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Abstract: NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated 

by alternative splicing (AS) generating two major isoforms, “long” (NF-YAl) and “short” (NF-YAs). 

Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide 

CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO 

cells grow normally, but are unable to differentiate. Myogenin and—to a lesser extent, MyoD— 

levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the 

fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not 

induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin 

overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and 

Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of 

the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, 

maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 

cells. These experiments are the first genetic evidence that the two NF-YA isoforms have 

functionally distinct roles. 

Keywords: splicing isoforms; CRISPR-Cas9; exon deletion; NF-Y; muscle differentiation; C2C12 

cells 

 

1. Introduction 

Cell specification and differentiation during development of multicellular organisms is a 

complex set of events resulting in the formation of organs, whose physiology is maintained by a 

balance of cell proliferation and differentiation. A paradigmatic example of these phenomena is 

formation of skeletal muscle. In the case of mammals—mouse in particular—the process begins at 

early developmental stages, proceeding through embryonic, fetal and adult stages [1,2]. Sequence-

specific transcription factors—TFs—play a central role in specifying the identities of myoblasts, their 

migration to different body locations, organization and the capacity to self-renew and differentiate 

into myotubes. These properties are key to guarantee maintenance and functionality of the different 

muscles throughout the lifespan of the organism, including repair after injury in adult life. A set of 

four key TFs —MyoD, Myf5, Myogenin, MRF4, termed myogenic regulatory factors (MRFs)—have 

been identified and thoroughly studied by genetic and biochemical means for their capacity to specify 

myoblasts identity [3,4]. During development, PAX3/7 are located upstream of MRFs [5]; 

downstream are many TFs, such as the MADS box MEF2A/C/D [6,7], the bHLH ID1/3 [8–10] and 

SNAI1 [11], the HOX SIX1/4/5 [12–15], STAT3 [16], NFIX [17,18] and the ZNF KLF2/4/5 [19,20]. Unlike 

MRFs, most of these TFs are not expressed predominantly in muscle cells and are equally important 

for development and differentiation of other tissues and organs [21–25]. 
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NF-Y is an evolutionarily conserved heterotrimer formed by the sequence-specific NF-YA and 

the Histone Fold Domain—HFD—NF-YB/NF-YC [26]. The sequence recognized by NF-Y is the 

CCAAT box, which plays an important role in the activation of 25%–30% of mammalian genes. NF-

Y has been classified as ”pioneer” TF, in mammals and plants [27–31]. NF-YA is the regulatory 

subunit; it is alternatively spliced, generating two major isoforms “short” (NF-YAs) and “long” (NF-

YAl), differing in 28 amino acids coded by exon 3 [32]. This stretch is located at the N-terminus of the 

protein, in the Gln-rich transactivation domain (TAD). NF-YAs and NF-YAl have identical subunits-

interactions and DNA-binding properties in vitro; ChIP-seq from cells harboring predominantly 

either one of the two isoforms showed recovery of peaks enriched in CCAAT. The isoforms are 

expressed at various levels in different tissues and cell lines [32,33]. Importantly, no cell line has been 

so far described lacking NF-YA—nor the HFDs—and NF-YA inactivation was reported to be fatal to 

cells [28,34]. NF-YAl is the predominant isoform in muscle C2C12 cells: it is abundant in proliferating 

cells, but it drops to low levels following terminal differentiation to myotubes, unlike the HFD 

partners [35–37]. Highly reduced NF-YA protein was found in myotubes of adult mice [38]. This 

suggested that genes up-regulated in the terminal phases of muscle differentiation are either CCAAT-

less or not NF-Y-dependent, whereas the trimer activates cell-cycle and growth-promoting genes 

required during the proliferative state. However, overexpression of NF-YAl led to improved 

differentiation of C2C12 [39], suggesting that NF-YAl does take part in the differentiation process. 

For decades, C2C12 myoblast cells have represented an informative tool to identify genes 

involved in muscle differentiation [40]. Ablation of the whole NF-YA gene is early embryonic lethal 

[41], and KO in stable cell lines could not be generated so far. We investigated the role of NF-YAl by 

genetically ablating exon 3, leading to the production of an intact NF-YAs. We successfully generated 

homozygous C2C12 lines expressing only NF-YAs and went on to study differentiation properties. 

2. Materials and Methods 

2.1. Cell Culture and Proliferation Assay 

Mouse myoblast cells (C2C12, ATCC) were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% Fetal Bovine Serum (FBS, Gibco-Thermo Fisher Scientific), 4 mM L-

Glutamine, 100 units/mL penicillin and 100 µg/mL streptomycin (GM, growth medium), in a 

humidified 5% CO2 atmosphere at 37 °C. C2C12 cells differentiation was induced plating cells in DMEM 

with 2% horse serum (Gibco-Thermo Fisher Scientific), 4 mM L-Glutamine, 100 units/mL penicillin and 

100 µg/mL streptomycin (DM, differentiation medium). Proliferation assay was performed by plating 

1.5 × 105 cells into a 12-well plate and counting every 24 h for 3 days, using the Trypan Blue dye 

exclusion test. All data were gathered from at least three independent biological replicates. Multiple 

comparisons were performed using the One-way ANOVA test. 

2.2. Derivation of C2-YAl-KO Clones 

To delete the exon 3 of NF-YA gene in C2C12 cells, four guide RNAs (gRNAs) were designed to 

simultaneously target the two flanking introns by using the online tool https://zlab.bio/guide-design-

resources. Potential off-target sites were monitored by the online tool https://crispr.cos.uni-

heidelberg.de: Table S1 shows the results of such analysis for the four guides. The selected gRNAs had 

no common off-target sites and were cloned in the two plasmids pX330A_D10A-1x2_ac and pX330A_ 

D10A-1x2_bd, following the Multiplex CRISPR/Cas9n Assembly System Kit protocol [42]. 1 × 106 C2C12 

cells were transfected with 3 µg of the two gRNAs/CRISPR/Cas9n plasmids by electroporation and 

plated at low density. 72 h after transfection, single clones were picked, expanded and screened. 

For DNA extraction, cells from the individual clones were washed with PBS, collected by scraping, 

lysed in 100 µL ice-cold lysis buffer (40 mM Tris-HCl, 2 mM EDTA, 0.08% SDS, 80 mM NaCl, 0.5 µg/µL 

Proteinase K) and incubated overnight at 37 °C in agitation. To precipitate DNA, 100 µL of ice-cold 2-

propanol and 0.3 M NaAc were added, samples were mixed and centrifuged at 13,000 rpm for 30 min 

at 4 °C. The pellet was washed with 150 µL of 70% ethanol, centrifuged at 13,000 rpm for 30 min at 4 
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°C. Supernatant was discarded, the pellet was dried and resuspended in 30 µL H2O. The resulting 

DNAs were then screened for positive exon 3 deletion by PCR. 

We screened a total of 335 individual clones and obtained 2 independent homozygously edited 

clones. 

2.3. Protein Extraction and Western Blot Analysis 

For Whole Cell Extracts preparation, cells were pelleted by centrifugation, resuspended in ice-cold 

RIPA buffer (10 mM TrisHCl pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 0.1% SDS, 0.1% sodium deoxycholate, 

140 mM NaCl, 1% Triton X-100, 1 mM PMSF, Protease inhibitor cocktail) and incubated for 30 min on 

ice, with occasional shaking. Samples were centrifuged at 13,000 rpm for 10 min at 4°C and the 

supernatant recovered and quantified using the Bradford protein assay. 

20 µg of extracts were loaded on a 4–10% SDS-polyacrylamide gel and analyzed by Western blot 

using primary antibodies and a peroxidase-conjugate secondary antibody (Sigma-Aldrich). Primary 

antibodies: anti-NF-YA (G-2, Santa Cruz), anti-NF-YB (GeneSpin), anti-NF-YC (home-made) anti-

Vinculin (H-10, Santa Cruz), anti-MyHCs (MF20, DHSB), anti-Myogenin (IF5D, DHSB), anti-MyoD (C-

20, Santa Cruz), anti-Myf5 (C-20, Santa Cruz), anti-Pax3 (DHSB), anti-Snai1 (C15D3, Cell Signaling). 

Western blot experiments were performed on three independent biological replicates. 

2.4. Reverse Transcriptase PCR and real-time PCR 

RNA was isolated by the Tri Reagent (Sigma-Aldrich) protocol according to the manufacturer’s 

instruction. The cDNA was produced starting from 1 µg of total RNA using the MMLV Reverse 

Transcription Mix (GeneSpin) and used for real-time PCR (SYBR® Green Master Mix, Bio-rad 

Laboratories) analysis. Real-time PCRs were performed with oligonucleotides designed to amplify 100–

200 bp fragments (Table S2). The housekeeping gene Rsp15a was used to normalize expression data. 

The relative sample enrichment was calculated with the formula 2–(ΔΔCt), where ΔΔCt = [(Ct sample – Ct 

Rps15a)x − (Ct sample – Ct Rps15a)y], x = sample and y = sample control. RT-qPCR analyses were 

performed on three independent biological replicates. For ChIP experiments, we figured out the 

percentage of input immunoprecipitated by NF-YB and nc (negative control) antibodies. Results of 

three independent experiments were represented as Fold change (Fc) between NF-YB sample and nc 

sample as: %Input NF-YB/%Input nc. 

2.5. Flow Cytometry Analyses 

Cells were harvested by trypsinization and washed in PBS, fixed in ice-cold 70% ethanol and stored 

at 4 °C at least 24 hours. Cells were then washed with 1% BSA in PBS and resuspended in 500 µL of PI-

staining solution (20 µg/mL Propidium Iodide, 10 µg/mL RNaseA, 1X PBS) at room temperature for 

30 minutes, light protected. FACS analyses were performed using the BD FACSCantoII, analyzed with 

FACSDiva software and quantified with FlowJo. A total of 104 events were acquired for each sample. 

Three independent FACS experiments were performed. 

2.6. Immunofluorescence 

For immunofluorescence analyses, cells were washed three times with PBS and fixed 10 min 

with ice-cold acetone-methanol (1:1) at room temperature. After three washes, cells were 

permeabilized with 0.25% Triton X-100 in PBS for 5 min and incubated 1 h with the primary antibody 

anti-sarcomeric MyHCs (MF20, DHSB) at room temperature. Cells were washed three times, 

permeabilized 5 min with 0.25% Triton X-100 in PBS and incubated with secondary FITC anti-mouse 

antibody (1:500, Sigma-Aldrich) plus DAPI (2 µg/mL) for 40 min at room temperature, light 

protected. The acquisition was performed by using the inverted microscope Leica DMI6000 B. Three 

independent immunofluorescence experiments were performed. 

2.7. Overexpression and RNA Interference Experiments 
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Myogenin overexpression was performed by electroporating 1 × 106 C2C12 cells with 3 µg of 

plasmid (pEMSV-Empty/pEMSV-Myog) and plating them in DM for 96 h. Cells were then collected 

and analyzed. Three independent biological replicates were performed. 

For small interfering RNA (siRNA)-mediated knockdown of NF-YB [29], 2 × 106 C2C12 cells were 

transfected by electroporation with 100 nM of NF-YB [29] or scrambled control siRNA (Qiagen, 

SI01327193) and plated into a 10 cm plate in GM condition. 72 h after transfection, cells were collected 

by scraping for total protein preparation and RNA extraction. Gene expression was analyzed 

performing real-time PCR. Two independent biological replicates of siRNA interference were 

performed. 

2.8. Chromatin Immunoprecipitation Assay (ChIP) 

ChIPs were performed as described previously [43] with the following modifications. Briefly, 2 × 

107 cells were crosslinked using 1% formaldehyde for 7 min, the reaction was quenched with 125 mM 

glycine and cells were collected by scraping. After lysis, nuclei were resuspended in Sonication buffer 

(50 mM Tris-HCl pH 8, 10 mM EDTA, 0.1% SDS, 0.5% sodium deoxycholate, protease Inhibitor cocktail) 

and sonicated (Bioruptor, Diagenode) to obtain fragments of approximately 150–300 bp, verified on 

agarose gel electrophoresis. Samples were centrifuged at 13,000 rpm for 10 min at 4 °C and supernatants 

recovered and quantified by Bradford assay. One hundred micrograms of chromatin were 

immunoprecipitated with 5 µg of anti-NF-YB (GeneSpin) and anti-FLAG (Sigma-Aldrich) antibodies. 

Protein-G beads (KPL) were used for recovery of antibody-bound proteins. Crosslinking was reversed 

by incubation at 65 °C overnight. Reactions were digested with RNase A and Proteinase K and DNA 

purified using the DNA purification kit (PCR clean Up, GeneSpin). The DNA was eluted in TE (10 mM 

Tris-HCl pH 8, 1 mM EDTA) and used in real-time PCR. Three independent biological replicates of 

ChIP experiments were performed. 

3. Results 

3.1. Ablation of NF-YA Exon 3 in C2C12 Cells by a Four Guides CRISPR/Cas9n Strategy 

Mouse C2C12 cells mostly express NF-YAl [35–38]. To study the role of this isoform in 

maintenance and differentiation of C2C12, we set out a strategy to selectively eliminate exon 3, coding 

for the 28 extra amino acids present in NF-YAl and absent in NF-YAs. We figured that the use of four 

guides flanking precisely the exon 3 regions and of the single strand-cutting Cas9-nickase (Cas9n) 

would minimize off-target effects, which potentially affect the outcome of this technology [44]. Figure 

1A shows the design of the four guide oligonucleotides, two couples targeting the 5’ and 3’ intronic 

DNA flaking exon 3, respectively. The two couples of oligos were first checked for absence of 

common genomic targets (Table S1) and cloned unpaired in the final pX330A_D10A-1x2_ad and 

pX330A_D10A-1x2_cb (Figure S1A), also expressing the Cas9n gene. The two plasmids were 

transfected in growing C2C12 cells by electroporation. Individual clones were isolated, expanded 

and analyzed by PCR, employing the amplicons shown in Figure 1B. As expected, the strategy was 

less efficient if compared to the standard use of two guides plus wt Cas9: 335 clones were individually 

screened and two were positive for correct ablation in homozygosity, as shown in Figure 1C. The 

results of PCRs of the two positive clones, #83 and #117, show the expected bands for the A, B and C 

amplicons, absent in the DNA of the parental C2C12 cells. The regions surrounding exon 3 in both 

clones were then amplified and sequenced: Figure S1B confirms the deletion of coding sequences of 

exon 3, with somewhat different ends in the two clones. In summary, we successfully ablated NF-YA 

exon 3, deriving two clones termed C2-YAl-KO. To the best of our knowledge, this is the second 

system of genome editing describing a clean deletion of an individual exon [45] and the first one 

employing the Cas9 nickase system coupled with four gRNAs. 
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Figure 1. Strategy for ablation of NF-YA exon 3 in C2C12 cells using CRISPR/Cas9n and four gRNAs. 

(A) Gene editing strategy for NF-YA exon 3 deletion using the Cas9-nickase (Cas9n) and four guide 

RNAs. The targeted sequence by each guide RNA and the deletion sites are shown. Note that Cas9n 

cuts only the DNA strand that is complementary to and recognized by the gRNA, making necessary 

the simultaneous presence of two gRNAs/Cas9n complexes to induce a double-strand break (DSB). 

(B) The three primer pairs used to check for positive C2-YAl-KO clones are shown with the specific 

amplification products highlighted by the dashed lines. (C) Example of PCR products run into a 1.2% 

agarose gel. The expected bands in control cells (ctr) are marked with arrowheads; clones #83 and 

#117 represent positive C2-YAl-KO clones. 

3.2. Characterization of C2-YAl-KO Cells 

The two C2-YAl-KO clones were characterized first for expression of NF-YA. We performed 

qRT-PCR analysis with oligos specific for the individual isoforms [46]; Figure 2A shows that the NF-

YAl mRNA is absent in the C2-YAl-KO clones. Extracts were prepared and Western blots performed: 

as expected, the parental C2C12 cells show expression of NF-YAl (Figure 2B). Instead, the clones 

express uniquely the NF-YAs isoform. We exposed the blots for long times to verify that no NF-YAl 

is visible in the two KO clones. Note that the levels of the two isoforms in parental cells—NF-YAl—

and edited clones—NF-YAs—are essentially identical, as are the levels of NF-YB and NF-YC: since 

there is an important level of autoregulation among NF-Y subunits [47], this result indicates that HFD 

subunits are available for trimer formation and DNA-binding in C2C12 and C2-YAl-KO cells. In 

summary, genetic ablation of exon 3 in C2C12 was effective, leading to generation of clones that 

express uniquely the short isoform of NF-YA at physiological levels. 

Next, we started to analyze the phenotype of the KO clones: they are stable upon repeated cycles 

of freezing and thawing and their morphology looks apparently similar to the parental C2C12 cells 

(Figure 2C). In mouse embryonic stem cells, expression of NF-YAs is associated with growth, and 

NF-YAl to differentiation [43]: in theory, NF-YAs-expressing C2C12 clones could be enhanced in 

proliferation. Cells were compared for growth under standard conditions: Figure 2D shows that 

growth curves are similar, with the two edited clones being marginally slower. In FACS analysis, we 
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did notice some differences: a higher number of S-phase and G2/M cells in the two clones (Figure S2, 

21% and 28%, with respect to 18% in C2C12). We checked the mRNA levels of PCNA, Cyclin B1/B2: 

a slight increase of Cyclin B1 and PCNA in the KO clones is observed (Figure 2E); although not 

statistically significant, this is consistent with the FACS data. The most noticeable difference, 

however, was the lower number of sub-G1 cells: 6%–7% in the two clones compared to 12% in the 

parental C2C12 cells (Figure S2): such non cycling cells are possibly undergoing cell death, suggesting 

that the switch to NF-YAs is not provoking negative effects on cellular vitality, and, if anything, the 

opposite. In summary, C2-YAl-KO clones expressing NF-YAs have an apparently normal 

morphology, grow well, but not faster, with the expected partitioning in cell cycle phases, bar slightly 

elevated G2/M and decreased sub-G1 populations. 

 

Figure 2. C2-YAl-KO clone characterization. (A) Gene expression analysis of NF-YA short and long 

levels in ctr and C2-YAl-KO clones (#83 and #117) in growth medium (GM) condition. Error bars 

represent the SD of three independent experiments. P-values were calculated using the one-sample t-

test. (B) Western blot analysis of NF-Y protein subunits (NF-YA, NF-YB, NF-YC) in ctr cells and C2-

YAl-KO clones (#83 and #117) in GM condition. For NF-YA isoforms analysis, short and long 

exposures are shown. Vinculin was used as loading control. (C) Phase contrast analysis of myoblast 

cells (ctr and C2-YAl-KO clones) morphology in GM condition. Scale bar 200 µm. (D) Proliferation 

assay performed in GM condition counting every 24 h for 3 days using the Trypan Blue dye exclusion 

test. Error bars represent the SD of three independent experiments. P-values were calculated using 
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the one-way ANOVA test. (E) Gene expression analysis of key cell-cycle regulators in ctr and C2-YAl-

KO clones (#83 and #117) in GM condition. Error bars represent the SD of three independent 

experiments. P-values were calculated using the one-sample t-test. 

3.3. C2-YAl-KO Cells Fail to Differentiate and Fuse into Myotubes 

The levels of NF-YAl drop following terminal differentiation of C2C12 cells and myotubes of 

mouse muscles show low-to-nil levels of NF-YAl [35–39]. To ascertain whether NF-YAs-expressing 

cells could form myotubes, we switched the parental C2C12 and the two C2-YAl-KO clones at 70%–

80% confluence to a differentiation medium. Before and after 72 h, we monitored cell morphology, 

performed Immunofluorescence experiments and derived whole cell extracts. Figure 3A shows that 

parental C2C12 form well organized, multinucleated myotubes, as expected (Upper Panels). The 

average number of nuclei per fiber is 15, in keeping with an efficient process (Figure 3B). On the other 

hand, the two edited clones showed a dramatic lack of myotubes formation: cells did not fuse; they 

were disorganized (Figure 3A, lower panels). We reasoned that the process could be simply slower 

in these cells and prolonged differentiation up to 5 days: this did not lead to formation of myotubes, 

nor cell fusion in the C2-YAl-KO clones (not shown). Immunofluorescence and Western blot data are 

consistent: the MyHCs marker is clearly visible in IFs (Figure 3A, right panels) and WB (Figure 3C) 

in C2C12 cells after differentiation, but not in the two edited clones. Interestingly, the levels of 

Myogenin and MyoD were substantially lower both in growing cells and at these late stages of 

differentiation in C2-YAl-KO clones. As previously reported, NF-YAl, in C2C12, and NF-YAs, in the 

edited clones, are down-regulated after 72 h of differentiation; NF-YB remained unchanged (Figure 

3C). In summary, we conclude that terminal differentiation is completely blocked in C2C12 cells 

expressing NF-YAs instead of NF-YAl. 
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Figure 3. C2-YAl-KO clones fail to differentiate into myotubes. (A) Phase contrast analysis of myoblast cells (ctr 

and C2-YAl-KO clones) before and after 72 h of differentiation (differentiation medium (DM) condition) and 

immunofluorescence analyses after 72 h of differentiation. Antibody against all sarcomeric MyHCs and DAPI 

were used. (B) Fusion index was calculated as the number of nuclei in each myotube (with three or more nuclei). 

(C) Western blot analysis of key muscle differentiation regulators (MyHCs, MyoD), NF-YA isoforms (NF-YAl, 

NF-YAs) and NF-YB proteins, before (GM) and after 72 h of differentiation (72 h DM). Vinculin was used as 

loading control. The experiment was performed three times. 

3.4. Expression of TFs in C2-YAl-KO 

We analyzed expression of MRFs and TFs with a proven role in differentiation, in the parental 

and in the C2-YAl-KO cells under growing conditions and 24 h after differentiation. Profiling 

experiments established this as an early time point to detect significant changes in gene expression 

[48]. Note that most of the TFs analyzed have CCAAT in promoters and some formally shown to be 

under NF-Y control. First, we verified expression levels of MRFs in parental C2C12 (Figure S3): 

Myogenin is robustly induced; MyoD is modestly increased; Myf5 is modestly decreased after 
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differentiation; Mef2C, but not Mef2D, is robustly increased. These changes are in agreement with 

expectations [49]. At the same time, we analyzed other TFs shown to be important for muscle 

differentiation: Six1/4/5, Snai1, Stat3 and Klf5 are all increased upon C2C12 differentiation, Id1/3 are 

modestly decreased, Pax3 is unchanged (Figure S3). These results are also in agreement with 

published data. Having established that our differentiation program runs normally in C2C12 cells, 

we monitored expression of these genes in the C2-YAl-KO clones. The results are shown in Figure 

4A for growing conditions and Figure 4B for differentiation. MRFs show the most conspicuous 

differences: Myogenin is almost undetectable in growing C2-YAl-KO clones and marginally 

increased upon differentiation. MyoD basal levels are normal, but induction is reduced upon 

differentiation, compared to parental C2C12. Myf5 expression is basally similar in the edited clones 

and higher after differentiation (Figure 4A, B). Mef2C levels are similar in growing conditions, but 

lower after differentiation: note that the levels are very low basally and differences with parental 

C2C12 cells are not statistically significant. Mef2D expression is identical in C2C12 and edited clones. 

As for the other TFs, Six1/4/5, Klf5 and Pax3 show similar expression patterns (Figure 4A,B). Minor 

changes are observed in growing conditions for Snai1, Stat3 and Id1 (one clone only) and for Id1 

(same clone) after differentiation. Finally, Id3 shows somewhat higher levels before and after 

differentiation, but again, these changes are variable in the three experiments and thus not 

statistically significant. 

To substantiate these results, protein expression of selected TFs was monitored by Western Blot 

analysis. Figure 4C shows that Myogenin levels are consistent with the mRNA data, being much 

lower in C2-YAl-KO clones than in parental cells, both in growing cells and after 24 h of 

differentiation. MyoD is substantially reduced in growing and differentiating clones, compared to 

parental C2C12. Note that protein levels were far lower than expected based on the mRNA levels, 

especially under growing conditions: this calls for post-transcriptional control in edited clones. Myf5 

protein is downregulated in C2C12 after differentiation, as expected; in edited clones, it shows lower 

levels in growing cells, but higher after induction. NF-YA and NF-YB show the expected patterns; 

Pax3 is very modestly increased in C2-YAl-KO clones and Snai1 is unchanged. In summary, C2-YAl-

KO cells have substantial differences in MRFs levels with respect to C2C12 cells, both before and after 

differentiation, whereas the other TFs showed rather minor changes. 
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Figure 4. MRFs are downregulated in C2-YAl-KO clones. (A) Gene expression analysis of key muscle 

differentiation regulators (left panel) and other TFs shown to be important for muscle differentiation 

(right panel) in GM condition. Error bars represent the SD of three independent experiments. P-values 

were calculated using the one-sample t-test. (B) Gene expression analysis of key muscle 

differentiation regulators (left panel) and other TFs shown to be important for muscle differentiation 

(right panel) 24 h after differentiation (24 h DM). Error bars represent the SD of three independent 

experiments. P-values were calculated using the one-sample t-test. (C) Western blot analysis of key 

muscle differentiation regulators (Myogenin, MyoD, Myf5), NF-YA isoforms (NF-YAl, NF-YAs) and 

NF-YB proteins and other TFs shown to be important for muscle differentiation (Pax3, Snai1), in GM 

and 24 h DM. Vinculin was used as loading control. 
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We were intrigued by the lack of cell fusion of the C2-YAl-KO clones after induction of 

differentiation. Myomaker—Mymk—and Myomixer—Mymx—are genes induced transcriptionally 

during muscle terminal differentiation, including in the C2C12 system [50,51]. Specifically, their 

expression is essential for the process of myocytes fusion [52]. We checked expression by qRT-PCR 

in parental C2C12 and in the two edited clones 24 h after differentiation. Figure 5A shows a strong 

induction—20-fold—of both Myomaker and Myomixer in C2C12 cells. C2-YAl-KO have much lower 

levels in growing cells (Figure 5B) and even more after differentiation (Figure 5C). 

The obvious hypothesis was that these genes are under direct NF-Y control. We surveyed their 

promoter sequences and verified that no bona fide CCAAT box is present, notably within the 

evolutionary conserved areas: given the specificity of NF-Y CCAAT recognition, we considered 

unlikely that it acts directly on their expression. Genetic experiments in zebrafish have recently 

shown that Myomaker and Myomixer are directly activated by Myogenin [53]. We analyzed 

ENCODE datasets of C2C12 cells and found that Myogenin and MyoD target both promoters. 

Myomixer has apparently one promoter, Myomaker has two promoters, some 4 kb distant from each 

other: Figure 5D shows the overlapping peaks of Myogenin and MyoD. Myogenin binds exclusively 

after 24 h of differentiation, in accordance with its induced expression. One MyoD peak is visible 

already under growing conditions on Myomaker, and two additional peaks are found at 24 h. 

Importantly, the regions bound by MyoD and Myogenin in these two promoters are conserved across 

vertebrates, as shown by PhastCons data in Figure S4A: this corroborates the functional relevance 

proven in zebrafish [53]. To verify whether Myogenin activates Myomaker and Myomixer, we 

overexpressed it in parental C2C12 and in one of the C2-YAl-KO clones (#83) and induced to 

differentiate: Western blot of Figure 5E shows the increased levels of Myogenin compared to cells 

transfected with an Empty vector control; q-RT-PCR of Figure 5F shows that Myogenin 

overexpression has negligible effects on expression of the endogenous Myomaker and Myomixer in 

parental C2C12, but it increases expression of both genes in the C2-YAl-KO cells. Finally, 

morphological observation of the edited cells shows —incomplete—improvement in differentiation 

(Figures S4B) 

In essence, we find that the marginal levels of Myogenin in C2-YAl-KO cells could result in lack 

of induction of the Myomaker and Myomixer targeted genes, entailing lack of cell fusion in NF-YAs-

expressing clones. 
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Figure 5. Myogenin directly regulates Myomaker and Myomixer expression. (A) Relative expression 

levels of Myomaker (Mymk) and Myomixer (Mymx) in C2C12 cells before and after 24 h of 

differentiation (24 h DM). Error bars represent the SD of three independent experiments. P-values 

were calculated using the one-sample t-test. (B,C) Relative expression levels of Myomaker (Mymk) 

and Myomixer (Mymx) in C2C12 cells before (B) and after 24 h of differentiation (C) in ctr and the 

two C2-YAl-KO clones. Error bars represent the SD of three independent experiments. P-values were 

calculated using the one-sample t-test. (D) ChIP-seq peaks of MyoD and Myogenin on Mymk and 

Mymx promoters in GM and after 24 h of differentiation (24 h DM) (UCSC-genome browser available 

tracks). Vertical viewing range Mymk: min 0, max 5.5. Vertical viewing range Mymx: min 0, max 8. 

(E) Western blot analysis of Myogenin protein levels in C2C12 cells transfected with a control plasmid 

(pEmpty) and the Myogenin-overexpressing plasmid (pMyog) 96 h after differentiation induction. 

Vinculin was used as loading control. (F) Relative expression levels of Mymk and Mymx in C2C12 
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Myog-overexpressing cells after 96 h of differentiation. Error bars represent the SD of three 

independent experiments. p-values were calculated using the one-sample t-test. 

3.6. Myogenin and MyoD are—Indirectly—Regulated by NF-Y 

The results shown above beg the question as to whether NF-Y directly regulates MRFs. 

Myogenin and Myf5 promoters do not contain CCAAT boxes, MyoD does [54]. To verify the NF-Y 

dependence of these genes, we transitorily inactivated NF-Y activity. In our hands, NF-YA 

inactivations by shRNA or siRNA were rather inefficient in C2C12 cells (not shown). We thus turned 

to NF-YB by treating C2C12 cells with an siRNA previously shown to be active and very specific, 

including in profiling experiments [29]. NF-YB is a necessary component of the DNA-binding trimer: 

this allows us to inhibit CCAAT-binding activity, upon siRNA treatment. Most importantly, unlike 

NF-YA, NF-YB inactivation does not trigger apoptosis [29,34], making this a suitable choice for long 

differentiation processes. Figure 6 shows the results of experiment 1, Figure S5 those of experiment 

2: in both, RT-qPCR (Figures 6A and S5A) and Western blots (Figures 6B and S5B) show far lower 

expression of NF-YB in C2C12 cells treated with NF-YB siRNA, with respect to the control siRNA. In 

mRNA analysis, Myogenin, MyoD and Mef2C, but not Myf5 nor Mef2D, are substantially 

downregulated upon NF-Y inactivation; Myomaker and Myomixer are also reduced. Six1/4/5 are 

reduced: for Six4, this in keeping with an NF-Y dependence predicted from previous data on NF-Y 

binding to a canonical promoter CCAAT [39]. As for Id1 and Id3, they are somewhat reduced, but 

the results are borderline significant: Id1 in experiment 2 and Id3 in experiment 1. We conclude that 

NF-Y removal entails a reduction of MRFs, which, in turn, could explain the observed drop of 

Myomaker and Myomixer. We also show that members of the Six family are NF-Y targets. Analysis 

of proteins levels in extracts of siRNA-inactivated cells by Western blots confirmed these results: the 

levels of NF-YB were lower (although not to the extent of the mRNA) and paralleled by somewhat 

lower levels of NF-YA. Myogenin is substantially decreased and MyoD is also affected, to a lesser 

extent (Figures 6B and S5B). We conclude that NF-Y regulates the expression of MyoD and Myogenin 

in C2C12 cells. 

The Myogenin promoter is CCAAT-less and was not bound by NF-Y in C2C12 cells [39] and, 

despite the presence of a canonical CCAAT, the MyoD promoter was also not bound [39]. To 

understand whether the positive effect of NF-Y on MyoD is direct, we checked the parental C2C12 

cells for the presence of NF-Y in ChIP experiments. Three independent experiments are shown in 

Figures 6C and S5C. The absence of enrichment of NF-Y on MyoD is indeed confirmed, whereas the 

Stard4 positive control promoter is clearly bound. Equally positive was the promoter of Id1, but not 

that of Id3. Note that there is variability in the fold-enrichments in the three experiments: as this is 

high (from 60 to 800-folds), we consider quantitative changes difficult to interpret, especially when 

compared to completely negative promoters such as MyoD and Id3. Therefore, we conclude that NF-

Y does not regulate MyoD directly—and despite promoter binding—NF-Y has modest effects on Id1 

transcription in C2C12 cells. 
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Figure 6. Analysis of NF-Y involvement in muscle specific genes expression. (A) Gene expression 

analysis of NF-YB and key muscle differentiation regulators in C2C12 cells 72 h after NF-YB silencing 

(siNF-YB) and scrambled siRNA control. Error bars represent the SD of two different RT-qPCR 

replicates. P-values were calculated using the one-sample t-test. (B) Western blot analysis of NF-YB, 

NF-YA and key muscle differentiation regulators (Myogenin, MyoD) protein levels 72 h after NF-YB 

silencing (siNF-YB) and the scrambled siRNA control. Vinculin was used as loading control. (C) ChIP 

experiment performed on C2C12 ctr cells in GM condition using NF-YB and negative control (nc) 

antibodies. The unrelated region (ur) and Stard4 were used as negative and positive control, 

respectively. Results are represented as the input percentage of each sample normalized to the input 

percentage of the nc antibody. 
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MyoD and Myogenin in the NF-YAs-expressing clones. Finally, expression of both MRFs are 

indirectly controlled by NF-Y. 

4.1. Role of NF-YA Alternative Splicing in Muscle Cells 

Specific isoforms of TFs have long been known to impact heavily on transcriptional regulation. 

Paradigmatic examples are the members of the p53/p63/p73 families, whose isoforms, produced by 

multiple promoters and alternative splicing, have different targets and often opposing transcriptional 

effects [55]. The muscle system is no exception [56,57]. Mef2C and Mef2D undergo alternative splicing 

during muscle differentiation [57,58]: a muscle-specific isoform of Mef2D contains exon α2 rather 

than α1, both expressed in muscle cells. Growing and early differentiating cells harbors MEF2Dα1; 

the switch to MEF2Dα2 occurs in terminal stages of C2C12 differentiation, leading to activation of 

late genes. MEF2Dα1 is phosphorylated at two serines by PKA [59], which mediate association with 

HDACs, resulting in repression. MEF2Dα2 lacks these residues, functioning as a transcriptional 

activator. Parallel molecular mechanisms appear to be operating for the related MEF2Cα1/α2 

alternative splicing isoforms [58]. The key issue in Mef2 splicing regulation is involvement in late 

stages of differentiation. Alternative splicing was reported for the master TFs of muscle commitment 

PAX3 and PAX7, but the functional roles of the single isoforms are less well characterized [60–64]. 

We show here that a switch from NF-YAl to NF-YAs causes a major difference in the 

differentiation properties of C2C12 cells. The major NF-YA isoforms, originally reported decades ago 

[32], are only recently attracting the attention they deserve. In part, this was due to the elusive logic 

of their expression patterns: in some systems, cells have NF-YAs before—and NF-YAl after—

differentiation; in others, such as in muscle cells, NF-YAl is mostly found. In part, it was because of 

the rather unimpressive nature of the exon 3 amino acids incorporated into NF-YAl: a short stretch 

rich in glutamines and hydrophobic residues amid the larger transactivation domain. Overexpression 

experiments suggested differences in gene activation [39,65], but these experiments are to be taken 

with a grain of salt, because of the large amount of proteins produced, targeting the large number of 

potential NF-Y sites in the genome. NF-YA AS is likely more complex than what is shown here. First, 

NF-YAx is another alternatively spliced isoform, recently reported in glioblastomas, devoid of exons 

3 and 5: this greatly reduces the activation domain, with important functional consequences [66]. 

Expression of NF-YAx will have to be monitored in normal cells, to verify whether it is specific for 

glioblastomas. Second, there are micro differences—6 amino acids—produced in many cell types 

within the acceptor site of exon 5. Third, some cells show the inclusion of an additional Gln residue 

at the acceptor splicing site of exon 3, producing a 29 amino acids insertion [32]. Note that a similar 

situation was reported for PAX3, in which an extra Gln causes differences in DNA-binding affinity 

[59]. Precise editing techniques, as we have started to use here in C2C12 cells, could sort out the 

functionality of the various isoforms. 

4.2. NF-Y Does Not Target Directly Genes Involved in C2C12 Differentiation 

Sequence-specific TFs target specific genomic sites, driven by the discriminatory power of their 

DNA-binding Domains. However, they are also known to be binding indirectly, being tethered by 

other TFs or complexes: analysis of genomic locations by ENCODE has shown that this latter 

mechanism is far from marginal [67]. In addition to ENCODE, several independent ChIP-seq of TFs—

and cofactors—identified binding to CCAAT locations [68]. One such example regards the orphan 

receptor Rev-Erb, important for muscle regeneration, targeting NF-Y sites in C2C12 cells [69]. The 

reverse, namely NF-Y being tethered to CCAAT-less locations by other TFs, has yet to be described. 

The issue could theoretically be relevant, since the genes down-regulated after NF-Y removal, or by 

switching from NF-YAl to NF-YAs, have generally no CCCAT in promoters. The effects appear to be 

largely indirect, but we do not favor the promoter tethering hypothesis. Rather, we report binding of 

Myogenin and MyoD to the promoters of Myomaker and Myomixer and show that Myogenin 

overexpression leads to recovery of their expression in C2-YAl-KO cells. This extends to mouse cells 

genetic experiments made in zebrafish [53]. It also indicates that NF-Y does not regulate other TFs 

essential for expression of these two genes. In summary, NF-Y/CCAAT interactions in promoters, 
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which are structurally identical for NF-YAl and NF-YAs, are likely not crucial for genes induced 

during myotubes formation: rather, the focus is shifted to the control of MRFs, or other TFs. 

We have analyzed expression of TFs involved in myoblast/C2C12 differentiation. The majority 

are not dramatically altered in edited clones. Mef2C induction is impaired, but previous studies 

indicated that NF-Y is bound to the Mef2D, not to Mef2C promoter [39]. We find that Mef2C, not 

Mef2D, is regulated by NF-YB RNAi interference. Note that these TFs are also targeted by MyoD and 

Myogenin, as they play a role in the final stages of differentiation [7,59]. This suggests indirect 

regulation by NF-Y via MRFs. Id1/Id3 do have bona fide functional CCAAT in promoters [70], bound 

in cancer cells as per ENCODE data (M. Ronzio, A.B., D.D., R.M., in preparation) and in NTera2 cells 

[71]: Id1, but not Id3, is bound in vivo by NF-Y in C2C12, parental cells and edited clones. The levels 

are decreased in C2-YAl-KO upon differentiation, but NF-Y-inactivation brings very marginal 

decrease in Id1 expression. PAX3, which acts upstream of MyoD, shows variable, somewhat 

increased mRNA levels in the edited clones, but this is not supported by analysis of protein levels. In 

summary, there is no clear CCAAT-driven TF that could explain the phenotype: instead, we propose 

that the decrease of Myogenin and MyoD expression entails a cascade of transcriptional events 

leading to failure of differentiation (Figure 7). 

 

Figure 7. NF-YA isoforms involvement in regulation of expression of muscle genes. Model for NF-

YA isoforms mediated regulation of expression of muscle genes in growth condition (left panel) and 

differentiation condition (right panel). 

4.3. NF-Y Regulates MRFs Expression Indirectly 

Switching from NF-YAl to NF-YAs—and NF-YB inactivation—negatively affects MRFs 

expression. Myf5 is moderately down in growing cells, remaining somewhat higher after 

differentiation. NF-Y-inactivation leads to a severe drop in Myogenin expression and a decrease of 

MyoD, which indicates an impact of NF-Y on their expression. The regulation appears to be 

transcriptional for Myogenin, not for MyoD, whose mRNA levels are variable, but overall similar. 

The Myogenin promoter is CCAAT-less and an indirect effect of NF-Y must be invoked. As for MyoD, 

the promoter harbors a high affinity NF-Y site, extremely conserved in evolution [54] and at the 

expected position (at -70 from TSS). Yet, NF-Y is not bound in vivo (Figure 6C). This is the only such 

example in nearly 200 promoters for which genetic analysis was reported [72]. The combination of 

an evolutionarily conserved, canonical CCAAT in a standard promoter position might function 

through NF-Y somewhen during the physiological activation of MyoD in development, while it has 

become expendable in the C2C12 system. Thus, down-regulation of MyoD in NF-YAs-expressing 

cells is also an indirect effect. It was proposed that MyoD serves as “pioneer” TF predisposing 

chromatin configurations for Myogenin to act as powerful activator of terminal differentiation genes 

and repressor of cell-cycle genes [73]. The latter function might be robustly counteracted by NF-YAs, 

but we have no evidence of that (Figure 2). It is now clear that the focus is set on transcriptional 

regulation of the MyoD and Myogenin units and on which activator TF(s)—or cofactor(s)—is under 

NF-YAl—but not NF-YAs—direct control. For the time being, the “candidate” TFs approach used 

here failed to offer a plausible explanation on how NF-YAl regulates MRFs expression, thereby 

muscle differentiation. We must resolve to more systematic analysis, such as RNA-seq, to identify 

potential NF-Y-mediated regulators in C2C12. In light of the low intrinsic levels of muscle-

commitment by MRFs in C2-YAl-KO clones, such analysis could also shed light on the actual identity 

of these cells. 
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Supplementary Materials: The following are available online at www.mdpi.com/2073-4409/9/3/789/s1, Figure 

S1: CRISPR/Cas9n system and ablation of NF-YA exon 3 in C2C12 cells. (A) Schematic representation of plasmids 

construction, following the Multiplex CRISPR/Cas9n Assembly System Kit protocol (Yamamoto lab) [40]. (B) 

Sequencing of the two C2-YAl-KO clones (#83, #117) compared to the control (ctr). Deleted sequence, targeted 

sequence and exon 3 sequence are highlighted. Figure S2: Cell-cycle analysis of C2-YAl-KO clones. Flow 

cytometry analysis of ctr C2C12 cells and the two C2-YAl-KO clones in GM condition. The analysis of three 

independent experiments and the average of percentage of cells in each cell-cycle phase are shown. Figure S3: 

Gene expression analysis of TFs in growing and differentiated C2C12 cells. Gene expression analysis by RT-

qPCR of key muscle differentiation regulators (left panel) and other TFs shown to be important for muscle 

differentiation (right panel) in GM condition and 24 h after differentiation in C2C12 ctr cells. Error bars represent 

the SD of three different experiments. P-values were calculated using the one-sample t-test. Figure S4: Myomaker 

and Myomixer expression are regulated by MyoD and Myogenin. (A) UCSC view of Mymk and Mymk loci 

showing alignment of ChIP-Seq data and DNA regulatory motifs conserved across Vertebrates by PhastCons. 

(B) Phase-contrast analysis of C2C12 cells (ctr and #83) morphology transfected with pEmpty or pMyog, 96 h 

after differentiation. Figure S5: Analysis of NF-Y involvement in muscle specific genes expression. (A) Gene 

expression analysis by RT-qPCR of NF-YB and key muscle differentiation regulators in C2C12 cells 72 h after 

NF-YB silencing (siNF-YB) and the scrambled siRNA control (II° experiment). Error bars represent the SD of two 

different q-PCR replicates. p-values were calculated using the one-sample t-test. (B) Western blot analysis of NF-

YB, NF-YA and key muscle differentiation regulators (Myogenin, MyoD) protein levels 72 h after NF-YB 

silencing (siNF-YB) and the scrambled control. Vinculin was used as loading control. (C) Analysis of II° and III° 

ChIP experiments performed on C2C12 ctr cells in GM condition using NF-YB antibody and the negative control 

(nc). The unrelated region (ur) and Stard4 were used as negative and positive control, respectively. Results are 

represented as the input percentage of sample normalized to the nc. Table S1: Off-targets analysis. Analysis of 

possible off-target sites of each gRNA using the online tool https://crispr.cos.uni-heidelberg.de. For each gRNA 

the off-target gene name, gene id, position (intronic, intergenic, exonic), mismatches (MM) and the PAM 

sequence are reported. Table S2: Primers used. The specific sequence of each primer (forward and reverse) used 

for RT-qPCR and ChIP analysis are reported. 
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