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Abstract. We contribute to the classification of non-symplectic automor-

phisms of odd prime order on irreducible holomorphic symplectic manifolds

which are deformations of Hilbert schemes of any number n of points on K3
surfaces, extending results already known for n = 2. In particular, we study

the properties of the invariant lattice of the automorphism (and its orthogonal

complement) inside the second cohomology lattice of the manifold. We also
explain how to construct automorphisms with fixed action on cohomology: in

the cases n = 3, 4 the examples provided realize all admissible actions in our

classification. For n = 4, we present a construction of non-symplectic auto-
morphisms on the Lehn–Lehn–Sorger–van Straten eightfold, which come from

automorphisms of the underlying cubic fourfold.

1. Introduction

The study of automorphisms of K3 surfaces has been a very active research
field for decades. The global Torelli theorem allows to reconstruct automorphisms
of a K3 surface Σ from Hodge isometries of H2(Σ,Z) preserving the intersection
product; this link, together with the seminal works of Nikulin [56], [55], provided the
instruments to investigate finite groups of automorphisms on K3’s. In recent years,
the interest in automorphisms has extended from K3 surfaces to manifolds which
generalize them in higher dimension, namely irreducible holomorphic symplectic
(IHS) varieties. Results by Huybrechts [36], Markman [47] and Verbitsky [65],
which provide an analogous of the Torelli theorem for these manifolds, allow us
to use similar methods, studying the action of an automorphism on the second
cohomology group with integer coefficients (which carries again a lattice structure,
provided by the Beauville–Bogomolov–Fujiki quadratic form; see [34, Part III] for
further references).

A great number of results are known for automorphisms of prime order on IHS
fourfolds that are deformations of the Hilbert scheme of two points on a K3 surface
(so-called manifolds of K3[2]-type). The symplectic case (i.e. automorphisms which
preserve the symplectic form) is covered in [20] and [51]; in turn, the study of non-
symplectic automorphisms was started by Beauville [8] and has seen many relevant
contributions, culminating in a complete classification of the associated sublattices
in cohomology ([12], [11], [62]). Explicit constructions of automorphisms realizing
all cases in this classification have been exhibited throughout the years (see [57],
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[12], [53], [22]), with the exception of the automorphism of order 23 whose existence
is proved in [11, Theorem 1.1].

Far less is known, in general, about non-symplectic automorphisms of mani-
folds of K3[n]-type when n ≥ 3. In [41, Chapter 4], Joumaah studies moduli spaces
of manifolds X of K3[n]-type with non-symplectic involutions ι : X → X, providing
also a classification for the invariant latticeH2(X,Z)ι

∗
=
{
v ∈ H2(X,Z) : ι∗(v) = v

}
in [41, Theorem 5.0.1]. This classification, however, is not entirely correct: the re-
cent paper [21], by the two authors and Andrea Cattaneo, rectifies these inaccuracies
(see [21, §2]) and provide some additional insight on non-symplectic involutions.

In this paper we construct a general theory of non-symplectic automorphisms of
odd prime order p of manifolds of K3[n]-type, for any n ≥ 2.

In the case of fourfolds of K3[2]-type, the authors of [12] discovered that the
classification of non-symplectic automorphisms is more complex with respect to
the case of automorphisms of K3 surfaces, and also fundamentally richer for p = 2
rather than for odd p. In the more general setting of manifolds of K3[n]-type,
we show that many additional cases appear whenever p divides 2(n − 1). This
is also one of the reasons why non-symplectic involutions deserve to be discussed
separately, since for all n ≥ 2 this divisibility condition becomes vacuous if p = 2.

If X is of K3[n]-type, an automorphism σ ∈ Aut(X) is uniquely determined by
the pull-back σ∗ ∈ O(H2(X,Z)), since the homomorphism Aut(X)→ O(H2(X,Z)),
σ 7→ σ∗ is injective (see [6, Proposition 10] and [52, Lemma 1.2]). In turn, it is
possible to describe σ∗ by means of the invariant lattice T = H2(X,Z)σ

∗
and its

orthogonal complement S = T⊥ ⊂ H2(X,Z). Since σ∗ is the unique extension
to H2(X,Z) of the isometry idT ⊕σ∗|S ∈ O(T ⊕ S) (see [56, Corollary 1.5.2]),
we conclude that the automorphism σ ∈ Aut(X) is determined by the sublattices
T, S ⊂ H2(X,Z) and by the isometry σ∗|S ∈ O(S) (which cannot be chosen arbi-
trarily). One can therefore classify non-symplectic automorphisms of manifolds of
K3[n]-type by studying their action on cohomology, and this requires a classification
of the pairs of lattices (T, S).

As a lattice, H2(X,Z) is isometric to the abstract lattice L := U⊕3 ⊕ E⊕2
8 ⊕

〈−2(n−1)〉, therefore we can fix an isometry η : H2(X,Z)→ L and consider T and
S as orthogonal primitive sublattices of L. After recalling, in §2, some well-known
results which we use throughout the paper and fixing the notation, in §3 we study
the pairs of lattices (T, S) in the non-symplectic case. For any automorphism of odd
prime order p we consider two numerical invariants m, a defined by the properties

rk(S) = (p− 1)m and H2(X,Z)
T⊕S

∼=
(

Z
pZ

)⊕a
.

As it will be explained in §3, a triple (p,m, a) is admissible for a certain n ≥ 2 if it
satisfies a set of necessary (but not sufficient, a priori) conditions for the existence
of a non-symplectic automorphism of order p on a manifold of K3[n]-type with
numerical invariants m, a as above. The exact definition is the following, where for
any lattice V we denote by l(AV ) the length of the discriminant group AV := V ∨/V ,
i.e. the minimal number of generators of AV .

Definition (Definition 3.10). Let (p,m, a) be a triple of integers with 3 ≤ p ≤ 23
prime, m ≥ 1, (p− 1)m ≤ 22 and 0 ≤ a ≤ min {m, 23− (p− 1)m}. Let n ≥ 2 and
write 2(n−1) = pαβ with (p, β) = 1. The triple (p,m, a) is admissible for n if there
exist two orthogonal sublattices T, S ⊂ L = U⊕3 ⊕ E⊕2

8 ⊕ 〈−2(n− 1)〉 such that

• sign(T ) = (1, 22− (p− 1)m) and sign(S) = (2, (p− 1)m− 2);
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• L
T⊕S

∼=
(

Z
pZ

)⊕a
;

• l(AS) ≡ m (mod 2);

and the discriminant groups AT and AS satisfy one of the following:

(i) AS ∼=
(

Z
pZ

)⊕a
, AT ∼=

(
Z
pZ

)⊕a
⊕ Z

pαZ ⊕
Z
βZ ;

(ii) α = 1, a = 0, AS ∼= Z
pZ , AT ∼= Z

βZ ;

(iii) α ≥ 1, a ≥ 1, AS ∼=
(

Z
pZ

)⊕a+1

, AT ∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ ⊕

Z
βZ .

A pair of lattices (T, S) as in the definition is also said to be admissible: by
the previous discussion, such pairs are to be considered as good candidates for
the invariant/co-invariant lattices of non-symplectic automorphisms, but it is not
guaranteed that all of them can actually be realized in this way. By using classical
results in lattice theory, mainly by Nikulin [56], it is possible to find a list of all
admissible triples (p,m, a) for each value of n. Our first main result, which is purely
lattice-theoretic, concerns the classification of pairs (T, S) corresponding to a given
admissible triple, as in Definition 3.10.

Theorem (Theorem 3.12). If p2 - 2(n− 1), an admissible triple (p,m, a) for n ≥ 2
uniquely determines the isometry class of the lattice S. Its orthogonal complement
T ⊂ L is also uniquely determined (up to isometries of L) by (p,m, a), assuming
that l(AT ) ≤ 21− (p− 1)m.

Notice that, if p is odd, the first instance where p2 | 2(n−1) is for n = 10, p = 3.
Combining the theorem with the previous study of the action of a non-symplectic
automorphism on cohomology, we provide in §3.4 a complete classification of the
admissible triples (p,m, a) and of the corresponding pairs of lattices (T, S) when
n = 3 and n = 4, which are the cases of most immediate interest. While for p ≥ 5
the admissible triples are essentially the same which appear for n = 2 (see [12,
Appendix]), for p = 3 several new cases arise, especially when n = 4 (because p = 3
divides 2(n− 1) = 6).

Proposition 1.1. The admissible triples (3,m, a) for n = 3, 4 and the unique pairs
of lattices (T, S) associated to them are the ones listed in Table 1 and Table 2 of
Appendix A.

The remaining part of the paper is dedicated to constructing examples of non-
symplectic automorphisms of odd prime order, in order to understand which admis-
sible triples are actually realized by automorphisms. For manifolds of K3[2]-type, in
[12] it is proved that natural automorphisms of Hilbert schemes of points (i.e. those
which come from automorphisms of K3 surfaces) realize all but a few admissible
triples. The residual cases (except for the aforementioned automorphism of order
23) are constructed as automorphisms of Fano varieties of lines on cubic fourfolds.
For n ≥ 3, it is necessary to expand our pool of tools. Induced automorphisms
on moduli spaces of (possibly twisted) sheaves on K3 surfaces, studied in [53] and
[22] (where they are used to construct examples of non-symplectic involutions of
manifolds of K3[2]-type), directly generalize natural automorphisms and allow us
to realize many new pairs (T, S). We show, in §5, how to apply these constructions
when n = 3, 4.

Theorem 1.2. For n = 3, 4, all admissible pairs of lattices (T, S) with rk(T ) ≥ 2
are realized by natural or (possibly twisted) induced automorphisms.
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Admissible pairs (T, S) where T has rank one require special attention. Indeed,
these are the pairs where the co-invariant lattice S has largest rank and this implies
that automorphisms realizing such pairs deform in families of maximum dimension,
as we will explain in §3.3. There are only four distinct triples (p,m, a) which
determine pairs of lattices (T, S) with rk(T ) = 1: two for p = 3 and two for p = 23.
However, for a fixed n at most two of them are admissible (no more than one for
each value of p ∈ {3, 23}). We study these four cases in Proposition 3.15, providing
the corresponding isometry classes of the pairs (T, S): even though they can never
be realized by natural or induced non-symplectic automorphisms (Lemma 4.3), we
prove the following result.

Theorem (Theorem 4.5). Let (T, S) be a pair of lattices corresponding to a triple
(p,m, a) which is admissible for a certain n ≥ 2. If rk(T ) = 1, there exists a
manifold X of K3[n]-type and a non-symplectic automorphism f ∈ Aut(X) of order

p with invariant lattice H2(X,Z)f
∗ ∼= T and

(
H2(X,Z)f

∗)⊥ ∼= S.

The proof of this statement is not constructive, since it employs the global Torelli
theorem for IHS manifolds. However, in specific cases it is possible to provide a
geometric construction of the automorphism. In §6 we focus on one of these pairs
of lattices (T, S) with rk(T ) = 1, corresponding to the admissible triple (3, 11, 0)
for n = 4.

Theorem (Theorem 6.6). The pair of lattices (T, S) = (〈2〉, U⊕2 ⊕ E⊕2
8 ⊕ A2) is

admissible for n = 4 and it is realized by a non-symplectic automorphism of or-
der three on a ten-dimensional family of Lehn–Lehn–Sorger–van Straten eightfolds,
obtained from an automorphism of the underlying family of cyclic cubic fourfolds.

We remark that this is the first known geometric construction of a non-induced,
non-symplectic automorphism of odd order on a manifold of K3[4]-type. Moreover,
thanks to it we are able to complete the list of examples of automorphisms of odd
prime order p < 23 which realize all admissible pairs (T, S) for n = 3, 4.

Acknowledgements. Alberto Cattaneo is grateful to Max Planck Institute
for Mathematics in Bonn for its hospitality and financial support. The authors
thank Samuel Boissière, Simon Brandhorst, Andrea Cattaneo, Alice Garbagnati,
Robert Laterveer and Giovanni Mongardi for many helpful discussions, as well as
Christian Lehn, Manfred Lehn and Gregory Sankaran for their useful remarks and
explanations. The authors are also extremely grateful to Alessandra Sarti and Bert
van Geemen for their precious suggestions, and to the anonymous referee for many
valuable comments on how to improve the paper.

2. Preliminary notions

2.1. Lattices. We recall in this section the fundamental definitions and results
of lattice theory which we will need. Our main reference for these topics is the
seminal paper [56] by Nikulin; an overview of the subject can also be found in [28],
[49, Chapter VIII] and [37, Chapter 14].

A lattice L is a free abelian group endowed with a symmetric, non-degenerate
bilinear form (·, ·) : L × L → Z. The lattice is even if the associated quadratic
form is even on all elements of L. If t is a non-zero integer, L(t) denotes the lattice
having as bilinear form the one of L multiplied by t. Examples of lattices, which we
will often use, are the negative definite lattices Ah, Er corresponding to the Dynkin
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diagrams of the same names, for h ≥ 1 and r ∈ {6, 7, 8}. We also define the two
following lattices:

H5 :=

(
2 1
1 −2

)
; K23 :=

(
−12 1

1 −2

)
.

For any integer k 6= 0 we denote by 〈k〉 the rank one lattice generated by an
element of square k.

The dual lattice of L is L∨ := HomZ(L,Z), which admits the following descrip-
tion:

L∨ = {u ∈ L⊗Q : (u, v) ∈ Z ∀v ∈ L} .
Clearly, L can be seen as a subgroup of L∨ of maximal rank, thus the quotient

AL := L∨/L is a finite group, called the discriminant group of L. We denote by
discr(L) the order of the discriminant group, while the length l(AL) is defined as
the minimal number of generators of AL. If AL = {0}, the lattice L is said to be
unimodular : examples of unimodular lattices are the lattice E8 and the (unique)

even hyperbolic lattice U of rank two. If AL ∼=
(

Z
pZ

)⊕k
for a prime number p and

a non-negative integer k, then the lattice L is said to be p-elementary ; in this case,
l(AL) = k.

If A is a finite abelian group, a finite quadratic form is a map q : A → Q/2Z
such that:

(i) q(ka) = k2q(a) for all k ∈ Z and a ∈ A;
(ii) q(a + a′) − q(a) − q(a′) = 2b(a, a′) in Q/2Z, where b : A × A → Q/Z is a

symmetric bilinear form (called the finite bilinear form associated to q).

A finite quadratic form q : A→ Q/2Z is said to be non-degenerate if the associated
finite bilinear form b is non-degenerate (i.e. for all a ∈ A, a 6= 0, there exists a′ ∈ A
such that b(a, a′) 6= 0 ∈ Q/Z). By using b we define the orthogonal complement
H⊥ ⊂ A for any subgroup H ⊂ A. The isometry group O(q) is the group of
isomorphisms of A which preserve the finite quadratic form q.

For an even lattice L, we define a finite quadratic form qL : AL → Q/2Z, called
the discriminant quadratic form, as

qL : AL → Q/2Z, qL(x+ L) := (x, x) (mod 2Z) for any x ∈ L∨.
If AL is a finite direct sum of cyclic groups Ai, we write AL =

⊕
iAi(αi) if the

discriminant form qL takes value αi ∈ Q/2Z on the generator of the summand Ai.
We will sometimes use the following result.

Proposition 2.1. [56, Proposition 1.2.1]. Let A be an abelian group, q a finite qua-
dratic form on A and H ⊂ A a subgroup. If the restriction q|H is non-degenerate,
then q = q|H ⊕ q|H⊥ .

A lattice isometry of L induces in a natural way an isometry of (AL, qL), as
explained in [28, §1.2]: in this way it is possible to define a canonical homomorphism
between the orthogonal groups O(L) → O(qL). We will denote by ψ ∈ O(qL) the
image of ψ ∈ O(L) under this homomorphism. Similarly, an isomorphism of lattices
ϕ : L1 → L2 induces an isomorphism of discriminant forms ϕ : qL1

→ qL2
([56,

§1.4]).
The signature of a lattice L is the signature of the R-linear extension of the

bilinear form (·, ·) to L⊗Z R; together with the discriminant quadratic form qL, it
defines the genus of L (see [56, §1]).
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Theorem 2.2. [28, Proposition 1.4.7], [54, Theorem 2.2]. An even, indefinite
lattice L with l(AL) ≤ rk(L) − 2 is uniquely determined, up to isometries, by
its signature and its discriminant form qL. Moreover, the natural homomorphism
O(L)→ O(qL) is surjective.

By [56, Theorem 1.3.1], two even lattices L1, L2 have isomorphic discriminant
forms qL1

∼= qL2 if and only if there exist unimodular lattices V1, V2 such that
L1 ⊕ V1

∼= L2 ⊕ V2. Moreover, by [56, Theorem 1.1.1(a)] the signature (v(+), v(−))
of an unimodular lattice V satisfies v(+)−v(−) ≡ 0 (mod 8) . It is therefore possible
to define the signature modulo 8 of a finite quadratic form q: sign(q) = l(+) − l(−)

(mod 8), where (l(+), l(−)) is the signature of an even lattice L such that qL = q.
We adopt the notation of [19]. Let p be an odd prime; by [56, Proposition

1.8.1], there are only two non-isometric, non-degenerate discriminant forms on Z
pαZ

(α ≥ 1): they are denoted by wεp,α, with ε ∈ {−1,+1}. The quadratic form w+1
p,α has

generator value q(1) = a
pα (mod 2Z), where a is the smallest positive even number

which is a quadratic residue modulo p. In turn, for w−1
p,α we have q(1) = a

pα with a

the smallest positive even number that is not a quadratic residue modulo p. Thus,
a non-degenerate quadratic form q on Z

pαZ such that q(1) = x
pα is isometric to wεp,α,

with ε = (xp ) (using Legendre symbol).

Any non-degenerate quadratic form on
(

Z
pZ

)⊕k
, k ≥ 1, is isomorphic to a direct

sum of forms of type w+1
p,1 and w−1

p,1, with w+1
p,1 ⊕ w+1

p,1
∼= w−1

p,1 ⊕ w−1
p,1 (see [56,

Proposition 1.8.2]). This means that, if S is a p-elementary lattice with discriminant
group of length k, the form qS on AS can only be of two types, up to isometries:

qS =

{(
w+1
p,1

)⊕k(
w+1
p,1

)⊕k−1 ⊕ w−1
p,1

Remark 2.3. The signatures (mod 8) of the discriminant forms wεp,α are listed

in [56, Proposition 1.11.2]). For odd p we have sign(w+1
p,1) ≡ 1 − p (mod 8) and

sign(w−1
p,1) ≡ 5− p (mod 8). Hence, if S is p-elementary and sign(S) = (s(+), s(−)),

the quadratic form on the discriminant group AS =
(

Z
pZ

)⊕k
is

(1) qS =

{(
w+1
p,1

)⊕k
if s(+) − s(−) ≡ k(1− p) (mod 8)(

w+1
p,1

)⊕k−1 ⊕ w−1
p,1 if s(+) − s(−) ≡ k(1− p) + 4 (mod 8)

This means that the quadratic form of a p-elementary lattice (p 6= 2) is uniquely
determined by its signature (see [59, §1] for additional details).

We recall that a sublattice M ⊂ L is primitive if the quotient L/M is free.
Analogously, an embedding of lattices i : S ↪→ L is primitive if i(S) ⊂ L is a
primitive sublattice.

Definition 2.4. Two primitive embeddings i : S ↪→ M , j : S ↪→ M ′ define
isomorphic primitive sublattices if there exists an isomorphism ϕ : M → M ′ such
that ϕ(i(S)) = j(S).

The following fundamental result, proved by Nikulin in [56, Proposition 1.15.1],
provides a characterization of primitive embeddings.
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Theorem 2.5. Let S be an even lattice of signature (s(+), s(−)) and discrimi-
nant form qS. For an even lattice L of invariants (m(+),m(−), qL) unique in
its genus, primitive embeddings i : S ↪→ L are determined by quintuples Θi :=
(HS , HL, γ, T, γT ) such that:

• HS is a subgroup of AS, HL is a subgroup of AL and γ : HS → HL is an
isometry qS |HS ∼= qL|HL ;
• T is a lattice of signature (m(+)−s(+),m(−)−s(−)) and discriminant form

qT = ((−qS)⊕qL)|Γ⊥/Γ, where Γ ⊂ AS⊕AL is the graph of γ and Γ⊥ is its
orthogonal complement in AS ⊕ AL with respect to the finite bilinear form
associated to (−qS)⊕ qL;
• γT ∈ O(qT ).

The lattice T is isomorphic to the orthogonal complement of i(S) in L. More-
over, two quintuples Θ and Θ′ define isomorphic primitive sublattices if and only if
µ(HS) = H ′S for µ ∈ O(S) and there exist isometries φ ∈ O(qL), ν : T → T ′ such
that γ′ ◦ µ = φ ◦ γ and ν ◦ γT = γ′T ′ ◦ ν.

2.2. Monodromies and global Torelli theorem for manifolds of K3[n]-type.
An irreducible holomorphic symplectic (IHS) manifold is a complex, smooth, com-
pact, Kähler manifold X such that H2,0(X) = CωX , for an everywhere non-
degenerate two-form ωX . Examples of IHS manifolds are provided by K3 surfaces
and, for any n ≥ 2, by Hilbert schemes of n points on them, as well as by their IHS
deformations, which are known as manifolds of K3[n]-type. If X is an IHS mani-
fold, the second cohomology group H2(X,Z) admits a lattice structure, by means
of the non-degenerate bilinear form of signature (3, b2(X) − 3) due to Beauville–
Bogomolov–Fujiki (see [31, Theorem 4.7]). An automorphism σ ∈ Aut(X) of prime
order p is non-symplectic if σ∗ωX = ξωX , where ξ is a primitive p-th root of unity.
By [6, Proposition 6], the existence of a non-symplectic automorphism on X guar-
antees that X is projective.

The global Torelli theorem for IHS manifolds gives the following Hodge theoretic
result, due to Markman (see [47, Theorem 1.3]). This version involves the definition
of parallel transport operator, which we do not recall and can be found in [47,
Definition 1.1].

Theorem 2.6. Let X, Y be two deformation equivalent irreducible holomorphic
symplectic manifolds and let f : H2(X,Z) → H2(Y,Z) be an isomorphism of in-
tegral Hodge structures and a parallel transport operator. There exists an isomor-
phism σ : Y → X such that f = σ∗ if and only if f maps a Kähler class of X to a
Kähler class of Y .

In the case X = Y , parallel transport operators f : H2(X,Z) → H2(X,Z) are
called monodromy operators, which form a subgroup Mon2(X) ⊂ O(H2(X,Z)). If
X is a manifold of K3[n]-type, n ≥ 2, the second cohomology lattice H2(X,Z) has
rank 23 and it is isometric to L := U⊕3 ⊕ E⊕2

8 ⊕ 〈−2(n − 1)〉 by [7, Proposition

6]. Let (X, η) be a marked holomorphic symplectic manifold of K3[n]-type, i.e. X
is IHS of K3[n]-type and η : H2(X,Z) → L is a lattice isomorphism. We denote
by Mon2(L) := η ◦Mon2(X) ◦ η−1 ⊂ O(L) the monodromy group of L: it is an
arithmetic subgroup of O(L) and it is independent on the choice of the marking,
inside a connected component of the moduli space of marked IHS manifolds (X, η)
(see [47, §9]).
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We recall that, for an even lattice G, the real spinor norm snGR : O(GR) →
R∗/ (R∗)2 ∼= {±1} is defined as

snGR (γ) =

(
−v

2
1

2

)
. . .

(
−v

2
r

2

)
if γ = ρv1 ◦ . . . ◦ ρvr as a product of reflections with respect to vectors vi ∈ GR (in
particular, r ≤ rk(G) by the Cartan–Dieudonné theorem [60, Theorem 5.4]).

Remark 2.7. Since snGR : O(GR)→ R∗/ (R∗)2 ∼= {±1} is a group homomorphism
(see for instance [49, Theorem 10.2]), if γ ∈ O(GR) is an isometry of odd order then
snGR (γ) = 1.

We have a very explicit description of monodromy operators on L. Let N be
the subgroup of O(L) generated by reflections with respect to classes of square
−2 and by the negative of reflections with respect to classes of square 2. Then,
by combining results of Markman ([46, Lemma 9.2]) and Kneser ([42, Satz 4]) we
obtain the following description.

Theorem 2.8. Mon2(L) = N =
{
g ∈ O(L) | g = ± idAL , sn

L
R(g) = 1

}
.

In the statement of the theorem, as usual, g is the isometry induced by g on the
discriminant group AL.

3. Isometries induced by automorphisms of odd prime order

The aim of this section is to study the action of non-symplectic automorphisms
of odd prime order on the second cohomology lattice of manifolds of K3[n]-type. We
will focus our attention on determining the properties of the invariant sublattice and
of its orthogonal; we will show how to classify, for any n, their isometry classes by use
of numerical parameters related to their signatures and lengths. This classification
is explicitly discussed for n = 3, 4 in §3.4. Moreover, in §3.3 we study in greater
depth the cases where the invariant lattice has rank one.

3.1. Discriminant groups of invariant and co-invariant sublattices. Let X
be a manifold of K3[n]-type with an action of a finite group G = 〈σ〉, where σ
is a non-symplectic automorphism of prime order p ≥ 3. In particular, p can
be at most 23 as a consequence of [6, Proposition 5], because H2(X,Z) ∼= L =
U⊕3⊕E⊕2

8 ⊕〈−2(n− 1)〉 has rank 23. The group G acts by pullback on H2(X,Z).

Following the notation of [15], we will denote by T := H2(X,Z)σ
∗

the invariant
sublattice of H2(X,Z) and by S := T⊥ its orthogonal complement (the co-invariant
lattice, as we will refer to it): they are both primitive sublattices of H2(X,Z) by
[15, Remark 5.2].

Remark 3.1. If we choose a marking η : H2(X,Z) → L, then the invariant and
co-invariant lattices of an automorphism of X can also be regarded as primitive
sublattices T, S ⊂ L. We point out that a different marking η′ will produce a pair
of sublattices (T ′, S′) of L which is isomorphic to (T, S) in the sense of Definition
2.4. For this reason, we are interested in classifying the pairs (T, S) only up to
isomorphisms of primitive sublattices in L.

We collect in the next proposition several results proved by Boissière–Nieper-
Wißkirchen–Sarti [15, §5-6] and Tari [62, §2.1.3] (see also [17, §2]).
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Proposition 3.2. Let X be a manifold of K3[n]-type and G = 〈σ〉 a group of prime
order p ≥ 3 acting non-symplectically on X. Then:

• there exists a positive integer m such that rk(S) = (p− 1)m;
• S has signature (2, (p− 1)m− 2) and T has signature (1, 22− (p− 1)m);

• H2(X,Z)
T⊕S is a p-torsion group, i.e. H2(X,Z)

T⊕S
∼=
(

Z
pZ

)⊕a
for some non-negative

integer a;
• a ≤ m.

If we consider T and S as sublattices of L, then T ⊕S is a sublattice of maximal
rank. The sequence of inclusions

T ⊕ S ⊂ L ⊂ L∨ ⊂ (T ⊕ S)∨ ∼= T∨ ⊕ S∨

provides an identification of L
T⊕S

∼=
(

Z
pZ

)⊕a
with an isotropic subgroup M ⊂

AT ⊕ AS such that M⊥/M ∼= AL (see [56, §5]). Denoting by pT and pS the two
projections from AT ⊕ AS to AT and AS respectively, their restrictions to M are
injective (because T ↪→ L and S ↪→ L are primitive; see again [56, §5]). Their
isomorphic images are MT := pT (M) ⊂ AT and MS := pS(M) ⊂ AS . Since the
discriminant groups AT , AS are finite, this implies pa | discr(T ) and pa | discr(S).
Moreover, the isomorphism γ := pS ◦ (pT )−1|MT

: MT → MS is an anti-isometry,
as a consequence of the isotropy of M : this means that qT (x) = −qS(γ(x)) for all
x ∈MT .

Lemma 3.3. Let σ be a non-symplectic automorphism of prime order p ≥ 3 of a
manifold of K3[n]-type and let ψ = σ∗ ∈ Mon2(L). Then:

(i) the action of ψ on M⊥ ⊂ AT ⊕AS is trivial;

(ii) the co-invariant lattice S =
(
Lψ
)⊥

is p-elementary.

Proof.

(i) As in the previous section, for an isometry g of a lattice V we denote by
g the induced isometry of the discriminant group AV . The monodromy
operator ψ induces ψ = id on AL ∼= M⊥/M by Theorem 2.8 and because
ψp = id with odd p (therefore ψ cannot be − id). This implies that for

any element (x, y) ∈ M⊥ ⊂ AT ⊕ AS we have (ψ|T⊕S)(x, y) − (x, y) ∈ M .
Moreover, ψ acts trivially on the discriminant group AT (because ψ|T = id),

thus (ψ|T⊕S)(x, y)− (x, y) = (0, (ψ|S)(y)−y) (the natural inclusions of AT
and AS in AT⊕S ∼= AT ⊕ AS are ψ-equivariant). Since M is the graph in

AT ⊕ AS of the anti-isometry γ : MT →MS , we deduce that (ψ|S)(y) = y
for any y ∈ MS = pS(M⊥). This means that the action of ψ is trivial on
M⊥, not only on the quotient M⊥/M .

(ii) For any n ≥ 2, the lattice L = U⊕3⊕E⊕2
8 ⊕〈−2(n− 1)〉 can be primitively

embedded inside the Mukai lattice Λ24 := U⊕4 ⊕ E⊕2
8 as the orthogonal

complement of a primitive element of square 2(n − 1) belonging to one
of the summands U of Λ24 (see [47, Corollary 9.5]). As we remarked in
the previous point of the proof, the action of ψ on the discriminant AL
is trivial: this allows us to extend ψ to an isometry ρ ∈ O(Λ24) such
that ρ|L⊥ = id, by [56, Corollary 1.5.2]. The lattice Λ24 is unimodular,
therefore both the invariant lattice Tρ := Λρ24 ⊂ Λ24 and the co-invariant
lattice Sρ := (Tρ)

⊥ ⊂ Λ24 are p-elementary (see for instance [62, Lemme
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2.10]). Since L⊥ ⊂ Tρ, passing to the orthogonal complements we have
Sρ ⊂ L, and therefore S = Sρ is p-elementary. �

For fixed values of n ≥ 2 and p ≥ 3 prime, we write 2(n − 1) = pαβ with α, β
integers, α ≥ 0 and (p, β) = 1. Then AL ∼= Z

2(n−1)Z
∼= Z

pαZ ⊕
Z
βZ is an orthogonal

splitting (see [56, Proposition 1.2.2]): in particular, we can show that there exists
a subgroup of AT isomorphic to the summand Z

βZ .

Lemma 3.4. Let (AT )p and (AS)p be the Sylow p-subgroups of AT and AS respec-
tively. Then

AT = (AT )p ⊕
Z
βZ

, AS = (AS)p.

Moreover, |AT | = paβt and |AS | = pas for some positive integers t, s such that
ts = pα.

Proof. As AL ∼= M⊥/M and |M | = pa, we deduce
∣∣M⊥∣∣ = pa+αβ. As a con-

sequence, there exists a subgroup N ⊂ M⊥ of order β, and it is unique since
|N | is coprime with

[
M⊥ : N

]
. Moreover, the restriction to N of the projection

M⊥ → M⊥/M is injective (N ∩M = {0} because the orders of N and M are
relatively prime). By the fact that there is also a unique subgroup of order β inside
AL, we conclude that N is isomorphic to the component Z

βZ of AL. By Lemma 3.3,

the action of the automorphism σ on N ⊂M⊥ is trivial and any element of pS(N)
is of p-torsion: we are lead to conclude pS(N) = 0, because (p, β) = 1. Thus, N is
contained in AT .

Since MT ⊂ (AT )p and MS ⊂ (AS)p we can write |AT | = paβt and |AS | = pas,
with t, s positive integers. From

[L : (T ⊕ S)]
2

=
discr(T ) · discr(S)

discr(L)
=
|AT | |AS |
|AL|

(see [56, §4]) we get ts = pα. The two integers t, s are therefore powers of p with
non-negative exponents. �

We are now ready to describe the structures of the two discriminant groups AT
and AS .

Proposition 3.5. Let X be a manifold of K3[n]-type and G = 〈σ〉 a group of odd
prime order p acting non-symplectically on X. Then one of the following cases
holds:

(i) AS = MS
∼=
(

Z
pZ

)⊕a
, AT ∼= MT ⊕AL ∼=

(
Z
pZ

)⊕a
⊕ Z

pαZ ⊕
Z
βZ ;

(ii) α = 1, a = 0, AS ∼= Z
pZ , AT ∼= Z

βZ ;

(iii) α ≥ 1, a ≥ 1, AS ∼=
(

Z
pZ

)⊕a+1

, AT ∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ ⊕

Z
βZ .

Proof. If a = 0, the group M is trivial and AL ∼= AT ⊕ AS . By Lemma 3.4 we
deduce that there are only two possibilities: AS = 0, AT ∼= AL or AS ∼= Z

pαZ ,

AT ∼= Z
βZ . The second case, though, is admissible only for α = 1, because we know

that S is p-elementary by Lemma 3.3.
From now on we will assume a ≥ 1. Let us first consider the case α = 0: this

implies β = 2(n − 1) and t = s = 1. Then, by using Lemma 3.4 we conclude
AS = MS and AT = MT ⊕ Z

βZ
∼= MT ⊕AL.

If α = 1 we have 2(n− 1) = pβ and ts = p. There are two possibilities:
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• t = p, s = 1. In this case, AS = MS
∼=
(

Z
pZ

)⊕a
, therefore qS |MS

= qS

is non-degenerate and the same holds for qT |MT
, since qT |MT

∼= −qS |MS
.

Then, by Proposition 2.1 we can write AT = MT ⊕ M⊥T , which implies

(AT )p = MT ⊕ Z
pZ
∼=
(

Z
pZ

)⊕a+1

since |(AT )p| = pa+1. Hence, AT =

(AT )p⊕ Z
βZ =

(
Z
pZ

)⊕a+1

⊕ Z
βZ and therefore AT ∼= MT⊕AL as pβ = 2(n−1).

• t = 1, s = p. Now AT = MT ⊕ Z
βZ , since (AT )p = MT . Hence qT |MT

is

non-degenerate, which again implies that also qS |MS
is non-degenerate, i.e.

AS = MS ⊕M⊥S . We are lead to conclude AS = MS ⊕ Z
pZ
∼=
(

Z
pZ

)⊕a+1

.

Therefore, if α = 1 (and a ≥ 1) both cases (i), (iii) appearing in the statement can
occur.

Now assume α ≥ 2. Set H := (AT )p ⊕ AS ⊂ AT ⊕ AS and let H[p] ⊂ H be

the p-torsion subgroup. Since M⊥/M ∼= AL ∼= Z
pαZ ⊕

Z
βZ , there exists an element

x ∈ H of order at least pα: the quotient 〈x〉/(〈x〉 ∩ H[p]) has then order at least
pα−1, which shows that [H : H[p]] ≥ pα−1. On the other hand, [H : H[p]] ≤ pα:
indeed, |H[p]| ≥ p2a, because MT ⊕MS ⊂ H[p], and |H| = pat · pas = p2a+α (by
Lemma 3.4). We conclude that the index [H : H[p]] is either pα or pα−1.

If [H : H[p]] = pα, then H[p] = MT ⊕MS . By construction H = Hp, therefore:

(2) H ∼=
2a+α⊕
i=1

(
Z
piZ

)⊕mi
, H[p] ∼=

2a+α⊕
i=1

(
Z
pZ

)⊕mi
,

for suitable integers mi ≥ 0 such that
∑
i imi = 2a + α and

∑
imi = 2a. Thus,

the integers mi must satisfy α =
∑
i(i− 1)mi. Furthermore, since we know that H

contains an element of order at least pα, there exists j ≥ α such that mj ≥ 1. This
leaves us with two possibilities for the choice of the coefficients mi.

• H ∼=
(

Z
pZ

)⊕2a−1

⊕ Z
pα+1Z . Then, after recalling that AS ⊃ MS and AT ⊃

MT with MS
∼= MT

∼=
(

Z
pZ

)⊕a
, we have either AS ∼=

(
Z
pZ

)⊕a−1

⊕ Z
pα+1Z ,

(AT )p = MT or AS = MS , (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
pα+1Z . Both cases are not

admissible: by Proposition 2.1 (as we remarked discussing α = 1) we would
need to be able to write, respectively, AS = MS⊕M⊥S and AT = MT⊕M⊥T ,
but now this is not possible.

• H ∼=
(

Z
pZ

)⊕2a−2

⊕ Z
p2Z ⊕

Z
pαZ . Disregarding the cases where AS = MS or

(AT )p = MT (which can be excluded as in the previous point) we are left
with two alternatives:

◦ (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ , AS ∼=

(
Z
pZ

)⊕a−1

⊕ Z
p2Z ;

◦ (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
p2Z , AS ∼=

(
Z
pZ

)⊕a−1

⊕ Z
pαZ .

In both cases, though, the lattice S is not p-elementary, contradicting
Lemma 3.3.

We conclude that [H : H[p]] = pα−1. We can again write H and H[p] as in (2),
where now

∑
i imi = 2a+α,

∑
imi = 2a+ 1 and as before there exists j ≥ α such
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that mj ≥ 1. We then deduce H ∼=
(

Z
pZ

)⊕2a

⊕ Z
pαZ , which gives rise to four possible

conclusions:

• (AT )p
∼=
(

Z
pZ

)⊕a
⊕ Z

pαZ , AS ∼=
(

Z
pZ

)⊕a
, meaning AT ∼= MT ⊕ AL and

AS = MS ;

• (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ , AS ∼=

(
Z
pZ

)⊕a+1

;

• (AT )p
∼=
(

Z
pZ

)⊕a
, AS ∼=

(
Z
pZ

)⊕a
⊕ Z

pαZ ;

• (AT )p
∼=
(

Z
pZ

)⊕a+1

, AS ∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ .

The last two cases are excluded because S is p-elementary by Lemma 3.3. �

Remark 3.6. We can make some additional remarks on the structures of the
discriminant groups AT , AS after recalling the following result.

Theorem 3.7. [17, Theorem 2.2] Let M be an even lattice and ψ ∈ O(M) be an
isometry of prime order p 6= 2 with co-invariant lattice S. Then pm discr(S) is a

square in Z, where m = rk(S)
p−1 .

Let X be a manifold of K3[n]-type and ψ ∈ Mon2(L) the isometry induced on L
by an automorphism σ ∈ Aut(X) of prime order p ≥ 3. From Proposition 3.5 we
know that discr(S) = |AS | is either pa or pa+1. In particular:

• if p - 2(n− 1) (i.e. α = 0), the groups AT , AS are as in Proposition 3.5 case
(i), therefore a and m must be of same parity by Theorem 3.7.
• If p | 2(n − 1) (i.e. α ≥ 1), a and m are not required to have same parity:

the structures of AT and AS are the ones given in Proposition 3.5 case (i)
if a and m have same parity, the ones of cases (ii) or (iii) if a and m have
different parity.

3.2. Admissible triples. We are now interested in studying primitive embeddings
of lattices T, S ↪→ L satisfying Proposition 3.2 and Proposition 3.5, assuming p ≥ 3.
For the purposes of this work, we restrict to α ≤ 1: notice that, since 2(n−1) = pαβ,
the first instance with α ≥ 2 occurs for n = 10, i.e. on manifolds of dimension 20.

Our main result is Theorem 3.12, in which we show that the values (p,m, a) de-
fined in Proposition 3.2, under suitable hypotheses, uniquely determine the isometry
classes of T and S. To do so we first need to provide a characterization of primitive
embeddings S ↪→ L for lattices S as above (Lemma 3.8 and Proposition 3.9). Fi-
nally, in Proposition 3.14 we describe all possible structures, up to isometries, for
the discriminant quadratic forms qS and qT .

We recall that, by Proposition 3.2, the lattice S has signature (2, (p− 1)m− 2)

and it is p-elementary by Lemma 3.3, with discriminant group AS =
(

Z
pZ

)⊕k
, where

k is the length of AS . Then there are only two non-isometric possible forms qS , the
ones in (1) (see Remark 2.3).

Since L = U⊕3 ⊕E⊕2
8 ⊕ 〈−2(n− 1)〉, the quadratic form qL on AL = Z

2(n−1)Z is

such that qL(1) = − 1
2(n−1) ∈ Q/2Z. If we write 2(n − 1) = pαβ, with (p, β) = 1,

then a trivial computation shows:

qL =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
∼=

Z
pαZ

(
− β

pα

)
⊕ Z
βZ

(
−p

α

β

)
.
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In §2.1 we defined the two non-isomorphic finite quadratic forms ω±1
p,α on Z

pαZ .

Denoting by qα,β the quadratic form Z
βZ

(
−p

α

β

)
and by

(
−β
p

)
the Legendre symbol

modulo p, we conclude:

(3) qL =

w
+1
p,α ⊕ qα,β if

(
−β
p

)
= +1

w−1
p,α ⊕ qα,β if

(
−β
p

)
= −1

.

Lemma 3.8. Let S be an even lattice with discriminant group AS =
(

Z
pZ

)⊕k
,

k ≥ 0, of genus (2, (p − 1)m − 2, qS). Let L = U⊕3 ⊕ E⊕2
8 ⊕ 〈−2(n − 1)〉 and let

e ∈ AL be the generator of the component Z
pαZ of AL ∼= Z

pαZ

(
− β
pα

)
⊕ Z

βZ

(
−p

α

β

)
.

Then:

(i) If α = 0, primitive embeddings of S in L compatible with Proposition 3.5 are
determined by pairs (T, γT ), with T a lattice of signature (1, 22− (p− 1)m),
qT = (−qS) ⊕ qL and γT ∈ O(qT ). Two pairs (T, γT ) and (T ′, γ′T ′) deter-
mine isomorphic sublattices in L if and only if there exists an isometry
ν : T → T ′ such that ν ◦ γT = γ′T ′ ◦ ν.

(ii) If α = 1, primitive embeddings of S in L compatible with Proposition 3.5
are determined by triples (x, T, γT ), with T of signature (1, 22− (p− 1)m),
γT ∈ O(qT ) and either:
(a) x = 0, qT = (−qS)⊕ qL, or

(b) x ∈ AS [p] with qS(x) = −βp (mod 2Z) and Γ⊥/Γ ∼=
(

Z
pZ

)⊕k−1

⊕ Z
βZ ,

where Γ ⊂ AS ⊕ AL is the subgroup generated by (x, e) and Γ⊥ is its
orthogonal complement with respect to the form (−qS)⊕ qL; moreover,
qT = ((−qS)⊕ qL)|Γ⊥/Γ.

Two triples (x, T, γT ) and (x′, T ′, γ′T ′) determine isomorphic sublattices in
L if and only if there exists µ ∈ O(S) and an isometry ν : T → T ′, such
that µ(x) = x′ and ν ◦ γT = γ′T ′ ◦ ν.

Proof. Each primitive embedding i : S ↪→ L is determined by a quintuple Θi =
(HS , HL, γ, T, γT ) as in Theorem 2.5, since the lattice L is unique in its genus by
Theorem 2.2. Recalling that T is the orthogonal complement of i(S) in L, we ask
sign(T ) = (1, 22− (p− 1)m). We will discuss separately the cases α = 0 and α = 1.

(i) α = 0. Since p and β are coprime, the only possibility is: HS = {0},
HL = {0} and γ = id. The embedding S ↪→ L is therefore determined by
the pair (T, γT ). In particular, we have Γ = {(0, 0)}, Γ⊥ = AS ⊕ AL, thus
AT = AS ⊕ AL and the discriminant form is qT = (−qS) ⊕ qL. This is
coherent with case (i) of Proposition 3.5.

(ii) α = 1. We have again the case HS = {0} , HL = {0}, γ = id (which
means that S and T are as in case (i) of Proposition 3.5, hence l(AT ) =
l(AS) + 1 = k + 1). This case corresponds to the triples where x = 0
and it is described as for α = 0. Alternatively, provided that there exists
an element x ∈ AS of order p such that qS(x) = qL(e), with e as in the
statement, we can also choose HS = 〈x〉, HL = 〈e〉, γ : x 7→ e. Such an

element x does not exist only if k = 0 or if qS = wξp,1, qL = w−ξp,1 ⊕ q1,β ,

with ξ ∈ {±1}: in all other cases, by using the isomorphism w+1
p,1 ⊕ w

+1
p,1
∼=

w−1
p,1⊕w

−1
p,1 we can write the form qS as in (1), where at least one of the direct
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summands is of the same type as the wεp,1 appearing in qL (the component
corresponding to the subgroup HL). In this setting, the graph Γ of γ is
the subgroup of AS ⊕ AL generated by (x, e). In particular, since Γ ∼= Z

pZ ,

the quotient Γ⊥/Γ cannot be isomorphic to AS ⊕ AL, which implies that
we are not in case (i) of Proposition 3.5. Nevertheless, if α = 1 and k ≥ 1
the structures of the discriminant groups can also be as in cases (ii) or
(iii) of Proposition 3.5, where l(AT ) = max{1, k − 1}: the embedding is

admissible if Γ⊥/Γ ∼=
(

Z
pZ

)⊕k−1

⊕ Z
βZ , and if so the quadratic form on AT

is qT = ((−qS)⊕ qL)|Γ⊥/Γ.

Finally, for both values of α the stated results about isomorphic sublattices follow
directly from Theorem 2.5. �

Lemma 3.8 allows us to list all possible primitive embeddings i : S ↪→ L sat-
isfying Proposition 3.5 for a given lattice S. We now prove that, adding some
extra hypotheses, the number of distinct isometry classes for i(S)⊥ is actually very
limited.

Proposition 3.9. Let S and L be as in Lemma 3.8, with α ≤ 1 and k ≤ 21− α−
(p− 1)m.

(i) If α = 0 or k = 0, or if α = 1 and qS = wξp,1, qL = w−ξp,1⊕q1,β for ξ ∈ {±1},
all primitive embeddings of S in L compatible with Proposition 3.5 define
isomorphic sublattices. In particular, the isometry class of the orthogonal
complement T is uniquely determined by the genus of S.

(ii) Otherwise, provided that the natural homomorphism O(S)→ O(qS) is sur-
jective, there are at most two distinct isometry classes for the orthogonal
complement T of the image of a compatible embedding S ↪→ L, one with
l(AT ) = k + 1 and one with l(AT ) = max{1, k − 1}.

Proof. If α = 0 or k = 0, or if α = 1 and qS = wξp,1, qL = w−ξp,1⊕q1,β for ξ ∈ {±1}, by

Lemma 3.8 a (compatible) primitive embedding of S in L is characterized by a pair
(T, γT ), with T a lattice of signature (1, 22− (p− 1)m), qT = (−qS)⊕ qL and γT ∈
O(qT ). In this case, then, l(AT ) = max{1, k + α}, because (p, β) = 1. If such an
indefinite lattice T exists and if l(AT ) ≤ rk(T )−2 (i.e. if k ≤ 21−α−(p−1)m), then
the isometry class of T is uniquely determined, by Theorem 2.2. This assumption
also guarantees that the natural morphism O(T ) → O(qT ) is surjective (Theorem
2.2), therefore different choices of γT give isomorphic primitive sublattices S in L.

Assume now that we are not in one of the cases of point (i) (in particular,
let α = 1 and k ≥ 1); moreover, suppose that O(S) → O(qS) is surjective and
k ≤ 20 − (p − 1)m. A compatible embedding i : S ↪→ L is determined by a triple
(x, T, γT ) as in Lemma 3.8. We make the following distinction.

• Triples (0, T, γT ) correspond to embeddings where qT = (−qS) ⊕ qL, so
l(AT ) = k + 1. Then, as before, from the assumption k ≤ 20 − (p − 1)m
it follows that all these embeddings define isomorphic sublattices in L and
that the isometry class of T is uniquely determined.
• If x 6= 0, the triple (x, T, γT ) was obtained, in the proof of Lemma 3.8, from

a quintuple Θi = (HS , HL, γ, T, γT ), with HS = 〈x〉 ⊂ AS , HL = 〈e〉 ⊂ AL.
If we now consider a different quintuple Θi′ , with H ′S = 〈x′〉 and x′ 6= 0, the
embeddings i, i′ will define isomorphic sublattices of L. This follows from
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Lemma 3.8 and Theorem 2.5, because, under our assumptions, two different
subgroups HS , H

′
S ⊂ AS as above are conjugated by an automorphism of S.

In fact, the restrictions qS |HS and qS |H′S are non-degenerate and isomorphic,

since they are both isomorphic to Z
pZ

(
−βp
)

; hence, by Proposition 2.1 and

the classification of p-elementary forms (see §2.1), also the restrictions of
the forms on H⊥S and (H ′S)⊥ will coincide. This implies that there exists
an automorphism of AS which exchanges HS and H ′S : by the surjectivity
of O(S)→ O(qS), this automorphism is induced by an automorphism of S.
We conclude that the isometry class of S as a primitive sublattice of L does
not depend on the choice of x 6= 0; it does not depend either on the choice
of T or of γT , since k ≤ 20− (p− 1)m and here l(AT ) = max{1, k − 1}, so
l(AT ) ≤ rk(T )− 2 by Theorem 2.2. �

Adopting the terminology used in [12, §3.3], we provide the following definition.

Definition 3.10. Let (p,m, a) be a triple of integers, with 3 ≤ p ≤ 23 prime,
m ≥ 1, (p−1)m ≤ 22 and 0 ≤ a ≤ min {m, 23− (p− 1)m}. The triple is said to be
admissible for a given integer n ≥ 2 if there exist two orthogonal sublattices T, S ⊂
L = U⊕3 ⊕ E⊕2

8 ⊕ 〈−2(n− 1)〉 such that: sign(T ) = (1, 22− (p− 1)m), sign(S) =

(2, (p−1)m−2), L
T⊕S

∼=
(

Z
pZ

)⊕a
, l(AS) ≡ m (mod 2), and the discriminant groups

AT and AS are as in Proposition 3.5.

We also say that a pair (T, S) of sublattices of L as in Definition 3.10 is admissible.

Remark 3.11. The condition L
T⊕S

∼=
(

Z
pZ

)⊕a
implies that all admissible triples of

the form (p,m, 0) define orthogonal sublattices T, S ⊂ L such that L = T ⊕ S.

We can now rephrase Proposition 3.9 in the following way, taking into account
the uniqueness of S too.

Theorem 3.12. Let 2(n − 1) = pαβ, with (p, β) = 1 and α ≤ 1. If (p,m, a) is
an admissible triple, there exists a unique even p-elementary lattice S as in Defi-
nition 3.10, up to isometries of S. Its primitive embedding in L and its orthogonal
complement T ⊂ L are uniquely determined (up to isometries of L) by (p,m, a),
assuming that l(AT ) ≤ 21− (p− 1)m.

Proof. Let S be a lattice as in Definition 3.10, corresponding to an admissible triple

(p,m, a). By Proposition 3.5 and Remark 3.6 the discriminant group AS is
(

Z
pZ

)⊕a
if m and a have same parity, otherwise AS ∼=

(
Z
pZ

)⊕a+1

. Moreover, since the

triple (p,m, a) determines the signature sign(S) = (2, (p − 1)m − 2), it also fixes
the quadratic form on AS , as we explained in Remark 2.3. Thus, if rk(S) ≥ 3 the
isometry class of the lattice S is unique in its genus, by [12, Theorem 2.2]. This
is also true for the remaining cases, i.e. the triples (3, 1, 0) and (3, 1, 1), where S is
positive definite of rank two: by [25, Table 15.1] the only possible isometry class is
S ∼= A2(−1).

We now show that the homomorphism O(S) → O(qS) is surjective. Since
sign(S) = (2, (p − 1)m − 2), the two triples (3, 1, 0) and (3, 1, 1) are the only ones
where S is not indefinite: for them, the surjectivity of O(S)→ O(qS) follows from
[56, Remark 1.14.6], because S ∼= A2(−1). For all other admissible triples, S is
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indefinite, and by Theorem 2.2 a sufficient condition is rk(S) ≥ l(AS) + 2. From
the hypotheses p ≥ 3 and a ≤ m it follows

rk(S) = (p− 1)m ≥ 2m ≥ 2a.

Then, if a ≥ 3 we have rk(S) ≥ 2a ≥ a + 3 ≥ l(AS) + 2 for any m. On the other
hand, if a ≤ 2 and m ≥ 3 then rk(S) ≥ 2m ≥ a+ 3 ≥ l(AS) + 2.

The cases left are m ∈ {1, 2} and 0 ≤ a ≤ min{m, 2}.
• m = 2. For a = 0 and a = 1 we have rk(S) = 2(p − 1) ≥ 4 ≥ a + 3 ≥
l(AS) + 2. The inequality also holds for a = 2 whenever p ≥ 5; the only
remaining triple is (3, 2, 2), where l(AS) = a = 2 since a and m have the
same parity, therefore rk(S) = 4 ≥ l(AS) + 2.
• m = 1. Here either a = 0 or a = 1. As in the previous point, provided that
p ≥ 5 we have rk(S) = p− 1 ≥ a+ 3 ≥ l(AS) + 2. We already discussed all
the remaining triples with p = 3, where S ∼= A2(−1).

Thus, the map O(S) → O(qS) is surjective for any lattice S corresponding to
an admissible triple. The statement follows then from Proposition 3.9 under the
assumption l(AT ) ≤ 21− (p− 1)m. �

Remark 3.13. If both triples (p,m, a), (p,m, a+1) are admissible, with m and a of
different parity, then they determine the same lattice S, up to isometries. Indeed, in
both cases the signature of S is (2, (p−1)m−2) and, by Remark 3.6, its discriminant

group is
(

Z
pZ

)⊕a+1

. Notice, however, that the lattices T corresponding to the two

triples are non-isometric, because their discriminant groups have different lengths
by Proposition 3.5.

To conclude this subsection, we use our results to list all possible quadratic forms
qS , qT , up to isometries, on the discriminant groups AS , AT : by Lemma 3.8, we will
need to discuss separately the cases α = 0 and α = 1 and to distinguish on whether
−β is a quadratic residue modulo p. This classification of quadratic forms is needed
for listing admissible pairs of lattices (T, S) for specific values of n and p.

Proposition 3.14. Let 2(n − 1) = pαβ, with (p, β) = 1 and α ≤ 1. Let (p,m, a)
be an admissible triple as in Definition 3.10 and (T, S) a corresponding admissible
pair of sublattices of L. Then one of the following holds:

(i) qT = (−qS)⊕ qL, with qS =
(
w+1
p,1

)⊕a
or qS =

(
w+1
p,1

)⊕a−1 ⊕ w−1
p,1;

(ii) α = 1, −β is a quadratic residue modulo p and

(a) qS =
(
w+1
p,1

)⊕a+1
, qT =

(
−w+1

p,1

)⊕a ⊕ q1,β, or

(b) a ≥ 1, qS =
(
w+1
p,1

)⊕a ⊕ w−1
p,1, qT =

(
−w+1

p,1

)⊕a−1 ⊕ (−w−1
p,1)⊕ q1,β.

(iii) α = 1, −β is not a quadratic residue modulo p and

(a) a ≥ 1, qS =
(
w+1
p,1

)⊕a+1
, qT =

(
−w+1

p,1

)⊕a−1 ⊕ (−w−1
p,1)⊕ q1,β, or

(b) qS =
(
w+1
p,1

)⊕a ⊕ w−1
p,1, qT =

(
−w+1

p,1

)⊕a ⊕ q1,β.

Proof. As explained in the proof of Lemma 3.8, case (i) corresponds to embeddings
S ↪→ L determined by quintuples (HS , HL, γ, T, γT ) with HS = 0, HL = 0. More-
over, the quadratic form qS is as in (1), with k = l(AS) = a, by Proposition 3.5.
This is the only possibility when α = 0. On the other hand, if α = 1 there may also
be compatible embeddings S ↪→ L corresponding to quintuples with HS 6= 0 (see
again Lemma 3.8): in this case, O(S) → O(qS) is surjective (see Theorem 3.12),
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so, as we showed in the proof of Proposition 3.9, the subgroup HS can be regarded
as one of the direct summands in the representation (1) of the quadratic form qS ,
up to changing the generators of AS . Given T ⊂ L the orthogonal complement of
S, the discriminant quadratic form on AT is then qT = ((−qS)⊕ qL)|Γ⊥/Γ, with qL
as in (3) and qS as in (1), where now k = l(AS) = a+ 1 by Proposition 3.5.

Let us assume that −β is a quadratic residue modulo p, so that qL = w+1
p,1⊕q1,β ,

and suppose qS =
(
w+1
p,1

)⊕a+1
. Adopting the same notations used in the previous

proofs, let x ∈ AS be the generator of the subgroup corresponding to one of the
summands w+1

p,1 in qS and e be the generator of Z/pZ ⊂ AL. Then HS = 〈x〉,
HL = 〈e〉, γ : x 7→ e and the graph of γ is Γ = 〈(x, e)〉 ⊂ AS ⊕ AL. A direct
computation shows that, with respect to the quadratic form (−qS)⊕qL on AS⊕AL,
the orthogonal of Γ is

Γ⊥ =
(
H⊥S ⊕H⊥L

)
+ Γ.

This implies that the quadratic form qT ∼= ((−qS)⊕ qL)|Γ⊥/Γ is isometric to the

restriction of (−qS)⊕ qL to H⊥S ⊕H⊥L , therefore qT =
(
−w+1

p,1

)⊕a ⊕ q1,β .

In turn, if qS =
(
w+1
p,1

)⊕a ⊕ w−1
p,1 we need to ask a ≥ 1, otherwise it is not

possible to find subgroups HS ⊂ AS and HL ⊂ AL such that qS |HS ∼= qL|HL . As
in the previous case, we can assume HS = 〈x〉, HL = 〈e〉, γ : x 7→ e, where again
x ∈ AS is the generator of one of the components w+1

p,1 in qS and e ∈ AL is the

generator of the summand w+1
p,1 of qL. Since Γ, Γ⊥ are the same as above, the

form qT still arises as the restriction of (−qS) ⊕ qL to H⊥S ⊕ H⊥L , and therefore

qT =
(
−w+1

p,1

)⊕a−1 ⊕ (−w−1
p,1)⊕ q1,β .

The two cases where qL = w−1
p,1⊕ q1,β (i.e. −β is not a quadratic residue modulo

p) can be discussed in an analogous way. �

3.3. A special case: rk(T ) = 1. In this subsection we focus on the cases where the
invariant lattice T has rank one. As explained in [12, §4], if X is an IHS manifold
of K3[n]-type and f ∈ Aut(X) is a non-symplectic automorphism of prime order
p ≥ 3, then the deformation space of the pair (X, f) (in the sense of [50, Definition
1.1]) has dimension dim(H1,1(X)f

∗
) = m− 1, where m is the integer such that the

co-invariant lattice of f has rank (p − 1)m. As a consequence, for a fixed order
p, the deformation families of maximal dimension correspond to the actions on
cohomology whose invariant lattice has smallest rank. This explains why we are
interested in the cases where rk(T ) = 1 and rk(S) = (p − 1)m = 22. For odd p,
this can only happen if p = 3,m = 11 or p = 23,m = 1. As before, we write
2(n− 1) = pαβ, with (p, β) = 1.

If α = 0, then a must be odd, because it needs to be of the same parity as

m (Remark 3.6); in particular, a ≥ 1. Moreover AT ∼=
(

Z
pZ

)⊕a
⊕ Z

pαZ ⊕
Z
βZ by

Proposition 3.5. Since the length of AT cannot exceed rk(T ) = 1, then necessarily
α = 0 and a = 1. We conclude T ∼= 〈2p(n − 1)〉, since α = 0 means that p and
2(n− 1) are coprime.

If α ≥ 1, there are two possibilities:

• a ≡ 1 (mod 2). Then AT ∼=
(

Z
pZ

)⊕a
⊕ Z

pαZ ⊕
Z
βZ with α ≥ 1 and a ≥ 1. As

a consequence l(AT ) ≥ 2, so T cannot have rank one.
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• a ≡ 0 (mod 2). By the classification provided in Proposition 3.5, T cannot

be of rank one if a > 0. Hence a = 0, α = 1, T ∼= 〈β〉 = 〈 2(n−1)
p 〉.

Moreover, we need to impose conditions on the orthogonal lattice S, using again
Proposition 3.5. Since rk(T ) = 1, we can also use [33, Proposition 3.6] to determine
the existence and the structure of such primitive sublattices T, S ⊂ L. We do it
separately for the two possible cases that we found.

• α = 0, a = 1, T spanned by a primitive element h ∈ L of square h2 =
2p(n− 1).

By [33, Proposition 3.6], the orthogonal lattice S has discriminant 4p(n−1)2

q2 ,

where q > 0 is the generator of the ideal (h, L) ⊂ Z. By Proposition 3.5 we
know that AS ∼= Z

pZ , therefore discr(S) = p and we need q = 2(n− 1). By

applying again [33, Proposition 3.6] we can conclude that such a T exists
if and only if −p is a quadratic residue modulo 4(n− 1).

• α = 1, a = 0, T spanned by a primitive element h ∈ L of square h2 = 2(n−1)
p .

We have AS ∼= Z
pZ , by Proposition 3.5, and p = discr(S) = 4(n−1)2

pq2 , so

q = 2(n−1)
p . Here p2 - 4(n − 1), so p is invertible modulo 4(n−1)

p , hence by

[33, Proposition 3.6] such a T exists if and only if −p is a quadratic residue

modulo 4(n−1)
p .

We rephrase these results as follows.

Proposition 3.15. Let p ≥ 3 be a prime and 2(n − 1) = pαβ with (p, β) = 1. A
triple (p,m, a), with (p−1)m = 22, is admissible if and only if α ∈ {0, 1}, a = 1−α
and −p is a quadratic residue modulo 4(n−1)

pα .

If this happens, then one of the following holds:

(1) α = 0, p = 3,m = 11, a = 1, T ∼= 〈6(n− 1)〉, S ∼= U⊕2 ⊕ E⊕2
8 ⊕A2;

(2) α = 1, p = 3,m = 11, a = 0, T ∼= 〈β〉 = 〈 2(n−1)
3 〉, S ∼= U⊕2 ⊕ E⊕2

8 ⊕A2;

(3) α = 0, p = 23,m = 1, a = 1, T ∼= 〈46(n− 1)〉, S ∼= U⊕2 ⊕ E⊕2
8 ⊕K23;

(4) α = 1, p = 23,m = 1, a = 0, T ∼= 〈β〉 = 〈 2(n−1)
23 〉, S ∼= U⊕2 ⊕ E⊕2

8 ⊕K23.

Proof. The explicit description of the lattice S in the four cases is obtained by
combining [33, Proposition 3.6] (where S is represented as S = U⊕2 ⊕E⊕2

8 ⊕B for
a negative definite, even lattice B of rank 2 depending on p, n, q) with the results
on lattice isomorphisms given in [56, Corollary 1.13.5] and [59, §1], which guarantee
the uniqueness, up to isometries, of p-elementary lattices of signature (2, 20) and
length one, when p = 3 or p = 23. The lattice K23 was defined in §2.1. �

From Proposition 3.15 it follows, for instance, that the triple (3, 11, 1) is admis-
sible for n = 2, as already observed in [12, §3.3], because −3 is a quadratic residue
modulo 4: in this case, we have T = 〈6〉. Similarly, (3, 11, 0) is admissible when
n = 4 (here α = 1 and −3 is a quadratic residue modulo 4), with T = 〈2〉. On the
other hand, (3, 11, 1) is not admissible when n = 3, because −3 is not a quadratic
residue modulo 8.

The triple (23, 1, 1) was already found to be admissible for n = 2 in [11, §3]
(where the isomorphism classes of T, S are also given). By our proposition, this
triple is admissible for n = 3, 4 too, since −23 ≡ 1 both modulo 8 and modulo 12.
Finally, the smallest value of n for which (23, 1, 0) is admissible is n = 24, since
2(n− 1) = 46 = 23 · 2 and −23 is a quadratic residue modulo 4.
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3.4. Admissible triples for n = 3, 4. In this section we provide a complete classi-
fication of admissible triples (p,m, a) for n = 3, 4. In both cases, for any odd prime
number p we have α ≤ 1, therefore Theorem 3.12 allows us to exhibit the lat-
tices T, S (up to isometries) for each triple. This classification of admissible pairs
of sublattices is achieved by direct computation for all possible triples (p,m, a),
checking for each of them if lattices T, S as in Definition 3.10 exist or not; once
we get existence, uniqueness follows from the previous results. We apply Theorem
[56, Theorem 1.10.1], which provides necessary and sufficient conditions for the
existence of an even lattice with given signature and discriminant form.

Manifolds of K3[3]-type.

• For p = 23 there is only one admissible triple, namely (23, 1, 1), as we
already observed in §3.3: the isometry classes of S and T are given in
Proposition 3.15, case (3).
• For all primes 5 ≤ p ≤ 19, the admissible triples and the lattices S are the

ones listed for n = 2 in the tables of [12, Appendix A], while the lattices
T can be obtained from the corresponding ones in the tables by switching
〈−2〉 with 〈−4〉 in their description, since now L = U⊕3 ⊕ E⊕2

8 ⊕ 〈−4〉.
Indeed, this is true because in all these cases S is embedded in the K3
lattice U⊕3 ⊕ E⊕2

8 ⊂ L, which is orthogonal to 〈−2(n − 1)〉 for all n ≥ 2.
Notice that, with respect to [12, Table 5], by Remark 3.6 we can now say
that the triple (13, 1, 0) is not admissible, neither for n = 2 nor for n = 3:
in fact, for these values of n we have α = 0 for all possible primes p, hence
m and a need to have the same parity.

Example: (p,m, a) = (5, 5, 3). This triple is not admissible for n = 2
and it is checked to be still not admissible for n = 3. In fact, for these
values of p,m, a the lattice S would be isomorphic to U(5) ⊕ E⊕2

8 ⊕ H5

(by Proposition 3.5 and Theorem 2.2), whose discriminant group is easily

computed to be AS ∼= AU(5) ⊕ AH5
∼= Z

5Z
(

2
5

)⊕3
(recall the definition of

the lattice H5 from §2.1). As we pointed out at the beginning of §3.2, for
n = 3 we have AL ∼= Z

4Z
(
− 1

4

)
, therefore if S admitted an embedding in

L the quadratic form on T would be qT = Z
5Z
(

8
5

)⊕3 ⊕ Z
4Z
(
− 1

4

)
by Lemma

3.8 and sign(T ) = (1, 2). By [56, Theorem 1.10.1], a lattice T with these
invariants exists only if its 5-adic completion T5 := T ⊗Z Z5 is such that
|AT | ≡ discr(K) mod (Z∗5)

2
, where K is the unique 5-adic lattice of rank

l(AT5
) and discriminant form qT5

(see [56, Theorem 1.9.1]). In our case,

since AT5
∼= (AT )5

∼= Z
5Z
(

8
5

)⊕3
, by using [56, Proposition 1.8.1] we compute

K = 〈5 · 1
8 〉
⊕3, where 1

8 ∈ Z∗5. Thus, |AT | = 4 · 53 and discr(K) =
(

5
8

)3
:

these two values do not satisfy the relation |AT | ≡ discr(K) mod (Z∗5)
2
,

because 211 /∈ (Z∗5)
2
. We conclude that a lattice T with such signature and

quadratic form does not exist.
• For p = 3, Table 1 in Appendix A lists all admissible triples, with the

corresponding isomorphism classes for T, S: as for larger primes, we can
find many similarities with the analogous table for n = 2 in [12, Table 1].
However, there are also some significant differences.
◦ As we observed in §3.3, there are no admissible triples with m = 11.
◦ The triple (3, 9, 5) is now admissible: here S = U(3)⊕2 ⊕ E6 ⊕ E8,

while sign(T ) = (1, 4) and qT = −qS ⊕ qL ∼= Z
3Z
(

4
3

)⊕5⊕ Z
4Z
(
− 1

4

)
. The
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existence of a lattice T with these invariants is proved by applying
[56, Theorem 1.10.1] and there is a unique isometry class in the genus
of T by [25, Chapter 15, Theorem 21]. In particular, we can take
T = U(3)⊕Ω, where Ω is the even lattice of rank three whose bilinear
form is defined by the matrix

Ω :=

−6 0 −3
0 −6 9
−3 9 −18

 .

We have sign(Ω) = (0, 3) and qΩ = Z
3Z
(

4
3

)⊕2 ⊕ Z
3Z
(

2
3

)
⊕ Z

4Z
(
− 1

4

)
,

therefore qU(3)⊕Ω
∼= −qS ⊕ qL (by [56, Proposition 1.8.2]).

◦ An additional new admissible triple is (p,m, a) = (3, 8, 6): here we
compute S = U(3)⊕2 ⊕ E⊕2

6 , therefore sign(T ) = (t(+), t(−)) = (1, 6)

and qT = Z
3Z
(

4
3

)⊕6 ⊕ Z
4Z
(
− 1

4

)
. In this case, the strict inequality

t(+) + t(−) > l(AT ) holds: since moreover t(+)−t(−) ≡ sign(qT ) (mod 8),
such a lattice T exists by [56, Corollary 1.10.2] and again it is unique
(up to isometries) by [25, Chapter 15, Theorem 21]. A representative
of this genus is T = U(3)⊕A2 ⊕ Ω.

Manifolds of K3[4]-type.

• For p = 23 we have that (23, 1, 1) is the only admissible triple (see §3.3):
the isomorphism classes of T, S are described in Proposition 3.15.

• For primes 5 ≤ p ≤ 19, again the lattices T, S and all admissible triples
are the ones listed in the tables of [12, Appendix A] (apart from (13, 1, 0),
which is not admissible), up to replacing the 〈−2〉 summand with a 〈−6〉
summand in T .

• The last prime we need to consider is p = 3. This is the first case we
encounter where an odd p divides 2(n−1): in particular, 2(n−1) = 6 = 3αβ
with α = 1 and β = 2. Since we have α = 1, by Lemma 3.8 and Proposition
3.9 we know that we can expect to have many more admissible triples than
the ones which we found for p = 3 and n = 2, 3: in fact, the same lattice
S might be embedded in L in two non-isomorphic ways by Proposition 3.9
(iii). Table 2 (Appendix A) contains the list of all admissible triples and of
the corresponding isomorphism classes for the lattices T, S. In particular,
the triple (3, 11, 0) is admissible thanks to Proposition 3.15; some other
triples, such as (3, 8, 6) and (3, 8, 7), are excluded by using [56, Theorem
1.10.1], in a way completely analogous to what has been done previously
for n = 3.

4. Existence of automorphisms

The classification of admissible lattices T, S presented in §3 does not tell us
which cases can be realized by actual automorphisms. In this section we pass in
review several tools to construct non-symplectic automorphisms of odd prime order
on manifolds of K3[n]-type, which are valid for any n ≥ 2. In particular, we are
interested in two types of manifolds: Hilbert schemes of points on K3 surfaces and
moduli spaces of (possibly twisted) sheaves on K3’s. Moreover, in §4.3 we show
that the existence of automorphisms which realize admissible pairs (T, S) where
T has rank one can always be proved by using the global Torelli theorem for IHS
manifolds.
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4.1. Natural automorphisms. Let Σ be a smoothK3 surface. An automorphism
ϕ ∈ Aut(Σ) induces an automorphism ϕ[n] on the Hilbert scheme Σ[n], by mapping
a zero-dimensional subscheme ξ ⊂ Σ of length n (i.e. a point in Σ[n]) to its schematic
image ϕ(ξ). Such an automorphism ϕ[n] is said to be natural (see [10]).

By [7, Proposition 6], we have an injection i : H2(Σ,C) ↪→ H2(Σ[n],C) compat-
ible with the Hodge structures and such that

H2(Σ[n],C) = i
(
H2(Σ,C)

)
⊕ C[E]

where [E] is the class of the exceptional divisor of the Hilbert-Chow morphism
Σ[n] → Symn(Σ). In particular, if ϕ ∈ Aut(Σ) is a non-symplectic automorphism,
then ϕ[n] still acts non-symplectically on Σ[n]: indeed, if ω ∈ H2,0(Σ) then i(ω) ∈
H2,0(Σ[n]) and

(
ϕ[n]

)∗
(i(ω)) = i (ϕ∗(ω)) by [16, Theorem 1].

Moreover, H2(Σ[n],Z) = i
(
H2(Σ,Z)

)
⊕Zδ, whereH2(Σ,Z) ∼= LK3 := U⊕3⊕E⊕2

8

and δ ∈ H2(Σ[n],Z) is a class of square −2(n− 1) such that 2δ = [E]. As observed
in [16, §3], the action of the natural automorphism ϕ[n] on H2(Σ[n],Z) can be

decomposed as
(
ϕ[n]

)∗
= (ϕ∗, idZδ). Hence, if Tϕ := (LK3)ϕ is the invariant lattice

of ϕ and Sϕ := (Tϕ)⊥ ⊂ LK3 is the co-invariant lattice, and Tϕ[n] , Sϕ[n] ⊂ L are

the invariant and co-invariant lattices of ϕ[n], then

Tϕ[n] = i(Tϕ)⊕ Zδ ∼= Tϕ ⊕ 〈−2(n− 1)〉, Sϕ[n] = i(Sϕ) ∼= Sϕ.

We conclude that all admissible pairs of lattices (T, S) with T ∼= TK3⊕〈−2(n−1)〉
and S ∼= SK3, where TK3 and SK3 are respectively the invariant lattice and its
orthogonal complement for the action of a non-symplectic automorphism on a K3
surface, are realized by natural automorphisms. All possible isomorphism classes
for the pairs (TK3, SK3) can be found in [3, Table 2] (order p = 3) and [4, Tables
2–7] (prime order 5 ≤ p ≤ 19), therefore it is immediate to check for any n which
admissible cases have a natural realization. We point out the different notation
used in the two references: the invariant lattice TK3 is denoted as N in [3] and as
S in [4], while the co-invariant lattice SK3 is denoted as T .

In the tables of Appendix A we mark with the symbol ♣ the triples realized by
natural automorphisms. For n = 4 (Table 2), it may not always be immediate to
recognize the invariant lattices of [3, Table 2] as direct summands in the lattices
T that we provide, since we often choose different representatives in the same iso-
morphism classes. These isomorphisms become clear after observing the following
isometries: U⊕E6⊕A2

∼= U(3)⊕E8; U⊕A⊕3
2
∼= U(3)⊕E6;U⊕A⊕2

2 ⊕E8
∼= U⊕E⊕2

6

(they can all be proved by using Theorem 2.2). The reason why we adopt different
genus representatives for these lattices will become clear in §5.1 (Lemma 5.1).

4.2. Induced automorphisms. A direct generalization of the notion of natural
automorphisms is given by induced automorphisms, which were first introduced and
studied in [58, §3], [53] and later extended to the case of twisted K3 surfaces in [22,
§3].

We recall here the fundamental definitions and results (see [38] and [22, §2.3, §3]
for additional details and references). A twisted K3 surface is a pair (Σ, α), where
Σ is a smooth K3 surface and α ∈ Br(Σ) := H2 (Σ,O∗Σ)tor is a Brauer class. By [64,
§2], if α has order k then it can be identified with a surjective homomorphism α :
Tr(Σ) → Z/kZ, where Tr(Σ) := Pic(Σ)⊥ ⊂ H2(Σ,Z) is the transcendental lattice
of the surface. A B-field lift of α is a class B ∈ H2(Σ,Q) (which can be determined
via the exponential sequence) such that kB ∈ H2(Σ,Z) and α(v) = (kB, v) for
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all v ∈ Tr(Σ) (see [38, §3]). Notice that B is defined only up to an element in
H2(Σ,Z) + 1

k Pic(Σ).

The full cohomology H∗(Σ,Z) = H0(Σ,Z) ⊕ H2(Σ,Z) ⊕ H4(Σ,Z) admits a
lattice structure, with pairing (r,H, s) · (r′, H ′, s′) = H ·H ′− rs′− r′s. As a lattice,
H∗(Σ,Z) is isometric to the Mukai lattice Λ24 = U⊕4 ⊕ E⊕2

8 . A Mukai vector
v = (r,H, s) is positive if H ∈ Pic(Σ) and either r > 0, or r = 0 and H 6= 0
effective, or r = H = 0 and s > 0. Starting from a primitive, positive vector
v = (r,H, s) ∈ H∗(Σ,Z) and a B-field lift B of α we can define the twisted Mukai

vector vB := (r,H + rB, s+B ·H + rB
2

2 ). Then, if vB is primitive and positive, for
a suitable choice of a polarization D of Σ the coarse moduli space MvB (Σ, α) of α-
twisted Gieseker D-stable sheaves with Mukai vector vB is a projective irreducible

holomorphic symplectic manifold of K3[n]-type, with n =
v2B
2 + 1. Moreover, we

have a canonical isomorphism H2(MvB (Σ, α),Z) ∼= v⊥B in the Mukai lattice (see
[67, Theorems 3.16, 3.19]). For the sake of readability, we do not specify the ample
divisor D in the notation for MvB (Σ, α), even though the construction depends on
it: we will always assume that a choice of a polarization (generic with respect to
the Mukai vector vB , in the sense of [67, Definition 3.5]) has been made.

Now, let ϕ be an automorphism of Σ: the invariant Brauer classes α are exactly
those such that α ◦ ϕ∗|Tr(Σ) = α. The following result holds (see [53, Proposition
2.32] and [22, §3]).

Proposition 4.1. Let (Σ, α) be a twisted K3 surface, ϕ an automorphism of Σ,
v a positive Mukai vector and B a B-field lift of α such that vB is primitive and
positive. If vB and α are ϕ-invariant, then ϕ induces (via pullback of sheaves) an
automorphism ϕ̂ of MvB (Σ, α).

The automorphisms ϕ̂ arising in this way are called twisted induced (or just
induced in the non-twisted case, i.e. if α = 0). As an application of the twisted
version of the global Torelli theorem for K3 surfaces (see [35, Corollary 5.4]), it is
possible to characterize twisted induced automorphisms by studying their action
on the Mukai lattice.

Proposition 4.2. [22, Theorem 3.4] Let σ be an automorphism of finite order on a
manifold X of K3[n]-type acting trivially on AL. Then the following are equivalent:

(1) There exist a twisted K3 surface (Σ, α), an automorphism ϕ of Σ such that
α is ϕ-invariant, a positive Mukai vector v and a B-field lift B of α such
that vB is primitive, positive and ϕ-invariant; in this case, X = MvB (Σ, α)
and σ is twisted induced by ϕ.

(2) The invariant lattice of the extension of σ to the Mukai lattice contains
primitively a copy of U(d).

When this occurs, the integer d is some multiple of the order of the Brauer class α.

Let v = (r,H, s) be a positive Mukai vector. If B ∈ H2(Σ,Q) is a B-field lift
of α such that vB is primitive and positive, then the transcendental lattice of the
moduli space MvB (Σ, α) is isomorphic to ker(α) ⊂ Tr(Σ), which is a sublattice
(proper if α 6= 0) of the same rank and of index equal to the order of α (see for
instance [38, §2]). By [67, §3], Pic(MvB (Σ, α)) ∼= v⊥B ∩ Pic(Σ, α) inside H∗(Σ,Z),
where Pic(Σ, α) ∼= Pic(Σ)⊕ U if α = 0, otherwise Pic(Σ, α) is generated by Pic(Σ)
and the vectors (0, 0, 1), (k, kB, 0) by [45, Lemma 3.1], assuming the order of α is
k. As a consequence, rk Pic(MvB (Σ, α)) = rk Pic(Σ) + 1.
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Lemma 4.3. Let (Σ, α) be a twisted K3 surface, ϕ an automorphism of Σ, v a
positive Mukai vector and B ∈ H2(Σ,Q) a B-field lift of a ϕ-invariant Brauer class
α such that vB is primitive, positive and ϕ-invariant; let ϕ̂ be the twisted induced
automorphism of MvB (Σ, α). Then the invariant lattice T of ϕ̂ has rank ≥ 2.

Proof. By construction Pic(Σ, α)⊗Q contains at least a rank three sublattice W in-
variant for the action of ϕ: it is the sublattice spanned by (0, 0, 1), (1, B, 0), (0, h, 0),
where h ∈ Pic(Σ) is a ϕ-invariant ample class.

Indeed, ϕ acts as the identity on H4(Σ,Q), therefore (0, 0, 1) is fixed. Moreover,
it maps (1, B, 0) to (1, ϕ∗(B), 0), but these two classes coincide in H2(Mv(Σ, α),Q):

if H̃(Σ, B,Q) and H̃(Σ, ϕ∗(B),Q) are the two Hodge structures on Σ defined by the
B-field lifts B, ϕ∗(B) of α, the classes (1, B, 0) = exp(B)(1, 0, 0) and (1, ϕ∗(B), 0) =
exp(ϕ∗(B))(1, 0, 0) correspond to each other via the Hodge isometry

exp(ϕ∗(B)−B) : H̃(Σ, B,Q)→ H̃(Σ, ϕ∗(B),Q)

(see [38, §2] and [22, Remark 2.4]).
As a consequence, rk(T ) = rk(T ⊗Q) ≥ rk(W ) ∩ v⊥B = 2. �

In the case α = 0, which was already studied in [53], it is possible to provide some
additional details on the action of induced automorphisms. Let v ∈ H∗(Σ,Z) be a
primitive positive Mukai vector. Then Mv(Σ, 0) is isomorphic to the moduli space
Mτ (v) of τ -stable objects of Mukai vector v, for τ ∈ Stab(Σ) a suitable v-generic
Bridgeland stability condition on the derived categoryDb(Σ) (see [18], [63, Theorem
1.3 and §3] and [5, Theorems 1.3 and 6.7] for details). By our previous discussion,
the transcendental lattice of Mτ (v) coincides with Tr(Σ), while its Picard lattice is
isomorphic to v⊥ ∩ (Pic(Σ)⊕ U). In particular, the summand U in Pic(Σ) ⊕ U is
just H0(Σ,Z)⊕H4(Σ,Z), which is the orthogonal complement of H2(Σ,Z) ∼= LK3

inside H∗(Σ,Z) ∼= Λ24. Since LK3 is unimodular, the action of an automorphism
ϕ ∈ Aut(Σ) on LK3 extends to an action on Λ24 which is trivial on (LK3)⊥ (by [53,

Lemma 1.4]). Let TK3, SK3 ⊂ LK3 and T̂ , Ŝ ⊂ Λ24 be the invariant and co-invariant

lattices of these two actions: by what we stated, T̂ = TK3 ⊕ U and Ŝ = SK3. The
induced automorphism ϕ̂ acts on H2(Mτ (v),Z) ∼= L = U⊕3 ⊕ E⊕2

8 ⊕ 〈−2(n− 1)〉:
its invariant lattice is T ∼=

(
v⊥
)ϕ

= T̂ ∩ v⊥ (see [53, Lemma 1.34]). We rephrase
the results of [53, §2-3] as follows.

Proposition 4.4. Let (p,m, a) be an admissible triple for a certain n ≥ 2, with
(T, S) a corresponding admissible pair of lattices. Consider the canonical primitive

embeddings S ↪→ L ↪→ Λ24 and define T̂ := S⊥ ⊂ Λ24. Then the triple (p,m, a) is

realized by an induced automorphism if T̂ ∼= U⊕TK3, S ∼= SK3, with (TK3, SK3) the
invariant lattice and its orthogonal complement for the action of a non-symplectic

automorphism on a K3 surface, and there exists a primitive vector v ∈ T̂ of square

2(n− 1) such that T ∼= v⊥ ∩ T̂ .

In particular, all natural automorphisms can be considered as induced, since
〈−2(n− 1)〉 is the orthogonal in U of an element of square 2(n− 1) (see [53, §6]).

In §5 we will apply the theory of induced (and twisted induced) automorphisms
to construct geometric realizations of several admissible triples for manifolds of type
K3[3] and K3[4].
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4.3. Existence for rk(T ) = 1. Theorem 2.6 can be applied to prove the exis-
tence of automorphisms of manifolds of K3[n]-type realizing the admissible pairs of
lattices (T, S) classified in Proposition 3.15, i.e. for rk(T ) = 1.

Theorem 4.5. Let (p,m, a) be an admissible triple as in Proposition 3.15, for
a certain n ≥ 2, and let T, S be the lattices associated to it. Then, there exists a
manifold X of K3[n]-type and a non-symplectic automorphism f ∈ Aut(X) of order

p such that H2(X,Z)f
∗ ∼= T and

(
H2(X,Z)f

∗)⊥ ∼= S.

Proof. We discuss separately the four possible cases classified in Proposition 3.15,
keeping the same numbering.

Case (2): (3, 11, 0). Here we have α = 1 and 2(n−1) = 3β, with (3, β) = 1. The
invariant and co-invariant lattices are T = 〈β〉 and S = U⊕2⊕E⊕2

8 ⊕A2, which by
Proposition 3.15 can be seen as orthogonal sublattices of L = U⊕3⊕E⊕2

8 ⊕〈−2(n−
1)〉. We first construct a monodromy of the lattice L having invariant lattice T and
co-invariant lattice S. The triple has a = 0, therefore L = T ⊕S (see Remark 3.11):
an isometry φ ∈ O(L) can then be represented as φ = γ ⊕ ψ, with γ ∈ O(T ) and
ψ ∈ O(S). Moreover, since we want φ to be of order three with invariant lattice T ,
we will need γ = idT and ψ of order three with no non-zero fixed points.

By [3, Theorem 3.3], there exist a K3 surface Σ and a non-symplectic automor-
phism ϕ ∈ Aut(Σ) of order three with invariant lattice TK3 = U and co-invariant
lattice SK3 = U⊕2 ⊕ E⊕2

8 . Thus, the natural automorphism ϕ[n] on the Hilbert

scheme Σ[n] will have invariant lattice T ′ = U⊕〈−2(n−1)〉 and co-invariant lattice
S′ = SK3 = U⊕2⊕E⊕2

8 (see §4.1). Notice that T ′⊕S′ = L, meaning that the triple

(3, 10, 0) is realized by a natural automorphism for all n ≥ 2. Moreover, since ϕ[n]

has odd order, it induces a monodromy of L which acts as + id on the discriminant
group AL ∼= AT ′ ⊕AS′ (Theorem 2.8). The restriction of this monodromy to S′ is
therefore an isometry µ ∈ O(S′) of order three, with no non-zero fixed vectors, such
that µ = idAS′ . On our original lattice S = S′ ⊕ A2 we now consider the isometry

ψ = µ⊕ ρ0, where ρ0 acts on A2 =
(
Ze1 ⊕ Ze2,

(−2 1
1 −2

))
as

ρ0(e1) = e2, ρ0(e2) = −e1 − e2.

It is easy to check that ρ0 is an isometry of order three without non-zero fixed
points, inducing the identity on the discriminant group AA2

(this isometry was also

used in [29, §6.6]). Notice that, since A2 is negative definite, snA2

R (ρ0) = 1. We
then conclude that ψ = µ ⊕ ρ0 is an isometry of S of order three with no non-
zero fixed points, which induces the identity on the discriminant group. Moreover,
since the order of ψ is odd, snSR(ψ) = 1 (see Remark 2.7). By the same reasoning,

snLR(φ) = 1 and φ = idAL . Thus, φ is a monodromy operator by Theorem 2.8, with
invariant lattice T and co-invariant lattice S. By generalizing [12, Proposition 5.3],
there exists a manifold X of K3[n]-type and a marking η : H2(X,Z) → L such
that η(NS(X)) = T . The monodromy φ is an Hodge isometry, since it preserves
H2,0(X) = CωX (because NS(X) = ω⊥X ∩ H2(X,Z)). Moreover, since rk(T ) = 1,
φ fixes a Kähler class (the generator of η(NS(X)) = T ). The Hodge-theoretic
consequence of the global Torelli theorem (Theorem 2.6) allows us to conclude that
there exists an automorphism f ∈ Aut(X) such that η ◦ f∗ ◦ η−1 = φ.

Case (1): (3, 11, 1). In this case, T = 〈6(n− 1)〉 and S = U⊕2⊕E⊕2
8 ⊕A2. Now

T ⊕ S is a proper sublattice of L, because a = 1; however, we can still consider
the isometry φ = idT ⊕ψ ∈ O(T ⊕ S) defined above. Since ψ = idAS , the isometry
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φ can be extended to Φ ∈ O(L) by [56, Corollary 1.5.2]. As recalled in §3.1,
AL ∼= M⊥/M , with M,M⊥ subgroups of AT ⊕ AS , meaning that Φ = idAL , since
φ = id ∈ O(qT⊕S). Moreover, we also have snLR(Φ) = 1 (again by Remark 2.7).

Thus, Φ ∈ Mon2(L) and it still has invariant lattice T and co-invariant lattice S.
We can now apply Theorem 2.6 in the same way as before to conclude that, also in
this case, there exists an automorphism of a suitable manifold of K3[n]-type which
induces Φ on the second cohomology lattice.

Cases (3),(4): (23, 1, 0) and (23, 1, 1). These two cases can be realized by gener-
alizing [11, Theorem 6.1], which proves the existence of an automorphism of order
23 on a manifold of K3[2]-type with invariant lattice T = 〈46〉 and co-invariant
lattice S = U⊕2 ⊕ E⊕2

8 ⊕ K23. In Proposition 3.15 we showed that, if a triple
(p,m, a) with p = 23 is admissible, then m = 1 and a ∈ {0, 1}; moreover, in this
case the two orthogonal sublattices of L are S = U⊕2 ⊕ E⊕2

8 ⊕ K23 and either

T = 〈46(n − 1)〉 if a = 1 (as we have for n = 2), or T = 〈 2(n−1)
23 〉 if a = 0. We

notice in particular that S does not depend on n and in [11, Proposition 5.3] it
was proved that this lattice admits an isometry ψ of order 23 inducing the identity
on AS . Thus, idT ⊕ψ ∈ O(T ⊕ S) can be extended to an isometry φ ∈ O(L) such
that φ = idAL (if a = 0 we have L = T ⊕ S, so idT ⊕ψ is already an isometry
of L with this property; otherwise, if a = 1, we apply again [56, Corollary 1.5.2]).
As the order of φ is odd, snLR(φ) = 1 by Remark 2.7. Following the same proof
of [11, Theorem 6.1], there exists an automorphism realizing the triple. We point
out that, while for n = 2 the monodromies of L are just the isometries preserving
the positive cone, for n ≥ 3 the isometry also needs to induce ± id on AL (see [47,
Lemma 9.2]). This, however, is not a problem since we know that φ = idAL . �

We remarked in §3.3 that the triple (3, 11, 0) is admissible for n = 4, therefore we
can now conclude that it is realized by an automorphism: we mark this case with
the symbol F in the corresponding table of Appendix A. We will see an explicit
geometric realization of it in §6.1.

5. Induced automorphisms for n = 3, 4, p = 3

The new admissible triples (3,m, a) that appear passing from n = 2 to n = 3 and,
more significantly, to n = 4 cannot be realized by natural automorphisms, since the
corresponding pairs of lattices (T, S) are not of the form T ∼= TK3 ⊕ 〈−2(n − 1)〉,
S ∼= SK3 for the invariant lattice TK3 and its orthogonal complement SK3 of a
non-symplectic automorphism of order three on a K3 surface (see §3.4, §4.1 and
Appendix A). However, in this section we will show that all of these triples but one
admit a realization using (possibly twisted) induced automorphisms, which were
discussed in §4.2. The only exception is the triple (3, 11, 0): by Lemma 4.3 this
cannot be realized by a twisted induced automorphism since rk(T ) = 1.

5.1. Induced automorphisms for n = 4. We observe the following general re-
sult.

Lemma 5.1. Let ϕ be a non-symplectic automorphism of order three on a K3
surface, with invariant lattice TK3 and co-invariant lattice SK3, and assume that
TK3

∼= U(3) ⊕W for some even lattice W . If (T, S) is an admissible pair for a
certain n ≡ 1 (mod 3) such that T ∼= U ⊕W ⊕ 〈−2(n − 1)〉 and S ∼= SK3, then it
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is realized by the automorphism induced by ϕ on a suitable moduli space Mτ (v) of
dimension 2n.

Proof. If TK3
∼= U(3) ⊕ W , then T̂ ∼= U ⊕ U(3) ⊕ W is the invariant lattice of

the extended action of ϕ to Λ24. Since n ≡ 1 (mod 3), there exists a primitive

Mukai vector v of square 2(n − 1) in the summand U(3) of T̂ . Then v⊥ ∩ T̂ ∼=
U ⊕W ⊕ 〈−2(n− 1)〉 and Proposition 4.4 allows us to conclude. �

Theorem 5.2. For n = 4, all admissible triples (3,m, a) 6= (3, 11, 0), (3, 10, 3),
(3, 9, 4), (3, 8, 5) admit a geometric realization via non-twisted induced automor-
phisms.

Proof. Except for the four cases excluded in the statement, the only admissible
triples in Table 2 of Appendix A which cannot be realized by a natural automor-
phism and do not satisfy the hypotheses of Lemma 5.1 are (3, 8, 1), (3, 7, 0), (3, 4, 1)
and (3, 3, 0).

Consider the triple (3, 8, 1). Here it is easy to check that the corresponding
admissible pair is (T, S) = (〈2〉⊕E6, U

⊕2⊕E⊕2
6 ). By [3, Theorem 3.3] there exists

a K3 surface Σ and a non-symplectic automorphism of order three ϕ ∈ Aut(Σ) with
SK3

∼= S and TK3
∼= U ⊕ A⊕2

2 : in order to show that the triple (3, 8, 1) is realized
by an automorphism induced by ϕ we need to prove the existence of a primitive

Mukai vector v ∈ T̂ = U⊕2⊕A⊕2
2 of square six and orthogonal complement v⊥ ∩ T̂

isometric to T (see Proposition 4.4). We describe primitive embeddings 〈6〉 ↪→ T̂ by

using Theorem 2.5, since T̂ is unique in its genus by Theorem 2.2. The discriminant

groups of the two lattices 〈6〉 and T̂ are:

A〈6〉 = 〈s〉 ∼=
Z
6Z

(
1

6

)
; AT̂ = 〈t1, t2〉 ∼=

Z
3Z

(
4

3

)
⊕ Z

3Z

(
4

3

)
.

We consider the isometric subgroups H := 〈2s〉 ⊂ A〈6〉 and H ′ := 〈t1 + t2〉 ⊂ AT̂ .
Let γ : H → H ′ be the isomorphism which maps the chosen generator of H to the
chosen generator of H ′ (both these elements have order three and quadratic form 2

3
mod 2Z). The graph of γ is the subgroup Γ = 〈2s+ t1 + t2〉 ⊂ A〈6〉(−1)⊕AT̂ and

its orthogonal complement is Γ⊥ = 〈s+ t1, s+ t2〉. Passing to the quotient Γ⊥/Γ,
the class of the element s+ t2 becomes the opposite of the class of s+ t1, meaning
that

Γ⊥

Γ
= 〈[s+ t1]〉 ∼=

Z
6Z

(
7

6

)
.

This quotient coincides with the discriminant group of T = 〈2〉⊕E6: by Theorem

2.5, this implies that there exists a primitive embedding 〈6〉 ↪→ T̂ with orthogonal
complement T , thus the triple (3, 8, 1) has an induced realization by Proposition
4.4. Moreover, this computation guarantees that the triple (3, 4, 1) is also realized
by an induced automorphism, since in this case both T = 〈2〉 ⊕ E6 ⊕ E8 and
TK3 = U ⊕A⊕2

2 ⊕E8 differ from the ones of (3, 8, 1) only for an additional copy of
the unimodular lattice E8.

With a similar approach it is possible to show that the admissible triples (3, 7, 0)
and (3, 3, 0) are realized by induced automorphisms too: here T = 〈2〉 ⊕ E8,
TK3 = U ⊕ E6 and T = 〈2〉 ⊕ E⊕2

8 , TK3 = U ⊕ E6 ⊕ E8 respectively. �

All the cases which can be realized by non-natural, non-twisted induced auto-
morphisms are marked with the symbol \ in Table 2 of Appendix A.
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5.2. Twisted induced automorphisms for n = 3, 4. Both for n = 3 and n = 4,
in §3.4 we found admissible triples for p = 3 where the lattice S is different from
all possible co-invariant lattices SK3 of non-symplectic automorphisms of order
three on K3 surfaces, classified in [3, Table 2]. Thus, we cannot realize these
cases in a natural way, nor using induced automorphisms on moduli spaces of
ordinary sheaves on K3’s (Proposition 4.4). However we prove that they all admit
a geometric realization using twisted induced automorphisms (see §4.2) except for
(3, 11, 0) when n = 4 (which will be discussed in §6.1).

We are interested in the following triples (p,m, a): (3, 9, 5) and (3, 8, 6) for n = 3;
(3, 10, 3), (3, 9, 4), (3, 8, 5) for n = 4. For each of these cases, let (T, S) be the
corresponding pair of admissible lattices in Table 1 (n = 3) or Table 2 (n = 4) of
Appendix A. Notice that S is always of the form S = U(3)⊕2⊕W , where W is one
of the lattices E⊕2

8 , E6 ⊕ E8, E⊕2
6 .

Let Σ be a K3 surface with transcendental lattice Tr(Σ) = SK3
∼= U⊕U(3)⊕W ,

where SK3 is the co-invariant lattice of a non-symplectic automorphism ϕ ∈ Aut(Σ)
of order three: the existence of (Σ, ϕ) is guaranteed, in all cases, by [3, Theorem
3.3] and [3, Table 2]. This K3 surface has Pic(Σ) = TK3

∼= U(3)⊕M , for an even
lattice M which is either 0, A2, A

⊕2
2 .

Proposition 5.3. Let Σ be a K3 surface with a non-symplectic automorphism
ϕ ∈ Aut(Σ) of order three whose co-invariant lattice is Tr(Σ) ∼= U ⊕ U(3) ⊕W ,
where W ∈

{
E⊕2

8 , E6 ⊕ E8, E
⊕2
6

}
. Then there exists a ϕ-invariant Brauer class

α ∈ Br(Σ) of order three whose kernel in Tr(Σ) is isomorphic to S = U(3)⊕2 ⊕W .

Proof. As we recalled in §4.2, a Brauer class α ∈ Br(Σ) of order three corresponds
to a surjective homomorphism α : Tr(Σ)→ Z/3Z, which is ϕ-invariant if and only
if α ◦ ϕ∗|Tr(Σ) = α.

Let {e1, e2} be a basis for the summand U in Tr(Σ) ∼= U ⊕ U(3) ⊕ W and
consider α := (e1,−) : Tr(Σ) → Z/3Z. The kernel of this homomorphism is
ker(α) = K ⊕ U(3) ⊕W , with K = {v ∈ U : (e1, v) ≡ 0 (mod 3Z)}. In particular
K = 〈e1, 3e2〉 ∼= U(3), thus ker(α) ∼= S.

We now want to check that α ◦ ϕ∗|Tr(Σ) = α. By [3, Examples 1.1], since
W is a direct sum of copies of E6 and E8 the action of the automorphism ϕ on
Tr(Σ) ∼= U ⊕ U(3)⊕W can be expressed as

ϕ∗|Tr(Σ) = π ⊕ ρ

where ρ is a suitable isometry of order three of W with no fixed points and π is the
isometry of U ⊕ U(3) which, with respect to a basis {e1, e2, f1, f2}, is given by:

e1 7→ e1 − f1, e2 7→ −2e2 − f2,

f1 7→ −2f1 + 3e1, f2 7→ f2 + 3e2.

We have (e1, π(ei)) ≡ (e1, ei) (mod 3Z) and (e1, π(fi)) ≡ (e1, fi) ≡ 0 (mod 3Z),
for i = 1, 2, therefore the Brauer class α is invariant with respect to ϕ. �

Theorem 5.4. The admissible triples (p,m, a) = (3, 9, 5), (3, 8, 6) for n = 3 and
(p,m, a) = (3, 10, 3), (3, 9, 4), (3, 8, 5) for n = 4 admit a geometric realization by
twisted induced automorphisms.

Proof. Given a triple (p,m, a) as in the statement, let T, S be the invariant and
co-invariant lattices associated to it and Σ, ϕ, α as in Proposition 5.3. We want to
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construct a moduli space Mv(Σ, α) having T as Picard lattice and S as transcen-
dental lattice, and on which ϕ induces an automorphism.

We are considering α of the form (e1,−) : Tr(Σ)→ Z/3Z, where e1 is a generator
of U inside Tr(Σ) ∼= U ⊕ U(3)⊕W . As a consequence, recalling §4.2, the element
B = e1

3 ∈ Tr(Σ)⊗Z
1
3Z ⊂ H

2(X,Q) is a B-field lift of α, with the properties B2 = 0
and B · L = 0 for any L ∈ Pic(Σ).

Assume first that (p,m, a) is one of the three admissible triples for n = 4. We
already remarked that Pic(Σ) = TK3

∼= U(3) ⊕M : this means that we can find
a primitive divisor H in the summand U(3) of Pic(Σ) with H2 = 6. Moreover,
up to taking its opposite we can assume that H is effective (by Riemann–Roch).
Let v = (0, H, 0) ∈ H∗(Σ,Z) be the primitive positive Mukai vector defined by
H, and B = e1

3 the selected B-field lift of α: by the properties of B the twisted
Mukai vector vB (defined in §4.2) coincides with v, and therefore it has square
six and it is invariant with respect to ϕ. By Proposition 4.1, ϕ induces a non-
symplectic automorphism of order three on the moduli space of twisted sheaves
Mv(Σ, α), which is a manifold of K3[4]-type. The transcendental lattice of Mv(Σ, α)
is ker(α) ∼= S (Proposition 5.3), while its Picard group is isomorphic to the intersec-
tion v⊥B∩〈Pic(Σ), (0, 0, 1), (3, 3B, 0)〉, as we recalled in §4.2. Since 3B = e1 ∈ Tr(Σ),
the lattice generated by (0, 0, 1) and (3, 3B, 0) is orthogonal to Pic(Σ); moreover,
it is isomorphic to U(3), by the fact that B2 = 0. Thus

Pic (Mv(Σ, α)) ∼=
(
H⊥ ∩ Pic(Σ)

)
⊕ U(3) ∼= 〈−6〉 ⊕M ⊕ U(3)

which is exactly the lattice T corresponding to (p,m, a) (see Table 2 of Appendix
A).

Consider now the case where (p,m, a) is one of the admissible triples (3, 9, 5),
(3, 8, 6) for n = 3. In this case Pic(Σ) ∼= U(3)⊕A2⊕M ′, where M ′ is 0 for (3, 9, 5)
and A2 for (3, 8, 6). Therefore, if {e1, e2} is a basis for the summand U(3) of Pic(Σ)
and {δ1, δ2} is a basis for a summand A2, we can take the primitive element of

square four H̃ = e1 + e2 + δ1 ∈ Pic(Σ). Let H be the effective divisor between

H̃ and −H̃. As before, v = vB = (0, H, 0) is a primitive positive Mukai vector,
invariant with respect to ϕ. By Proposition 4.1, ϕ induces an automorphism on
Mv(Σ, α), which is a manifold of K3[3]-type with transcendental lattice ker(α) ∼= S
and

Pic(Mv(Σ, α)) ∼= v⊥B ∩ 〈Pic(Σ), (0, 0, 1), (3, 3B, 0)〉 ∼= (H⊥ ∩ Pic(Σ))⊕ U(3).

A computation shows that the orthogonal complement of e1 + e2 + δ1 in U(3)⊕A2

is isomorphic to the lattice Ω defined in §3.4, thus Pic(Mv(Σ, α)) ∼= Ω⊕M ′⊕U(3),
which is the lattice T corresponding to the triple (p,m, a) in Table 1 of Appendix
A.

To conclude the proof, we need to show that the automorphism induced by ϕ on
Mv(Σ, α) leaves the whole Picard lattice invariant. Both for n = 3 and n = 4, the
direct summand U(3) in Pic (Mv(Σ, α)) is the lattice 〈(0, 0, 1), (3, 3B, 0)〉. Notice
that ϕ acts as the identity on H4(Σ,Z), therefore (0, 0, 1) is fixed. Moreover, it maps
(3, 3B, 0) to (3, 3ϕ∗(B), 0), but these two classes coincide in H2(Mv(Σ, α),Z), as
observed in the proof of Lemma 4.3. Since ϕ∗ also fixes Pic(Σ), we get the result. �

In Table 1 and Table 2 of Appendix A we use the symbol ♦ to mark the five
admissible triples of Theorem 5.4, which are realized by twisted induced automor-
phisms, but not by ordinary induced ones.
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6. Automorphisms on the LLSvS eightfold

Let Y ⊂ P5 be a smooth cubic fourfold. Moduli spaces of rational curves on Y
and their compactifications were first studied by de Jong and Starr in [26]. If Y
does not contain a plane, let M3(Y ) = Hilbgtc(Y ) be the irreducible component of
Hilb3t+1(Y ) containing twisted cubic curves on Y . The manifold M3(Y ) is smooth,
projective of dimension ten and it is called the Hilbert scheme of generalized twisted
cubics on Y (see [43, Theorem A]). In [43, Theorem B], Lehn, Lehn, Sorger, van
Straten proved that there exist an irreducible holomorphic symplectic manifold ZY
of dimension eight, a closed Lagrangian embedding j : Y ↪→ ZY and a morphism
u : M3(Y )→ ZY which factors as Φ ◦ a, where a : M3(Y )→ Z ′Y is a P2-bundle to
an eight-dimensional manifold Z ′Y and Φ : Z ′Y → ZY is an extremal contraction (in
the sense of [27, §6.5]), which contracts a divisor D ⊂ Z ′Y to the image j(Y ) ⊂ ZY .

Moreover, by work of Addington and Lehn [1] ZY is a manifold of K3[4]-type.
We recall some details about the construction. For any generalized twisted cubic

curve C on Y we denote by [C] the corresponding point in M3(Y ). The linear span
〈C〉 ⊂ P5 is a P3; in particular, C lies on the cubic surface SC = Y ∩ 〈C〉, which is
integral since Y does not contain any plane. A point p ∈ D ⊂ Z ′Y is defined by the
datum (y,P(W )), with y ∈ Y and P(W ) ⊂ P5 a three-dimensional linear subspace
through y contained in the tangent space TyY (here and in the following W ∈
Grass(C6, 4)). The generalized twisted cubics on Y parametrized by this datum
are non-Cohen–Macaulay: an element [C] in the fiber a−1(p) is given by a singular
cubic curve C0 cut out on Y by a plane through y contained in P(W ) ⊂ TyY ,
together with an embedded point at y. The contraction Φ|D : D → j(Y ) sends
p = (y,P(W )) to j(y).

In turn, a point p ∈ Z ′Y \D corresponds to the choice of the following data:

• a three-dimensional linear subspace P(W ) ⊂ P5;
• a linear determinantal representation for the surface S = P(W )∩Y , i.e. the

orbit [A] of a 3× 3-matrix A with coefficients in W ∗ such that det(A) = 0
is an equation for S in P(W ). Here the orbit is taken with respect to the
action of (GL3 ×GL3) /∆, where ∆ := {(tI3, tI3) : t ∈ C \ {0}} (see [43,
§3]).

Then, any curve C such that [C] ∈ a−1(p) lies on S and is arithmetically-Cohen–
Macaulay (aCM for short). The generators of the homogeneous ideal IC/S are the
three minors of a 3 × 2-matrix A0, whose columns are independent linear combi-
nations of the columns of A. The morphism Φ maps Z ′Y \ D isomorphically to
ZY \ j(Y ).

As showed in [30, §3] (see also [12, §6.2]), one can construct non-symplectic
automorphisms of the Fano variety of lines F (Y ) (which is a manifold of K3[2]-
type, by [9, Proposition 2]) starting from automorphisms of the cubic fourfold Y .
It is therefore natural to ask whether a similar approach can be used to produce
automorphisms on ZY : the answer is positive, we will show how to do so and how
to choose Y in order to construct a non-symplectic automorphism of ZY realizing
the admissible triple (3, 11, 0) for n = 4.

By [48, Theorem 2], automorphisms of a cubic hypersurface Y ⊂ P5 are restric-
tions of linear automorphisms of P5. The list of all automorphisms of prime order
on smooth cubic fourfolds is provided in [32, Theorem 3.8].
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Lemma 6.1. Let Y ⊂ P5 be a smooth cubic fourfold not containing a plane and
σ ∈ PGL(6) an automorphism such that σ(Y ) = Y . Then, σ induces an automor-
phism σ̌ of M3(Y ) such that a(σ̌([C])) = a(σ̌([C ′])) if a([C]) = a([C ′]).

Proof. The universal property of the Hilbert scheme (see [2, §IX.4]) guarantees that
σ induces an automorphism σ̌ of M3(Y ) whenever σ(Y ) = Y . In order to describe
this action, we begin by looking at points in the fibers of a over D ⊂ Z ′Y . Let
p ∈ D be a point corresponding to (y,P(W )), and [C1], [C2] ∈ a−1(p): as explained
above, each [Ci] consists of a plane cubic curve C0

i , singular in y, together with an
embedded point at y. In particular, there exist two subspaces π1, π2 of dimension
two inside P(W ) which are tangent to Y in y and such that C0

i = πi ∩ Y . Then,
σ(C0

i ) are again plane cubic curves, cut out on Y by two planes through σ(y) inside
σ (P(W )) ⊂ Tσ(y)Y . Let σ̌([Ci]) consist of the curve σ(C0

i ), with the unique non-
reduced structure at σ(y): then σ̌([C1]), σ̌([C2]) are elements of M3(Y ) in the fiber
a−1(p′), with p′ defined by (σ(y), σ (P(W ))).

Consider now a point p ∈ Z ′Y \ D, corresponding to P(W ) ⊂ P5 and the orbit
of a 3 × 3-matrix A = (wi,j), with wi,j ∈ W ∗. Denote P(W ′) := σ (P(W )) and let
S be the integral cubic surface P(W ) ∩ Y , which is the vanishing locus in P(W ) of
g := det(A) ∈ S3W ∗. Then, the surface σ(S) ⊂ P(W ′) is the vanishing locus of
g◦σ−1, which is the determinant of the matrix σ∗A :=

(
wi,j ◦ σ−1

)
with coefficients

in (W ′)
∗
.

Two elements [C1], [C2] ∈ a−1(p) are aCM cubic curves on S: the generators of
ICi/S are given by the three minors of a 3 × 2-matrix Ai whose two columns are
in the span of the columns of A, as shown in [43, §3.1]. Then, σ(C1), σ(C2) are
aCM curves on σ(S): by pullback, the generators of Iσ(Ci)/σ(S) are the minors of
σ∗Ai, whose columns are again linear combinations of the columns of σ∗A. Thus,
σ̌([Ci]) = [σ(Ci)] ∈ M3(Y ), for i = 1, 2, belongs to the fiber of a over the point
defined by P(W ′) and [σ∗A]. �

Proposition 6.2. Let Y ⊂ P5 be a smooth cubic fourfold not containing a plane
and σ ∈ PGL(6) an automorphism such that σ(Y ) = Y . Then, σ induces an auto-
morphism σ̃ ∈ Aut(ZY ). Moreover, if σ has finite order d, then σ̃ is also of order
d and it is non-symplectic if σ acts non-symplectically on F (Y ).

Proof. As a consequence of Lemma 6.1, there exists an automorphism σ′ of the
manifold Z ′Y such that σ′ ◦ a = a ◦ σ̌, and σ′ leaves the divisor D invariant.
Consider now the divisorial contraction Φ : Z ′Y → ZY ; by [43, §4.5], we have
Φ∗(OZ′Y ) = OZY . From the proof of the previous lemma, if p, p′ ∈ D are points

which parametrize (y,P(W )), (y′,P(W ′)) respectively and Φ(p) = Φ(p′), i.e. y = y′,
then Φ(σ′(p)) = Φ(σ′(p′)) = j(σ(y)). The equality Φ(σ′(p)) = Φ(σ′(p′)) when
Φ(p) = Φ(p′) clearly holds also if p, p′ ∈ Z ′Y \D, since Φ : Z ′Y \D → ZY \ j(Y ) is
an isomorphism. Then, by applying the rigidity lemma [27, Lemma 1.15(b)] to Φ
and Φ ◦ σ′ we conclude that σ′ descends to an automorphism σ̃ ∈ Aut(ZY ) such
that σ̃ ◦ Φ = Φ ◦ σ′ (see also [44, Lemma 3.2]).

Assume that σ has finite order d. By [43, §4.1], the surjective morphism s :
M3(Y )→ Grass(C6, 4), [C] 7→ 〈C〉 factors as

M3(Y )
a−→ Z ′Y

b−→ Grass(C6, 4)

where b is generically finite of degree 72. The morphism s is clearly equivariant
with respect to σ̌ ∈ Aut(M3(Y )) and the natural action of σ on the Grassmannian,
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both of which have the same order of σ (recall that Aut(Grass(C6, 4)) ∼= Aut(P5)
by [23, Theorem I]). Hence, d is also the order of σ′ and σ̃.

Let ωF (Y ) and ωZY be suitably chosen symplectic forms on F (Y ) and ZY re-
spectively, and let pri : F (Y ) × F (Y ) → F (Y ) for i = 1, 2 be the projections on
the two factors. By [66, Proposition 4.8], there exists a dominant rational map of
degree six

ψ : F (Y )× F (Y ) 99K ZY

such that

(4) ψ∗(ωZY ) = pr∗1(ωF (Y ))− pr∗2(ωF (Y )).

The rational map ψ is defined as follows. Let ([l], [l′]) ∈ F (Y )× F (Y ) be a generic
element, so that the span 〈l, l′〉 is a P3, and let x be a point on l: the plane 〈x, l′〉
intersects the cubic fourfold Y along the union of the line l′ and a conic Q passing
through x. Then C := l ∪x Q is a rational cubic curve contained in Y : we set
ψ([l], [l′]) := u([C]) ∈ ZY , which is well-defined since all reducible cubic curves C
arising from different choices of the point x ∈ l belong to the same fiber of u (see
the proof of [66, Proposition 4.8]). In order to conclude the proof of Proposition
6.2, we need the following:

Lemma 6.3. Let Y ⊂ P5 be a smooth cubic fourfold not containing a plane,
σ ∈ PGL(6) such that σ(Y ) = Y and σ̃ ∈ Aut(ZY ) the automorphism induced by σ
on ZY . Then ψ ([σ(l)], [σ(l′)]) = σ̃ (ψ([l], [l′])) for generic ([l], [l′]) ∈ F (Y )× F (Y ).

Proof. As we recalled, ψ([l], [l′]) = u([C]) with C = l∪xQ, x ∈ l and Y ∩〈x, l′〉 = l′∪
Q. Moreover, σ̃ (ψ([l], [l′])) = u (σ̌([C])) by Lemma 6.1. In turn, ψ ([σ(l)], [σ(l′)]) =
u([C ′]), where C ′ = σ(l) ∪σ(x) Q

′ and Y ∩ 〈σ(x), σ(l′)〉 = σ(l′) ∪ Q′. However,
the intersection Y ∩ 〈σ(x), σ(l′)〉 coincides with σ (Y ∩ 〈x, l′〉); as a consequence,
Q′ = σ(Q) and so [C ′] = σ̌([C]). �

End of proof of Proposition 6.2. Thanks to the equivariance of the map ψ and
the relation (4) we deduce that, if σ acts non-symplectically on F (Y ), then σ̃ is
also non-symplectic. �

Proposition 6.4. Let Y ⊂ P5 be a smooth cubic fourfold not containing a plane.
The transcendental lattices of F (Y ) and ZY have the same rank.

Proof. Let Γψ ⊂ F (Y ) × F (Y ) × ZY be the closure of the graph of the map
ψ : F (Y ) × F (Y ) 99K ZY and let V be a desingularization of Γψ. We con-
sider the projections πF : V → F (Y ) × F (Y ), πZ : V → ZY which arise from
the inclusion Γψ ⊂ F (Y ) × F (Y ) × ZY . Let TrC(F (Y )) ⊂ H2(F (Y ),C) and
TrC(ZY ) ⊂ H2(ZY ,C) be the complexifications of the transcendental lattices of
F (Y ) and ZY respectively. If we define T := (πF )∗ (π∗Z (TrC(ZY ))), using (4) we
deduce:

T ⊂ TrC(F (Y ))⊕ TrC(F (Y )) ⊂ H2(F (Y )× F (Y ),C).

In particular, since ψ∗(ωZY ) ∈ T and TrC(F (Y )) ⊂ H2(F (Y ),C) is the minimal
Hodge substructure containing holomorphic two-forms, (pri)∗(T ) = TrC(F (Y )) for
i = 1 or i = 2. This implies that the ranks of Tr(ZY ) and Tr(F (Y )) coincide. �
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6.1. The case of cyclic cubic fourfolds. Let σ ∈ PGL(6) be the following au-
tomorphism of order three:

(5) σ(x0 : . . . : x5) = (x0 : . . . : x4 : ξx5)

with ξ = e
2πi
3 . We consider the ten-dimensional family C of smooth cubic hyper-

surfaces Y ⊂ P5 of equations

Y : x3
5 + F3(x0, . . . , x4) = 0

with a homogeneous polynomial F3 of degree three. Cubic fourfolds Y ∈ C are
called cyclic: they arise as triple coverings of P4 ramified along the smooth cubic
threefold of equation F3 = 0. Any Y ∈ C is invariant with respect to σ, thus
σ|Y ∈ Aut(Y ).

Remark 6.5. In [12, Example 6.4] it is proved that σ induces a non-symplectic au-
tomorphism of order three on the Fano variety of lines F (Y ), whose invariant lattice
is 〈6〉. In particular, as observed in [14, Remark 3.6], we know that Pic(F (Y )) ∼= 〈6〉
for a very general choice of Y ∈ C.

This allows us to deduce that a very general Y in the family C, such that
Pic(F (Y )) ∼= 〈6〉, does not contain any plane. In fact, if there existed a plane
π ⊂ Y , it would define an algebraic class in H2,2(Y ). In particular, the second
Néron–Severi group NS2(Y ) = H4(Y,Z) ∩ H2,2(Y ) would contain 〈H2, π〉, where
H is an ample line bundle on Y , thus rk(NS2(Y )) ≥ 2 (references in [45, §3.2]).
By applying the Abel–Jacobi map H2,2(Y )→ H1,1(F (Y )) (see [9, §3]), the Picard
group of F (Y ) would also have at least rank 2, while we just observed that this is
false for the chosen very general Y .

Summing up all the results in this section, we have obtained the following:

Theorem 6.6. Let Y be a cyclic cubic fourfold in the family C not containing a
plane. Then there exists a non-symplectic automorphism σ̃ ∈ Aut(ZY ) of order
three, induced by the automorphism σ|Y ∈ Aut(Y ) of the form (5).

Moreover, the invariant lattice of σ̃ is T ∼= 〈2〉.

Proof. The first part of the statement follows from Proposition 6.2.
As explained in Remark 6.5, the very general cubic fourfold Y ∈ C is such

that F (Y ) has transcendental lattice of rank 22. This together with Proposition
6.4 allows us to conclude that the invariant lattice of σ̃ has the same rank of the
invariant lattice of the automorphism induced by σ on F (Y ), namely one. Therefore
T ∼= 〈2〉 by Proposition 3.15. �

At the end of this section we will present a more geometric proof of the second
part of Theorem 6.6 by using Theorem 6.10. In order to do so, we first need to
study the fixed locus of the automorphism σ̃.

Let H ⊂ Fix(σ) be the hyperplane {x5 = 0} ⊂ P5. The intersection YH := Y ∩H
is the smooth cubic threefold defined by F3(x0, . . . , x4) = 0 inside H. We denote
by ZH the image via the map u : M3(Y ) → ZY of the set of points parametrizing
twisted cubics contained in YH : in [61, Proposition 2.9] it is proved that ZH is a
Lagrangian subvariety of ZY .

Lemma 6.7. Let Y be a cubic fourfold in the family C not containing a plane.
Then ZH is contained in the fixed locus of σ̃ and j(Y )σ̃ = ZH ∩ j(Y ).
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Proof. Let j(y) be a point in the image of the embedding j : Y ↪→ ZY such that
σ̃(j(y)) = j(y). In the proof of Lemma 6.1 we showed that σ̌ ∈ Aut(M3(Y ))
maps the fiber of u : M3(Y ) → ZY over the point j(y) to the fiber over j(σ(y)).
Therefore, since σ̃ ◦ u = u ◦ σ̌, we need σ(y) = y, i.e. y ∈ YH . We conclude
Fix(σ̃)∩j(Y ) = j(YH). Clearly, since H ⊂ Fix(σ), we have ZH ⊂ Fix(σ̃). Moreover,
ZH ∩ j(Y ) ∼= YH (see [61, §3]), thus ZH ∩ j(Y ) = j(YH). �

Proposition 6.8. For Y in the family C not containing a plane, the fixed locus of
the automorphism σ̃ is ZH .

Proof. By Lemma 6.7, we need to prove that there are no fixed points outside
ZH , i.e. points p ∈ ZY \ j(Y ) which are fixed by σ̃ and such that the curves
parametrized by the fiber u−1(p) are not contained in H. Notice that a point p
of this type corresponds to (P(W ), [A]), with σ(P(W )) = P(W ) but σ|P(W ) 6= id.

A vector space W ∈ Grass(C6, 4) is σ-invariant if and only if it can be written as
W = W1⊕Wξ, where we set Wt := {w ∈W | σ(w) = tw}. The condition σ|P(W ) 6=
id implies Wξ 6= 0, therefore Wξ is the whole one-dimensional eigenspace of C6

with respect to the eigenvalue ξ of σ, while W1 is a three-dimensional subspace of
the eigenspace of C6 where σ acts as the identity. Let y0, y1, y2 ∈ W ∗ be the dual
elements of a basis of W1. Then, we can take y0, y1, y2, x5 as coordinates on P(W ),
so that the action of σ on it is σ(y0 : y1 : y2 : x5) = (y0 : y1 : y2 : ξx5).

We showed in the proof of Lemma 6.1 that, for a point p as above, we have
σ̃(p) = (P(W ), [σ∗A]). Therefore, p is fixed if and only if the matrices A and σ∗A
define the same P2 of generalized aCM twisted cubics on the surface S = P(W )∩Y ,
whose equation in P(W ) is of the form g := x3

5 + f(y0, y1, y2) = 0, where f is the
restriction of F3 to P(W1). Fix a curve C such that [C] ∈ u−1(p): its equations
in P(W ) are given by the three minors of a 3 × 2-matrix A0 with linear entries in
W ∗. The matrix A0, up to a change of basis, can only be of eight different types,
listed in [43, §1]. Since the curve C lies on S, the polynomial g which defines the
surface belongs to IC/S , i.e. it is a combination of the minors of A0 (see [43, §3.1]).
We recall that A is a linear determinantal representation of the surface S therefore,
without loss of generality, it is of the form

A =
(
A0

∗∗∗
)

where the last column is uniquely determined by g (up to a combination of the
columns of A0; see [43, §3.1]). Again by [43, §3.1], the matrices A, σ∗A define the
same P2 of cubics on S if and only if the columns of σ∗A0 belong to the span of
the columns of A.

Assume A0 is of the most general form, i.e. the form A(1) =

(
w0 w1 w2

w1 w2 w3

)t
of [43, §1], where w0, . . . , w3 are suitable coordinates for P(W ): in this case C is a
smooth twisted cubic curve.

Let M := (ai,j | bi)i=0,1,2,3
j=0,1,2

∈ GL4(C) be the matrix defining the change of

coordinates from {wi}3i=0 to {y0, y1, y2, x5}. Then

A =


∑2
j=0 a0,jyj + b0x5

∑2
j=0 a1,jyj + b1x5

∑2
j=0 c0,jyj + d0x5∑2

j=0 a1,jyj + b1x5

∑2
j=0 a2,jyj + b2x5

∑2
j=0 c1,jyj + d1x5∑2

j=0 a2,jyj + b2x5

∑2
j=0 a3,jyj + b3x5

∑2
j=0 c2,jyj + d2x5
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where the parameters ci,j and di are determined by g. Once we apply the auto-
morphism we get:

σ∗A =


∑2
j=0 a0,jyj + ξ2b0x5

∑2
j=0 a1,jyj + ξ2b1x5

∑2
j=0 c0,jyj + ξ2d0x5∑2

j=0 a1,jyj + ξ2b1x5

∑2
j=0 a2,jyj + ξ2b2x5

∑2
j=0 c1,jyj + ξ2d1x5∑2

j=0 a2,jyj + ξ2b2x5

∑2
j=0 a3,jyj + ξ2b3x5

∑2
j=0 c2,jyj + ξ2d2x5


where the first two columns form the matrix σ∗A0, whose minors define the curve
σ(C) ⊂ S.

The first column of σ∗A0 is a C-linear combination of the columns of A if and only
if the following linear system of twelve equations admits a solution (h, k, t) ∈ C3:

(6)



a0,j = ha0,j + ka1,j + tc0,j for j = 0, 1, 2

a1,j = ha1,j + ka2,j + tc1,j for j = 0, 1, 2

a2,j = ha2,j + ka3,j + tc2,j for j = 0, 1, 2

ξ2b0 = hb0 + kb1 + td0

ξ2b1 = hb1 + kb2 + td1

ξ2b2 = hb2 + kb3 + td2

Notice that the system made of the last three equations always admits a unique
solution, namely (h, k, t) = (ξ2, 0, 0). In fact, the determinant of its matrix of
coefficients is different from zero, because it coincides with the coefficient of x3

5 in
the expression of the determinant of A (and σ∗A), which needs to be a (non-zero)
scalar multiple of g. Now, the triple (h, k, t) = (ξ2, 0, 0) is a solution for the whole
system (6) only if a0,j = a1,j = a2,j = 0 ∀j = 0, 1, 2, which is not possible since
the matrix M needs to be invertible. We conclude that the columns of σ∗A0 can
never be combinations of the columns of A if A0 is of the form A(1). The remaining
cases, i.e. A0 of the forms A(2), . . . , A(8) of [43, §1], can be discussed in an entirely
similar way. �

Remark 6.9. Let ZH be the fixed locus of the automorphism σ̃ ∈ Aut(ZY ), for
Y ∈ C not containing a plane. By [61, Theorem 3.3] and [39, §6.3], ZH also arises
as resolution of the unique singular point of the theta divisor in the intermediate
Jacobian J(YH) of the cubic threefold YH . This implies that ZH is a variety of
maximal Albanese dimension and Alb(ZH) ∼= J(YH) (see for instance [40, §1] and
references therein).

Let us fix a cubic fourfold Y ∈ C not containing a plane and choose a marking
η0 : H2(ZY ,Z)→ L = U⊕3 ⊕ E⊕2

8 ⊕ 〈−6〉. We define ρ := η0 ◦ (σ̃)
∗ ◦ η−1

0 ∈ O(L).

Following [13] and [14], a (ρ, 〈2〉)-polarization of an IHS manifold X of K3[4]-type
is given by a marking η : H2(X,Z)→ L and an automorphism g ∈ Aut(X) of order
three such that g∗C|H2,0(X) = ξ id and η◦g∗ = ρ◦η (in particular, the invariant lattice
of g is isometric to 〈2〉, by Theorem 6.6). We consider the following equivalence
relation: two (ρ, 〈2〉)-polarized eightfolds (X, η, g), (X ′, η′, g′) are equivalent if there
exists an isomorphism f : X → X ′ such that η′ = η ◦ f∗ and g′ = f ◦ g ◦ f−1. Let

Mρ,ξ
〈2〉 be the set of equivalence classes of (ρ, 〈2〉)-polarized manifolds of K3[4]-type

and U ⊂ Mρ,ξ
〈2〉 be the subset which parametrizes manifolds (ZY , η, σ̃), where Y is

a cyclic cubic fourfold not containing a plane and σ is as in (5).
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For any smooth cubic threefold J ⊂ P4, we denote by Y (J ) the cubic fourfold
which arises as triple covering of P4 ramified along J . By using Proposition 6.8 we
can prove the following result.

Theorem 6.10. Let J ,J ′ be smooth cubic threefolds such that Y (J ), Y (J ′) do not
contain a plane. If (ZY (J ), η, σ̃), (ZY (J ′), η

′, σ̃′) are equivalent as (ρ, 〈2〉)-polarized

manifolds, then J ∼= J ′. In particular, U ⊂Mρ,ξ
〈2〉 has dimension ten.

Proof. Consider (ZY , η, σ̃) ∈ U and let ZH ⊂ ZY be the fixed locus of σ̃. Since
Alb(ZH) ∼= J(YH) (Remark 6.9), the Torelli theorem for cubic threefolds [24, The-
orem 13.11] implies that the eightfold ZY and the action of the automorphism σ̃
uniquely determine the threefold J = YH , up to isomorphisms. The moduli space
Csm3 of smooth cubic threefolds is ten-dimensional and, for a very general J ∈ Csm3 ,

the cubic fourfold Y (J ) does not contain a plane (see Remark 6.5). Since Mρ,ξ
〈2〉

is ten-dimensional, too, by [13, Corollary 6.5], we conclude that ten is also the

dimension of the subset U ⊂Mρ,ξ
〈2〉. �

Theorem 6.10 allows us to provide the following alternative proof of the second
part of Theorem 6.6. The automorphism σ̃ corresponds to an admissible triple
(3,m, a), where m − 1 coincides with the dimension of the moduli space U by
[12, §4]. Since the dimension of U is ten, we can use Proposition 3.15 to deduce
m = 11, a = 0. Hence the invariant lattice of σ̃ is T ∼= 〈2〉.
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Appendix A. Invariant and co-invariant lattices for n = 3, 4, p = 3

The two tables in this appendix list all admissible triples (p,m, a) (see Def-
inition 3.10) and the corresponding isometry classes for the co-invariant lattice
S ⊂ H2(X,Z) and the invariant lattice T ⊂ H2(X,Z) of non-symplectic automor-
phisms of order p = 3 on manifolds X of K3[n]-type, for n = 3, 4. This classification
is discussed in §3.4.

The symbol ♣ denotes the cases which can be realized by natural automorphisms
(see §4.1). The cases marked with \ (respectively, ♦) correspond to admissible
triples that admit a realization by induced automorphisms on moduli spaces of
ordinary (respectively, twisted) sheaves on K3 surfaces, but not by natural au-
tomorphisms (see §5). Finally, the admissible triple (3, 11, 0) for n = 4 (marked
with the symbol F) is realized by the automorphism constructed in §6.1 on a ten-
dimensional family of Lehn–Lehn–Sorger–van Straten eightfolds (see also §4.3).

Finally, we recall that in the following tables, as in the rest of the paper, the
root lattices A2, E6, E8 are defined as negative definite.

p m a S T

♣ 3 10 0 U⊕2 ⊕ E⊕2
8 U ⊕ 〈−4〉

♣ 3 10 2 U ⊕ U(3)⊕ E⊕2
8 U(3)⊕ 〈−4〉

♣ 3 9 1 U⊕2 ⊕ E6 ⊕ E8 U ⊕A2 ⊕ 〈−4〉
♣ 3 9 3 U ⊕ U(3)⊕ E6 ⊕ E8 U(3)⊕A2 ⊕ 〈−4〉
♦ 3 9 5 U(3)⊕2 ⊕ E6 ⊕ E8 U(3)⊕ Ω

♣ 3 8 2 U⊕2 ⊕ E⊕2
6 U ⊕A⊕2

2 ⊕ 〈−4〉
♣ 3 8 4 U ⊕ U(3)⊕ E⊕2

6 U(3)⊕A⊕2
2 ⊕ 〈−4〉

♦ 3 8 6 U(3)⊕2 ⊕ E⊕2
6 U(3)⊕A2 ⊕ Ω

♣ 3 7 1 U⊕2 ⊕A2 ⊕ E8 U ⊕ E6 ⊕ 〈−4〉
♣ 3 7 3 U ⊕ U(3)⊕A2 ⊕ E8 U ⊕A⊕3

2 ⊕ 〈−4〉
♣ 3 7 5 U⊕2 ⊕A⊕5

2 U(3)⊕A⊕3
2 ⊕ 〈−4〉

♣ 3 7 7 U ⊕ U(3)⊕A⊕5
2 U(3)⊕ E∨6 (3)⊕ 〈−4〉

♣ 3 6 0 U⊕2 ⊕ E8 U ⊕ E8 ⊕ 〈−4〉
♣ 3 6 2 U ⊕ U(3)⊕ E8 U ⊕ E6 ⊕A2 ⊕ 〈−4〉
♣ 3 6 4 U⊕2 ⊕A⊕4

2 U ⊕A⊕4
2 ⊕ 〈−4〉

♣ 3 6 6 U ⊕ U(3)⊕A⊕4
2 U(3)⊕A⊕4

2 ⊕ 〈−4〉
♣ 3 5 1 U⊕2 ⊕ E6 U ⊕ E8 ⊕A2 ⊕ 〈−4〉
♣ 3 5 3 U ⊕ U(3)⊕ E6 U ⊕A⊕2

2 ⊕ E6 ⊕ 〈−4〉
♣ 3 5 5 U ⊕ U(3)⊕A⊕3

2 U ⊕A⊕5
2 ⊕ 〈−4〉

♣ 3 4 2 U⊕2 ⊕A⊕2
2 U ⊕ E⊕2

6 ⊕ 〈−4〉
♣ 3 4 4 U ⊕ U(3)⊕A⊕2

2 U ⊕ E6 ⊕A⊕3
2 ⊕ 〈−4〉

♣ 3 3 1 U⊕2 ⊕A2 U ⊕ E6 ⊕ E8 ⊕ 〈−4〉
♣ 3 3 3 U ⊕ U(3)⊕A2 U ⊕ E⊕2

6 ⊕A2 ⊕ 〈−4〉
♣ 3 2 0 U⊕2 U ⊕ E⊕2

8 ⊕ 〈−4〉
♣ 3 2 2 U ⊕ U(3) U ⊕ E6 ⊕ E8 ⊕A2 ⊕ 〈−4〉
♣ 3 1 1 A2(−1) U ⊕ E⊕2

8 ⊕A2 ⊕ 〈−4〉

Table 1. n = 3, p = 3. See §3.4 for the definition of the lattice Ω.
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p m a S T

F 3 11 0 U⊕2 ⊕ E⊕2
8 ⊕A2 〈2〉

♣ 3 10 0 U⊕2 ⊕ E⊕2
8 U ⊕ 〈−6〉

\ 3 10 1 U ⊕ U(3)⊕ E⊕2
8 U ⊕ 〈−6〉

♣ 3 10 2 U ⊕ U(3)⊕ E⊕2
8 U(3)⊕ 〈−6〉

♦ 3 10 3 U(3)⊕2 ⊕ E⊕2
8 U(3)⊕ 〈−6〉

♣ 3 9 1 U⊕2 ⊕ E6 ⊕ E8 U ⊕A2 ⊕ 〈−6〉
\ 3 9 2 U ⊕ U(3)⊕ E6 ⊕ E8 U ⊕A2 ⊕ 〈−6〉
♣ 3 9 3 U ⊕ U(3)⊕ E6 ⊕ E8 U(3)⊕A2 ⊕ 〈−6〉
♦ 3 9 4 U(3)⊕2 ⊕ E6 ⊕ E8 U(3)⊕A2 ⊕ 〈−6〉
\ 3 8 1 U⊕2 ⊕ E⊕2

6 〈2〉 ⊕ E6

♣ 3 8 2 U⊕2 ⊕ E⊕2
6 U ⊕A⊕2

2 ⊕ 〈−6〉
\ 3 8 3 U ⊕ U(3)⊕ E⊕2

6 U ⊕A⊕2
2 ⊕ 〈−6〉

♣ 3 8 4 U ⊕ U(3)⊕ E⊕2
6 U(3)⊕A⊕2

2 ⊕ 〈−6〉
♦ 3 8 5 U(3)⊕2 ⊕ E⊕2

6 U(3)⊕A⊕2
2 ⊕ 〈−6〉

\ 3 7 0 U⊕2 ⊕A2 ⊕ E8 〈2〉 ⊕ E8

♣ 3 7 1 U⊕2 ⊕A2 ⊕ E8 U ⊕ E6 ⊕ 〈−6〉
\ 3 7 2 U ⊕ U(3)⊕A2 ⊕ E8 U ⊕ E6 ⊕ 〈−6〉
♣ 3 7 3 U ⊕ U(3)⊕A2 ⊕ E8 U(3)⊕ E6 ⊕ 〈−6〉
\ 3 7 4 U⊕2 ⊕A⊕5

2 U ⊕A⊕3
2 ⊕ 〈−6〉

♣ 3 7 5 U⊕2 ⊕A⊕5
2 U(3)⊕A⊕3

2 ⊕ 〈−6〉
\ 3 7 6 U ⊕ U(3)⊕A⊕5

2 U ⊕ E∨6 (3)⊕ 〈−6〉
♣ 3 7 7 U ⊕ U(3)⊕A⊕5

2 U(3)⊕ E∨6 (3)⊕ 〈−6〉
♣ 3 6 0 U⊕2 ⊕ E8 U ⊕ E8 ⊕ 〈−6〉
\ 3 6 1 U ⊕ U(3)⊕ E8 U ⊕ E8 ⊕ 〈−6〉
♣ 3 6 2 U ⊕ U(3)⊕ E8 U(3)⊕ E8 ⊕ 〈−6〉
\ 3 6 3 U⊕2 ⊕A⊕4

2 U ⊕ E6 ⊕A2 ⊕ 〈−6〉
♣ 3 6 4 U⊕2 ⊕A⊕4

2 U(3)⊕ E6 ⊕A2 ⊕ 〈−6〉
\ 3 6 5 U ⊕ U(3)⊕A⊕4

2 U ⊕A⊕4
2 ⊕ 〈−6〉

♣ 3 6 6 U ⊕ U(3)⊕A⊕4
2 U(3)⊕A⊕4

2 ⊕ 〈−6〉
♣ 3 5 1 U⊕2 ⊕ E6 U ⊕ E8 ⊕A2 ⊕ 〈−6〉
\ 3 5 2 U ⊕ U(3)⊕ E6 U ⊕ E8 ⊕A2 ⊕ 〈−6〉
♣ 3 5 3 U ⊕ U(3)⊕ E6 U(3)⊕ E8 ⊕A2 ⊕ 〈−6〉
\ 3 5 4 U ⊕ U(3)⊕A⊕3

2 U ⊕ E6 ⊕A⊕2
2 ⊕ 〈−6〉

♣ 3 5 5 U ⊕ U(3)⊕A⊕3
2 U(3)⊕ E6 ⊕A⊕2

2 ⊕ 〈−6〉
\ 3 4 1 U⊕2 ⊕A⊕2

2 〈2〉 ⊕ E6 ⊕ E8

♣ 3 4 2 U⊕2 ⊕A⊕2
2 U ⊕A⊕2

2 ⊕ E8 ⊕ 〈−6〉
\ 3 4 3 U ⊕ U(3)⊕A⊕2

2 U ⊕ E⊕2
6 ⊕ 〈−6〉

♣ 3 4 4 U ⊕ U(3)⊕A⊕2
2 U(3)⊕ E⊕2

6 ⊕ 〈−6〉
\ 3 3 0 U⊕2 ⊕A2 〈2〉 ⊕ E⊕2

8

♣ 3 3 1 U⊕2 ⊕A2 U ⊕ E6 ⊕ E8 ⊕ 〈−6〉
\ 3 3 2 U ⊕ U(3)⊕A2 U ⊕ E6 ⊕ E8 ⊕ 〈−6〉
♣ 3 3 3 U ⊕ U(3)⊕A2 U(3)⊕ E6 ⊕ E8 ⊕ 〈−6〉
♣ 3 2 0 U⊕2 U ⊕ E⊕2

8 ⊕ 〈−6〉
\ 3 2 1 U ⊕ U(3) U ⊕ E⊕2

8 ⊕ 〈−6〉
♣ 3 2 2 U ⊕ U(3) U(3)⊕ E⊕2

8 ⊕ 〈−6〉
♣ 3 1 1 A2(−1) U ⊕ E⊕2

8 ⊕A2 ⊕ 〈−6〉

Table 2. n = 4, p = 3.
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ematische Schriften [Bonn Mathematical Publications], vol. 150, Universität Bonn, Mathema-
tisches Institut, Bonn, 1983. MR 733785

20. C. Camere, Symplectic involutions of holomorphic symplectic four-folds, Bull. Lond. Math.

Soc. 44 (2012), no. 4, 687–702. MR 2967237
21. C. Camere, Al. Cattaneo, and An. Cattaneo, Non-symplectic involutions of manifolds of

K3[n]-type, arXiv:1902.05397 (2019).
22. C. Camere, G. Kapustka, M. Kapustka, and G. Mongardi, Verra fourfolds, twisted sheaves

and the last involution, Int. Math. Res. Notices, doi:10.1093/imrn/rnx327 (2018).

23. W.-L. Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. (2) 50 (1949),
32–67. MR 0028057

24. C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of
Math. (2) 95 (1972), 281–356. MR 0302652

25. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third ed., Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.



NON-SYMPLECTIC AUTOMORPHISMS OF K3[n]-TYPE MANIFOLDS 39

290, Springer-Verlag, New York, 1999, With additional contributions by E. Bannai, R. E.

Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.

MR 1662447
26. A. J. de Jong and J. Starr, Cubic fourfolds and spaces of rational curves, Illinois J. Math. 48

(2004), no. 2, 415–450. MR 2085418

27. O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York,
2001. MR 1841091

28. I. Dolgachev, Integral quadratic forms: applications to algebraic geometry (after V. Nikulin),
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