
u n i ve r s i t y o f co pe n h ag e n

Location-Centric View Selection in a Location-Based Feed-Following System

Chen, Kaiji; Zhou, Yongluan

Published in:
Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems, DEBS 2019,
Darmstadt, Germany, June 24-28, 2019.

DOI:
10.1145/3328905.3329512

Publication date:
2019

Citation for published version (APA):
Chen, K., & Zhou, Y. (2019). Location-Centric View Selection in a Location-Based Feed-Following System. In
Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems, DEBS 2019,
Darmstadt, Germany, June 24-28, 2019. (pp. 67-78). Association for Computing Machinery.
https://doi.org/10.1145/3328905.3329512

Download date: 10. okt.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/288800113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3328905.3329512
https://curis.ku.dk/portal/da/persons/yongluan-zhou(1df964e4-bf9e-48a1-a965-d33c6515c0bb).html
https://curis.ku.dk/portal/da/publications/locationcentric-view-selection-in-a-locationbased-feedfollowing-system(06bd2409-f084-4289-be2e-1f8f6735e736).html
https://doi.org/10.1145/3328905.3329512

Location-Centric View Selection in a Location-Based
Feed-Following System

Kaiji Chen

Huawei Technologies, China

chenkaiji@huawei.com

Yongluan Zhou

University of Copenhagen, Denmark

zhou@di.ku.dk

ABSTRACT
Location-based feed-following is a trending service that can provide

contextually relevant information to users based on their locations.

In this paper, we consider the view selection problem in a location-

based feed-following system that continuously provides aggregated

query results over feeds that are located within a certain range

from users. Previous solutions adopt a user-centric approach and

require re-optimizations of the view selection once users move their

locations. Such methods limit the system’s scalability to the number

of users and can be very costly when a substantial number of users

move their locations. To solve the problem, we propose the new

concept of location-centric query plans. In this approach, we use a

grid to partition the space into cells and generate view selection

and query processing plans for each cell, and user queries will be

evaluated using the query plans associated with the users’ current

locations. In this way, the problem’s complexity and dynamicity

is largely determined by the granularity of the grid instead of the

number of users. To minimize the query processing cost, we further

propose an algorithm to generate an optimized set of materialized

views to store the aggregated events of some feeds and a number

of location-centric query plans for each grid cell. The algorithm

can also efficiently adapt the plans according to the movement of

the users. We implement a prototype system by using Redis as the

back-end in-memory storage system for the materialized views and

conduct extensive experiments over two real datasets to verify the

effectiveness and efficiency of our approach.

CCS CONCEPTS
• Information systems→ Application servers; Location based ser-
vices.

KEYWORDS
feed following, query optimization, view selection

ACM Reference Format:
Kaiji Chen and Yongluan Zhou. 2019. Location-Centric View Selection

in a Location-Based Feed-Following System. In DEBS ’19: The 13th ACM
International Conference on Distributed and Event-based Systems (DEBS ’19),
June 24–28, 2019, Darmstadt, Germany. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3328905.3329512

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DEBS ’19, June 24–28, 2019, Darmstadt, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6794-3/19/06. . . $15.00

https://doi.org/10.1145/3328905.3329512

1 INTRODUCTION
In a location-aware feed-following system, the users are interested

in receiving information relevant to their current spatial contexts.

Such systems can be characterized by a number of news feeds

with spatial properties and a number of moving users who would

like to receive the latest messages from their nearby feeds. Such

a system has a wide application, ranging from social networks to

mobile games. Below are two motivating examples based on real

applications.

Example 1. Ingress [18] is a location-based augmented reality mo-
bile game. The game’s objective is to capture portals, which are al-
located across the world. Each portal continuously generates update
messages, which include advertisements attached to the portals and
each portal’s status of being captured or not. Periodically, each user
needs to receive the update messages from the portals located within
a constant range from his current location. A location-based feed-
following system can be applied in such an application by setting the
portal updates as news feeds and letting the moving users to follow
the feeds within a constant range from their locations.

Example 2. Vehicle-to-everything (V2X) [7, 23] communication en-
ables the exchange of information among vehicles and infrastructures,
such as vehicles’ positions and speeds and traffic light status. The
V2X technology can be used for improving road safety, increasing
efficient flow of traffic, reducing environmental impacts and provide
additional traveler information services, etc. A location-based feed-
following systems can be used in many V2X applications. For example,
each vehicle can subscribe to the status of the nearby traffic lights and
the surrounding vehicles to calculate the best route and speed.

In a location-based feed-following system, when a user logs

in or refreshes his/her view, a query is issued and the latest up-

dates from nearby news feeds are retrieved and displayed. Previ-

ous works on feed-following systems, such as Feeding-Frenzy [22]

and GeoFeed [1], have studied how to optimize a large number of

feed-following queries. There are basically two query processing

strategies. In a pull strategy, the query result is produced on the fly.

Given the latest user location, nearby messages are retrieved with

the help of a spatial index. In contrast, a push strategy maintains a

materialized view for a user by pre-computing the query results.

When the user triggers a new query, the materialized view is deliv-

ered to the user. Hence, the push strategy is cheaper if the user logs

in or refreshes relatively frequently in comparing to the updates

of the news, while the pull strategy is better for the opposite case.

The methods proposed in Feeding-Frenzy [22] and GeoFeed [1]

optimize queries by choosing between a pull or a push plan for

each user-feed pair.

In this paper, we enhance the usability of location-based feed-

following systems by considering mobile users whose news feeds
are aggregated from multiple sources to fulfill the requirements of

https://doi.org/10.1145/3328905.3329512
https://doi.org/10.1145/3328905.3329512

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

U1

U2

F1

F2
F3

F5

F6
F4

U1

U2
F1

F2
F3

F5

F6
F4

Figure 1: Examples Feed-Following Relation

the aforementioned applications. There are two distinctive features

that differentiate our work from previous works. First, the exist-

ing methodologies, such as Feeding-Frenzy [22] and GeoFeed [1],

fail to work well in the context of mobile users. The push strat-

egy in GeoFeed assumes a static user location. If the location of a

user updates, the materialized view has to be invalidated and re-

constructed by employing a pull approach to retrieve new results.

For example, as depicted in Figure 1, the feeds followed by user

Ui , denoted by FU i , are dependent onUi’s location. At time t1, we
have FU 1 = {F2, F3, F4} and FU 2 = {F3, F4, F5, F6}, while at t2,U 1

moves to the location of U 2 and the original view of U 1 becomes

invalid. We need to create a new view based on the new location of

U1, which incurs continuous overhead if the user is moving contin-

uously. Note that, from the point of view of the whole system, even

if each user moves relatively slowly over time, the update cost of

the materialized views and query plans would still be significant as

long as a significant portion of users who issue queries are moved

(see the further analysis at Section 3.1).

Second, our model supports news aggregator frommultiple feeds,

while the existing location-based feed following systems like Ge-

oFeed [1] are designed to retrieve k most recent messages from each

feed without further aggregation. On one hand, the aggregation

feature provides opportunities for sharing the materialized views

of aggregated results among multiple nearby users. On the other

hand, it brings additional complexity to the view selection problem

due to the large number of possible aggregated views.

Our main objective is to produce optimal query plans, i.e., the

materialization strategies, for the moving users. We refer to the

strategies in previous work, such as [1, 22] user-centric, because they
generate query plans at the user level. In a user-centric strategy,

once a user moves to a new location, a new query plan has to be

generated, which is infeasible for systems with frequently moving

users. To efficiently support view maintenance for mobile users, we

propose a new paradigm which is location-centric. In particular, we

split the space into grid cells and generate query plans for each cell.

Figure 1 illustrates an example to demonstrate the superiority of a

location-centric strategy over a user-centric one. When U 1 moves

to the location ofU 2, the query plan previously maintained forU 2

can be re-used by U 1 and there is no need to create new views for

U 1, as done in a user-centric approach.

To generate plans for each cell, a global optimization is performed

based on the statistics of user popularities and their subscriptions

on each cell. The rationale is that such statistics are relatively sta-

bler than the location of each individual user. The plans will only

be updated when such statistics are changed significantly. In the

example shown in Figure 1, F3 and F4 are located at the same grid

cell and they will be followed by U 1 and U 2. We can generate a

materialized view containing aggregated events from both F3 and
F4 to reduce the query cost of users whose query ranges cover the

grid cells containing F3 and F4. The cell size should be determined

by the location accuracy that the system provides.

In summary, we make the following contributions:

• We formulate the dynamic view selection problem in a new

location-based feed-following system.

• We use a grid structure to characterize location-based feed-

following queries and user movements. The query plan is

generated and stored at the cell level.

• We propose a practical cost model to estimate the benefit

of maintaining materialized views in a feed-following sys-

tem and compare the Push and Pull strategies using our cost
model. We show that materialized views can be used to re-

duce the pull cost of user queries. The analysis show that

materialized view selection for individual users are corre-

lated and hence, to choose an optimal set of materialized

views, one should perform a global optimization by taking

all users into account.

• We present a Composite-view algorithm that chooses the ma-

terialized views iteratively by using the cost models that

we develop. To deal with changes of user statistics, the

Composite-view algorithm is designed to be able to progres-

sively optimize the current plan by adding beneficial and

removing non-beneficial views according to the current sta-

tistics.

• We implement a prototype system that uses Redis [20], an

open source in-memory data store, for storing the materi-

alized views. We evaluate our algorithms using two real

datasets by comparing with the state-of-the-art methods.

The results show that our methods significantly outperform

the state-of-the-art algorithms in various situations.

2 PROBLEM FORMULATION
2.1 Location-Based Feed-Following System
A location-based feed-following system consists of a set of feeds F

and a set of usersU. Each feed f ∈ F is an event producer that is

located at a time-varying position f .pos and generates new events

with an expected frequency f .ϕ. Each user u ∈ U is modeled as a

moving object with a time-varying positionu .pos and can subscribe

to a set of feeds Fu within a user specified query range r :

Fu = { f |d(f .pos,u .pos) ≤ r ,∀f ∈ F } (1)

where d(f .pos,u .pos) is a configurable distance function.
When a user requires an update for the latest events from the

subscribed feeds, a user query is issued, denoted as Qu . The system

returns aggregated events from Fu sorted by a ranking function

σ , which can be a function upon one or more attributes (such as

timestamp, popularity, importance and so on). Our system allows

the application to pre-define a few ranking functions and each user

can then chose the σ from the provided options.

Location-Centric View Selection in a Location-Based Feed-Following System DEBS ’19, June 24–28, 2019, Darmstadt, Germany

In addition, our system supports aggregating the events from

multiple feeds. Let f .S be the news stream generated by a feed f ,
and σk be the top-k events sorted by the ranking function σ . Two
types of aggregation function are considered:

• Top-kAggregation [22]. A user receives top-k sorted events

from all the feeds that he/she follows:

Q1(Fu) = σk (
⋃

∀f ∈Fu
f .S) (2)

• Diversified Top-k Aggregation.When σ is customized as

a function sorted by timestamps in descending order, the

user is interested in top-k recent events. If a feed has very

high update frequency, it is likely that the user will always

receive events from this feed. To avoid such a case, we can

employ a simple diversified top-k aggregate to allow at most

t events (t ≤ k) from each feed in the aggregate function:

Q2(Fu) = σk (
⋃

∀f ∈Fu
σt (f .S)) (3)

Q2 can be considered as a general case of Q1. When t = k , it
reduces to Q1.

2.2 Query Processing
To process the user queries in a location-based feed-following sys-

tem, there are two correlated optimizations: 1) determining the

materialized views to store the aggregated events, and 2) generat-

ing a query plan for each user.

Materialized Views. A materialized view v is a 2-tuple ⟨Q, F ⟩,
which is a dynamic dataset that contains the current results of the

continuous query Q , which is either Q1 (Eqn. 2) or Q2 (Eqn. 3). v
will be continuously updated upon updates of the feeds in v .F . We

denote the whole set of materialized views as V . v ∈ V can be

used to answer the query of a user who follows all the feeds in v .F .
Since each user’s following feeds are related to his location, we

need to decide the views that can be used by a user dynamically.

Query Plans. To optimize a user query, we have to decide the

data access path, i.e., the set of materialized views to retrieve the

necessary data. Therefore, we define the query plan of a user u
as a set of materialized views, denoted as V (u), such that Fu =⋃
v ∈V (u)v .F and ∀v ∈ V (u),v .Q = Qu . If V (u) contains multiple

materialized views, then an aggregation is needed to produce the

final output, as defined in Eqn. 2 and Eqn. 3. Once a user moves to

a new location such that his following feeds are changed, then a

new query plan has to be used.

In summary, the overall optimized plan P is a 2-tuple ⟨V,QP⟩,
whereV is the set of materialized views and QP is the set of query

plans for all the user queries.

2.3 Cost Model
We quantify the workload of processing a user query and maintain-

ing a materialized view using a cost model to provide a performance

estimation of a given plan P.
Consider a user queryui .query that aggregates top-k events from

all the feeds within rangeui .r usingV (ui), the query is evaluated by
aggregating all the views in V (ui). The aggregate operation can be

omitted if V (ui) contains only one view. Therefore, we can define

Notation Explanation

F The set of all feeds in system.

U The set of all users in system.

ϕ The update frequency of a feed or a view.

θ The query frequency of a user or a view.

Fui A set of feeds followed by user ui .
Fp The set of feeds followed by users at grid cell p
v .F The set of feeds of materialized view v .
V (ui) The query plan of user ui ’s following query. The query evaluation can be done

by aggregating all the views inV (ui).
V (p) The query plan at a grid cell p . It can be used to answer user query executed at

p .
L The cost of retrieving and sorting the top-k events from a view vj .
H The cost of updating a materialized view for each new event.

V The set of materialized views.

QP The query plans of all the user queries.

P The complete optimized plan containing both V and QP .

S A map from a grid cell to the sum of the frequencies of user queries executed at

the cell.

H A map from a grid cell to the set of feeds located at the cell.

Table 1: Frequently used Notations

the query evaluation cost EV (ui .θ ,V (ui)) as follows,

EV (ui .θ ,V (ui)) =

{
ui .θ · |V (ui)| · L, |V (ui)| > 1

0, |V (ui)| = 1

(4)

where L is the cost of retrieving and sorting the top-k events from

a view vj , which depends on the back-end system storing the view.

Besides query evaluation, the system also needs to update the

materialized views when new events arrive, which is referred to as

the maintenance cost. A materialized view vi needs to be updated

when new events are produced by any feed within vi .F , so we can

define vi ’s update frequency as,

vi .ϕ =
∑

fj ∈vi .F

fj .ϕ (5)

By using H to denote the cost of updating a materialized view for

each new event, we define the maintenance cost of vi as:

M(vi) = vi .ϕ · H (6)

The cost of an optimized plan P is the sum of the maintenance

cost of all the materialized views and the evaluation cost of all the

user queries:

Cost(P) =
∑

vi ∈V

M(vi) +
∑

uj ∈U

EV (uj ,Vuj) (7)

In general, the cost discussed above is considered as the system

resource utilization, which can be CPU, disk I/O or network I/O

depending onwhich resources being the bottleneck of the system. In

this paper, to fulfill the low-latency requirements of feed following

applications, we assume the materialized views are stored in a

distributed in-memory database and the system is run on a cluster

of servers with sufficient main memory and a high-bandwidth

network. In such a system, CPU is the system’s major bottleneck

resource, Therefore, we use CPU utilization as the optimization

goal from now on. In addition, CPU utilization is generally used

as the main metric for measuring the energy consumption of a

cluster [2]. Therefore, minimizing the CPU utilization would in

general minimize the energy consumption of the system, which

brings significant financial gains for the service provider.

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

2.4 Problem Statement
Now we can formally define the dynamic query optimization prob-

lem in a location-based feed following system. Given a set of con-

tinuously moving usersU and a set of moving feeds F spread in

a space G, the dynamic query optimization problem is to dynami-

cally generate a plan P = ⟨V,QP⟩, such thatCost(P) is minimized

at any moment and the query of each moving user in U can be

answered by a query plan in QP at any moment.

3 LOCATION-CENTRIC OPTIMIZATION
The optimizer takesU and F as the input and generates a set of

materialized views and query plans. We divide the users into multi-

ple groups by their query ranges, aggregate functions, and ranking

functions such that each user group has the same query range, ag-

gregate and ranking functions. We then generate an optimized plan

for each user group. As we assume each user can only choose the

query range, aggregate or ranking functions from a few pre-defined

options, we expect there are a sufficient number of users in each

group.

3.1 Motivation
There are two previous studies on feed-following systems that are

very closely related to ours: Feeding-Frenzy [22] and GeoFeed [1].

Feeding-Frenzy [22] presents a method to make an optimization

decision for each pair of user and feed. It adopts either a producer-

pivoted view, which maintains the latest k events from a feed fol-

lowed by the user, or a consumer-pivoted view, which incrementally

maintains the results of the user query. As indicated in [1], Feeding-

Frenzy does not perform well in a location-based feed-following

application. In addition, when the users move their locations, their

following feeds will be changed and hence a new query plan and a

new view has to be generated, which could be highly costly when

a large number of users change their query locations.

GeoFeed [1] proposes a geographical feed-following system,

where each event is associated with a location and a user only

receives events whose locations are within a range from the user’s

position. The query optimizer considers the sharing of materialized

views among users, but to simplify the optimization problem, only

views containing a single feed are considered. They propose three

possible query plans for each user-feed pairs: pull, push and shared

push. Multiple query plans will be generated for the same user if

the user has multiple locations. This will again be very costly if a

user have many possible locations and move arbitrarily.

Note that even if each user does not move frequently, as long

as a certain portion of user queries require new query plans, the

overhead of creating new views and new plans would be significant.

For instance, suppose there are 1 million active users at the system

and each user issues a query every 10 minutes and changes his

location every 50 minutes. Then we have on average 10 thousand

user queries per minute (1 million/10 minutes), and on average 1/5

of them (10 minutes/50 minutes) issue queries at locations different

from last time. This means 20% of the queries would incur extra

overhead of creating new views and new plans, which would be

significant.

We can categorize the above approaches into the user-centric

paradigm in the sense that they generate plans for each individual

user. Such approaches are inevitably expensive in a large-scale

system with a large number of users, which may move arbitrarily.

The number of plans are proportional to the number of users and

the possible locations of the users.

To address the problem, we propose a location-centric optimizer,

which partitions the space into grid cells and generates query plans

for each cell. In this way, we can limit the optimization complexity

by the number of grid cells. In general, a coarser-grained grid par-

titioning can reduce the complexity while providing less accurate

spatial range query results. Therefore, the grid granularity should

be chosen by the application’s requirements on spatial accuracy.

3.2 Location-Centric Query Plans
For the ease of presentation, we first assume the feeds’ locations are

static and then extend our solution to mobile feeds in Section 3.5.

To generate location-centric query plans, we project the 2-D

space G to a 2-D grid space, which is a discrete euclidean space. For

a given point q = (x ,y) in G,the projected grid location point p is,

p = (⌊x/дx ⌋, ⌊y/дy ⌋) (8)

where дx and дy is a user defined parameter to scale the value on

x-coordinate and y-coordinate and control the granularity of the

converted grid space. We can have a constant number of points in a

grid space if it is transformed from a bounded euclidean space. We

call each point in the grid space a cell, denoted by p. For two points
pд1 and pд2 in the grid space, the distance d(pд1,pд2) is defined as,

d(pд1,pд2) = ⌈
√
(xд1 − xд2)2 + (yд1 − yд2)2⌉ (9)

The user-feed following relation is then defined by using the new

distance function. A user’s position will be considered stable if his

location is not changed in the grid space. We may have location

inaccuracy for each user by using the grid space. By choosing differ-

ent granularity of the grid space, we can have different sensitivity

to user movements and provide different level of spatial accuracy

in the system.

The spatial inaccuracy for each user only involves false positive

feeds as we use a ceiling function to calculate the transformed query

range. Assuming a user ui subscribes to feeds within range r . For a
given grid partition with parameters дx and дy , the transformed

query range will be
r

дmin
, where дmin = min⟨дx ,дy ⟩. We then

transform ui ’s query range as rд = ⌈
r

дmin
⌉. The query range is

extended from a circle centered atui .pos with a radius r to a (rд ∗дx)
by (rд ∗ дy) rectangle centered at ui .pos . Since the original query
area is completely covered in the transformed one, we can ensure

all the feeds within a user’s original query range will be included

in the transformed query range in the grid space. We have a false

positive ratio bounded by Gbound =
r 2ддxдy
πr 2 − 1, and we have

дxдy

πд2min
≤ Gbound ≤

(r
дmin

+ 1)2дxдy

πд2minr
2

(10)

We can see that when the grid cells are not squares, the false positive

area will be larger. By assuming the grid is a square, we have,

1

π
≤ Gbound ≤ (

д

r
+ 1)2 (11)

where д is the edge length of a square cell.

Location-Centric View Selection in a Location-Based Feed-Following System DEBS ’19, June 24–28, 2019, Darmstadt, Germany

As mentioned above, we put the user queries into groups so

that the queries in each group have identical query range, rank-

ing function, and aggregate function. We have the following two

straightforward but useful lemmas.

Lemma 3.1. Users with the same query range, aggregate and rank-
ing function located at the same grid cell have the same following list.
□

Lemma 3.2. If two feeds are located at the same cell and there is
a user who follows one of them, then the same user also follows the
other one. □

Maintaining every single user’s position and following list may

incur unnecessary duplicate information because of Lemma 3.1. We

use a location-centric query frequency statistic S instead ofU to

reduce the input size. We define S as a map ⟨p,Θ⟩,

S =


⟨p,

∑
ui ∈U&ui .pos=p

ui .θ⟩ ,∃ui ∈ U&ui .pos = p

⟨p, 0⟩ , otherwise
(12)

S may be a sparse map and we can omit the statistics of the cells

without any user.

Similarly, we can also store the feeds using a location-based map

H , which can be defined as,

H =

{
⟨p, { fj | fj .pos = p}⟩ ,∃fj ∈ F fj .pos = p

⟨p, 0⟩ , otherwise
(13)

Furthermore, a user-centric query planV (ui) can be transformed

into its location-centric form V (p) based on Lemma 3.1. V (p) will
be generated by using S as the input and optimize the user queries

at p and indexed by the cell id p. The location-centric query plan

V (p) can be used by any user located at cell p. The number of query

plans is independent on the number of users but rather dependent

on the number of grid cells, which can be controlled by setting the

parameters дx and дy as stated above. We use QP to denote all the

location-centric query plans of an optimized plan.

For each materialized viewvi , we can maintain a list of grid cells

whose query plans involve vi for a given QP. We call such a list as

the service list of vi , denoted as SV :

vi .SV = {p |vi ∈ QP[p]} (14)

The service list can be easily calculated after generating the query

plans. We use it to quantify the influence of each materialized view

on the system performance.

In summary, a location-centric optimization plan Ploc is a 2-tuple
⟨V,QP⟩, whereV is the set of materialized views and QP is the

set of location-centric query plans for all the user queries.

3.3 Grid-Based Approach
By assuming using the grid space to represent the locations of users

and feeds, we can generate the basic candidate views by grouping

all the feeds by their located grid cells. These candidate views are

referred to as native views, which are needed to store the events

from the feeds and have to be maintained regardless of the user

query plans being used. They guarantee users can go offline at

anytime while having the guarantee of receiving their messages.

By using the native views, we can answer each user query by

aggregating the views that are within the query range of the user.

We call this approach a Grid-based approach and use it as the

baseline solution. The query plans under the grid algorithm can be

easily generated by using a reversed index from the id of each cell,

i.e. p, in S to the set of views whose Effective Range covers p. Based
on the user-feed following relationship (Section 2.1), we define

the Effective Region ER(vi , r) as the set of user locations where a
materialized viewvi can be used to answer the users’ queries whose
query ranges are equal to r . The formal definition is as follows:

ER(vi , r) = {p |d(p, fi .pos) < r ,∀fi ∈ vi .F } (15)

where d(p, fi .pos) is defined in Equation 9 and vi .F is the set of

feeds contained in vi .

Algorithm 1: Grid Algorithm

Data: S⟨p, Θ⟩, H⟨ p,FeedSet ⟩
Result: Query optimization plan Ploc (V, QP)

1 Initial HashMap V

2 Initial HashMap QP

3 foreach p ∈ H.keys do
4 v← V iew (H[p])
5 v.ϕ , v.θ , v.pos← 0, 0, p

6 foreach f ∈ H[p] do
7 v .ϕ ← v .ϕ + f .ϕ
8 V[v .id] ← v
9 foreach p ∈ S.keys do

10 foreach (v .id, v) ∈ V do
11 if p ∈ ER(v,r) then
12 ▷ r is the selected user query range for the current user group

13 Update v.θ
14 Add p to v .SV
15 Add v to QP[p]
16 Return P(V, QP)

Algorithm 1 presents the details of this algorithm. We initialize

the two hash maps, V and QP , in lines 1 – 2, which are to store

the materialized views and query plans on each grid cell. In lines

3 – 10, we create views for each distinctive p in H . For each cell

id p, we calculate the update frequency of the generated view by

summing up the update frequencies of all the feeds in this cell’s

view. The generated view is stored in the set of materialized view

V . In lines 11 - 17, after all the views are generated, the query plans

are generated by assigning the native views to the grid cells that

are within their effective range and contain users. We also compute

the query frequency of the views and add the corresponding ps to
the views’ service lists. Finally, line 18 returns the plan.

Adaptation to user movements. Since we assume feeds do

not move in this algorithm, we only need to update a grid’s query

plan when a user appears in a grid cell where there is no existing

query plan. When a new user query arrives or a user moves to

another cell, we can check the hash map QP. The user’s query

will be answered by the stored plan at the new location if it exists,

otherwise a new query plan will be generated and stored into QP.

3.4 Composite-View Approach
In the Grid-based algorithm, we only generate a native view for

each cell. However there are many potentially beneficial views that

contain feeds from multiple grid cells. We refer to such a view as a

composite view, denoted as vc . The number of composite views is

exponential to the number of feeds in the system. These views can

potentially be shared by multiple users. In general, maintaining a

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

composite view vc may introduce an extra maintenance cost but

may reduce the query evaluation cost for users located within vc ’s
effective range, vc .ER.

With the movements of users and the changes of the charac-

teristics of event producers, the query frequency at each cell and

the update frequency of each feed may change over time. There-

fore, we need an algorithm that can be adaptive to such changes

progressively. In this section, we present an iterative Composite-
view algorithm which not only generates better optimization plans

by considering composite views, but can also adapt to the system

changes over time by re-applying the algorithm over the current

plan with updated statistics.

Estimating the characteristics of a composite view. A com-

posite view vc can be constructed by combining two material-

ized views v1 and v2 as follows: 1) the feeds involved in vc are

Fvc ← Fv1
∪ Fv2

; 2) the update frequency is the sum of the update

frequencies of all the feeds in Fvc ; 3) the effective region is calcu-

lated as vc .ER ← v1.ER ∩v2.ER; 4) the generated composite view

vc can be used to answer a user query whose query plan uses both

v1 and v2. We estimate the query frequency of vc by estimating

vc .SV ← v1.SV ∩ v2.SV with the assumption that all location-

centric plans previously using both v1 and v2 will now use vc . We

can calculate the estimated query frequency of vc by summing up

the query frequencies for all the users in vc .SV , which is a upper

bound of the query frequency of vc . We denote the generation of

vc using v1 and v2 using vc ← v1 +v2.
To help deciding which view to materialize, we define the mate-

rialization benefit B(vj) for each candidate view. Given vj .SV , the

service list of a view vj , we can calculate the evaluation cost of all

the user queries using vj ,

MEV (vj) =
∑

p∈vj .SV
EV (S[p],V (p)new) (16)

On the other hand, we also estimate the evaluation cost of these

queries in the case that we do not materialize vj . We use NEV (vj)
to denote this cost:

NEV (vj) =
∑

p∈vj .SV
EV (S[p],V (p)) (17)

Therefore, the benefit of materializing vj can be calculated using

the total cost reduction as,

B(vj) = NEV (vj) − (MEV (vj) +M(vj)) (18)

Calculating the accurate benefit values requires the query plans

of the relevant users, which are time consuming to generate. We

simplify the process by estimating the benefit of vj as follows. For
each grid cell p within vj .SV , we use vj to replace the views in the

query plan of p that are subsets of vj . We denote the views in the

query plan of p that are subsets of vj as R(vj ,p), i.e.

R(vj ,p) = {v |v ∈ V (p)&Fv ⊂ Fp } (19)

Then for each grid cell p in vj .SV , the potential reduction of the

evaluation cost by using vj , denoted by EVR(p,vj), is

EVR(p,vj) =


S[p] · |R(vj ,p)|, |R(vj ,p)| = |V (p)|

S[p] · (|R(vj ,p)| − 1), 1 ≤ |R(vj ,p)| ≤ |V (p)|

0, |R(vj ,p)| ≤ 1

(20)

We have the estimated benefit B′(vj) defined as follows,

B′(vj) =
∑

p∈vj .SV
EVR(p,vj) (21)

Algorithm. The details of the Composite-view algorithm are

presented in Algorithm 2. For the ease of presentation, we define a

function Neiдhbor (vj , r) as follows:

Neiдhbor (vj , r) = {vi |ER(vi , r) ∩ ER(vj , r) , ∅} (22)

Algorithm 2: Composite-view Algorithm

Data: S⟨p, Θ⟩, query range r , initial plan Ploc0
Result: Query optimization plan Ploc (V, QP)

1 MV ← Ploc0 .V ; ▷ storing views considered to be further combined to

composite views

2 V ← Ploc0 .V ; ▷ views selected to be materialized

3 CV ← V− native views; ▷ storing the views to be considered to be

materialized or un-materialized

4 QP ← Ploc0 .QP;

5 foreach vi ∈ MV do
6 Mark vi as visited;
7 Bmax ← B′(vi);
8 vc , vs ← null, null ;
9 foreach vj ∈ Neighbor(vi , r) do

10 if vj is not yet visited then
11 vt ← vi + vj ;
12 if B(vt) ≥ Bmax then
13 vc , vs ← vt , vj ;
14 Bmax ← B′(vt);
15 if vc , null then
16 Insert vc into MV ;

17 if B(vc) > δ then insert vc to CV ;

18 Remove vs from MV ;

19 Sort CV by their benefits in descending order;

20 foreach vi ∈ CV in sorted order ▷ Select views to materialize or
un-materialized from the candidate views do

21 if B(vi) ≤ δ ▷ if the benefit is less than a threshold, then un-materialize it
then

22 Remove vi from V ;

23 foreach p ∈ ER(vi , r) do
24 if S[p] ≥ 0 and vi ∈ QP[p] then
25 QP[p] ← GreedySetCover (Fp, V);
26 else
27 if vi ∈ V then Continue ;

28 Add vi to V ;

29 foreach p ∈ ER(vi , r) do
30 if S[p] ≥ 0 then
31 QP[p] ← GreedySetCover (Fp, V);
32 return Ploc (V, QP);

The Composite-view algorithm takes the same input as the Grid-
based algorithm plus an initial optimized plan. The initial plan can

be the plan generated by the Grid-based algorithm or an existing

plan that needs to be re-optimized. The algorithm starts by ini-

tializing the list of materialized viewsMV to be used to generate

composite views, the resulting materialized view set V , and the

user query plan QP using the initial plan. We also initialize CV

with the existing materialized composite views whose materializa-

tion benefit should be re-examined. In lines 5–18, we generate a

composite view that can achieve the highest benefit by combining

a materialized view with other materialized views. In each loop,

the size ofMV is decreased by 1 and a new composite view will be

added to CV if it has a greater materialization benefit than that of

vi . We can expect the loop to end after |MV | iterations and generate
at most |MV | − 1 composite views.

Location-Centric View Selection in a Location-Based Feed-Following System DEBS ’19, June 24–28, 2019, Darmstadt, Germany

After we have generated the composite views, we sort the can-

didate views in CV by their benefit values in descending order

(line 19) and then decide whether we should materialize or un-

materialize them. In lines 22–25, if a candidate view’s benefit is less

than a preset threshold δ , we un-materialize it and remove it from

the current query plans. In other words, all the query plans that use

this view need to be re-calculated. Each query planning needs to

solve a minimum set cover problem using all the materialized views

to cover Fp . We generate query plans using a greedy minimum

set cover algorithm, which has the best possible approximate ratio

with a polynomial complexity [8], and denote the query planning

function asGreedySetCover (Fp ,V). In lines 27–31, if a view’s ben-

efit is greater than the threshold, we materialize it if it is not yet in

V . In a similar way, we update the query plans within the effective

region of the newly materialized view. The new plan is returned in

line 32 after finishing the process of all the candidate views.

Complexity analysis. For the generation of composite views

in the Composite-view algorithm (lines 5–18) , the worst-case com-

plexity is O(|V|2), where |V| is the number of views in V . For

lines 20–31, the worst case will be all the composite views in the

initial optimization plan need to be removed and all the new com-

posite views need to be materialized. The complexity of running the

greedy minimum set cover algorithm in line 25 or 31 is O(n · |V|)
where n is the number of native views covered by Fp and |V| is the

number of views inV . SinceV contains all the native views, there

should always exist a cover for any Fp . The worst case is that we
have to update the query plan of every cell. For updating the query

plan for p, we need to execute GreedySetCover at most n times.

Therefore, the worst-case complexity of Composite-view algorithm

is O(m · n2max · |V| + |V|
2), wherem is the number of grid cells

and nmax is the maximum number of native views covered by Fp
for any cell p.

Adaptation to user movements. Similar to the Grid-based ap-

proach, if a user appears in a cell that has no query plan yet, we

should generate a new query plan. We also need to change the ma-

terialized views if their benefits are too low. However we should not

update all the query plans if the statistics are just changed slightly.

Instead, we collect the total changed distance of all the users as the

metric to measure how good the current query optimization plan

might be and to decide whether we should try to search for a new

plan. We define the total changed distance ∆(U,Uplan) as follows,

∆(U,Uplan) = Σu ∈Ud(u .pos,Uplan [u .uid].pos) (23)

We check the total changed distance periodically and decide

whether a new optimization plan is needed by comparing it to a

threshold. As Algorithm 2 is designed as an iterative process, the

new plan generation can be done simply by running the algorithm

with the current plan as its input plan.

3.5 Mobile Feeds

As mentioned in the beginning of Section 3.2, the above algo-

rithms assume feeds are static. In some feed-following applications,

such as augmented reality social network games like Ingress [18]

and Pokemon Go [19], users may move around over time and re-

questing information from all nearby users continuously. There-

fore, the feeds are also moving. Here, we extend our algorithms

for scenarios with moving feeds. Recall that we assume a user only

subscribes to feeds which are currently located within his query

range. Therefore, we can model feeds that generate events at differ-

ent locations as multiple “virtual feeds”. More specifically, we can

group events generated by all the feeds based on location. Using

our grid space, events can be assigned to a finite number of grid

cell and those allocated at the same cell can be aggregated as a

new virtual feed. By creating such virtual non-mobile feeds, we can

reuse our problem formulation and algorithms for static feeds. This

again shows the benefit of our location-centric approach.

3.6 Grid Granularity
In this subsection, we analyze the implication of the granularity

of the grid space. Suppose the query range of user ui is ri in the

original space, then the equivalent query range in the grid space

with parameter дx and дy is a rectangle containing ⌈ri/дx ⌉ · ⌈ri/дy ⌉
cells.

According to Equation 5 and 6, the total maintenance cost of all

the native views is independent on the grid granularity. The evalua-

tion cost of a user query, on the other hand, depends on the number

of views used in evaluating the query, which is equivalent to the

number of cells overlapping with the query range. So according to

Equation 4, the query evaluation cost of user ui is equal to ui .θ ·
⌈ri/дx ⌉ · ⌈ri/дy ⌉ · L. We can see that the evaluation cost decreases

with larger дx and дy . However, the larger дx and дy values intro-

duce a greater spatial inaccuracy such that a userui can receive mes-

sages from feeds that are

√
(⌈ri/дx ⌉ · дx)2 + (⌈ri/дy ⌉ · дy)2 away.

In otherwords, the feeds located

√
(⌈ri/дx ⌉ · дx)2 + (⌈ri/дy ⌉ · дy)2−

ri away from ui are incorrectly followed by ui . This trade-off be-

tween spatial accuracy and system workload should be determined

according to the requirements of the application.

4 EVALUATION
Datasets. We conduct our experiments using two real datasets.

The first one is GeoText[6], which is a Twitter dataset contain-

ing 377,616 messages over one week in March 2010 from 9,475

nodes approximately within the United States. The second one is a

BrightKite dataset from SNAP[13]. Brightkite was once a location-

based social-network service provider where users shared their lo-

cations by checking-in. The SNAP dataset consists of 58,228 nodes

and 214,078 edges with a total of 4,491,143 check-ins of these users

over the period of Apr. 2008 - Oct. 2010. We use the GeoText dataset

to show the performance under a light workload situation and the

SNAP dataset for heavy workload in the following experiments.

We convert the location to ECEF (Earth-Centered, Earth-Fixed), a

Cartesian coordinate system, and then apply Equation 8 to produce

the grid cells.

To simulate different number of users and feeds, we sample some

nodes in the datasets as users and the others as feeds. As the datasets

do not contain feeds, we sample some nodes’ initial locations and

use them as the feeds’ locations. For those nodes sampled as users,

the locations extracted from the check-in records of the correspond-

ing data node will be used. We calculate the average time period

between each node’s check-ins and use it as the update frequency

if it is sampled as a feed or the query frequency if it is a user.

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

Algorithms.
(1) GeoFeed.GeoFeed [1] algorithm adapted to our systemmodel.

User-centric query plan is used.

(2) GridView.Materialize views for all the feeds within each cell.

A user’s query will be answered by push strategy if his query

range covers only a single grid cell. For users following more

feeds, pull strategy is applied to answer his query using the

grid-based views. We use location-centric query plans to

make fair comparison to the CompositeView algorithm.

(3) CompositeView. Our CompositeView algorithm presented in

2. The push and pull cost ratio H/L is 2.83 based on the CPU

usages of a push-only and a pull-only scheme.

To obtain stabilized results, each algorithm under each parameter

setting is run for 20 minutes.

Implementation and Cluster Hardware. We implement our

system prototype and optimizer using Python 3.2 and Redis 3.0.1 [20],

an in-memory key-value store system, as the back-end storage sys-

tem. The architecture of the prototype system is depicted in Figure 2.

All the data in the materialized views is partitioned and stored at

the Redis nodes using hash partitioning. The optimizer monitors

the system log and calculate the optimization plan based on the

statistics of the users and the feeds extracted from the log. The

optimized query plans is maintained at the query router. We also

use Java 1.7 to implement an executor to simulate the user queries

and feed update operations.

Executor

Log

Query Router

Redis Redis Redis Redis Redis Redis

Optimizer

Figure 2: System architecture

The experiments are conducted on a cluster of 7 IBM iDataplex

dx360 servers with 2 2.66Ghz Intel Nehalem-EP CPUs (X5550) and

48 GB Ram. The cluster nodes are connected using 40 GBps QDR

Infiniband interconnect and an oversubscription ratio as 2:1 is used.

6 data nodes running Redis are used as storage servers that store

the materialized views. We also have 1 separate node to maintain

the materialized views and to process user queries , which we call

it processor node. The query router modules is also running on this

node.

Metric. According to our experiments, as long as the workload

is under the system’s maximum throughput, the query latency is

insenstive to the view materilization plans and remains the same

with different view selection algorithms. As we use an in-memory

database with sufficient RAM and a high speed network, CPU is

the major bottleneck and hence a lower CPU usage indicates a

higher system throughput and higher capability of maintaining

low query latency. Therefore, we use the total CPU usage of all the

Redis server processes on each node in the cluster as the metric,

which is collected by using the pidstat command in Linux. We

use the sum of the average CPU usage (in the unit of percentage of

the CPU’s capacity) on each data node as the performance metric.

Furthermore, CPU usage is a good indicator of the energy con-

sumption of a cluster and CPU is the dominant energy consumer

in Google servers [2]. Therefore, reducing the CPU usage even by a

few percentage points could significantly cut down the operational

cost of the service provider.

GeoText SNAP

User Percentage 0.9 0.9

Load Level 400 667

Granularity 250 250

Query Range (cells) 5 5

Table 2: Default Parameters

4.1 Experiment Setup
4.2 Static Scenario
We first present the algorithm’s performance with a static scenario,

where users and feeds and are fixed at their initial locations in

the datasets. The basic parameters are set as stated in Table 2. We

only vary one parameter in each of the following experiments. The

meaning of the parameters are explained in the subsections where

we vary them.

4.2.1 Impact of Workload. We simulate different amount of work-

loads to verify our algorithm’s scalability. We use the load level to

change the overall update/query frequency of users and feeds. The

load level is used to control the overall update and query frequen-

cies by multiplying them with the load level values. It will affect the

query frequency of users and update frequency of feeds that we use

to generate the optimization plan. A higher load level will result in

a heavier workload for both users and feeds. We use this parameter

to control the input user set and feed set’s query or update speed

and evaluate the algorithm’s capability to process feed-following

workload under different intensity.

For the GeoText dataset, we can see from Figure 3a that, when the

load level increases, all the three algorithms’ CPU usages increase

proportionally. GeoFeed creates too many views simply because it

only considers views containing a single feed followed by a user.

GridView creates location-centric views in the granularity of grid

cells and achieves an average CPU usage 56% less than that of

GeoFeed under all load levels. CompositeView achieves a further 20%

improvement in CPU usage by using composite views.

In Figure 4a, we can find similar results with the SNAP dataset.

There are more users and feeds in the SNAP dataset. This makes

user-centric GeoFeed algorithm perform worse to process feed-

following queries. We cannot handle higher workload as the pro-

cessor node is overwhelmed under GeoFeed’s plan.We can find

CompositeView achieves a greater improvement over GridView in

comparing to using the GeoText dataset. This is because the larger

number of users and feeds provides greater opportunities to gener-

ate composite viewwith more feeds and to share views amongmore

user queries. However, when the load level increases, the improve-

ment drops slightly. This is because the increase of the load level

will simultaneously increase the feed update frequency and query

evaluation frequency by the same scale, and the ratio between the

Location-Centric View Selection in a Location-Based Feed-Following System DEBS ’19, June 24–28, 2019, Darmstadt, Germany

 0

 50

 100

 150

 200

 250

 300

 350

 400

100 400 700 1000

A
gg

re
ga

te
d

C
PU

 U
sa

ge

LoadLevel

GeoFeed
GridView

CompositeView

(a) Load Level

 0

 50

 100

 150

 200

 250

 300

125 250 500 750 1000

A
gg

re
ga

te
d

C
PU

 U
sa

ge

Granularity

GeoFeed
GridView

CompositeView

(b) Granularity

 0

 50

 100

 150

 200

 250

 300

 350

3 5 7 9

A
gg

re
ga

te
d

C
PU

 U
sa

ge

QueryRange

GeoFeed
GridView

CompositeView

(c) Query Range

 0

 50

 100

 150

 200

 250

 300

 350

0.75 0.8 0.9 0.95

A
gg

re
ga

te
d

C
PU

 U
sa

ge

User Percentage

GeoFeed
GridView

CompositeView

(d) User Percentage

Figure 3: Results of the Static Experiments, Geotext Dataset

 0

 20

 40

 60

 80

 100

 120

67 267 467 667

A
gg

re
ga

te
d

C
PU

 U
sa

ge

LoadLevel

GeoFeed
GridView

CompositeView

(a) Load Level

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

125 250 500 750 1000

A
gg

re
ga

te
d

C
PU

 U
sa

ge

Granularity

GeoFeed
GridView

CompositeView

(b) Granularity

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

3 5 7 9

A
gg

re
ga

te
d

C
PU

 U
sa

ge

QueryRange

GeoFeed
GridView

CompositeView

(c) Query Range

 0

 50

 100

 150

 200

 250

0.75 0.8 0.9 0.95

A
gg

re
ga

te
d

C
PU

 U
sa

ge

User Percentage

GeoFeed
GridView

CompositeView

(d) User Percentage

Figure 4: Results of the Static Experiments, SNAP Dataset

push and the pull cost is 2.83, which is greater than one. Hence,

with the increase of the load level, the total view maintenance cost

(update frequency * push cost) increases faster than the query eval-

uation cost (query frequency * pull cost). This makes the optimizer

to choose to materialize less views with a higher load level. We can

conclude that our location-centric algorithms can achieve better

performance in comparing to the user-centric GeoFeed algorithm

under different load level, and our CompositeView algorithm can

further improve the performance under all the load levels for both

datasets.

4.2.2 Impact of Granularity. We also simulate our algorithm under

different granularity of the grid space, which affects the average

size of each grid-based view. We collect all the records from the

original check-ins. Then we calculate the maximum distance on

each dimension of the transformed ECEF coordinates notated as

(dxmax ,d
y
max) and select different granularity parameter Gran and

set дx =
dxmax
Gran and дy =

dymax
Gran . Here we set the query range with

granularity 125 as one cell and scale its value proportionally with

the increase of the granularity so that the actual spatial query range

remains the same across different granularities.

For GeoText, we can see from Figure 3b that with a finer gran-

ularity, CompositeView has greater enhancements with regard to

GridView simply because there are more opportunities to combine

grid views into composite views to reduce the query evaluation

cost. GeoFeed does not use the grid space for query optimization so

its performance is insensitive to the granularity. With the granu-

larity 125i, CompositeView has the same performance as GridView,
besause the query range is one grid cell and there is no beneficial

composite views. In Figure 4b, we can find similar results for SNAP.

Based on the two experiment results, we can see that a coarser

granularity can significantly improve the system performance by

sacrificing the location accuracy and CompositeView can achieve

the best performance under all the granularity. An interesting result

 2

 4

 6

 8

 10

 12

 14

 16

0.75 0.8 0.9 0.95

R
un

ni
ng

 T
im

e(
s)

User Percentage

GeoFeed
GridView

CompositeView

(a) Running time, GeoText

 0

 100

 200

 300

 400

 500

 600

 700

0.75 0.8 0.9 0.95

R
un

ni
ng

 T
im

e(
s)

User Percentage

GeoFeed
GridView

CompositeView

(b) Running time, SNAP

Figure 5: Running time under different user/feed ratio

is that CompositeView with granularity 1000 has a CPU usage that

is even lower than (or similar to) GridView with granularity 750.

This further validates the effectiveness of CompositeView in finding

beneficial views without over-compromising spatial accuracy.

4.2.3 Impact of query range. We also simulate our algorithm under

different query ranges to examine the sensitivity to the number of

feeds followed by a user. From Figure 3c, we can see all the algo-

rithms’ CPU usages are increased with a greater query range (and

hence a greater number of feeds followed by each user). Composite-
View achieves a higher performance enhancement with a greater

query range due to the fact that larger composite views can be used

to to reduce the query evaluation cost. Comparing with GridView, it
achieves 17% and 28% less CPU usage with a query range as 3 cells

and 9 cells respectively. The CPU usage of GeoFeed is more than 2

times of that of GridView. Similar results can be found in Figure 4c.

Since we have heavier workload with the SNAP dataset and there

are more feeds followed by each user, there is less performance

improvement that can be achieved by GridView and CompositeView
with larger query ranges. Based on the results in this and the previ-

ous subsection, with a larger query range, one should use a coarser

granularity to achieve a better performance under the assumption

that a larger query range can tolerate a higher spatial inaccuracy.

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

4.2.4 Impact of user/feed ratio. In this subsection, we examine the

algorithms’ sensitivity to different user/feed percentage. From each

data set, we keep a certain percent of users and make the rest as

feeds. We vary the user percentage to simulate the situations with

different user/feed ratios.

The results of GeoText are presented in Figure 3d. In general, the

CPU usages of all the algorithms become lower with a higher user

percentage (and hence fewer feeds). This is because fewer feeds

would result in fewer views to maintain and fewer updates to be

processed. GridView’s CPU usage is half of GeoFeed’s under all
cases and CompositeView further improves it by 20%. This verifies

CompositeView can achieve similar performance when the user

percentage is changed. Similar results can be found for the SNAP

dataset in Figure 4d.

4.2.5 Running time. We also collect the algorithms’ running time.

Here we only present the results with various user percentages.

The other results show similar trends. By using the location-centric

query planning strategy, both GridView and CompositeView reduce

the number of feeds and query plans in a feed-following system.

The running time of GridView is less than half of that of the user-

centric algorithmGeoFeed, as shown in both Figure 5a and Figure 5b.
The running time of CompositeView is much higher than GridView
because of a much larger search space. However the running time

of CompositeView is comparable to that of GeoFeed.

4.3 Dynamic Scenario
Here, we present the experiments within a dynamic environment,

where users move over time according to the location information

stored in the datasets. The various parameters are set as in Table 2.

When a user moves to a new location, GridView simply replaces

his query plan with the one at his new cell and GeoFeed would re-

generate his query plan. In addition, CompositeView can iteratively

update the optimized plan over time by using the new statistics.

Besides the cost of query evaluation and view maintenance, the

cost of updating the query plans is also counted in the total CPU

usage. To compare the algorithms’ performance under the dynamic

and the static scenarios, we also run the same experiments under a

static scenario by simply fixing the users to their initial locations.

4.3.1 Dynamicity of the Datasets. We collect the percentage of user

movements in the two real datasets and present them in Figure 6.

The check-in records within each dataset is loaded by using the

grid granularity as 250. If a user’s check-in cell is different from

its last one, it is counted as one user movement. We collect the

percentage of user check-ins which result in a user movements per

time unit. We use box plot to report the median, first quantile, third

quantile, maximum and minimum of the percentages. Recall that,

in CompositeView, we use a threshold on the total moved distances

of users to trigger the re-optimization. The threshold should be

chosen to limit the cost of re-optimization, so in general, we would

select a higher threshold for a more dynamic dataset. After some

trial-and-error tuning, we set the threshold as 25,000 for GeoText

and 250,000 for SNAP.

4.3.2 Impact of Workload. We first test the performance under

different workloads by using different load levels on each dataset,

similar to what we do for the static experiments.

0

5

10

15

20

25

30

1

SNAP GeoText

P
er

ce
nt

ag
e

of
 U

se
r M

ov
em

en
ts

Figure 6: Percentage of User Movements of Each Dataset

We examine both the low (100) and high load level (1000) for

both datasets and present the results in Figure 7. We use box plot

to report the median, first quantile, third quantile, maximum and

minimum CPU usage over the whole system running time. Box “D”

and “S” represent the Dynamic and Static cases respectively.

We can see that, in comparing to the static case, GeoFeed has

a much higher CPU usage in a dynamic case with moving users.

This is mainly due to the extra overhead of frequent updates of

user plans, which is the drawback of user-centric plans. On the

other hand, by adopting location-centric query plans, GridView can

achieve a CPU usage comparable to the static results. Furthermore,

thanks to the use of composite views and the iterative optimizer,

CompositeView further decreases the system workload, which is

more significant with a higher load level (Figure 7b).

For the SNAP dataset, similar results can be found in Figure 7c

and Figure 7d. We can conclude that location-centric plans signifi-

cantly outperform user-centric plans when users are continuously

moving as the two real datasets.

4.3.3 Impact of Grid Granularity. We also conduct experiments

with different gird granularity using the same parameters as in the

static experiments on granularities. The results are presented in

Figure 8.

From Figure 8a and Figure 8b, we can find the CPU usages of both

location-based algorithms are much lower than the user-centric

GeoFeed, with CompositeView being the overall best performing

algorithm. We can also see that the performance gaps among the

algorithms are larger with a relatively coarse-grained grid (granu-

larity 125) in comparing to the finer-grained grid (granularity 750).

This is because, with a coarse-grained grid and location-centric

query plans, users can share the same query plan within a greater

range and the corresponding materialized views would have greater

benefit.

When comparing to the static results, GeoFeed has a continuous

and consistent overhead of deploying new query plans for the

moving users with different granularities. It is interesting to see

that, with a fine-grained granularity (Figure 8b), both GridView
and CompositeView can achieve lower CPU usages in the dynamic

case than that in the static case. This is due to the fact that both

algorithms can effectively capture the movements of users during

runtime, and hence achieve a lower total cost when users move

closer to each other and there are opportunities to share more views

among the users.

The results of the SNAP dataset are shown in Figure 8c and

Figure 8d. While we can draw similar conclusions as in the GeoText

dataset, we can also observe that all the algorithms have higher

Location-Centric View Selection in a Location-Based Feed-Following System DEBS ’19, June 24–28, 2019, Darmstadt, Germany

D S D S D S0

50

100

150

200

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(a) Load Level 100, GeoText

D S D S D S0

100

200

300

400

500

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge
(b) Load Level 1000, GeoText

D S D S D S0

50

100

150

200

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(c) Load Level 67, SNAP

D S D S D S0

50

100

150

200

250

300

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(d) Load Level 667, SNAP

Figure 7: Impact of Load Level, Dynamic Scenario

D S D S D S0

100

200

300

400

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(a) Granularity 125, GeoText

D S D S D S0

100

200

300

400

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(b) Granularity 750, GeoText

D S D S D S0

50

100

150

200

250

300

GeoFeed GridView CompView
To

ta
l C

PU
 U

sa
ge

(c) Granularity 125, SNAP

D S D S D S0

50

100

150

200

250

300

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(d) Granularity 750, SNAP

Figure 8: Impact of Granularity, Dynamic Scenario

D S D S D S0

100

200

300

400

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(a) Moving Feed, GeoText

D S D S D S0

50

100

150

200

250

300

GeoFeed GridView CompView

To
ta

l C
PU

 U
sa

ge

(b) Moving Feed, SNAP

Figure 9: Results of Moving Feed Experiments

fluctuations in CPU usages due to the larger number of users and

feeds in the SNAP dataset.

4.3.4 Impact of Moving Feeds. Finally, we conduct experiments to

test the performance under the scenario of moving feeds. We use

standard parameters presented in Table 2 and use the virtual feed

abstraction for all the algorithms to make a fair comparison. The

locations of users and feeds are dynamically changing overtime ac-

cording to the two real datasets. Again we run the same experiment

by fixing the feeds and users to their initial locations.

The results of the experiments are presented in Figure 9a and

Figure 9b. Again CompositeView is the overall winner. Moreover,

we observe that almost all the algorithms have higher CPU usages

in the dynamic case than in the static case. This is because, by using

the virtual feed abstraction, we introduce additional feeds into the

system, because a virtual feed has to be created for each cell even

there is currently no real feed in that cell. The larger number of

virtual feeds introduces higher overhead to query planning, which

also contributes to the CPU usages. Note that even though Com-
positeView and GridView use location-centric plans, we use a lazy

query plan generation method, where a query plan is generated for

a cell when the first user enters the cell. Hence there is still a run-

time overhead of query planning for our algorithms even though it

is much lower than that of location-centric plans.

5 RELATEDWORK
An essential problem of query optimizations in feed-following sys-

tems is to select the materialized views. View selection is one of

the most challenging problems in database systems and is known

to be NP-complete [12]. It has also been proved that view selection

is inapproximable for general partial orders. This area has been

extensively surveyed in [5, 11, 15, 21].

View selection in feed-following systems without location in-

formation has been studied in Feeding-Frenzy [22], which provides

a view selection solution creating views for each user-feed pair.

They introduce a cost model to make query plan decisions on each

user-feed pair without considering the location information. They

consider a candidate view for each user-feed pair and each selected

view only contains results from one feed to limit the number of

candidate views. Moreover, user-centric query plans are used and

hence it has the aforementioned drawbacks if it is applied to appli-

cations with moving users and feeds. In [3], the authors propose a

view selection algorithm for feed-following systems, which consid-

ers sharing materialized views among different users. However, this

approach does not support location-based feed-following services.

GeoFeed [1] studies the view selections in a location-based feed-

following system. However, GeoFeed’s feed following model is very

different from ours. GeoFeed considers feed followings in a social

network with a static following relation graph and moving users.

Each user has a number of location-based queries, one for each

friend of the user, which retrieves a friend’s k most recent messages

whose locations are within a specified range from the userâĂŸs

location. The optimizer is very similar to that of Feeding-Frenzy,

which considers views containing a single feed and optimizes a

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

query plan for each user queries. As analyzed earlier, such user-

centric query plans have limited adaptivity to the movement of

users. Furthermore, in terms of optimization, the Grid-based algo-

rithm is essentially equivalent to GeoFeed’s optimizer, but generates

location-centric plans instead of user-centric ones.

MobiFeed [25] extends GeoFeed’s solution by using user location

prediction to schedule the aggregated news periodically to mobile

users. They do not consider the problem of user query optimiza-

tion and assume aggregated news is available at all the predicted

positions of a user.

Query optimization in feed-following systems is also related to

partial indexing and partial materialized views. Luo [14] pro-

poses a partial materialization method to only maintain frequently

accessed results to minimize the response time of popular queries.

Wu et al [24] present a partial indexing technique to support ef-

ficient content search in structured peer-to-peer networks. They

only made indices for frequently accessed tuples while keeping

others to be pulled from the sources. Aristides et al [9] present

an approach where users pull social contents from some chosen

users, acting as hub nodes, to reduce the maintenance cost and to

improve event dissemination efficiencies in social networks. Our

composite views can also be seen as virtual hub nodes which can

reduce multiple users’ query evaluation cost.

Another related research area is multi-query optimizations.
Mistry et al [16] attempt to make use of multi-query optimization

techniques in view selections. They find that common subexpres-

sions among multiple views could be shared by multiple queries to

significantly reduce the system running cost. They generate each

query’s alternative plan and search for a multi-query plan exploit-

ing common subexpressions to minimize the overall maintenance

cost. Similar to this line of work, we also consider the feed-following

relationship among multiple users in our cost model to examine

the sharing of common subexpressions and address the challenges

specific to feed-following systems.

Feed-following can be considered as a special type of pub/sub
service [26–29]. Handling location-based queries and moving sub-

scriber are also important challenges in this area [4, 10, 17]. While

these efforts consider the sharing of processing and communication

among different pub/sub queries, we mostly focus on the sharing

of the maintenance cost of materialized views. Our Composite-view
algorithm can also be applied in a location-based pub/sub context

by adopting a new cost model and using our

GreedySetCover query planner.

6 CONCLUSION
This paper formulates the query optimization problem in a location-

based feed-following system. We observe that in a highly dynamic

system, where a substantial portion of users are moving, using

location-centric query plans ismore efficient than using user-centric

ones. We propose a grid space model and transform the feed-

following model into the grid space. Besides the native views at

each grid cell, we also propose the concept of composite views

that may contain feeds located at multiple cells. Such composite

views can be potentially used by multiple users to further enhance

the system performance. We then develop an iterative algorithm,

which can re-optimize query plans progressively to handle user

movements and keep up the high system performance over time.

We conduct a comprehensive experimental evaluation on our al-

gorithms by comparing them to the state-of-the-art solution. The

results show that our Composite-view algorithm can achieve the

best performance under most tested cases.

REFERENCES
[1] Jie Bao, Mohamed F. Mokbel, and Chi-Yin Chow. 2012. GeoFeed: A Location

Aware News Feed System. In ICDE 2012. 54–65.
[2] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as

a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. Morgan & Claypool Publishers.

[3] Kaiji Chen and Yongluan Zhou. 2016. Materialized View Selection in Feed

Following Systems. In BigData 2016. 442–451.
[4] Lisi Chen, Gao Cong, Xin Cao, and Kian-Lee Tan. 2015. Temporal Spatial-Keyword

Top-k Publish/Subscribe. In ICDE 2015. 255–266.
[5] Chandrashekhar A. Dhote and M. S. Ali. 2007. Materialized View Selection in

Data Warehousing. In ITNG 2007. 843–847.
[6] Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and Eric P Xing. 2010. A

Latent Variable Model for Geographic Lexical Variation. In EMNLP 2010. 1277–
1287.

[7] ETSI. 2019. TC Intelligent Transport Systems. http://portal.etsi.org/.

[8] Uriel Feige. 1998. A Threshold of ln n for Approximating Set Cover. Journal of
ACM 45, 4 (1998), 634–652.

[9] Aristides Gionis, Flavio Junqueira, Vincent Leroy, Marco Serafini, and Ingmar

Weber. 2013. Piggybacking on Social Networks. PVLDB 6, 6 (2013), 409–420.

[10] Long Guo, Dongxiang Zhang, Guoliang Li, Kian-Lee Tan, and Zhifeng Bao. 2015.

Location-Aware Pub/Sub System: When Continuous Moving Queries Meet Dy-

namic Event Streams. In SIGMOD 2015. 843–857.
[11] Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. The VLDB

Journal 10, 4 (2001), 270–294.
[12] Howard J. Karloff and Milena Mihail. 1999. On the Complexity of the View-

Selection Problem. In PODS 1999. 167–173.
[13] Jure Leskovec and Andrej Krevl. 2017. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[14] Gang Luo. 2007. Partial Materialized Views. In ICDE 2007. 756–765.
[15] Imene Mami and Zohra Bellahsene. 2012. A Survey of View Selection Methods.

SIGMOD Record 41, 1 (2012), 20–29.

[16] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. 2001. Mate-

rialized View Selection and Maintenance Using Multi-Query Optimization. In

SIGMOD 2001. 307–318.
[17] Jayanta Mondal and Amol Deshpande. 2014. EAGr: Supporting Continuous

Ego-centric Aggregate Queries Over Large Dynamic Graphs. In SIGMOD 2014.
1335–1346.

[18] Inc. Niantic. 2019. Ingress,. http://www.ingress.com/.

[19] Nintendo. 2019. Pokemon Go,. http:/www.pokemon.com/.

[20] Salvatore Sanfilippo and Pieter Noordhuis. 2010. Redis. http://redis.io.

[21] Adam Silberstein, Ashwin Machanavajjhala, and Raghu Ramakrishnan. 2011.

Feed Following: The Big Data Challenge in Social Applications. In DBSocial 2011.
1–6.

[22] Adam Silberstein, Jeff Terrace, Brian F. Cooper, and Raghu Ramakrishnan. 2010.

Feeding Frenzy: Selectively Materializing Users’ Event Feeds. In SIGMOD 2010.
831–842.

[23] 3GPP TR 36.885 V14.0.0. 2016. Study on LTE-based V2X Services.

[24] Sai Wu, Jianzhong Li, Beng Chin Ooi, and Kian-Lee Tan. 2008. Just-In-Time

Query Retrieval Over Partially Indexed Data on Structured P2P Overlays. In

SIGMOD 2008. 279–290.
[25] Wenjian Xu, Chi-Yin Chow, Man Lung Yiu, Qing Li, and Chung Keung Poon.

2015. MobiFeed: A location-aware news feed framework for moving users.

GeoInformatica 19, 3 (2015), 633–669.
[26] Yongluan Zhou, Beng ChinOoi, and Kian-Lee Tan. 2008. Disseminating Streaming

Data in a Dynamic Environment: an Adaptive and Cost-Based Approach. The
VLDB Journal 17, 6 (2008), 1465–1483.

[27] Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, and Feng Yu. 2006. Adaptive

Reorganization of Coherency-Preserving Dissemination Tree for Streaming Data.

In ICDE 2006. 55:1 – 55:12.

[28] Yongluan Zhou, Ali Salehi, and Karl Aberer. 2009. Scalable Delivery of Stream

Query Result. PVLDB 2, 1 (2009), 49–60.

[29] Yongluan Zhou, Zografoula Vagena, and Jonas Haustad. 2011. Dissemination of

models over time-varying data. PVLDB 4, 11 (2011), 864–875.

http://portal.etsi.org/
http://snap.stanford.edu/data
http://www.ingress.com/
http:/www.pokemon.com/
http://redis. io

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Location-Based Feed-Following System
	2.2 Query Processing
	2.3 Cost Model
	2.4 Problem Statement

	3 Location-Centric Optimization
	3.1 Motivation
	3.2 Location-Centric Query Plans
	3.3 Grid-Based Approach
	3.4 Composite-View Approach
	3.5 Mobile Feeds
	3.6 Grid Granularity

	4 Evaluation
	4.1 Experiment Setup
	4.2 Static Scenario
	4.3 Dynamic Scenario

	5 Related Work
	6 Conclusion
	References

