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Using Rigid Microplate Motions to Detect the
Stress Buildup Preceding Large Earthquakes:
A Feasibility Test Based on Synthetic Models
Juan Martin de Blas1 and Giampiero Iaffaldano1

1Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark

Abstract Assessing the temporal evolution of stresses along seismogenic faults is typically done by
combining geodetic observations collected near the locations of previous large earthquakes with modeling
of the interseismic, coseismic, and postseismic deformation. Here we explore whether it is feasible to link
the charge phase of large earthquakes to rigid microplate motions, which can be inferred from geodetic
observations that are instead collected further away from crustal faults. We use numerical simulations of
the dynamics and associated kinematics of an idealized, rigid microplate subject to stress buildups and
drop-offs from a series of earthquakes. Simulations span the charging cycle of a single 6.5 < MW ≤ 8
earthquake. Several MW ≤ 6.5 earthquakes distributed according to the Gutenberg-Richter law occur
meanwhile. We use large ensembles of simulations featuring randomly-generated earthquake hypocenters
and make statistical assessments of the fraction of model time needed for the microplate motions to depart
from the initial one to a degree that is larger than typical geodetic uncertainties and for at least 90% of the
remaining time before the large earthquake occurs. We find such a fraction (i) to be only one tenth in
simulations that do feature a large earthquake, (ii) to be longer in simulations that do not, and (iii) to
remain small for realistic microplate geometries and asthenosphere viscosity/thickness values. Our
inferences hold also when we simulate geodetic time series shorter than the large earthquake cycle and
even when we assume that only half of the stress buildup affects the microplate rigid motion.

1. Introduction
Large earthquakes along tectonic margins result from the long-term relative motions between lithospheric
plates. These motions cause crustal deformation, and the consequent accrual of energy is eventually released
through seismic events. Assessing the seismic hazard along tectonic faults relies significantly on earthquake
catalogs. Such an approach carries the expectation that future earthquakes will occur close to the locations of
previous seismic events (e.g., Stein & Wysession, 2003). The advent of geodesy in the geosciences (e.g., Dixon,
1991) allowed time-dependent monitoring of the deformation in the vicinity of tectonic margins through
techniques such as Global Navigation Satellite Systems, Satellite Laser Ranging, and Very Long Baseline
Interferometry. The Global Positioning System (GPS) is currently widely used in order to determine position
time series with a millimeter-level precision (e.g., Bock & Melgar, 2016) and allows detecting the interseismic
deformation, as well as the coseismic and postseismic crustal motions (e.g., Freed et al., 2006; Meade &
Loveless, 2017). Currently, the assumption built in earthquake models—that is, that future events will tend
to occur near previous ones—drives the deployment of permanent/campaign GPS networks mainly in the
vicinity of recently-ruptured faults (e.g., Bock & Melgar, 2016; LaFemina et al., 2009; Reilinger et al., 2006;
Rui & Stamps, 2019; Symithe et al., 2015; Tregoning, 2002; Wallace et al., 2004). Importantly, it is commonly
accepted that the energy accrued across crustal faults due to plate motions during the preseismic phase
affects only the deformation in the vicinity of the fault and not the plate motions that caused deformation
in the first place. In other words, it is assumed that the seismic cycle does not impact on rigid plate motions.
Such an assumption is well justified if one considers how large the torques needed to change plate motions
are. To first degree, they scale with the basal area of plates—because processes affecting plate motions need
to overcome the Couette-type resistance at the plate base (e.g., Stotz et al., 2018)—and feature values in the
order of 1025 to 1026 Nm for the largest tectonic plates (e.g., Iaffaldano, 2014). Stresses associated with large
earthquakes (e.g., Ben-Zion, 2008; Kanamori, 1978) are not capable of yielding such large torques.
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Figure 1. Microplate geometry in side (a) and top (b) views. Plate size is exaggerated for easiness of visualization.

The recent discovery of tectonic units that move rigidly but are smaller than lithospheric plates—referred
to as microplates (Wallace et al., 2005)—adds a different perspective to this inference. Torques needed to
change the motions of microplates are a few orders of magnitude smaller than the estimates above and thus
fall within the range of what large earthquakes are indeed capable of providing. In principle, this introduces
the possibility that the stress buildup occurring on microplate margins and leading to large earthquakes
may affect not only crustal deformation in the vicinity of the future rupture area but also the rigid motion
of the entire microplate. Here we take this view and explore, through simulations of plate dynamics and
associated kinematics, whether large (6.5 ≤ MW ≤ 8) earthquakes charging along the boundaries of an
idealized microplate may impact on its rigid motion. The model time period of each of our simulations
spans the charge cycle of one single large earthquake. Simulations also feature the occurrence of smaller
(3.5 ≤ MW < 6.5) earthquakes whose number and magnitude follow the Gutenberg-Richter empirical
law and that are randomly distributed in model time and space. From the stresses associated with each
earthquake, we calculate torque variations and consequent microplate Euler-vector changes through model
time. By analyzing thousands of randomly-generated simulations, we explore whether the charge phase
of large earthquakes carries any kinematic signatures that are potentially visible relatively early on in real
records of microplate motions.

2. Concepts and Methods
We set up synthetic simulations for the temporal evolution of microplate dynamics and kinematics. We take
a model microplate shaped like a squared portion of a 3-D spherical shell—that is, the volume cut by inter-
secting a spherical shell whose outer radius is equal to Earth's radius with a pyramid pointing to the sphere
center (Figures 1a and 1b). The microplate size (i.e., lateral extent) is a free parameter of the problem. Fur-
thermore, we also model the presence of a viscoelastic asthenosphere separating the microplate from the
lower part of the upper mantle (region between dashed lines in Figure 1a). Viscosities of the asthenosphere
(𝜇a) and the lower part of the upper mantle (𝜇m) are also free parameters that we assume to be uniform
within their own domains. Instead, the asthenosphere thickness (Da) is determined on the basis of the work
of Paulson and Richards (2009) and Richards and Lenardic (2018), who modeled long-wavelength post-
glacial rebound data to infer that 𝜇m∕𝜇a ∝ D−3

a . At the initial model time, the Euler vector describing the
microplate rigid motion features a randomly-generated Euler pole that can fall as far as 1,000 km away from
the microplate margins. The angular velocity at the initial model time is also randomly selected within the
range from 1 to 8 ◦/Myr. These features are in line with geodetic measurements of, for instance, the Ana-
tolian, South Bismark, New Zealand, Vanuatu, and Marianas microplate motions (McClusky et al., 2000;
Wallace et al., 2005).

The model microplate is subject to stress variations associated with the slow charge and sudden discharge
of one large earthquake randomly located along the microplate margins and whose moment magnitude
(MW ) is randomly selected in range 6.5 to 8. The upper limit of such a range approximates well the mag-
nitude of the largest earthquakes recorded along the margins of the microplates mentioned above (USGS
and NOAA earthquake catalogs). The model time of each simulation represents thus the period of time it
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takes to slowly charge and suddenly discharge one such large earthquake. This may be thought as the recur-
rence time of 6.5 ≤ MW ≤ 8 earthquakes—that is, a few hundred years at most. Meanwhile, several smaller
(i.e., 3.5 ≤ MW < 6.5) earthquakes are also cast in the simulations and occur randomly in model time,
location, and depth along the microplate margins. We impose that the whole set of earthquakes follows the
Gutenberg-Richter empirical law (Gutenberg & Richter, 1944)—that is, log10(NM) = a − b · M, where NM
is the number of earthquakes whose magnitude is at least M, while a and b are numerical parameters spe-
cific to the tectonic region of focus. In particular, b is typically close to 1 but is observed to vary between
∼0.8 and ∼1.2 (e.g., Godano et al., 2014; Nishikawa & Ide, 2014), possibly as a result of a range of local tec-
tonic conditions (e.g., Dal Zilio et al., 2018; Tormann et al., 2015). In a set of earthquakes that follows the
Gutenberg-Richter empirical law, the number of events featuring MW ≥ m is 10b times the number of events
featuring MW ≥ m + 1. The synthetic scenarios simulated here feature one single event where MW ≥ 6.5.
Accordingly, there are 10b events where MW ≥ 5.5, 102b events where MW ≥ 4.5, and 103b events where
MW ≥ 3.5. Furthermore, the model time it takes to charge an earthquake of MW = m is ∼ 10−b times the
model time it takes to charge an earthquake of MW = m + 1. For instance, selecting b = 1 means that the
whole set of earthquakes features a total of 103b = 1, 000 events. At any point in model time, the microplate
will be subject to the charge of only one single earthquake featuring MW ≥ 6.5 (the largest in the syn-
thetic set), while several smaller ones (i) might be charging meanwhile, (ii) will have already charged and
discharged, or (iii) are yet to begin charging.

We subdivide the whole simulated model period into ns = 4 · int (103b) model time steps, where int indicates
the integer part. The slow charge phase of the single largest earthquake spans (ns−1)model time steps, while
its sudden discharge phase only takes the very last model time step. The charge and discharge times for the
synthetic earthquakes whose MW is smaller than the largest one within the set span a number of model time
steps ne < ns dictated by the Gutenberg-Richter scaling illustrated above. Also for these earthquakes, the
slow charge phase takes (ne − 1) time steps to be accomplished, while the sudden discharge occurs within a
single time step. The total number of time steps in each simulation is such that the charge and subsequent
discharge phases of any of the earthquakes featuring the smallest MW within the set span at least four model
time steps. If one indicated with T the recurrence time of the largest earthquake within the set, then each
model time step represents an interval of time equivalent to T∕[4 · int (103b)]. For instance, if one assumes
T = 100 yr, then each model time step represents an interval between 6 · 10−3 yr (assuming b = 1.2) and
1 · 10−1 yr (assuming b = 0.8). Instead, if one considers T = 300 yr, then the model time step represents an
interval between 1.8 · 10−2 and 3 · 10−1 yr.

Next, we assess the impact of each earthquake onto the microplate dynamics through model time. We do so
by making quantitative estimates of (i) the amount of stress Δ𝜎e built during the slow charge phase of an
earthquake on the future rupture area S and later released during the earthquake. (ii) The torque variation
ΔM⃗e (in the following, M⃗ is generically used to indicate a torque) associated with Δ𝜎e experienced by the
microplate. (iii) The microplate Euler-vector variationΔ𝜔⃗e (in the following, 𝜔⃗ is generically used to indicate
an Euler vector) caused by ΔM⃗e. We illustrate in the following subsections the way in which we make each
of these estimates.

2.1. S and 𝚫𝝈e Associated With Synthetic Earthquakes
We resort to empirical relationships that map MW into the size of the rupture area along the microplate
margins and the associated stress, which builds up slowly and drops down suddenly. We start from the
following relationships (see Stein & Wysession, 2003, and references therein for a detailed account of these
relationships):

MW = 5.08 + 1.16 log (L), (1)

where L is a characteristic length of the rupture area expressed in km. Furthermore,

MW =
log M0

1.5
− 10.73, (2)

where M0 is the seismic moment. Lastly,

Δ𝜎e =
2
𝜋

M0

l2L
, (3)
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Figure 2. Sketch in support of the calculation of torques arising from the stress associated with a synthetic earthquake
(Δ𝜎⃗e, in green). In gray is the contour of the model microplate, whose front corner has been removed for clarity. In
black is an exemplary rupture area S. In red is the rupture area infinitesimal element dS, while r⃗ is its position vector.
In blue is the unit vector û of the torque. The origin of position vectors such as r⃗ is Earth's center.

where Δ𝜎e is expressed in dyn/cm2. Symbols l and L in equation (3) indicate the shortest and longest
(i.e., characteristic length) sides—expressed in cm—of a rupture area assumed to be rectangular. Thus, we
assume for simplicity that l = L∕2 so that equation (1) alone allows us to link S to MW . Equation (3) becomes

Δ𝜎e =
8
𝜋

M0

L3 . (4)

We invert equations (1) and (2) and substitute them into equation (4) in order to obtain a relationship that
expresses Δ𝜎e as a function of MW . In our simulations, the stress variation Δ𝜎e associated with each syn-
thetic earthquake builds up upon the microplate during the slow charge phase through a series of (ne − 1)
equally-spaced stepwise increases. Each of them feature a stress increase of Δ𝜎e∕(ne − 1). After the charge
phase, a sudden stepwise stress drop of −Δ𝜎e acts upon the microplate within a single model time step in
order to release the stress accrued during the charge phase. Thus, each synthetic earthquake generates two
stress variations equal in magnitude but opposite in direction: The first one grows slowly during the charge
phase, at increments of Δ𝜎e∕(ne − 1), while the second one acts suddenly (i.e., within one single model time
step) upon the microplate.

2.2. 𝚫M⃗e Associated With Synthetic Earthquakes
For each synthetic earthquake, both the stress vector (referred to asΔ𝜎⃗e, where |Δ𝜎⃗e| = Δ𝜎e from Section 2.1)
and the rupture area S where the stress buildups lie within the plane defined by the microplate margin
(see Figure 2). Since in real tectonic settings the charge of earthquakes is determined by the direction of
relative plate motions along each of the microplate margins, we assume that all earthquakes occurring on a
specific side of the microplate charge in the same direction. Such a direction changes randomly as one moves
from one microplate margin to another and is reset randomly within each simulation. By construction of
the idealized microplate, the plane containing Δ𝜎⃗e and S is a plane that cuts Earth into two hemispheres
(i.e., a plane whose intersection with Earth yields a great circle; see Figures 1a and 2). This means that one
can identify the rupture area S using polar coordinates within such a plane. That is, S can be identified by
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taking the polar radius r between an outer value Ro and an inner value Ri, and the polar angle 𝜃 between
𝜃1 and 𝜃2. If one were to take 𝜃 in range 0 to 2𝜋 and r in range 0 to Earth's radius RE, then the area would
simply be 𝜋RE

2. The infinitesimal rupture area is therefore dS = r · d𝜃 · dr and can be located using the
generic position vector r⃗ (see Figure 2). We assume for simplicity that all margins of the model microplate
are dominated by a pure strike-slip regime, which implies that Δ𝜎⃗e is tangential to a small circle that also
lies within the microplate-margin plane and that is normal to the position vector r⃗ of dS (see Figure 2)—that
is, |r⃗ × Δ𝜎⃗e| = r · Δ𝜎e.

The product Δ𝜎⃗e · dS represents the infinitesimal force arising from the stress that is slowly built during
the charge phase and suddenly released during a synthetic earthquake. The associated infinitesimal torque
variation upon the microplate is thus r⃗×(Δ𝜎⃗e ·dS). On any of the four microplate margins, the cross product
r⃗×Δ𝜎⃗e is always directed along an axis that is normal to the plane mentioned above (see exemplary blue axis
in Figure 2). The unit vector of such an axis (û) can be calculated by taking the norm of the cross product
between the position vectors that locate the two vertices of the microplate margin. Thus, infinitesimal torque
variations associated with all earthquakes occurring on a specific microplate margin are oriented like û, such
that r⃗ × (Δ𝜎⃗e · dS) = (r · Δ𝜎e · dS) · û. Consequently, the torque variation associated with a specific synthetic
earthquake is

ΔM⃗e = ∫S
r⃗ × (Δ𝜎⃗e · dS) = û · ∫

Ro

Ri
∫

𝜃2

𝜃1

Δ𝜎e · r · dS, (5)

which yields

ΔM⃗e = û · ∫
Ro

Ri
∫

𝜃2

𝜃1

Δ𝜎e · r · r d𝜃 dr = û · Δ𝜎e ∫
Ro

Ri

r2dr ∫
𝜃2

𝜃1

d𝜃. (6)

Therefore,

ΔM⃗e = û ·
(1

3
Δ𝜎e (𝜃2 − 𝜃1) (R3

o − R3
i )
)
. (7)

As for Δ𝜎e, the torque variation ΔM⃗e associated with each synthetic earthquake builds up upon the
microplate during the slow charge phase through a series of (ne −1) increases, each featuring a torque incre-
ment equal to ΔM⃗e∕(ne − 1). After the charge phase, a sudden torque change equal to −ΔM⃗e acts upon the
microplate within a single model time step. Thus, we simulate each synthetic earthquake using two torque
variations equal in magnitude but opposite in direction: The first one grows slowly during the charge phase,
at increments of ΔM⃗e∕(ne − 1), while the second one acts suddenly upon the microplate.

2.3. 𝚫𝝎⃗e Associated With 𝚫M⃗e
Under the perfectly-rigid approximation, forces and stresses applied to plates are transferred to the under-
lying asthenosphere by virtue of plate rigidity. In the context of this study, this means that plate-motion
variations arising from the slow increase and sudden drop of stress associated with each earthquake can
be inferred quantitatively by balancing these stresses with response of the underlying asthenosphere. Over
geological time scales, such a response is that of a highly-viscous fluid. However, at the time scales of the
cycle of large earthquakes, one should account for the viscoelastic character of the asthenosphere, whereby
its response is initially that of an elastic body but approaches through time the one of a perfectly-viscous
fluid. Such transition in rheological behavior occurs over an interval of time comparable to the Maxwell time
TM = 𝜇a∕Ea—where Ea is the asthenosphere Young's modulus. Here we take 𝜇a in range 5 · 1019 to 1 · 1020

(e.g., Forte et al., 2010; Paulson & Richards, 2009). For Ea in range 1.4 · 1011 to 1.6 · 1011 Pa (e.g., Turcotte
& Schubert, 2002), TM is around one to two decades. On this basis, we derive an expression for the Euler
vector variation Δ𝜔⃗e associated with ΔM⃗e under viscoelastic conditions as follows: First, in 2.3.1, we derive
the expression of Δ𝜔⃗e under the assumption of perfectly-viscous behavior of Earth's asthenosphere, which
represents the long-term velocity response to stresses upon the microplate. Next, in 2.3.2, we apply the Burg-
ers' body model—whereby the response of a viscoelastic body to applied strains and stresses is described as
that of a Kelvin unit (a dashpot and a spring connected in parallel) connected in series to a Maxwell unit (a
dashpot and a spring connected in series)—to Earth's asthenosphere in order to express the temporal evo-
lution of the microplate motion in response to a series of short, closely-spaced stepwise stress increments
(i.e., a stress ramp) followed by a sudden stepwise stress drop. For simplicity, we illustrate this in 1-D linear
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geometry, but the same rheological arguments apply to the case of 3-D spherical geometry. Lastly, in 2.3.3,
we mirror the characteristics of the viscoelastic temporal evolution of kinematics into the perfectly-viscous
solution, in order to express the 3-D spherical viscoelastic response of the microplate motion to the stress
ramp/drop associated with synthetic earthquakes.
2.3.1. 𝚫𝝎⃗ Associated With 𝚫M⃗—Case of a Perfectly Viscous Asthenosphere
We resort to expressions that link torque variations to rigid Euler-vector changes under the assumption that
Earth's asthenosphere behaves as a perfectly-viscous fluid (Iaffaldano & Bunge, 2015; Stotz et al., 2018).
Euler vectors describing the rigid motions of tectonic plates arise from the balance of torques acting upon
them. Torques can be associated with shallow tectonic processes or with basal shear stresses exerted by
Earth's asthenospheric flow at the lithosphere base. Under the assumption of perfectly-viscous conditions,
the balance of these torques would occur almost instantaneously, relative to geological timescales (e.g.,
Iaffaldano & Bunge, 2015). This means that at any point in time t, it is

M⃗(t) + M⃗b(t) = 0, (8)

where M⃗(t) is the sum of all shallow-seated torques acting upon a plate at t, while M⃗b(t) is the summation of
torques arising from stresses tangent to the plate base (i.e., basal shear stresses, referred to in the following
as 𝜎⃗b). That is,

M⃗b(t) = ∫A
r⃗ × 𝜎⃗b(r⃗, t) · dA, (9)

where A is the plate basal area and dA is its generic infinitesimal at position r⃗. If one considers two points
in time, t1 and t2, that are sufficiently close to each other so that the plate basal area does not change yet
distant enough that the torque balance is reachieved, then the torque balances at t1 and t2 are

M⃗(t1) + ∫A
r⃗ × 𝜎⃗b(r⃗, t1) · dA = 0, (10)

and

M⃗(t2) + ∫A
r⃗ × 𝜎⃗b(r⃗, t2) · dA = 0. (11)

Taking the difference of these equations yields

M⃗(t2) − M⃗(t1) + ∫A
r⃗ × 𝜎⃗b(r⃗, t2) · dA − ∫A

r⃗ × 𝜎⃗b(r⃗, t1) · dA = 0, (12)

or

ΔM⃗(t1, t2) = ∫A
r⃗ × [𝜎⃗b(r⃗, t1) − 𝜎⃗b(r⃗, t2)] · dA, (13)

where ΔM⃗(t1, t2) = M⃗(t2) − M⃗(t1).

The term on left-hand side represents the variation of shallow-seated torques experienced by the plate from
t1 to t2. Instead, the term on right-hand side expresses the change in shear stresses acting at the plate base.
Stresses are the product of the viscosity and the strain rate. In the specific case of 𝜎⃗b, one should multiply
the asthenosphere viscosity 𝜇a with the shear-strain rate at the plate base, which can be obtained by taking
the radial gradient of the asthenospheric flow that is tangential to the plate base (in the following, we refer
to such flow as v⃗a). The latter one is the solution to the equation of dynamic balance of viscous flow (see
Davies, 1999, for more details), which expresses in mathematical terms the notion that shear flow in the
asthenosphere can be driven (i) by plate motions on top (commonly referred to as Couette-type flow), (ii)
by pressure gradients within the asthenosphere/mantle (commonly referred to as Poiseuille-type flow), or
(iii) by a combination of both. The Couette-type flow can always be expressed as v⃗p(r⃗, t) · h∕Da, where v⃗p is
the rigid plate motion at the plate-base position r⃗, while h is a generic depth at r⃗, within the asthenosphere.
Such an expression builds on the reasonable assumption that the Couette-type flow decreases to nearly zero
around the asthenosphere bottom due to the large viscosity contrast with the upper mantle. Instead, the
Poiseuille-type flow cannot be expressed analytically, although exact solutions exist for several simple cases
(e.g., Davies, 1999; Turcotte & Schubert, 2002). We indicate with v⃗aP(r⃗, h, t) the generic Poiseuille-type flow.
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Since the equation describing the dynamic balance of a viscous flow depends linearly on the terms driving
Poiseuille- and Couette-type flows, one can always write a generic expression of the asthenospheric flow as
a linear combination of the two flow types. That is, v⃗a(r⃗, h, t) = v⃗p(r⃗, t) · h∕Da + v⃗aP(r⃗, h, t). Thus, a generic
expression for shear stresses at the plate base can be obtained by multiplying the asthenosphere viscosity
and the vertical gradient of v⃗a (i.e., its derivative relative to h) calculated at h = 0. That is,

𝜎⃗b(r⃗, t) = 𝜇a ·
[

d
dh

v⃗a(r⃗, h = 0, t)
]
= 𝜇a ·

[
−

v⃗p(r⃗, t)
Da

+ d
dh

v⃗aP(r⃗, h = 0, t)

]
, (14)

where the negative sign in front of the Couette-type component accounts for the fact that the associated
stress always acts as a resisting force upon the plate.

Bunge (2005) showed that patterns of mantle convection, and thus the associated Poiseuille-type flow,
change significantly only over time scales longer than 100 Myr. Since this is much longer than the time
scales considered in this study, it is reasonable to take dv⃗aP(r⃗, h, t1)∕dh = dv⃗aP(r⃗, h, t2)∕dh. That means that
any Poiseuille-type flow underneath the microplate does not change significantly over the recurrence time
of a large earthquake. Therefore, substituting equation (14) into (13) yields

ΔM⃗ =
𝜇a

Da ∫A
r⃗ × [v⃗p(r⃗, t2) − v⃗p(r⃗, t1)] · dA. (15)

Since rigid plate motions can be expressed through the associated Euler vectors (i.e., v⃗p(r⃗, t) = 𝜔(t) × r⃗),
equation (15) becomes

ΔM⃗ =
𝜇a

Da ∫A
r⃗ × [(𝜔⃗(t2) × r⃗) − (𝜔⃗(t1) × r⃗)] · dA, (16)

or

ΔM⃗ =
𝜇a

Da ∫A
r⃗ × (Δ𝜔⃗ × r⃗) · dA, (17)

where Δ𝜔⃗ = 𝜔⃗(t2) − 𝜔⃗(t1) is the Euler-vector temporal change.

The step from equations (15) to (16) implies the assumption that the entire plate basal area moves in a per-
fectly rigid fashion, so that an Euler-vector description may be adopted. For most of the basal areas of tectonic
plates, this is a generally accurate description (e.g., Gordon, 1998). However, regions of the basal area near
portions of the microplate margins where the charge phase of earthquakes—particularly large ones—is tak-
ing place may represent exceptions. In particular, this is true if one were to adopt the viscoelastic coupling
(e.g., Savage & Prescott, 1978) or the strong plastosphere models (e.g., Bourne et al., 1998)—as opposed to
the deep shear zone model (e.g., Scholz, 2019)—in order to describe the strain accumulation during the
interseismic phase (see Scholz, 2019 for a comprehensive review of these models). At the surface, interseis-
mic deformation can extend inside the microplate as far as ∼100 km away from the charging fault (e.g., Shen
et al., 1996). This can be taken as an upper limit for the extent inside the microplate basal area of regions that
do not follow the rigid Euler-vector description. Thus, one can argue that these regions feature an area that
is at most L · 100 km2, where L is the rupture length from equation (1) above. For a MW = 8 (the maximum
possible in the simulations), L is equal to ∼300 km. Therefore, the basal-area region where deviations from
the Euler-vector description may occur can be at most ∼10% of the total basal area of a microplate whose
side length is 550 km and would be only ∼2% of the basal area if the side length is 1,100 km. For a MW = 7.5
synthetic earthquake, these percentages decrease to ∼4% and ∼1%. On this basis, we argue that in practice,
the step from 16 to 17 carries a negligible error propagating to the torque-variation assessment.

We indicate with x, 𝑦, and z the generic Cartesian components of r⃗. Similarly, we indicate with Δ𝜔x, Δ𝜔𝑦,
and Δ𝜔z the Cartesian components of Δ𝜔⃗. It is straightforward to show that the Cartesian components of
vectorial equation (17) are

ΔMx =
𝜇a

Da ∫A
[Δ𝜔x(𝑦2 + z2) + Δ𝜔𝑦(−x𝑦) + Δ𝜔z(−xz)]dA,

ΔM𝑦 =
𝜇a

Da ∫A
[Δ𝜔x(−x𝑦) + Δ𝜔𝑦(x2 + z2) + Δ𝜔z(−𝑦z)]dA,

ΔMz =
𝜇a

Da ∫A
[Δ𝜔x(−xz) + Δ𝜔𝑦(−𝑦z) + Δ𝜔z(x2 + 𝑦2)]dA.

(18)
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Since the terms Δ𝜔x, Δ𝜔𝑦, and Δ𝜔z are constant within each integral, they can be taken outside the inte-
gration sign. The set of scalar equations above can then be seen as the following linear transformation

⎛⎜⎜⎜⎝
ΔMx

ΔM𝑦

ΔMz

⎞⎟⎟⎟⎠
⏟⏞⏟⏞⏟

ΔM⃗

=
𝜇a

Da

⎛⎜⎜⎜⎝
∫A(𝑦

2 + z2)dA −∫Ax𝑦dA −∫AxzdA
−∫Ax𝑦dA ∫A(x

2 + z2)dA −∫A𝑦zdA
−∫AxzdA −∫A𝑦zdA ∫A(x

2 + 𝑦2)dA

⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C

⎛⎜⎜⎜⎝
Δ𝜔x

Δ𝜔𝑦

Δ𝜔z

⎞⎟⎟⎟⎠
⏟⏟⏟

Δ𝜔⃗

, (19)

or

ΔM⃗ = CΔ𝜔⃗, (20)

where C is a linear operator that depends on plate geometry and viscosity/thickness of the asthenosphere.
C features det(C) = 0 because of the integral nature of its entries and may thus be inverted so that

Δ𝜔⃗ = C− 1ΔM⃗. (21)

By way of example, substituting equations (2), (4), and (7) into (21) indicates that a microplate whose typical
length is 550 km would undergo angular-velocity variations of ∼0.03 ◦/Myr when Mw = 6, ∼0.1 ◦/Myr when
Mw = 7, and ∼0.5 ◦/Myr when Mw = 8. Instead, for a microplate whose typical length is 800 km, variations
amount to ∼0.01 ◦/Myr, ∼0.04 ◦/Myr, and ∼0.18 ◦/Myr, respectively.
2.3.2. Linking the Temporal Evolutions of Plate Motions and Stress Variations—Case of a
Viscoelastic Asthenosphere
We make use of a toy problem in order to illustrate the impact of viscoelasticity of Earth's asthenosphere
on the temporal evolution of plate motions. Specifically, we resort to the Burgers' model, which is widely
applied to simulate the postseismic deformation in the vicinity of subduction mantle wedges (see Govers
et al., 2018, for a review). For instance, Pollitz et al. (2006) and Broerse et al. (2015) utilized the predicted
Burgers's body response to a sudden strain in order to describe the viscoelastic deformation within the man-
tle wedge near part of the Australian/Eurasian plate margin following the 2004 Sumatra-Andaman Mw = 8.7
megathrust event. Here, instead, we build on the analytical solution for the Burgers' body response to sud-
den constant stresses, as opposed to a sudden strain. We use this approach because (i) we simulate the entire
cycle (slow charge phase followed by sudden discharge) of synthetic earthquakes through a stress ramp
(built as a sequence of closely-spaced stepwise stress increases) followed by a sudden stress drop (i.e., a step-
wise stress decrease) and because (ii) the focus of this study is on rigid plate motions as sampled from GPS
measurements performed sufficiently away from deforming margins (as opposed to near them as in the case
of observations of postseismic deformation).

We imagine a plate of area A gliding on top of the viscoelastic asthenosphere at velocity v0 under the action
of a force F0, which implies a transfer of a shear stress 𝜎0 = F0∕A to the plate-asthenosphere interface.
We assume that v0 is the long-term equilibrium velocity that one would predict under perfectly viscous
conditions—that is, v0=DaF0/(𝜇aA)—and take this as initial setting. Let us imagine that at time ts from
the beginning of the thought experiment, such a plate is suddenly subject to a small additional force ΔFs.
By virtue of plate rigidity, an additional sudden shear stress Δ𝜎s = ΔFs∕A (Figure 3a) is transferred to
the plate-asthenosphere interface, causing a viscoelastic response. An analytical expression exists for the
temporal evolution of strain variation Δ𝜖(t) in a Burgers' body upon application of a sudden stress, such as
Δ𝜎s (e.g., Rimdusit et al., 2011). Its time derivative, which represents the variation of strain-rate—relative to
the initial setting before ts—at the plate-asthenosphere interface, is

.
Δ𝜖(t) = Δ𝜎s∕𝜇a · [1 + e−(t−ts)∕TM ]. Since

the velocity of the thin, uppermost layer of the asthenosphere must coincide with the plate velocity, the
strain-rate change can be written as

.
Δ𝜖(t) = Δv(t)∕Da. Accordingly, the plate-velocity variation—relative to

the initial velocity—is

Δv(t) = v(t) − v0 =
Da

𝜇a

ΔFs

A
[1 + e−(t−ts)∕TM ] · S(t, ts), (22)

where the step function S(t, ts) = 0 if t < ts, while S(t, ts) = 1 if t ≥ ts. The viscoelastic plate-velocity variation
is equal to the variation arising from perfectly viscous conditions—that is, DaΔFs∕(A𝜇a)—multiplied by a
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Figure 3. (a) Stress step used in the toy problem (see 2.3.2) and (b) associated plate motion in the perfectly viscous (dashed gray) and three viscoelastic (black)
cases. (c,d) Same as (a) and (b) but for a series of three stress steps. (e,f) Same as (a) and (b) but for a stress ramp followed by a sudden stress drop that brings
the stress variation back to zero.

function of time and TM . Figure 3b compares the temporal evolution of the plate velocity when TM is 1,
10, and 100 times ts (legend labels V-ES.; Figure 3b) with the velocity predicted under perfectly viscous
conditions (legend label VISC.; Figure 3b). As a consequence of asthenosphere viscoelasticity, the plate
velocity increases initially by twice the long-term velocity variation to then decay exponentially toward it.
Similarly, a series of three, equally-spaced stress increases by Δ𝜎s = ΔFs∕A (Figure 3c) generates a velocity
response that is the superimposition of three responses like the one in Figure 3b but progressively shifted in
time (Figure 3d). In such a case, the velocity variation through time can be expressed as

Δv(t) =
3∑

𝑗=1

Da

𝜇a

ΔFs

A
[
1 + e−(t−𝑗ts)∕TM

]
· S(t, 𝑗ts). (23)

Lastly, let us imagine a cycle of 100 closely-spaced step increases of force by ΔFs (i.e., a stress ramp), each
occurring a short interval of time ts after the previous one, followed by a sudden force drop equal to −ΔFr =
−100ΔFs, which brings the net force variation upon the plate back to zero. The stress variations upon the
asthenosphere will then be +Δ𝜎s for 100 times, followed by a sudden stress drop equal to −Δ𝜎r = −100Δ𝜎s
(see Figure 3e). The temporal evolution of the plate velocity in response to such a stress cycle, which mimics
the one associated with a synthetic earthquake, be expressed analytically as follows:

Δv(t) =
100∑
𝑗=1

Da

𝜇a

ΔFr

100A
[
1 + e−(t−𝑗ts)∕TM

]
· S(t, 𝑗ts) −

Da

𝜇a

ΔFr

A
[
1 + e−(t−100ts)∕TM

]
· S(t, 100ts). (24)

Figure 3f illustrates the temporal evolution of the plate velocity for the case when TM = 100ts and compares
it to the velocity obtained under perfectly viscous conditions.
2.3.3. 𝚫𝝎⃗e Associated With 𝚫M⃗e—Case of a Viscoelastic Asthenosphere
Equation (21) allows linking torque variations to Euler-vector variations predicted under perfectly viscous
conditions in 3-D spherical geometry. C− 1 in equation (21) fulfills the same role of Da∕(𝜇aA) in the case
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of the toy problem (1-D linear geometry)—the difference by a length squared in the dimensions of the two
coefficients simply accounts for the fact that equation (21) concerns torques (instead of forces) and Euler
vectors (instead of linear velocities). In the simulations built for this study, the patterns of stress upon the
model microplate associated with each synthetic earthquake are the same of that in Figure 3e, with dura-
tion and height of the stress ramp determined by the magnitude of each single earthquake, as illustrated
above. Torque variations associated with these stresses will follow the same pattern, as described in 2.2.
On this bases, as well as on the basis of the result expressed in equation (24), the 3-D spherical viscoelas-
tic Euler-vector variation through time shall be expressed as a summation of terms shifted in time—each
term being the product of the 3-D spherical long-term velocity change (i.e., that drawn when assuming a
perfectly-viscous asthenosphere) and the time function. Therefore, the microplate Euler-vector variation
associated with a synthetic earthquake whose charging phase starts at time te through model time is

Δ𝜔⃗e(t) =
(ne−1)∑
𝑗=1

C− 1ΔM⃗e

ne − 1

[
1 + e−

t−(te+𝑗ts)
TM

]
· S(t, te + 𝑗ts) − C− 1ΔM⃗e ·

[
1 + e−

t−(te+nets)
TM

]
S(t, te + nets), (25)

where ts now represents the duration of a model time step, while ΔM⃗e is obtained combining equations (1),
(2), (4), and (7) above. Equation (25) allows us to sample, for all earthquakes in each simulation, the
time-dependent microplate Euler vector and its variations through model time at a simulated temporal
resolution equal to the model time step.

3. Results From Synthetic Simulations of Microplate Dynamics
We implement the procedures and equations described in Section 2 using Matlab. For each simulation of
microplate dynamics, we initially sample the Euler-vector variations through model time at a temporal res-
olution equal to the model time step. Geodetic estimates of Euler vectors are typically drawn from position
time series spanning 3 to 5 yr (e.g., Argus et al., 2010; Bock & Melgar, 2016; England et al., 2016; McClusky
et al., 2000; Sella et al., 2002). In order to mimic such a feature, we average the model Euler vector over the
appropriate number of time steps that make up for a 3-yr period and take this as a synthetic representation
of real geodetic estimates of the microplate motion. In Figure 4, we show the angular velocity time series
for one simulation, from the initial model time to the model time interval before the largest earthquake
occurs. In red is the time series calculated when we account for all earthquakes, in blue that associated only
with the single largest earthquake (for the sake of comparison, the thin, light-blue line shows the same time
series but calculated under the assumption of perfectly-viscous behavior of Earth's asthenosphere), while in
black that associated with all but the largest earthquake. We elect to consider the kinematic changes arising
from the charge of the largest earthquake as the main feature to identify. Instead, we consider the changes
arising from all other events as a background signal that may hamper identifying the main variations of the
microplate motion. The degree to which the main kinematic pattern associated with the largest earthquake
is disrupted by the impact of all other smaller earthquakes is a direct result of the randomness built in our
models. On this basis, we try to identify distinctive traits of the main kinematic pattern that may indicate
with some confidence the ongoing charge of the largest earthquake.
3.0.1. Impact of Time Series Length
We proceed by imagining that one could estimate the microplate motion through geodetic measurements
and thus obtain Euler-vector time series. Such time series may not necessarily start at the beginning of
the charge phase of the largest earthquake but could also start afterward. Because of this, we focus on the
Euler-vector temporal change relative to the first one available. We build time series for the norm of the
difference between the Euler vector through model time and the first one available. Figure 5a shows such
calculations for the same simulation of Figure 4, assuming that time series are available from the beginning
of model time (in blue), 1/5 into it (in black), 1/2 into it (in magenta), and 4/5 into it (in green). In other
words, we simulate scenarios where Euler-vector time series are available for varying periods of model time
before the largest earthquake occurs. Thus, the first available estimate of the microplate Euler vector varies
from one case to the other.

It makes sense to compare the norm of the Euler-vector variation with the typical confidence range one can
expect on geodetically-derived Euler vectors. This allows us to test whether the simulated magnitudes of
the changes arising from the charge of the largest earthquake are beyond realistic geodetic uncertainties.
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Figure 4. Temporal evolution of the microplate angular velocity through
model time from one simulation. Parameter values are 𝜇a = 5 · 1019 Pa · s,
𝜇m = 1.5 · 1021 Pa · s. Microplate side length is 550 km.

We resort to the comprehensive study of Argus et al. (2010), who esti-
mated Euler vectors and associated covariance matrices for present-day
tectonic plates. We focus on the norm of the diagonals of the covariance
matrices, as they provide an indication of the size of the error ellipses
around the best-fitting Euler vectors. These are at most 9 · 10−3◦/Myr,
which we adopt as confidence range on the synthetic Euler vectors. Thus,
the confidence range on the Euler-vector variation (i.e., norm of the dif-
ference between two Euler-vector estimates) is at most 2 · 9 · 10−3◦/Myr
(gray lines in Figure 5). Results from the simulation in Figure 5a indi-
cate that, regardless of when the available time series begins, the norm of
the Euler-vector variation becomes larger than the assumed confidence
range—which in the following, we refer to as threshold—and remains
above it for all of the remaining time. Instead, removing the contribu-
tion of the largest earthquake from the Euler-vector time series results in
variations that overall fluctuate around the threshold, without remaining
above it throughout all or most of the remaining model time (Figure 5b).
Such a difference of kinematic behaviors could be seen as a distinctive
feature associated with the charge of the largest earthquake. However,
the randomness in model time and location of the whole set of synthetic
earthquakes implies that such a behavior may not occur as early in model
time as it does in Figure 5a or that it may not occur at all. For instance,
in Figures 5c and 5d, we show results from a second, different simu-
lation where we observe that the time series of Euler-vector variations
exceed the threshold for all or most of the remaining time (Figure 5c vs.
Figure 5d), but this does not occur as early as it does in the previous
example (Figures 5a and 5b).

We adopt the following as a quantitative way of attempting to identify the charge of the largest earthquake in
the Euler-vector variation time series: Once the time series exceeds—not necessarily for the first time—the
assumed threshold, we estimate the fraction of remaining model time where the time series maintains itself
above such a threshold. We place a stringent condition and request that such a fraction be at least 90% of
the remaining time—in the following, we refer to this as 90% criterion. For instance, all the time series in
Figures 5a and 5c meet such a criterion. However, those in Figure 5a do so already after ∼0.1 of the remain-
ing model time, while two of the time series in Figure 5c (black and purple lines) do so during the second
half of the remaining model time. Instead, almost all the time series that do not account for the impact
of the largest earthquake (Figure 5b/5d) do not meet such a criterion. Varying the 90% value effectively
means accepting for a longer or shorter period of model time that all other earthquakes may disrupt or
possibly overwhelm the kinematic imprint of the largest one. For instance, adopting a 50% value—instead
of 90%—would imply that two of the time series in Figure 5d (black and purple) would yield a false posi-
tive—that is, they would meet the 50% criterion even though the impact of the largest earthquake has been
deliberately excluded. On the basis of all the considerations above, we elect to take a statistical approach
where we map, through histograms drawn from ensembles of 5,000 repeated simulations, how long does it
take to meet the 90% criterion—in the following referred to as delay—in three different cases: (i) when the
impact of all the earthquakes in the set is accounted for, (ii) when the largest earthquake is excluded from
the simulations (i.e., MW < 6.5), and (iii) when taking only MW < 5.5. We do so for varying values of 𝜇a, 𝜇m,
b value, and microplate size. These calculations provide us with a statistical overview of whether and how
rapidly the time series of microplate motions may signal the ongoing charge of the largest earthquake at a
confidence level that is determined by realistic uncertainties on Euler-vector estimates, as well as realistic
distributions of smaller seismic events in the brittle microplate boundaries.

We proceed by gathering histograms for the delay observed across the ensembles using the 90% criterion.
Figure 6 shows the delay histograms for the ensemble featuring 𝜇a = 5 · 1019 Pa · s and 𝜇m = 1.5 · 1021 Pa · s,
which yield an asthenospheric thickness Da = 150 km. The microplate side length at the surface is 550 km,
while the microplate thickness is set to Hp = 170 km in order to be consistent with equation (1). In this
ensemble, we used b = 1. In each panel, a delay equal to 0 corresponds to the beginning of the available
time series, which is different from one panel to the other (see panel labels). Instead, a delay equal to 1
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Figure 5. (a) Temporal evolution of the norm of the Euler-vector variation from one simulation, calculated after having
assumed that time series are available from the beginning of model time (blue), 1/5 into it (black), 1/2 into it
(magenta), and 4/5 into it (green). In gray is the confidence range on synthetic Euler-vector variations,
which—following the error propagation rule—is twice the assumed confidence on synthetic Euler-vector estimates
(i.e., 9 · 10−3◦/Myr). (b) Same as (a) but not accounting for the impact of the largest earthquake onto microplate
motion. (c,d) Same as (a) and (b) but from a second, different simulation.

always corresponds to the time step when the largest earthquake within the synthetic set occurs. Thus,
delays in Figure 6a can be anything between 0 and the length of the charge phase of the largest earthquake.
Instead, delays in Figure 6c, for instance, can be only between 0 and half that length, since the available
Euler-vector time series are assumed to start half way through the charge phase of the largest earthquake.
The width of histogram bins is set such that they always corresponds to 1/20 of the charge phase of the
largest earthquake. Note that the last bin of each panel counts also those simulations that never meet the
90% criterion. The gray histogram bars refer to simulations where we account for the impact of all synthetic
earthquakes (3.5 ≤ MW ≤ 8) onto the microplate dynamics. Instead, solid-contoured empty bars refer to
calculations where we only include the torque variations associated with earthquakes whose MW < 6.5,
while dash-contoured empty bars refer to the case where MW < 5.5.
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Figure 6. Histograms of the delay observed across ensembles of simulations. Delays are calculated using the 90%
criterion (see main text for details) and an assumed confidence range on Euler-vector estimates of 9 · 10−3◦/Myr. (a)
Delay histograms calculated assuming that time series of Euler-vector variations are available from the beginning of
model time. (b–d) Same as (a) but assuming that time series are available from 1/5, 1/2, and 4/5, respectively, into
model time.

In Figure 6a, we present results for the case where synthetic estimates of the microplate Euler vector are
assumed to be available from the beginning of the charge phase of the single largest earthquake. The delay
for the calculations accounting for all earthquakes is less than 0.05 for∼80% of the sample simulations—that
is, around 4,000 samples out of 5,000. This means that already after less than 0.05 of the model time left
(until the largest earthquake occurs), most of the synthetic Euler-vector time series have met the 90% crite-
rion. Instead, if one excludes the torque variation associated with the largest earthquake (solid-contoured
empty bars), most of the synthetic time series fall into the last bin, while several previous bins—from 0.6
to 0.95—are actually empty. This indicates that most of the synthetic time series actually never meet the
90% criterion. There are some simulations that do (around 2,000 out of 5,000), but we note that these return
much longer delays than those in the majority of simulations that do feature the torque variation associated
with the largest earthquake—that is,≤ 0.05. In fact, delays are in range 0.15 to 0.55 and owe to the few earth-
quakes whose MW is between 5.5 and 6.5, since simulations not accounting for earthquakes whose MW ≥ 5.5
systematically yield a delay ≥0.95 or never meet the 90% criterion (dashed-contoured bars in Figure 6a).

Figures 6b and 6c show histograms from the same ensemble as Figure 6a, but this time assuming that syn-
thetic time series are available starting at 1/5 and 1/2, respectively, into the charge phase of the single largest
earthquake. Accounting for the torque variations associated with all earthquakes in the set yields results
that are similar to those of Figure 6a—that is, most of the simulations feature short delays (less than ∼0.1).
Similarly, the majority of the simulations that do not account for the impact of the largest earthquake either
feature a delay ≥0.9 or never meet the 90% criterion. However, this time there are some simulations yield-
ing delays shorter that ∼0.1—around 700 out of 5,000 in Figure 6b and around 800 out of 5,000 in Figure 6c.
This is because synthetic time series start when the largest earthquake is already charging, and thus, the
remaining model time available for the main kinematic signal to exceed and remain above the threshold is

MARTIN DE BLAS AND IAFFALDANO 13,480



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018175

Figure 7. Same as Figure 6 but this time using b = 1.2.

less. In other words, smaller earthquakes have a higher chance to disrupt and possibly overwhelm the main
signal, making it fluctuating around the threshold. Figure 6d shows results for time series starting toward
the final stages of the largest earthquake charge phase—that is, only 1/5 of remaining model time before it
occurs. In this case, histograms show very similar patterns, regardless of whether we account or not for the
impact of the largest earthquake charge. This means that time series are too short—that is, they start too
late through model time—to link with some statistical confidence their temporal variations to the charge of
the largest earthquake.

Taken altogether, results in Figure 6 indicate that the length of the available time series has a bearing on mak-
ing efficient use of time series of microplate-motion variations in order to highlight—in a statistical fashion
and with some confidence—the charge phase of the largest earthquake. The longer the time series are, the
higher is the chance that meeting the 90% criterion relatively early through model time is a feature linked
with significant probability (see Figures 6a–6c) to the charge phase of the largest earthquake, as opposed
to kinematic changes caused by smaller earthquakes—that is, 5.5 ≤ MW < 6.5 (see Figure 6d). This can
be interpreted as follows: Torque variations generated by the charge phase of the single largest earthquake
impact on the microplate motion slowly but systematically in the same direction. They compete against
(i) contributions from smaller earthquakes that meanwhile occur more frequently, as well as (ii) resistive
stresses at the base of the microplate. If such a competition occurs for longer time, it is more likely that the
time-integrated torque associated with the slow charge phase of the single largest earthquake changes the
microplate motion almost systematically beyond the confidence associated with Euler vector estimates.
3.0.2. Impact of b Value
Next, we explore the impact of the Gutenberg-Richter parameter b on the delay histograms. One could antic-
ipate that the same inferences illustrated above would hold for b < 1. This is because the synthetic set of
earthquakes would feature fewer smaller earthquakes that hamper the main microplate-motion variations
associated with the charge phase of the single largest earthquake. In supporting information S1, we verify
that this is the case. Instead, it is more interesting to explore here the scenario arising from earthquake syn-
thetic sets generated using b > 1. Figure 7 shows delay histograms drawn from ensembles whose parameters
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Figure 8. (a/b) Same as Figure 6a/6c but this time using a length of the plate side equal to 770 km. (c/d) Same as
Figure 6a/6c but this time using a length of the plate side equal to 1,100 km. Other parameter values are also reported.

are the same of those in Figure 6, except for b that is now set to 1.2. Despite the fact that these ensembles
feature a total of int[10(3·1.2)] = 3, 981 earthquakes—as opposed to the 1,000 events associated with b = 1—it
is evident that the inferences drawn above still hold.
3.0.3. Impact of Plate Size and 𝝁a
Next, we reevaluate the scenario in Figure 6a/6c, where we assumed that time series are available from the
beginning of the charge phase of the largest earthquake and from 1/2 into it, varying one other parameter
at a time. First, we explore the impact of varying the microplate size. In Figures 8a and 8b, we repeat the
same analysis of Figure 6a/6c, this time for a microplate whose plate-side length is 770 km, as opposed to
550 km. Such a parameter variation implies virtually no significant change in the magnitudes of the torque
variations associated with earthquakes, because rupture areas and torque arms do not vary. However, the
microplate basal area, which hosts resistive shear stresses, increases by a factor of ∼2. This means that larger
torques now act against virtually the same torque variations arising from the set of synthetic earthquakes. In
Figures 8a and 8b, we can observe that the majority of the simulations that exclude the largest earthquake
(MW ≤ 6.5) do not meet the 90% criterion, as the torques associated to earthquakes whose magnitude is
in range 5.5 < MW < 6.5 are not large enough to overcome the viscous resistance at the base of the plate.
However, our ability to point toward the charge phase of the largest earthquake still hold with confidence.
In Figures 8c and 8d, we increase the plate-side length to 1,100 km, which is an upper limit for the size
of present-day microplates (e.g., Wallace et al., 2005). In this case, the basal area is ∼4 times the basal area
for a microplate with a side length of 550 km. Although some simulations meet the 90% criterion (around
2,800 in Figure 8c and 1,200 in Figure 8d), there are many that do not, indicating that the ability of the
torque variations arising from the charge of the single largest earthquake to impact on the microplate rigid
motion is somewhat compromised when considering microplates of the size of a small tectonic plate (i.e.,
106 km2). In Figures 9a and 9b, we explore the impact of changing the viscosities of the asthenosphere and
the lower upper mantle. From the histograms associated with ensembles of simulations where 𝜇a increases
to 1020 Pa · s, it is evident that results resemble those of Figure 6a/6c, indicating that the previous inferences
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Figure 9. (a/b) Same as Figure 6a/6c but this time using 𝜇a = 1020 Pa · s. (c/d) Same as Figure 6a/6c but this time
assuming that only half of the stress drop that is linearly built along the faults is converted into a torque change. Other
parameter values are also reported.

hold when increasing the asthenospheric viscosity value to a realistic upper limit. In supporting information
S1, we draw similar inferences from histograms related to ensembles of simulations where 𝜇m = 4·1021 Pa·s.

4. Discussion and Conclusions
It is worth discussing some of the assumptions we make in the simulations: (i) We implemented the notion
that the stresses accrued along future rupture areas are fully released during the associated synthetic earth-
quakes. This is in line with findings from a variety of studies on the effective coefficient of friction along
large-scale faults (e.g., Bird, 1998; Iaffaldano, 2012; Suppe, 2007), which indicate that friction coefficients
typically do not exceed 0.1. This means that the stress drops during earthquakes are essentially equal to the
stress levels accrued before seismic events. Furthermore, (ii) we also assumed that all of the stress accrued
during the charge phase contributes to a torque change that impacts on the microplate rigid motion. In
other words, we neglected that a fraction of such a growing stress may be spent on elastic deformation near
parts of the microplate margins. Lastly, (iii) we assumed that the stresses built along the microplate margins
during the charge phases do not depend on the slip rate. While we are aware that this is an approxima-
tion, we note that the dependence of the plate-interface strength on slip velocity in the brittle part of plate
margins—which hosts up to 80% of the depth-integrated strength (e.g., Iaffaldano, 2012)—has been inferred
from laboratory experiments to be relatively weak (e.g., Di Toro et al., 2011; Kohlstedt et al., 1995) at slip
rates comparable to those in place during the charge phase. Quantifying exactly the relative contributions of
these processes is beyond the goals of this feasibility study. However, a rudimental assessment of the impact
that these processes could have on the kinematic patterns observed in the tests presented here is the fol-
lowing: In Figures 9c and 9d we reevaluate the analysis of Figure 6a/6c, but this time assuming that only
half of the stress accrued during the charge phase actually impacts onto the microplate rigid motion, while
the other half is assumed not to (because it may be taken up, for instance, by crustal deformation along the
microplate margins). Under these circumstances, few of the simulations not accounting for the presence of
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the single largest earthquake (solid-contoured empty bars) do meet the 90% criterion. However, the statis-
tical inference that meeting the 90% criterion with short delay is an indication of the charge phase of the
largest earthquake still holds with confidence. We emphasize that the results in Figures 9c and 9d should
be seen as a very first-order way of assessing whether the inferences presented in Section 3 hold despite the
simplifications listed above.

The synthetic tests reported here indicate that the charge phase of large earthquakes (e.g., MW ≥ 6.5) shall
expected to impact on the temporal evolution of microplates rigid motions in a way that leaves an early
signature. This happens for realistic values of the abovementioned parameters and despite the occurrence
of smaller earthquakes in the background. On this basis, we conclude that it appears feasible to link with
some confidence the temporal changes of geodetically observed microplate motions to the charge phase that
preludes to large earthquakes.
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