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Abstract

The United States Forest Service promulgated new planning regulations under

the National Forest Management Act in 2012 (i.e., the Planning Rule). These

new regulations include the first requirements in U.S. public land manage-

ment history for National Forests to evaluate, protect, and/or restore ecological

connectivity as they revise their land management plans. Data and resource

limitations make single-species, functional connectivity analyses for the myr-

iad species that occur within the 78 million ha the Forest Service manages

implausible. We describe an approach that relies on freely available data and

generic species, virtual species whose profile consists of ecological require-

ments designed to reflect the needs of a group of real species, to address the

new Planning Rule requirements. We present high-resolution connectivity esti-

mates for 10 different generic species across a 379,000 ha study area centered

on the Custer Gallatin National Forest (CGNF) in Montana and South Dakota

under two different movement models. We identify locations important for

connectivity for multiple species and characterize the role of the CGNF for

regional connectivity. Our results informed the Plan Revision process on the

CGNF and could be readily exported to other National Forests currently or

planning to revise their land management plans under the new Planning Rule.

KEYWORD S

coarse and fine filter, forest planning, generic species, National Forest Management Act, wildlife

connectivity

1 | INTRODUCTION

Ecological connectivity is the degree to which the land-
scape facilitates or impedes movement among habitat

patches. Connectivity influences key ecological processes
such as daily foraging movements, seasonal migrations,
gene flow, and range shifts in response to environmental
change (Bennett, 1999; Crooks & Sanjayan, 2006; Gilbert-
Norton, Wilson, Stevens, & Beard, 2010; Rudnick et al.,
2012; Taylor, Fahrig, Henein, & Merriam, 1993). Con-
tinuing loss of habitat, fragmentation of existing habitats,
and the need for species to shift their ranges in response
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to global climatic changes have spurred a substantial
increase in efforts to identify important movement path-
ways and develop new policies (e.g., land use plans, zon-
ing regulations) and actions (e.g., wildlife overpasses,
new protected areas) to enhance, maintain, or restore
those pathways (Heller & Zavaleta, 2009, Keeley
et al., 2019).

Despite recognition of the importance of connectivity,
developing policies and coordinating actions that con-
serve or restore connectivity remains a challenge for state
and federal land managers (Keeley et al., 2018). Planning
for daily movements, seasonal migrations, and long-term
range expansion often requires different data and analyti-
cal methods because these processes operate over differ-
ent temporal and spatial scales (Crooks & Sanjayan,
2006). Further, information on the features that make a
habitat suitable for movement (e.g., vegetation type, pred-
ator density, defended territory boundaries, and topo-
graphic characteristics) exacerbates these challenges as
the data for each of these factors and their relative impor-
tance to the species-at-hand is often lacking or limited in
spatial extent (Fagan & Calabrese, 2006; Theobald,
Crooks, & Norman, 2011). Addressing this complexity
often requires more empirical data and other resources
than are typically available to resource management
agencies. Moreover, landscape-scale conservation plan-
ning typically involves habitat patches and movement
corridors that span multiple jurisdictions with different
mandates and stakeholders, and thus requires multi-
stakeholder processes that can be time-intensive and
challenging to navigate (Schwartz et al., 2018). Finally,
many land management agencies lack specific mandates
or policy guidance for considering connectivity among
other natural resource objectives, making it difficult
to translate connectivity conservation goals into
implementable management decisions (Keeley et al.,
2018, 2019).

In 2012, the United States Forest Service (USFS) pro-
mulgated new planning regulations under the National
Forest Management Act (NFMA; 77 FR 21162) that
included the first requirements in U.S. public land man-
agement history for National Forests (the administrative
units comprising the National Forest System) to evaluate,
protect, and/or restore ecological connectivity as the For-
ests revise their land management plans (i.e., Forest
Plans). These regulations (collectively the Planning Rule)
define connectivity as “…ecological conditions that exist
at several spatial and temporal scales that provide land-
scape linkages that permit the exchange of flow, sedi-
ments, and nutrients; the daily and seasonal movements
of animals within home ranges; the dispersal and genetic
interchange between populations; and the long distance
range shifts of species, such as in response to climate

change” (36 C.F.R. § 219.19). With 78 million ha of
National Forest System lands comprising 8.5% of US lands
and 30.1% of federally owned lands (Vincent, Hanson, &
Argueta, 2012), the explicit incorporation of connectivity as
a management objective could substantially improve con-
nectivity conservation in the United States. Incorporating
connectivity conservation into National Forest manage-
ment, however, requires an analytical approach that
addresses both ecological complexity and limited resources.
A standardized method could facilitate uptake by multiple
Forests engaged in plan revision.

1.1 | Connectivity and National Forests

The Planning Rule and its associated Directives (available
at: https://www.fs.fed.us/im/directives/) for National
Forest System Land Management Planning explicitly
identifies “conserving the biological diversity of the area”
(USFS, 2012, p. 124) as an objective of land management
plans. The 2012 Rule shifts the focus of the USFS from
individual species' viability (as required by the 1982 Plan-
ning Rule) to ecological integrity, a strategy that relies
more on the management and monitoring of ecosystem
and habitat (i.e., coarse-filter) components, but incorpo-
rates individual species (i.e., fine-filter) criteria for species
whose needs are not adequately captured by the coarse-
filter approach (Schultz, Sisk, Noon, & Nie, 2013). Both
coarse- and fine-filter assessments of connectivity are
common, provide complimentary information, and
require different assumptions and data.

Coarse-filter approaches are often species-neutral and
characterize structural connectivity—the physical
arrangement of habitat patches or land cover types
within the landscape. For connectivity assessments that
must inform management decisions for large numbers of
species within large, ecologically diverse areas, these
coarse-filter and structural approaches are a straightfor-
ward, low-cost option because they rely on readily avail-
able land cover data. Although integral to a
comprehensive assessment of connectivity and ecological
integrity, they may, however, fail to account for different
dispersal abilities, habitat affinities, or life history traits
of species (Vuilleumier & Metzger, 2006; With & King,
1997). As such, managing for connectivity based solely
on structural connectivity may fail to adequately con-
serve key components of ecological integrity or biological
diversity and thereby fail to meet the USFS' stated
objectives.

Fine-filter analyses are typically species-specific and
characterize functional connectivity—actual movement
of individuals, genes, and species in response to elements
of the landscape (Crooks & Sanjayan, 2006). They are
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generally believed to provide more biologically informa-
tive estimates of movement potential and patterns
(Bélisle, 2005). However, for each species of interest they
require identification of areas that constitute quality hab-
itat, consideration of landscape elements that deter or
promote movement, and explicit identification of the
appropriate scale of the analyses based on the species-
specific attributes. Biological movement data
(e.g., genetic data, occurrence estimates, expert opinion;
Zeller, McGarigal, & Whiteley, 2012) for the majority of
these species do not currently exist and analyzing con-
nectivity for each species would be cost- and time-
prohibitive given that Plan revision must be completed in
a timely manner and within a constrained budget.

One method for dealing with resource limitation is to
use an umbrella species—one whose conservation indi-
rectly protects a large number of naturally co-occurring
species (Roberge & Angelstam, 2004). Umbrella species
are typically large-bodied, wide-ranging organisms with
large area requirements; for instance, the grizzly bear
(Ursus arctos horribilis) is a common umbrella species for
conservation efforts in the northern Rocky Mountains
(Carroll, Noss, & Paquet, 2001; Proctor, Nielsen, &
Kasworm, 2015). However, evidence that umbrella spe-
cies are representative of connectivity requirements for
groups of species is mixed, and using the typical wide-
ranging generalist predator as an umbrella species may
not provide connectivity for species with specialized
movement needs (Breckheimer et al., 2014; Meurant,
Gonzalez, Doxa, & Albert, 2018; Roberge & Angelstam,
2004). Further, without species-specific comparisons of
the effectiveness of a species as an umbrella
(i.e., evaluations of the amount of connectivity that man-
agement for a selected species provides to a broader com-
munity of species), the selection of umbrella species may
appear to the public as arbitrary, thereby risking the
acceptability or validity of plans built around those
species.

The generic species approach is an alternative to com-
prehensive modeling of species-specific functional con-
nectivity or selection of umbrella species (i.e., fine filter
approaches; Watts et al., 2008) that may also overcome
many of the limitations of coarse-filter approaches for
assessing connectivity on National Forests. A generic spe-
cies is a virtual species whose profile consists of a set of
ecological requirements designed to reflect the needs of a
group of real species. This approach requires developing
a set of profiles of characteristics (e.g., habitat preference,
perceptual range, and vagility) for each species group of
interest. Generic species have been used for connectivity
conservation planning in several other instances (Foster,
Love, Rader, Reid, & Drielsma, 2017; Lechner, Sprod,
Carter, & Lefroy, 2017; Watts et al., 2010). Because

generic species provide a means of incorporating attri-
butes of multiple species' life histories without requiring
species-specific movement data, they represent an inter-
mediate approach between coarse-filter structural con-
nectivity analyses and fine-filter functional connectivity
analyses that is both biologically defensible and logisti-
cally feasible (Lechner et al., 2017).

The Custer Gallatin National Forest (CGNF) is revis-
ing its Forest Plan under regulations set forth in the 2012
Planning Rule. Here we describe an analytical approach
developed in conjunction with the CGNF designed to
leverage existing, freely-available data to generate rela-
tively fine-grained estimates of connectivity for a suite of
species across a broad spatial extent. We used a generic
species approach to characterize connectivity across mul-
tiple habitat types and jurisdictions while adhering to the
resource constraints imposed by limited data and a com-
pressed timeline for land management planning under
the National Forest Management Act. We then discuss
how our results are informing the current CGNF Plan
revision process and consider how this approach might
inform similar efforts.

2 | METHODS

2.1 | Study area

The CGNF encompasses more than 1.2 million ha of
southern Montana and northwestern South Dakota
(Figure 1) and provides habitat for more than 700 wildlife
species (Montana Natural Heritage Program: http://
mtnhp.org/). The CGNF is situated between the Greater
Yellowstone and Northern Continental Divide Ecosys-
tems, making it a key area for landscape connectivity
conservation. As such, we buffered each of the CGNF
administrative units by ~161 km thereby allowing us to
assess connectivity within the region rather than just
between administrative units. This resulted in a study
area of over 379,000 ha comprised of multiple federal,
state, and private jurisdictions.

2.2 | Defining generic species

We modeled connectivity for terrestrial generic species
that represent combinations of five vegetation type pref-
erences (forest specialist, alpine specialist, grassland spe-
cialist, shrubland specialist, or habitat generalist that
prefers any of the preceding vegetation types) and two
body sizes (large or small). Body size is positively corre-
lated with both dispersal ability (Jenkins et al., 2007) and
perceptual range (the distance at which an animal can
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perceive landscape elements; Mech & Zollner, 2002),
which influence connectivity and habitat selection. While
dispersal ability defines the limits of an animal's move-
ments across the landscape, perceptual range determines
the immediately surrounding area that an animal's habi-
tat selection and movement decisions are based upon.

The generic species defined for this analysis were
based on the dispersal characteristics of local wildlife spe-
cies. We developed generic species profiles for larger-
bodied and/or wide-ranging species based on the dis-
persal characteristics of: elk (Cervus elaphus), gray wolf
(Canis lupus), Canada lynx (Lynx canadensis), and wol-
verine (Gulo gulo). Similarly, we developed generic spe-
cies profiles for smaller-bodied and/or shorter-ranging
species based on the dispersal attributes of: bobcat (Lynx
rufus), red fox (Vulpes vulpes), and marten (Martes ameri-
cana). We relied on expert opinion of CGNF biologists
and published literature (e.g., Schaefer, Morellet, Pépin, &
Verheyden, 2008; Zollner, 2000) to define the dispersal,
movement, and habitat selection attributes of each
generic species based on habitat preference, tolerance of
human impacts on the landscape, perceptual range, and
dispersal distance (Table S1).

We identified potential habitat based on 30-m resolu-
tion LANDFIRE Existing Vegetation Type (EVT) version
1.4 geospatial data (U.S. Geological Survey, 2014) to

classify landscapes pixels into dominant habitat types
based on the “EVT Lifeform” attribute in the dataset
(Table S1; Figure 2). We then used an index of human
modification (Theobald, 2013) as a complementary indi-
cator of habitat suitability that is available for North
America (available at DataBasin: https://databasin.org/
datasets/110a8b7e238444e2ad95b7c17e889b66). The human
modification index (HMI) quantifies overall modification
on a scale ranging from 0 (low modification) to 1 (high
modification) and integrates the effects of a wide variety of
anthropogenic stressors for which spatial data are widely
available (e.g., development, agriculture, energy production,
mining, and roads).

We defined specialists as those species that required
80% of the area within their perceptual range to be
comprised of one of four dominant vegetation types in
the region (alpine, forest, grassland, or shrubland) and
relatively un-modified by human activities (see
Table S2 for a complete description of the thresholds
used here). In contrast, generalists were those that
required 80% of the area within their perceptual range
to be any combination of the dominant vegetation
types with a greater tolerance for human impacts. All
other cover types (e.g., residential/commercial/urban
development, agriculture, open water) were considered
nonhabitat.

FIGURE 1 Study extent for connectivity analysis, including all lands within 100 miles (160.9 km) of Custer Gallatin National Forest

(CGNF). CGNF geographic areas used for forest planning purposes are labeled
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2.3 | Identifying core areas

Connectivity analyses generally begin by identifying spe-
cific areas to be connected (Sawyer, Epps, & Brashares,
2011). We developed a novel approach that incorporates
vegetation type, degree of human modification, and an
organism's perceptual range to define core areas of
highest-quality habitat for generic species. We resampled
270-m resolution HMI geospatial data to 30-m resolution
using bilinear interpolation to align it with the EVT layer.
We then created a moving-window algorithm that identi-
fied each pixel in the landscape as core habitat or not for a
particular generic species by: (a) defining a circular neigh-
borhood around the focal pixel with radius equal to the per-
ceptual range of the generic species; (b) calculating the
proportion of the pixels within this neighborhood that had
HMI below a given value (the “modification threshold,”
Table S2) and were the preferred vegetation type(s) for the
generic species; and (c) classifying the focal pixel as core
habitat if that proportion met or exceeded a given value
(the “habitat threshold,” Table S2).

We identified threshold values for both modification
level and vegetation type homogeneity for core areas by iter-
ating combinations of each threshold value and assessing
the degree to which the subsequently identified core areas
matched with CGNF staff expertise regarding the location
and extent of high-quality habitat. This approach was
designed to identify those areas that have relatively continu-
ous cover of a particular vegetation type (or combination of
vegetation types for generalists) and minimal human
impacts (including impacts that do not result in a change in

cover type but reduce habitat suitability, such as light
pollution or road noise; based on the HMI). We recog-
nize that the core habitat areas identified in our analysis
are by no means the only areas utilized by wildlife, par-
ticularly generalist species. However, they are the areas
believed by local managers to exhibit the highest habitat
quality in the region, and therefore are considered the
highest priority locations among which we desire to
maintain connectivity.

2.4 | Developing the resistance surface

Connectivity models simulate movement of individuals
across spatially heterogeneous landscapes represented as
resistance surfaces: gridded spatial data in which the
value of each pixel is an estimate of the willingness, phys-
iological cost, and/or reduction in survival of an organ-
ism moving through the pixel as a function of the
environmental characteristics encountered there (Zeller
et al., 2012). Typically, the effects of multiple factors that
influence movement (e.g., cover type, topography, prox-
imity to human development) are incorporated into
resistance surfaces, and the final resistance surface is a
pixel-by-pixel map of the landscape's relative resistance
(i.e., unsuitability) to animal movement, with larger pixel
values indicating greater resistance. A variety of informa-
tion sources can be utilized to assign resistance values to
the landscape, including expert opinion, relocation or
detection data, movement path data, and genetic data
(Sawyer et al., 2011; Zeller et al., 2012).

FIGURE 2 Examples of data inputs, intermediate analysis products, and connectivity model outputs for the large forest specialist

generic species within a small portion of the study area surrounding Bozeman, Montana. (a) Dominant vegetation type derived from

LANDFIRE Existing Vegetation Type “Lifeform” attribute. (b) Human modification index from Theobald (2013). (c) Core habitat areas

(i.e., patches of relatively homogeneous, minimally impacted forest) derived from a moving-window algorithm. (d) Landscape conductance

surface based on human modification and vegetation type. (e) Connectivity model output assuming optimal movement behavior. Borders of

Custer Gallatin National Forest (CGNF) units are shown with black lines. CGNF geographic areas included in figure extent are the Bridger

and Bangtail Mountains to the north and Gallatin Mountains to the south (see Figure 1)
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Because we modeled generic species, detailed empiri-
cal data (e.g., genetic data or point locations from GPS
telemetry studies) were not available to develop appropri-
ate resistance surfaces. Instead, we used an estimate of
“naturalness”—the degree to which the landscape is
influenced by human activities and modification to land
cover—as a predictor of the permeability to ecological
flows. This approach assumes that areas of greater natu-
ralness are more likely to support ecological processes
and function as animal movement routes and has been
used in previous connectivity studies (e.g., Belote et al.,
2016; Dickson et al., 2016; Theobald, Reed, Fields, &
Soulé, 2012).

We modified this “naturalness” value to reflect our
generic species by assuming that (a) specialists are more
sensitive than generalists to human modification, and
(b) nonpreferred vegetation types have additional resis-
tance for specialist species regardless of level of human
modification (Table S2). The connectivity algorithm we
used (see description of “Modelling connectivity” below)
relies on a conductance surface (i.e., the inverse of a
resistance surface) wherein higher values represent areas
more conducive to movement. We transformed
Theobald's (2013) HMI into conductance by assuming a
negative linear relationship between the two, which
implies that animals are more likely to move through
areas that are less modified by humans. We then modi-
fied the conductance surface for each specialist species by
multiplying conductance values by 0.5 for all pixels with
vegetation type other than the preferred vegetation type
to reflect that specialists are less likely to move through
nonpreferred vegetation types. Real specialist species
likely do not perceive all nonpreferred vegetation types as
equally unsuitable for movement, but given the generic
nature of our modeled species, we chose to penalize all
nonpreferred vegetation types equally. For generalist
generic species, we assumed that all four vegetation types
(forest, grassland, shrubland, or alpine) were preferred,
and we applied this penalty to all other cover types
(e.g., developed, barren, agriculture, open water). Finally,
we aggregated conductance surfaces to 300-m resolution
to reduce computational requirements.

2.5 | Modeling connectivity

A variety of approaches have been used to model land-
scape connectivity, but the most commonly used are
least-cost path analysis (Adriaensen et al., 2003) and cir-
cuit theory (McRae, Dickson, Keitt, & Shah, 2008). These
two approaches represent opposite ends of a spectrum of
animal movement behaviors. Least-cost path models
assume that individuals have perfect knowledge of the

landscape and are able to travel between an origin and
destination along the single path that minimizes the total
cost of movement, which is a function of both the actual
distance traveled and resistance encountered along the
way. In contrast, circuit theory models assume that indi-
viduals are moving stochastically as random walkers,
with no knowledge of the landscape beyond what they
perceive from their immediate surroundings. Both
approaches are frequently used to assess landscape con-
nectivity and design conservation strategies despite rely-
ing on assumptions about animal dispersal behavior that
are unrealistic for most species.

We modeled connectivity within and around CGNF
using randomized shortest paths (RSP; Saerens, Achbany,
Fouss, & Yen, 2009), which incorporates elements of both
least-cost paths and circuit theory and has been used to
model movements of grizzly bears (Ursus arctos
horribilis) and elk in the study extent (Brennan et al.,
2018; Peck et al., 2017). Randomized shortest paths are
least-cost paths modified by introducing random devia-
tions that simulate exploratory movements away from
the optimal route, which may more accurately reflect
movement behavior of many species in real landscapes.
The degree of random deviation is controlled by a param-
eter, θ, that ranges from 0 (analogous to a purely random
walk) to 20 (analogous to a deterministic LCP). We tested
a series of θ values within this range for a 1.5 million ha
subset of the study extent and identified two values (0.1
and 10) that we believe bracket an appropriate range of
variation in dispersal behavior of wildlife species.

RSP models require a set of point locations among
which to simulate movement of individuals (i.e., source
and destination points, or “nodes”). We established these
node locations by (a) defining distinct core habitat pat-
ches in the landscape as groups of core habitat pixels con-
nected by an edge or corner (i.e., the 8-neighbor rule),
(b) randomly selecting one pixel within each distinct core
habitat patch ≥100 ha area for large species and ≥ 25 ha
for small species, (c) continuing to randomly select core
habitat pixels within the landscape until a desired overall
density of nodes within core habitat across the study
extent had been achieved, and (d) establishing a node at
the center of each randomly selected pixel. We used this
procedure because we wanted to ensure that all core hab-
itat patches of significant size (i.e., large enough to
accommodate the perceptual range for a given size class)
were represented as starting and ending points, but we
could not achieve this via purely random sampling with-
out increasing the overall node density to a level that
made it computationally infeasible. For large specialists,
a density of 1 node per 2,000 ha of core habitat best met
our dual objectives of comprehensive sampling of core
areas and computational feasibility. For small specialists,
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a much higher density of 1 node per 500 ha of core habi-
tat was required to generate a reasonable number of node
pairs separated by the much smaller maximum dispersal
distance. Given the much larger core area extent for gen-
eralists, we used densities of 1 node per 15,000 ha of core
habitat for large generalists and 1 node per 2,000 ha of
core habitat for small generalists to keep computation
time reasonable.

We used the passage function in the gdistance pack-
age (van Etten, 2012) for R (R Development Core Team,
2018) to implement RSP analyses for each generic spe-
cies. For every pair of nodes separated by a Euclidean dis-
tance less than the maximum dispersal distance (150 km
for large species or 10 km for small species), we ran the
RSP algorithm to simulate movement between the source
node i and destination node j. To make this computation-
ally feasible, we reduced the study area for each node
pair (i,j) by drawing a bounding box around the node pair
and buffering this box by 50 km (large species) and
10 km (small species). We then ran the passage function
within this buffered bounding box (rather than across the
entire study area). Although landscape boundaries can
have an impact on connectivity model outputs, the buffer
distances we used would require the species to travel at
least a third of its maximum dispersal distance in the
wrong direction before reaching the destination node. As
such, our method of reducing the study area for node
pairs should have minimal impact on our results. We cal-
culated the net number of passages through each pixel in
the landscape as an indicator of the contribution of that
pixel to connectivity from node i to node j. We then
summed these passage values across all node pairs to
determine the overall importance of each pixel for con-
nectivity among all core areas within the landscape. We
ran a total of 20 models: five vegetation type preferences
(alpine, forest, grassland, shrubland, and gener-
alist) × two animal sizes (large and small) × two move-
ment behaviors (random and optimal movement).

2.6 | Characterizing the contribution of
current land-use designations to
connectivity

Forest Planning may result in the development of new
land use designations and direction for management. To
determine the degree to which existing conservation des-
ignations (e.g., wilderness areas, wilderness study areas,
and inventoried roadless areas) within the CGNF and
across the broader study area align with important move-
ment pathways, we first created binary maps of high-
value connectivity pixels (those with a passage value in the
Top 5 percentile for at least one of the 20 connectivity

models run) and very high-value connectivity pixels (Top
1 percentile for at least one model) for the regional study
area (“TOP PERCENTILE” approach described below). We
then calculated the percentage of regional high-value and
very high-value pixels contained within each conservation
designation and compared this to the percentage of the full
study area comprised by each designation as a measure of
the degree to which connectivity value was over- or under-
represented within a given designation.

2.7 | Characterizing connectivity across
models

Forest Plans are intended to guide land use patterns and
habitat management needs for a wide range of species.
As such, we developed several approaches to integrate
the 20 different models into a single map that could be
used to help identify locations within CGNF that could
be managed to benefit connectivity for species from mul-
tiple generic species groups. Those locations benefitting
multiple species outside of existing designations (see
above) could then be considered for new designations or
connectivity-specific plan components. We used three
approaches for integrating information across models
that reflected different assumptions about habitat affinity,
conductance values, dispersal distance, and perceptual
range in order to identify areas of model overlap within
CGNF: (a) normalizing all passage values to a common
0–1 scale and then summing values across all models as a
measure of each pixel's total contribution to regional con-
nectivity for all generic species and movement behaviors
(NORMALIZED SUM); (b) calculating the Top 1 percen-
tile (i.e., very high connectivity value) or Top 5 percentile
(i.e., high connectivity value) of passage values for each
model and identifying pixels that meet this threshold for
at least one model (TOP PERCENTILE); and (c) counting
the number of models for which each pixel had a passage
value in the top percentile (MODEL COUNT).

3 | RESULTS

3.1 | Effects of animal size

Core areas identified using the moving-window algo-
rithm had broadly similar spatial distributions for large
and small generic species of the same preferred vegeta-
tion type, although small species core areas tended to
include more numerous but smaller habitat patches
while large species core areas tended to include fewer but
larger habitat patches (Figure S1). This pattern likely
resulted from differences in perceptual ranges for large
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and small species, whereby smaller species were assumed
to perceive habitat quality over a finer spatial extent.

Although the spatial distribution of core areas was
similar for large and small species, landscape-level pat-
terns of connectivity for the two sizes of generic species
tended to be quite distinct (Figures 3 and 4). Large spe-
cies connectivity model outputs highlighted long-distance
connections that included significant portions of the
landscape outside of core areas (i.e., inter-patch connec-
tions). In contrast, connectivity model outputs for small

species indicated that high-value connectivity areas were
located almost exclusively within core areas
(i.e., intrapatch connections). The large difference in
maximum dispersal distance for large and small species
(150 and 10 km, respectively) accounts for this pattern, as
connectivity models for large species allowed for connec-
tions between distant core areas, while relatively few core
areas for small species were separated by a distance
smaller than their maximum dispersal range, generally
resulting in movements concentrated within individual

FIGURE 3 Connectivity model outputs for large generic species (rows) assuming different movement behaviors (columns). Custer

Gallatin National Forest boundaries are shown with black lines
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core areas. Locations of core habitat areas for small spe-
cies exhibited strong overlap with high-value connectivity
areas for larger-bodied species of the same preferred veg-
etation type (Table S3; Figures S2-S5).

3.2 | Effects of movement behavior

Connectivity models assuming random movement behav-
ior and optimal movement behavior for large species

tended to highlight similar locations within the study
extent as important for regional connectivity for a given
preferred vegetation type. However, optimal movement
models identified narrower corridors, while random
movement models identified more diffuse corridors
(Figures 3 and 4).

For small species, connectivity models assuming ran-
dom movement and optimal movement behaviors pro-
duced very similar outputs. We believe this was because
of the relatively large pixel size (300 m) used in the model

FIGURE 4 Connectivity model outputs for small generic species (rows) assuming different movement behaviors (columns). Custer

Gallatin National Forest boundaries are shown with black lines
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relative to the maximum dispersal distance assumed for
small species (10 km), which limited the potential for the
two movement types to produce different movement
paths.

3.3 | Multi-species connectivity

Our different approaches for identifying areas important
for connectivity for multiple species provided comple-
mentary results, and each suggested that a major portion
of CGNF lands has high connectivity value for at least
some generic species. The NORMALIZED SUM approach
indicated that nearly all of CGNF, particularly the west-
ern portion, is of moderate or higher value when consid-
ering all models simultaneously (Figure 5a). The TOP
PERCENTILE approach identified a number of coherent
pathways that may serve to connect generic species' core
areas, but the location and extent of those pathways
depended on the percentile threshold (Figure 5b). Using
the Top 5 percentile, nearly all of CGNF was identified as
high value for at least one generic species, while using
the Top 1 percentile resulted in a smaller and less contig-
uous set of very-high connectivity value areas. The
MODEL COUNT provided more nuanced information on
multi-species connectivity value, indicating that nearly
all high-value pixels identified in the previous approaches
were supported by four or fewer out of 20 models.
(Figure 5c). Thus, although most of CGNF (and much of
the regional study area) was important for connectivity
according to at least one model, very little of it was iden-
tified as important by more than a small fraction of the
models. Because results tended to be most similar among
models for generic species of the same habitat preference
but assuming different movement behavior or animal
size, pixels with support from multiple models do not
necessarily represent areas important for animals with
different habitat preferences.

3.4 | Contribution of land use
designations to connectivity

A greater proportion of lands with high and very high
connectivity value occurred within each designation cate-
gory than would be expected based on these designations'
respective areas. This discrepancy was most notable
within CGNF lands, which comprise 3.6% of the regional
study area but contain 7.7 and 10.3% of the high-value
and very high-value pixels, respectively, for regional con-
nectivity (Table 1). We also computed the fraction of
pixels within each designation that were classified as
high or very high value for connectivity. This metric

suggests that pixels of greatest connectivity value tend to
be over-represented within CGNF and other protected
lands; for instance, 84.4% of CGNF lands were classified
as high value for connectivity (compared to 39.7% of
lands throughout the study area), and 31.7 of CGNF
lands were classified as very high value (compared to
11.15% of lands throughout the study area).
Conservation-based designations (e.g., Wilderness Areas,
Wilderness Study Areas, and Inventoried Roadless Areas)
on the CGNF are largely situated in areas of high and
very high connectivity values (Table 1), suggesting that

FIGURE 5 Examples of approaches for integrating

connectivity results across models. (a) Pixel-wise sum of normalized

passage values across all 20 models (i.e., NORMALIZED SUM).

(b) Pixels with passage values in the Top 1 percentile or Top

5 percentile for at least one model (i.e., TOP PERCENTILE).

(c) Pixel-wise count of number of models with passage values in the

Top 1 percentile (i.e., MODEL COUNT)
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despite their rarity within the study area they contribute
substantially to connectivity for the generic species con-
sidered here. Further, these areas encompass more con-
nectivity value than similar designations outside of the
CGNF. Collectively, these results highlight the critical
role that CGNF lands play in facilitating regional connec-
tivity, in concert with other lands managed for conserva-
tion purposes.

4 | DISCUSSION

We developed a novel, intermediate-filter approach for
assessing connectivity across the CGNF based on generic
species. Our approach provided a means of characterizing
connectivity both within and between large core areas
without being restricted to political or jurisdictional
boundaries. Our approach also provided a means of ana-
lyzing functional connectivity at an intermediate level of
detail and data requirements (compared with structural
connectivity assessments or species-specific functional
connectivity analyses). Perhaps most importantly, our
approach was designed to fit within the existing Forest

Service plan revision process and could be applied by
other national forests undergoing revision of their Land
Management Plan.

Our method for defining starting and ending points
contrasts with other approaches used in large-scale con-
nectivity studies, which either consider each habitat
patch or protected area as a single node (Belote et al.,
2016; Dickson et al., 2016; Theobald et al., 2012) or model
connectivity between nodes situated along opposite
boundaries of the study extent (Gray & Dickson, 2015;
Koen, Bowman, Sadowski, & Walpole, 2014; Pelletier
et al., 2014). The first approach was not well suited to our
analysis because we were interested in characterizing
connectivity within large core areas (which requires mul-
tiple nodes within a core) as well as between core areas.
The second approach was also not ideal because we were
interested in omnidirectional movements between any
starting and ending locations within the study extent.
Our method overcomes these limitations, although at the
cost of a considerable increase in computation time.

We used a generic species approach because the connec-
tivity conservation mandate of the U.S. Forest Service is
very broad and encompasses an enormous variety of species

TABLE 1 Contribution of different designations to connectivity conservation across the study area

Land category

Percentage of
regional study
area within
designation

Percentage of
regional HIGHa

connectivity value
pixels within
designation

Percentage of
regional VERY
HIGHb

connectivity value
pixels within
designation

Percentage of
designation
classified as
HIGHc

connectivity value

Percentage of
designation
classified as VERY
HIGHd

connectivity value

Custer Gallatin
National
Forest
(CGNF)

3.6 7.7 10.3 84.4 31.7

Wilderness area
(WA)

3.8 8.8 14.7 92.8 43.4

WA within
CGNF

1.1 2.7 5.1 99.1 51.4

Wilderness
study area
(WSA)

1.1 1.9 1.7 71.7 17.5

WSA within
CGNF

0.2 0.4 0.3 97.9 24.1

Inventoried
Roadless area
(IRA)

7.0 12.0 11.9 67.6 18.8

IRA within
CGNF

0.9 2.0 1.9 87.4 23.7

aHigh connectivity value pixels are those with a passage value in the Top 5 percentile for at least one of the 20 connectivity models run.
bVery high connectivity value pixels are those with a passage value in the Top 1 percentile for at least one of the 20 connectivity models run.
cFor reference, 39.7% of the full study area was classified as high connectivity value (Top 5 percentile for ≥1 model).
dFor reference, 11.2% of the full study area was classified as very high connectivity value (Top 1 percentile for ≥1 model).
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and ecological elements. This species-agnostic approach
overlooks the variability that exists among species with
respect to relationships between landscape characteristics
and movement behaviors. For instance, we assumed that
roads were an impediment to animal movement, but some
species have been shown to use roads as travel corridors
(Forman et al., 2003). We assumed that developed areas
were not suitable habitat, but some species are well adapted
to living in and/or moving through urban settings
(e.g., deer). We did not account for effects of topography on
resistance to movement because these effects are highly var-
iable among species, but topography may be an important
determinant of resistance to movement for individual spe-
cies (e.g., bighorn sheep [Ovis canadensis], which prefer to
move through steep terrain to avoid predators; Geist, 1971).
These assumptions may reduce the ability of our connectiv-
ity models to identify all of the important movement path-
ways for wildlife, but avoid challenges associated with
single-species models and the selection of appropriate
umbrella species (Meurant et al., 2018). Our approach
improves upon coarse-filter habitat-based approaches by
explicitly considering habitat requirements, sensitivity to
human modification, and dispersal distance, thereby bridg-
ing the gap between coarse-filter approaches and data-
intensive fine filter approaches. Indeed, our results agree
with several species-specific analyses conducted in portions
of the study area (e.g., Cushman, McKelvey, & Schwartz,
2009; Peck et al., 2017).

We were able to identify important locations for facil-
itating movements for a variety of different species across
a large landscape containing multiple private, state, and
federal jurisdictions. Similar to previous studies
(e.g., Cushman & Landguth, 2012), however, our efforts
to develop an integrated approach highlighting key areas
for multiple species also illustrate the challenges associ-
ated with consolidating multiple aspects of species biol-
ogy into a single map. For example, the NORMALIZED
SUM approach is relatively straightforward to imple-
ment, but makes it difficult to distinguish between con-
nectivity scenarios that result in similar values but have
different management implications (e.g., high connectiv-
ity value according to model x and low value according to
model y OR low value according to model x and high
value according to model y OR moderate value according
to both models). The TOP PERCENTILE approach iden-
tifies portions of the landscape with exceptionally high
connectivity value for any one of the generic species, but
it may overlook areas with moderate-to-high connectivity
value for multiple generic species that could be useful
management targets. The MODEL COUNT approach
provides a nonbinary map of the degree of support across
models for each pixel as having high connectivity value.
However, this and other percentile-based approaches are

sensitive to the threshold value used to define high con-
nectivity value and can result in discrete maps of impor-
tant vs. not-important areas for connectivity that do not
convey the spatial uncertainty associated with boundaries
of key movement pathways.

Although this limits our ability to identify movement
pathways across generic species groups, it is worth noting
that generic species are, by definition, intended to represent
the needs of multiple species that may share the same gen-
eral habitat affinity and dispersal ability. In addition, our
approach allowed explicit characterization of the degree to
which connectivity conservation actions designed to benefit
large specialist generic species might provide additional
benefits for additional species (similar to an umbrella spe-
cies, but based on multiple species' characteristics). Our
results indicated that the majority of high-value connectiv-
ity areas for small species are largely contained within core
areas identified for large species. Because most connectivity
for small-bodied species occurs within these core areas due
to their limited dispersal range, managing the landscape in
a manner that protects connectivity for larger-bodied spe-
cies should simultaneously protect many of the highest
quality habitat patches (and connections within these pat-
ches) utilized by smaller-bodied species. Lastly, the results
of our generalist models suggest that there are multiple
large areas that provide connectivity for species with less
restrictive habitat requirements, which represent the bulk
of species on the CGNF. Although these results did not
identify obvious “corridors” (because large portions of the
landscape are generalist habitat), they did highlight optimal
locations for crossing major linear barriers that affect all
species in the region.

The 2012 Planning Rule emphasizes the importance
of an “all lands” approach that reflects the fact that eco-
logical processes are rarely circumscribed by jurisdic-
tional boundaries. With respect to connectivity, our
analyses highlight the importance of the CGNF within
the context of conserving regional connectivity. They also
highlight the critical role of focusing conservation efforts
on private lands to maintain regional connectivity. The
units administered by the CGNF are in some cases small
and separated by large expanses of private or other state/
federal lands. Managing (or modeling) connectivity only
within the borders of the National Forest System (NFS)
would lead to very different outcomes and conclusions.
For example, if our nodes were only placed within CGNF
units, we would potentially overlook important corri-
dors linking non-NFS habitats. By predicating our ana-
lyses on generic species' requirements rather than
jurisdictional boundaries, our analyses highlight the
importance of collaborating with other entities for
achieving regional connectivity objectives, especially
for grassland and shrubland species.
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The analyses described here were used in conjunction
with structural connectivity assessments conducted by
CGNF staff to help identify locations on the landscape
where managing for connectivity is particularly important
and may require trade-offs with other multiple use objec-
tives (Custer Gallatin National Forest (CGNF), 2019). In
doing so, our analyses facilitated the development of poten-
tial connectivity-related plan components and also provided
CGNF staff with spatially explicit information on connectiv-
ity throughout the region that can be incorporated into the
various effects analyses conducted to fulfill the United
States' National Environmental Policy Act (NEPA; 42
U.S.C. § 4,321 et seq.) requirements for Forest Plan revision.

As importantly, developing a team comprised of uni-
versity and NGO scientists along with CGNF resource
specialists enabled us to ensure that our approach
addressed agency mandates and a variety of stakeholder
objectives (sensu Hallett et al., 2017). In addition, we
were able to leverage resources from a variety of sources
to reduce the impact of resource limitations. Finally, reg-
ular communication between the research team and
CGNF decision makers helped ensure that the analyses
were compatible with the time constraints imposed by
the planning process. This ensured that the analyses pres-
ented here could be considered within the NEPA process
and helped facilitate the identification of Key Linkage
Areas, a potential new land use designation for the
CGNF, within several alternatives contained in the
recently issued Draft Environmental Impact Statement
(CGNF, 2019). These alternatives also contain proposed
plan components to guide forest management in these
areas designed to reduce potential negative impact on
connectivity. We suggest that our approach provides an
efficient, biologically meaningful approach for incorpo-
rating connectivity into the Forest Plan revision process
under the 2012 Planning Rule and could be readily
exported to the over 78 million ha currently managed by
the USFS. Moreover, our approach could be useful for
any land management agency attempting to incorporate
connectivity information into planning documents in sit-
uations where time, data, and monetary resources may
be limited.
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