F (dz). (15)

So E[exp(β(Z))] can be considered as a penalty for claim frequency risk and
exp(β(z))/E[exp(β(Z))] as a penalty for claim size risk.

A premium rate of the risk (At)t≥0 can then be defined as

EQ(β)[A1] = EQ(β)

[
N1∑
i=1

Zi

]
= λE[exp(β(Z))Z], (16)

where we take the expected value under the pricing measure Q(β) which maintains
the compound Poisson structure, but changes the claim frequency and claim size
distribution (cf. the second property above).

In Delbaen and Haezendonck (1989) it is argued how certain choices of β(·)
correspond to certain well-known premium principles. Three choices of the pricing
measure function are considered. We recapitulate briefly the findings here.

i. Constant: β(z) = δ. The premium rate (16) then reduces to

EQ(β) [A1] = λ exp(δ)E[Z].

Only claim frequency risk is penalized, whereas claim size risk is not priced.
Since the pricing measure function is constant, the price is linear in the expec-
tation under P, and we are in the case of the expected value premium principle.
This corresponds to the case exemplified also at the end of Section A with

λQ = λ exp(δ).

ii. Log-linear: β(z) = log(θz+δ). If δ = 1−θE[Z] > 0 implicating E[exp(β(Z))] =
1, then it appears from (16) that

EQ(β) [A1] = λ(E[Z] + θV[Z]).

This is the reversed situation compared to i), since here the claim frequency
risk is not priced whereas claim size risk is priced using the variance premium
principle. If δ = 1, the premium principle corresponds to the variance principle
used on the total claim amount since

EQ(β) [At] = λtE[(θZ2 + Z)] = E [At] + θV[At].

iii. Linear: β(z) = θz + δ. If δ = − log(E[exp(θZ)]) it once again implicates that
E[exp(β(Z))] = 1. From (16) it follows that

EQ(β)[A1] = λ
E[Z exp(θZ)]

E[exp(θZ)]
.

As in ii) claim frequency risk has no penalty, and the claim sizes are priced
according to the Esscher premium principle.
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In Delbaen and Haezendonck (1989), the variable Zi is the claim on the insur-
ance company from insurance event number i. Recall that here, Zi is the true loss
whereas only a part of this is claimed on the insurance company. The individual
does not necessarily buy insurance protection for the entire underlying risk (At)t≥0.
Instead, insurance splits the losses, and thus the risk, in two parts, one covered by
the policy holder (Cv,t)t≥0 and one by the insurance company (Av,t)t≥0, when the
insurance product is characterized by gv. If the same approach as in Delbaen and
Haezendonck (1989) was directly followed, then the premium of the partial risk
(Av,t)t≥0 would have to be altered as follows,

EQ(βv)[Av,1] = EQ(βv)

[
N1∑
i=1

(Zi − gv(Zi))+
]

= λE[exp(βv(Z))(Z − gv(Z))+],

where βv(z) = β((z−gv(z))+). Note that the insurance control v then appears as an
endogenous part of the pricing measure function. This considerably complicates the
first order condition (9) for the insurance control in the policy holder’s optimization
problem. The result would be a kind of equilibrium insurance strategy. We wish to
work within a marginal approach where we separate the pricing measure function
from the control problem by making it independent of the insurance control v. We
use the change of measure defined by (14) applied to the full claim to price the
partial risk covered by the insurance company. The following proposition verifies
that this is still a meaningful change of measure.

Proposition 4.1. Let compound Poisson characteristics of (Av,t)t≥0 be summa-
rized by (λ, Fv). Under Q(β) the process (Av,t)t≥0 is still a compound Poisson

process, but with altered characteristics (λQ(β), F
Q(β)
v ) where

λQ(β) = λE[exp(β(Z))], FQ(β)
v (dz) =

exp(β(z))

E[exp(β(Z))]
Fv(dz). (17)

The premium rate is

EQ(β) [Av,1] = λE[exp(β(Z))(Z − gv(Z))+]. (18)

The proof appears in Appendix B. The intuition is that even though claim sizes
have been transformed by hv, it is the change of characteristics of the underlying
risk (At)t≥0 that is determined by Q(β). The same choices i.-iii. of β are considered
in the following sections, but with different restrictions on the parameters. In
general, we are interested in parameters δ and θ such that β is non-decreasing and
positive, hence we consider the pricing measure functions

i. β1(z) = δ1, where δ1 ∈ R+.

ii. β2(z) = log(θ2z + δ2), where (θ2, δ2) ∈ R+ × [1,∞).

iii. β3(z) = θ3z + δ3, where (θ3, δ3) ∈ R+ × R+.

Further restrictions on the parameter values might be imposed in subsequent
analysis when necessary. Note that the link from (16) to various premium principles
does not hold for (18) though, since the change of measure no longer relates to the
claim size but the entire loss.
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5 Insurance products

The results in Section A show that a constant deductible is not optimal in the case
of non-linear pricing, i.e. pricing where λQi /λi is not constant in i. This means that
there is a welfare loss connected with having access to only constant deductibles
in the market. The welfare loss depends, of course, on the extent and shape of
the non-linearity. In section 4 we have introduced a family of non-linear pricing
rules, and we are now going to measure the welfare loss produced by these pricing
rules. The welfare loss is measured by comparing the optimal insurance design
corresponding to its full flexibility in the structure of the deductible, with the
suboptimal constant deductible insurance contract corresponding to no flexibility
in the structure of the deductible. To compare these, we use the loss (13), which
also can be written as

L =
1

ra

(
aλ(E[exp(β(Z))(Z − g(2)v (Z))+]− E[exp(β(Z))(Z − g(1)v (Z))+])

+
λ

r
(E[exp(ramin{Z, g(2)v (Z)})]− E[exp(ramin{Z, g(1)v (Z)})])

)
.

Hence for two insurance products (full and no flexibility) and for each pricing
measure function β(·) we need to calculate the terms

p
(i)
β = E[exp(β(Z))(Z − g(i)v (Z))+]

= P(Z > g(i)v (Z))E[exp(β(Z))(Z − g(i)v (Z)) | Z > g(i)v (Z)],

q
(i)
β = E[exp(ramin{Z, g(i)v (Z)})]

= P(Z ≤ g(i)v (Z))E[exp(raZ) | Z ≤ g(i)v (Z)]

+ P(Z > g(i)v (Z))E[exp(rag(i)v (Z)) | Z > g(i)v (Z)].

(19)

for i = 1, 2. Recall that i = 1 corresponds to the completely flexible insurance

product, where the deductible strategy is unparameterized, i.e. g
(1)
v (z) = g(z),

and i = 2 corresponds to the fixed amount deductible insurance product, hence

g
(2)
v (z) = K.

The aim of this section is not to obtain a closed form expression of welfare loss
L, but to find the ingredients (19) for the different β-functions of interest. The
welfare loss is then illustrated by an numerical example in the next section. The
relations in (19) depend indeed on the distribution of the claim sizes. In order
to obtain tractable expressions, we assume that the claim sizes are exponentially
distributed with parameter η, i.e. F (z) = 1 − exp(−ηz). Only the results will be
stated here, for calculations of this section see appendix.

5.1 Completely flexible

Assume that the individual can choose a deductible strategy freely as a function
of the loss. She is then facing the problem of solving

sup
c,g(·)
{−ρV (x) + (rx− c− λE[exp(β(Z))(Z − g(Z))+])Vx(x)

+ λ(E[V (x−min{Z, g(Z)})]− V (x)) + u(c)} = 0.
(20)
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The first order condition with respect to g(·) is

λE[exp(β(Z))1Z≥g(Z)]Vx(x) = λE[Vx(x− g(Z))1Z≥g(Z)].

Recall that the value function has the form V (x) = exp(−rax)/α for an appropriate
α, hence the optimal unrestricted insurance strategy, g∗(·), must satisfy

E[exp(β(Z))1Z≥g(Z)] = E[exp(ra · g(Z))1Z≥g(Z)].

These moments are matched when g∗(z) = β(z)/(ra). We consider the three
choices of the pricing measure function β introduced in the end of Section 5. The
index of β is reflected in the index of the optimal insurance strategy g∗. Remember
that g is unparameterized in this section, so subscripts of the optimal strategy g∗

refer to the pricing measure function and not the parameterization of g.

i. For a constant pricing measure function β1(z) = δ1, the optimal insurance
strategy for the individual is the fixed amount deductible, g∗1(z) = δ1/(ra).
This was anticipated due to the preliminary analysis of Section A. Let A1 =
{Z < δ1/(ra)}. The two insurance dependent terms (19) of L can then be
written as

p
(2)
β1

= E[exp(ra ·min{Z, g∗1(Z)})] = E[exp(ra ·min{Z, δ1/(ra)})]
= P(A1)E[exp(raZ) |A1] + P(Ac1) exp(δ1),

q
(2)
β1

= E[exp(β1(Z))(Z − g∗1(Z))+] = E[exp(δ1)(Z − δ1/(ra))+]

= P(Ac1) exp(δ1)E[Z − δ1/(ra) |Ac1].

Assuming that Z is exponentially distributed with parameter η, then we can
write these more explicitly as

p
(2)
β1

=
ra

ra− η
exp

((ra− η
ra

)
δ1

)
− η

ra− η
,

q
(2)
β1

=
1

η
exp

((ra− η
ra

)
δ1

)
.

ii. If the pricing measure function is log-linear, β2(z) = log(θ2z + δ2), then the
optimal insurance strategy is a logarithmic-power deductible, g∗2(z) = log(θ2z+
δ2)/(ra). Let A2 = {Z < log(θ2Z+δ2)/(ra)}. The terms (19) are then defined
by

p
(2)
β2

= E[exp(ra ·min{Z, g∗2(Z)})] = E[exp(ra ·min{Z, log(θ2Z + δ2)/(ra)})]
= P(A2)E[exp(raZ) |A2] + P(Ac2)E[exp(θZ + δ2) |Ac2],

q
(2)
β2

= E[exp(β2(Z))(Z − g∗2(Z))+] = E[(θ2Z + δ2)(Z − log(θ2Z + δ2)/(ra))+]

= P(A2)E[(θ2Z + δ2)(Z − log(θ2Z + δ2)/(ra)) |Ac2].

The challenge here is to evaluate the event A2. Calculations in Appendix D
show that

A2 = {Z < Q} where Q = − 1

ra
W−1

(
−ra
θ2

exp

(
−δ2

ra

θ2

))
− δ2
θ2
.
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using the lower branch W−1 of the Lambert W function defined as the inverse
of the function w 7→ w exp(w).

For an exponential distribution of the claim sizes, we then have

P (A2) = P (Z < Q) = 1− exp (−ηQ) ,

which yields

p
(2)
β2

=
η

ra− η
(exp((ra− η)Q)− 1) +

(
θ2Q+ δ2 +

θ2
η

)
exp(−ηQ),

q
(2)
β2

= exp(−ηQ)

(
θ2Q

2 +

(
δ2 + 2

θ2
η

)
Q− 1

η
(θ2 − δ2) + 2

θ2
η2

− 1

ra

θ2
η

exp

(
η

θ2
(θ2Q+ δ2)

)
E1

(
η

θ2
(θ2Q+ δ2)

)
− 1

ra

(
θ2Q+ δ2 +

θ2
η

)
log(θ2Q+ δ2)

)
,

where E1 denotes the exponential integral E1(x) =
∫∞
x exp(−t)/tdt.

iii. Employing a linear pricing measure function β3(z) = θ3z+δ3, then the individ-
ual optimally chooses a proportional insurance strategy g∗3(z) = (θ3z+δ3)/(ra).
Letting A3 = {Z < (θ3Z + δ3)/(ra)} = {Z < δ3/(ra− θ3)}, then we have

p
(2)
β3

= E[exp(ra ·min{Z, g∗3(Z)})] = E[exp(ra ·min{Z, (θZ + δ)/(ra)})]
= P(A3)E[exp(raZ) |A3] + P(Ac3)E[exp(θ3Z + δ3) |Ac3],

q
(2)
β3

= E[exp(β3(Z))(Z − g∗3(Z))+] = E[exp(θ3Z + δ3)(Z − (θ3Z + δ3)/(ra))+]

= P(Ac3)E[exp(θ3Z + δ3)(Z − (θ3Z + δ3)/(ra)) |Ac3].

For an exponential distribution we can calculate these explicitly as

p
(2)
β3

=

(
1− exp

(
−(η − ra)

δ3
ra− θ3

))(
η

η − ra

)
+

η

η − θ3
exp

(
−(η − ra)

δ3
ra− θ3

)
,

q
(2)
β3

= exp

(
−(η − ra)

δ3
ra− θ3

)
(ra− θ3)η
ra(η − θ3)2

,

where it is assumed that θ3 < η to ensure finite (left-truncated) exponential
moments, and θ3 < ra in order for Ac3 not to be a null set.

5.2 One level fixed amount deductible

Consider the fixed amount deductible where gK(z) = K is constant. The HJB
equation is then

sup
c,K
{−ρV (x) + (rx− c− λE[exp(β(Z))(Z −K)+])Vx(x)

+ λ(E[V (x−min{Z,K})]− V (x)) + u(c)} = 0.
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The first order condition for the fixed amount deductible level follows from using
Leibniz integral rule on (9) yielding

E[exp(β(Z))1{Z≥K}] = exp(raK)E[1{Z≥K}].

Once again, we take a closer look at the three choices of the pricing measure
function. Note that since it is the same insurance product in question, the second
characterizations in (19), namely

q
(1)
β = E[exp(ramin{Z,K})]

= P(Z ≤ K)E[exp(raZ) | Z ≤ K] + P(Z > K) exp(raK),

is the same function of the fixed deductible in every case of the pricing measure
function. For an exponential distribution it can be calculated as in case i. for the
flexible insurance product,

q
(1)
β =

ra

ra− η
exp((ra− η)K)− η

ra− η
.

So the focus in the following is on characterizing

p
(1)
β = E[exp(β(Z))(Z −K)+] = P(Z > K)E[exp(β(Z))(Z −K) | Z > K]. (21)

i. For β1(z) = δ1, the optimal deductible is obviously K∗1 = δ1/(ra). Notice

that this is the same structure as i. in previous subsection, so p
(1)
β1

= p
(2)
β and

q
(1)
β = q

(2)
β thus follow.

ii. Let β2(z) = log(θ2z+δ2). The optimal fixed deductible, K∗2 , must then satisfy

E[(θ2Z + δ2)1{Z≥K2}] = exp(raK2)E[1{Z≥K2}].

For the exponential distribution, we can write this criteria more explicitly as

θ2

(
K2 +

1

η

)
+ δ2 = exp(raK2),

which can be solved using the Lambert W function,

K∗2 =
−1

ra
W−1

(
−ra
θ2

exp

(
−ra

(
δ2
θ2

+
1

η

)))
− 1

η
− δ2
θ2
.

Here we use that −ra exp(−ra(δ2/θ2 + 1/η))/θ2 ∈ [− exp(−1), 0) according
similar arguments as in Appendix D. (21) can for an exponential distribution
be calculated as

p
(1)
β2

= E[exp(β2(Z))(Z −K∗2 )+] = E[(θ2Z + δ2)(Z −K∗2 )+]

=

(
θ2K

∗
2 + δ2
η

+
2θ2
η2

)
exp(−ηK∗2 ).
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iii. Let β3(z) = θ3z + δ3. Then the optimal fixed amount deductible level, K∗3 ,
satisfies

E[exp(θ3Z + δ3)1{Z≥K3}] = exp(raK3)E[1{Z≥K3}].

For exponential loss distribution, the optimal deductible can be solved explic-
itly as

K∗3 =
1

ra− θ3

(
log

(
η

η − θ3

)
+ δ3

)
,

which exists and is positive for ra > θ3 and η > θ3. Furthermore, (21) can be
expressed as

p
(1)
β3

= E[exp(β3(Z))(Z −K∗3 )+] = E[exp(θ3Z + δ3)(Z −K∗3 )+]

=
η

(η − θ3)2
exp(δ3) exp(−(η − θ3)K∗3 ).

6 Numerical Illustration

The results of the previous section are now collected and the analysis concluded by
a numerical illustration. To do so values of the parameters must be chosen. We here
consider an individual with a utility parameter a = 15, subjective discount factor
ρ = 10%, a claim frequency λ = 0.01, and losses are assumed to be exponentially
distributed with parameter η = 0.1. The net premium for full insurance of the non-
life risk of this individual is thus ξ = λ/η = 0.1. Suppose also that the risk-free
interest rate is r = 5%.

6.1 The impact of the pricing measure function

We start off by visualising the impact of the pricing measure function. Firstly, we
plot the loss density under the pricing measure determined by (17), and secondly,
we illustrate the optimal insurance strategy of the individual. Let f denote the
density of the exponential distribution with parameter η, and fQ the density under
the pricing measure Q.

When the insurance company sets its premium according to a constant pricing
measure function, β1(z) = δ1, it does not charge for claim size risk, and therefore
the density of the claims remains unchanged, i.e. f(z) = fQ(z). The a priori den-
sity and the pricing density is presented in Figure 1a. Instead, the claim frequency
used for pricing increases to λQ = λ exp(δ1). For δ1 = 3.75 the optimal fixed de-
ductible level is then K = 5, which is 50% of the average loss of 1/η = 10. Note
that for a constant pricing measure function, a fixed amount deductible is opti-
mal for the individual, and the welfare loss in (13) is therefore zero. The optimal
deductible strategy is depicted in Figure 1b.

For a log-linear pricing measure function, β2(z) = log(θ2z + δ2), similar plots
are displayed in Figure 2a and 2b. The pricing parameters are calibrated to
satisfy that the individual would optimally choose a fixed amount deductible
level of K∗2 = 5 if restricted to do so. Choosing δ2 = 2.5, then this calibra-
tion leads to θ2 = 2.6681. The loss density under the pricing measure, namely
fQ(z) = η exp(−ηz)(θ2z + δ2)/(θ2/η + δ2), has quite a different nature than the a
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(b) The functions g1(z) (in dash-dotted)
and min{z, g1(z)} (in solid).

Figure 1: For a constant pricing measure function

priori exponential distribution, though still staying within the exponential family of
distributions. We refer to Figure 2a. Recall from (17) that claim frequency risk is
penalized by λQ = λ(θ2/η+ δ2). In Figure 2b the optimal flexible deductible strat-
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(b) The functions g∗2(z) (in dash-dotted)
and min{z, g∗2(z)} (in solid).

Figure 2: For a log-linear pricing measure function

egy, namely g∗2(z) = log(θ2z+ δ2)/(ra), as a function of the loss is illustrated. The
optimal fixed amount deductible level for these pricing parameters also appears in
the graph. We observe that the flexible insurance product yields a deductible level
below the standard product for small claim sizes, whereas it slowly grows above
for larger claim sizes. In this specific case, the welfare loss of the individuals being
restricted to the standard product with a fixed amount deductible rather than the
flexible product is L = 1.2116, when the pricing measure function is log-linear.
As mentioned previously, for this individual the net premium for full insurance is
ξ = 0.1, so relative to this, the welfare loss is L/ξ = 12.116.

Corresponding plots for a linear pricing measure function, β3(z) = θ3z + δ3,
can be seen in Figure 3a and 3b. Again, the parameters θ3 = 0.25 and δ3 = 1.2472
are chosen to such that the optimal fixed deductible level is K∗3 = 5. The density
under the pricing measure is still exponential, fQ(z) = (θ3 − η) exp(−(η − θ3)z),
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but tilted to have a heavier tail, this is apparent in Figure 3a. Claim frequency is
penalised by λQ = λη exp(δ3)/(η − θ3).
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(b) The functions g∗3(z) (in dash-dotted)
and min{z, g∗3(z)} (in solid).

Figure 3: For a linear pricing measure function

In Figure 3b the optimal design of the deductible, g∗3(z) = (θ3z + δ3)/(ra), is
illustrated if the individual could choose freely. Compared to being limited to a
fixed amount deductible strategy, the individual would optimally choose a linearly
growing strategy, which exceeds K∗3 at the point (raK∗3 − δ3)/θ3 (not visible on
the graph). The individual’s welfare loss of being restricted to the simple product
rather than the flexible, when the pricing measure function is linear, is L = 16.6683
for this choice of parameters. Relative to the cost of full insurance, the loss is then
L/ξ = 166.683 times larger.

6.2 The welfare loss

The welfare loss is obviously dependent on the values of the parameters. To illus-
trate the sensitivity towards changes in the values of these parameters as clear as
possible, graphs of the relative loss L/ξ are displayed in Figure 4 for a log-linear
pricing measure function, and in Figure 5 for a linear pricing measure function.
Each figure has four subfigures where one of the parameters vary, while the re-
maining are kept fixed. Figure 4a and 5a show the relative loss as a function of θ,
4b and 5b as a function of δ, 4c and 5c as a function of the absolute risk aversion
a and, finally, 4d and 5d as a function of the loss parameter η. In the latter, we
remark that also the net premium for full insurance varies in η. Note that the
optimal fixed deductible changes as well, when varying these parameters.

For the log-linear pricing measure function, β2(z) = log(θ2z + δ2), we observe
that the relative loss increases when θ2 increases, see Figure 4a. This makes good
sense intuitively since ∂g∗2(z)/∂z = 1/(ra(z + δ2/θ2)), hence a larger value of θ2
yields a steeper slope of the optimal flexible deductible strategy, which then will
deviate more from the fixed amount deductible strategy. Notice that δ2 has an
inverse impact on ∂g∗2(z)/∂z, and we can therefore conclude the converse for δ2.
The parameter δ2 also controls the intersection with the vertical axis and by raising
it, a larger part of the function g∗2(z) with a steep slope will be above the identity
line. Hence, as it appears in Figure 4b, the relative loss decreases in δ2. Next,
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recall that a is the parameter of the exponential utility, and is thus a measure
of the absolute risk aversion. An individual with risk neutral preferences (a close
to zero) would not pay for insurance as she does not care about the risk. So for
this type of individual it does not matter which product is supplied as long as ‘no
insurance’ is a possibility. On the other hand, an individual with a very high degree
of risk aversion (a large) would prefer to insure fully, and once again, the product
structure becomes subordinate as long as a ‘full insurance’ (i.e. a zero deductible)
can be chosen. Hence, the difference in product design is the most important for
individuals with non-extreme preference, as it appears from the non-monotonicity
of Figure 4c. At last, in Figure 4d the relative welfare loss is decreasing in the
loss parameter η as expected. When η increases the tail of the loss distribution
gets lighter, and claims will on average get smaller. Hence, the difference between
the optimal flexible deductible strategy and the fixed amount deductible for large
claim sizes affects the welfare loss less.

0 5 10 15 20 25 30 35

θ
2

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 L
o

s
s

(a) Loss as function of θ2.

0 5 10 15 20 25 30

δ
2

6

7

8

9

10

11

12

13

14

R
e

la
ti
v
e

 L
o

s
s

(b) Loss as function of δ2.
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(c) Loss as function of a.
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(d) Loss as function of u.

Figure 4: Loss function for β2

The arguments for the case with a linear pricing measure function, β3(z) =
θ3z + δ3, are similar. Since ∂g∗3(z)/∂z = θ3/(ra), the parameter θ3 controls the
slope of the optimal flexible deductible strategy. A higher value of θ3 yields a higher
slope, so the distance to the fixed deductible will then be larger and the welfare
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loss bigger, the graph in Figure 5a is therefore increasing. If δ3 increases then the
flexible deductible strategy will exceed the fixed deductible for lower values of the
losses, and the individual is therefore forced to buy more insurance for large values
of the claim if being restricted to a fixed deductible, leading to a larger welfare loss,
which explains the decreasing shape of Figure 5b. For the risk aversion coefficient,
the effect from being able to choose a slope on the coverage function dominates.
If the individual is tending towards risk neutrality (a small), then the product
design allows her to choose a high slope giving her a smaller (if not zero) insurance
coverage. In contrast, for the risk averse individual (a large) that seeks a high
insurance coverage, the best she can obtain in terms of slope is the fixed amount
deductible (that is, zero slope), in which case the difference between the flexible
product and the product with a fixed amount deductible diminishes, which explains
the monotonicity in Figure 5c. The sensitivity to the loss parameter η is similar to
the second case of pricing measure function, except that here the deviation from
the flexible deductible structure to the fixed amount deductible is larger for big
losses, which means that the relative loss is more sensitive towards the heaviness
of the loss, as we see in Figure 5d.
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Figure 5: Loss function for β3
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7 A digression on power utility

So far we have concentrated almost exclusively on the exponential utility function.
Under exponential preferences of the policyholder we could calculate explicitly both
the optimal flexible deductible and the best deductible within the suboptimal class
of constant deductibles. We benefited from explicit solutions, even to the subopti-
mal insurance position, along with the wealth-independent insurance decisions in
order to obtain an explicit and wealth independent quantification of the welfare
loss from being offered a suboptimal product design.

In this section we briefly touch upon the case of power utility. Power utility is
a more standard formalization of individual preferences within the area of personal
financial decision making. However, in order to find a solution to the optimization
problem (20), it is necessary to assume that a deductible can exceed the loss, which
corresponds to removing the truncation and minimum in (20). If the deductible
exceeds the loss, it is interpreted as if the individual is actually betting against
having a loss of that size. So if the individual finds insurance to be too expensive,
then the she will not only choose not to insure, but will actually try to turn it to
her advantage that the pricing is too high.

Unfortunately, we therefore do not find explicit solutions to the problem of
choosing a fixed deductible, since this standard contract involves the truncation
and the minimum. This prevents explicit quantification of the welfare loss from
suboptimal contracts in spite of the fact that we can actually find an optimal
flexible contract. Although we cannot present the best choice among the standard
marketed contract, we choose here to present briefly the optimal flexible one. This
serves at the same time as yet another illustration of the HJB machinery exploited
in the previous sections as well as a motivating starting point for further studies
in the direction.

The result (1) is developed under wealth-homogeneous assumptions on the
insurance control as the compound Poisson structure is essential and it is therefore
necessary to have i.i.d claim sizes (Zi− gv(Zi))i∈N. This works successfully for the
exponential utility due to its desirable analytical properties. For a power-utility,
the optimal deductible strategy depends on wealth which prevents a compound
Poisson structure, but we deliberately use the result of (1), conditional on the pre-
claim wealth, without further notice. This should be taken as a premium principle
(where the jump intensity and the claim size risk are punished separately) rather
than a legitimate measure change. The premium at time t is then a function of the
time t wealth. Another approach would be to discretize the claim sizes, introduce
a pricing rate for every level of the claim sizes, and let the individual choose a
distinct deductible for each of these levels. The issue with the measure change is
then avoided and similar results are produced, but we will not comment further
on this.

Proposition 7.1. Assume that the utility function is of the form

u(c) =
1

1− γ
c1−γ . (22)

for γ > 0, γ 6= 1. Then the value function (4) can be written by

V (x) = α(x− κ)1−γ . (23)
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The optimal consumption c∗ is affine in wealth

c∗ (x) = (α(1− γ))−1/γ(x− κ), (24)

and the optimal insurance control is given by

g∗(x, z) =
(

1− exp(β(z))−1/γ
)

(x− κ).

The parameters α and κ of the value function are determined by

α =
1

(1− γ)γ−γ

(
ρ− r(1− γ)− λE

[
1− exp(β(Z))−1/γ

]
(1− γ)

− λ
(
E
[
exp(β(Z))(γ−1)/γ

]
− 1
))−γ

,

κ =
λ

r
E[exp(β(Z))Z].

Proof. We use the same approach as seen previously. We make the conjecture
that the value function is of the type V (x) = α(x− κ)1−γ . First order conditions
leads to the optimal choices c∗ and g∗(z), and if we insert these back into the HJB
equation and solve, we obtain α and κ. �

Note that unlike the exponential utility case this insurance control depends on
wealth. When the initial wealth approaches the present value of the cost of the
claims, i.e. when x → κ, the individual stops consuming, c∗(x) → 0, and insures
fully, g∗(x, z) → 0 for any fixed z. The reason why it is so important to protect
the value of full coverage is that an individual with power preference must avoid
negative consumption and wealth almost surely.

Although we cannot quantify the welfare loss from a suboptimal coverage, we
know that there is one, and the result of Proposition 7.1 represents an idea for
product development in the non-life business. The optimal deductible is affine in
the wealth. For x� κ, the optimal deductible is essentially linear in wealth. This
could be incorporated in the insurance product or, at least, in product advice given
to policy holders.

The proportionality of g∗ in x, namely 1 − exp(β(z))−1/γ , has a simple struc-
ture which can also be the starting point for further product development. For the
linear pricing principle, this is a constant. We note that for the linear pricing rule
the optimal deductible is not a constant but a constant fraction of wealth (minus
the typically relative small value of full coverage). For our variance principle the
fraction becomes a linear-power function of the loss and for our Esscher princi-
ple the fraction becomes an exponential-power function. These are quite simple
structures that can easily be incorporated in indemnity tables.

The limiting cases for the risk aversion are obvious. As γ →∞, g∗ → 0 for all
claims and all sizes of wealth. If the individual is extremely risk averse, she avoids
risk at any price and demands full protection. As γ → 0, g → x − κ for all claim
sizes. If the individual is not really risk averse, she can keep the risk at any price
but only up to the point where a claim threatens her wealth in order to avoid,
above all, negative wealth and consumption.
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expected exponential utility of dividend payments in a Brownian risk model”.
Scandinavian Actuarial Journal 2007.2, pp. 73–107.

Hubalek, F. and Schachermayer, W. (2004). “Optimizing expected utility of div-
idend payments for a Brownian risk process and a peculiar nonlinear ODE”.
Insurance: Mathematics and Economics 34.2, pp. 193–225.

Moore, K. S. and Young, V. R. (2006). “Optimal insurance in a continuous-time
model”. Insurance: Mathematics and Economics 39.1, pp. 47–68.

Perera, R. S. (2010). “Optimal consumption, investment and insurance with in-
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A The impact of pricing on the individual’s decision

In this section we solve the optimization of the policy holder for a particularly
simple pricing rule. It serves as a motivating example for the more abstract cal-
culations in Section 4. We are going to show very clearly and explicitly with this
example that for a specific pricing rule, the size of the claim is indeed, in general,
relevant for calculating the optimal deductible. It is natural to speak of the pric-
ing rule studied in this section as being based on a change of measure which is
piecewise constant in the size of the loss. Then the optimal deductible indeed also
becomes piecewise constant in general.

Let 0 = `1 < `2 < . . . < `n−1 < `n =∞ be given, such that [`1, `2), . . . , [`n−1, `n)
is a finite partition of R+. When a loss of size z occurs, it falls into one of the
regions [`i, `i+1) for i = 1, . . . , n − 1. Assume that the individual can choose a
distinct deductible for each region, i.e. a deductible Ki when z takes value in
[`i, `i+1). In this case the insurance product is characterized by

g(K1,...,Kn)(z) =

n−1∑
i=1

Ki1{z∈[`i,`i+1)}.

The theory of space-decomposition allows us to split, correspondingly, the com-
pound Poisson process (At)t≥0 describing the losses of the individual (without in-
surance) into n compound Poisson processes with jump rate λi = λP(Z ∈ [`i, `i+1))
and jump sizes in [`i, `i+1) for i = 1, . . . , n−1, respectively. Assume that the insur-
ance company prices each of these risks individually with pricing rates λQ1 , . . . , λ

Q
n ,

where typically λQi+1/λi+1 > λQi /λi (large claims constitute larger risks and should
be charged accordingly). We can now solve the optimization problem of the poli-
cyholder for a given partition of the pricing rule.

Proposition A.1. Assume that the insurance company applies a piecewise con-
stant pricing rule as described above. Then the value function is of type V (x) =
− exp(−rax)/α and the optimal controls are

c∗ = rx− 1

a
log
(ra
α

)
and K∗i =

1

ra
log

(
λQi
λi

)
for i = 1, . . . , n.

Proof. The HJB equation is in this case

sup

{
− ρV (x) + (rx− c−

n−1∑
i=1

λQi E[(Z −Ki)
+ | Z ∈ [`i, `i+1)])Vx(x)

+
n−1∑
i=1

λiE[V (x−min{Z,Ki})− V (x) | Z ∈ [`i, `i+1)] + u(c)

}
= 0.

Since the nature of the problem is similar to the previous section, we again guess
that the value function is of type V (x) = − exp(−rax)/α. The first order condition
with respect to consumption then leads to the same structure as seen before,

c∗ = rx− 1

a
log
(ra
α

)
,
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The Leibniz integral rule is used to find the first order condition with respect to
the i’th deductible level,

λQi E[1{Zi>K | Zi∈[`i,`i+1)}]− λiE[1{Zi>K | Zi∈[`i,`i+1)}] exp(raKi) = 0.

Rearranging and isolating yields

K∗i =
1

ra
log

(
λQi
λi

)
for i = 1, . . . , n. (25)

Inserting the optimal controls in the HJB we obtain the supremum, and we can
then solve for

α =
1

ra
exp

(
1

r

(
ρ−

n∑
i=1

λi
(
E[exp(ramin{Z,K∗i }) | Z ∈ [`i, `i+1)]− 1

))
− a

n∑
i=1

λQi E[(Z −K∗i )+ | Z ∈ [`i, `i+1)]− 1

)
.

�

Proposition A.1 shows in a simple way how the price of the insurance cover-
age affects the optimal extent of coverage. The more expensive the insurance is,
measured by the pricing ratio λQi /λi, the larger a deductible is optimal for the
individual. For the exponential utility case the part is as simple as the logarithm
of the pricing ratio times a constant which contains the level of risk aversion.

A special case arises if there is only one ‘piece’ and piecewise constant really
means constant. This corresponds to the expected value pricing principle since the
value of a contract is proportional to its expectation with a constant of proportion-
ality equal to λQ/λ. As previously argued, if the pricing is based on the expected
value premium principle, then a fixed amount deductible is optimal. Proposition
A.1 repeats this result for the special case of exponential utility and determines
the constant deductible level to be

K∗ =
1

ra
log

(
λQ

λ

)
.

The n piecewise constant deductible case is a special case of the measure trans-
formation with pricing measure function

β(z) =
n∑
i=1

δi1z∈[`i,`i+1) where δi = log

(
λQi
λi

)
for all i.

B Proof of Proposition 4.1

Proof. To abbreviate the notation, let fβ(t) = exp(−λtE[exp(β(Z)) − 1]) and
hv(z) = (z − gv(z))+. Now simply consider the characteristic function
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EQ(β)

[
exp

(
i s ·

Nt∑
i=1

hv(Zi)

)]

= E

[
exp

(
Nt∑
i=1

β(Zi)− λtE[exp(β(Z))− 1]

)
exp

(
i s ·

Nt∑
i=1

h(Zi)

)]

= fβ(t)E

[
Nt∏
i=1

exp(β(Zi)) exp(i s · hv(Zi))
E[exp(β(Z))]

E[exp(β(Z))]

]

= fβ(t) E

[
E

[
Nt∏
i=1

exp(β(Zi)) exp(i s · hv(Zi))
E[exp(β(Z))]

E[exp(β(Z))]

∣∣∣∣∣Nt

]]

= fβ(t) E

[
E[exp(β(Z))]NtE

[
exp(β(Z)) exp(i s · hv(Z))

E[exp(β(Z))]

]Nt
]

= fβ(t) exp

(
λt

(
E[exp(β(Z))]E

[
exp(β(Z))

E[exp(β(Z))]
exp(i s · hv(Zi))

]
− 1

))
= exp

(
λtE[exp(β(Z))]

(
E
[

exp(β(Z))

E[exp(β(Z))]
exp(i s · hv(Zi))

]
− 1

))
.

This is the characteristic function of a compound Poisson process with character-
istics (17). From this, the expected value (18) follows directly. �

C Calculations for β1(z) = δ1

E[exp(ra ·min{Z, δ1/(ra)})]
= P (A1)E[exp(raZ) |A1] + P (Ac1)E[exp(δ1) |Ac1]
= E[exp(raZ)1{Z<δ1/(ra)}] + E[exp(δ1)1{Z≥δ1/(ra)}]

=

∫ δ1/(ra)

0
η exp((ra− η)z)dz + exp

(
ra− η
ra

δ1

)
=

ra

ra− η
exp

(
ra− η
ra

δ1

)
− η

ra− η
.

E[exp(β(Z))(Z − g(Z))+] = P (Ac1) exp(δ1)E [(Z − δ1/(ra)) |Ac1]
= E[exp(δ1) (Z − δ1/(ra))1{Z≥δ1/(ra)}]

= exp(δ1)

∫ ∞
δ/(ra)

η exp(−ηz) (z − δ1/(ra)) dz

=
1

η
exp

(
ra− η
ra

δ1

)
.
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D Calculations β2(z) = log(θ2z + δ2)

Let Z̃ = θ2Z + δ2 and Ẑ = −raZ̃/θ2. The event A2 = {Z < log(θ2Z + δ2)/(ra)}
can then be rewritten as

A2 = {Z < log(θ2Z + δ2)/(ra)} = {exp(raZ) < θ2Z + δ2}
= {exp(raZ̃/θ2) exp(−δ2ra/θ2) < Z̃}
= {Ẑ exp(Ẑ) < −ra exp(−δ2ra/θ2)/θ2}
= {Ẑ > W−1(−ra exp(−δ2ra/θ2)/θ2)},

where we use that −ra exp(−δ2ra/θ2)/θ2 ∈ [− exp(−1), 0), which is necessary in
order for W−1 to be defined. The upper boundary is trivial, whereas the lower is a
bit less so. First, we recognize that −x exp(−δ2x) > −x exp(−x) for any values of
x and δ2 ≥ 1. Next, we see that −x exp(−x) obtains its minimum for x = 1, hence
−x exp(−x) > − exp(−1).

Translated back to Z using substitution, we can now conclude that

A2 = {Z < Q} where Q = − 1

ra
W−1

(
−ra
θ2

exp

(
−δ2

ra

θ2

))
− δ2
θ2

We therefore get

E[exp(ra ·min{Z, log(θ2Z + δ2)/(ra)})]
= P(A2)E[exp(raZ) |A2] + P(Ac2)E[θ2Z + δ2 |Ac2]

=

∫
A2

η exp((ra− η)z)dz +

∫
Ac

2

η(θ2z + δ2) exp(−ηz)dz

=

∫ Q

0
η exp((ra− η)z)dz +

∫ ∞
Q

η(θ2z + δ2) exp(−ηz)dz

=
η

ra− η
(exp((ra− η)Q)− 1) +

(
θ2Q+ δ2 +

θ2
η

)
exp(−ηQ).

E[(θZ + δ2)(Z − log(θ2Z + δ2)/(ra))+]

= P(Ac2)E[(θ2Z + δ2)(Z − log(θ2Z + δ2)/(ra)) |Ac2]

=

∫
Ac

2

η(θ2z + δ2)(z − log(θ2z + δ2)/(ra)) exp(−ηz)dz

=

∫ ∞
Q

η(θ2z + δ2)(z − log(θ2z + δ2)/(ra)) exp(−ηz)dz

= exp(−ηQ)

(
θ2Q

2 +

(
δ2 + 2

θ2
η

)
Q− 1

η

(
θ2
ra
− δ2

)
+ 2

θ2
η2

− 1

ra

θ2
η

exp

(
η

θ2
(θ2Q+ δ2)

)
E1

(
η

θ2
(θ2Q+ δ2)

)
− 1

ra

(
θ2Q+ δ2 +

θ2
η

)
log(θ2Q+ δ2)

)
.

29



E Calculations for β3(z) = θ3z + δ3

E[exp(ra ·min{Z, (θ3Z + δ3)/(ra)})]

=

∫
A3

η exp(raz) exp(−ηz)dz +

∫
Ac

3

η exp(θ3z + δ3) exp(−ηz)dz

=

∫ δ3/(ra−θ3)

0
η exp(raz) exp(−ηz)dz +

∫ ∞
δ3/(ra−θ3)

η exp(θ3z + δ3) exp(−ηz)dz

=
η

η − ra

(
1− exp

(
−(η − ra)

δ3
ra− θ3

))
+

η

η − θ3
exp

(
−(η − ra)

δ3
ra− θ3

)
.

E[exp(θ3Z + δ3)(Z − (θ3Z + δ3)/(ra))+]

=

∫
Ac

3

exp(θ3z + δ3)(z − (θ3z + δ3)/(ra))dz

=

∫ ∞
δ3/(ra−θ3)

exp(θ3z + δ3)(z − (θ3z + δ3)/(ra))dz

= exp

(
−(η − ra)

δ3
ra− θ3

)
(ra− θ3)η
ra(η − θ3)2

.
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