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Abstract
We analyze the martingale selection problem of Rokhlin in

a pointwise (robust) setting. We derive conditions for solv-

ability of this problem and show how it is related to the clas-

sical no-arbitrage deliberations. We obtain versions of the

Fundamental Theorem of Asset Pricing in models spanning

frictionless markets, models with proportional transaction

costs, and models for illiquid markets. In all these models,

we also incorporate trading constraints.
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1 INTRODUCTION

In discrete-time, the martingale selection problem (MSP) is stated as follows. Given two adapted fam-
ilies of random sets 𝑉 = (𝑉𝑡) and 𝐶 = (𝐶𝑡), find a family of pairs (𝜉,𝑄), consisting of an adapted
process 𝜉 = (𝜉𝑡) taking values in 𝑉 and a probability measure 𝑄, such that

𝔼𝑄
[
𝜉𝑡+1 − 𝜉𝑡 |𝑡

]
∈ 𝐶𝑡 𝑄-a.s.

The pair (𝜉,𝑄) is called a solution to the MSP. When 𝐶 ≡ {0} the problem is asking for a sequence of
selections 𝜉 of 𝑉 and a measure 𝑄 such that 𝜉 is a 𝑄-martingale. In the present form, the problem was
first studied by Rokhlin (2006), where the measure 𝑄 is also required to be equivalent to some chosen
probability measure. We refer to this as the “dominated setup.”

Martingale selection problems arise frequently in mathematical finance. The readers familiar with
models of markets with frictions, described via solvency cones 𝐾 = (𝐾𝑡), will recognize the MSP with
𝑉𝑡 = ri𝐾∗

𝑡 , the relative interior of 𝐾∗
𝑡 , and 𝐶𝑡 = {0} as precisely the dual formulation of absence of

arbitrage. Indeed, in the literature, the pairs (𝜉,𝑄) are known as consistent price systems. What this
observation is suggesting is that the possibility of solving an MSP, namely ensuring the existence
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of sufficiently many pairs (𝜉,𝑄), can be related to a no-arbitrage condition for the associated finan-
cial market.

In this paper, we show that the connection is much deeper and can be employed in a great variety of
situations. We characterize the solvability of the MSP with an approach closely related to that of Rokhlin
(2007), albeit with some modifications. The idea is to identify a family of correspondences 𝑊 = (𝑊𝑡),
contained in 𝑉 , which satisfies a certain dynamic programming principle. In particular, if we can solve
the one-step MSP for (𝑊𝑡,𝑊𝑡+1), then the general solution can be obtained by pasting together the one-
step solutions. As 𝑊 is contained in 𝑉 , the resulting pairs are also solutions of the MSP for 𝑉 . Our
main result is Theorem 4.7 and is stated as follows.

Theorem. The martingale selection problem (𝑉 , 𝐶) is solvable if and only if 𝑊𝑡(𝜔) ≠ ∅ for all 𝑡 ∈ 

and 𝜔 ∈ Ω.

The construction of correspondences 𝑊 is based on a backward iteration in the spirit of Rokhlin
(2007). However, the one considered in that paper is applicable only in the case when 𝑉 is open valued.
We show how to suitably modify it; see Section 4 and Equations (6) and (10).

We work in a finite discrete-time pointwise setting. In particular, we do not assume the existence of
any probabilistic description of the market and all the statements on random objects are meant to hold
for any 𝜔 ∈ Ω. As a consequence, the set of probability measures  for which we solve the MSP is
naturally chosen as the set of all finite support probability measures. This turns out to have significant
advantages in terms of establishing measurability of the involved correspondences.

On the fundamental theorem of asset pricing. In the dominated setup, a standard approach for showing
the fundamental theorem of asset pricing (FTAP) is functional analytic. The key step is to prove that
the no-arbitrage condition implies that the set of superhedgeable claims is closed with respect to an
appropriate topology. Once this is achieved, the FTAP becomes a statement about the polar of this
set being nonempty. This approach has been introduced in Schachermayer (1992) in the case of a
frictionless market model and it has been employed in the case of markets with proportional transaction
costs; see Kabanov (1999), Kabanov, Rásonyi, and Stricker (2002), Kabanov, Rásonyi, and Stricker
(2003), Schachermayer (2004). The most general formulation is that of currency markets initiated in
Kabanov (1999) and based on the so-called solvency cones, whose main role is to determine the self-
financing condition for trading strategies. Several different notions of arbitrage have been considered
and corresponding version of FTAP have been provided, possibly, under some additional technical
conditions such as the “efficient friction” hypothesis (transaction costs are always nontrivial). We refer
to Kabanov, Rásonyi, and Stricker (2003) for an overview.

More recently, nonlinear frictions, such as illiquidity effects, have been considered in the literature.
Generalization of the currency market model to convex solvency region is given by Astic and Touzi
(2007) on a finite probability space, and by Pennanen and Penner (2010) on a general probability
space. Both papers deal with claims with physical delivery. A continuous-time cash-delivery model is
considered in Çetin, Jarrow, and Protter (2012), where the price per unit for buying a certain number
of shares of a risky asset is given by a supply curve. In the same spirit, a general discrete-time model
has been considered by Pennanen (2011) where a cost process, which depends on the traded volume,
describes the cost of trading.

In the nondominated setup, the functional analytic approach is not universally applicable. The FTAP

needs to be obtained directly, using dynamic programming and measurable selection methods. An
argument along those lines was first proposed in Jacod and Shiryaev (1998) in the framework of fric-
tionless markets. The same argument was successfully applied in the quasi-sure setup of Bouchard
and Nutz (2015, 2016). This setup has also been adopted in Bayraktar and Zhou (2017) for the case



262 BURZONI AND ŠIKIĆ

of a frictionless market with portfolio constraints and in Bayraktar and Zhang (2016) where, by using
dynamic programming techniques close to the one used here, an FTAP is shown for a market model
with proportional transaction costs and under the efficient friction hypothesis. In a discrete-time set-
ting with no probability measures, arbitrage theory has been investigated for frictionless markets in
Acciaio, Beiglböck, Penkner, and Schachermayer (2016), Burzoni, Riedel, and Soner (2017), Bur-
zoni, Frittelli, Hou, Maggis, and Obłój (2016), Cheridito, Kupper, and Tangpi (2016), Riedel (2015).
For proportional transaction costs, it is investigated in Burzoni (2016), Bartl, Cheridito, Kupper, and
Tangpi (2017), Dolinsky and Soner (2014). In the latter group of papers, some additional assumptions
are taken: the existence of a cash account for the first one and constant transaction costs for the latter
two. To the best of our knowledge, a general theory for markets with frictions, in this pointwise setting,
has not been established yet and it is addressed in this paper.

We tackle the problem as follows. As observed above, the MSP can be interpreted as the dual problem
to the existence of arbitrage strategies in models of financial markets. We ask whether the dual problem
admits solutions; If not, we show how to construct an arbitrage strategy by convex analytical arguments.

Overview of the paper. In Section 2, we define the setup and motivate it with examples from financial
mathematics that we will treat in more detail in the last part of the paper. Section 3 is dedicated to the
definition of certain projections of a correspondence and to the construction of the relevant objects
for solving the MSP. In Section 4, we define formally the MSP and derive the main result. Finally,
in Section 5, we show how MSP is related to the no-arbitrage theory in markets with no frictions,
with proportional transaction costs, and with convex frictions. We study the models separately, in an
increasing level of complexity.

1.1 Notation used in the paper
For a given set 𝐴 ⊂ ℝ𝑑 , we denote by cl𝐴, int 𝐴, ri𝐴, conv𝐴, cone𝐴, aff 𝐴 and lin𝐴, the closure,
the interior, the relative interior, the convex hull, the conical hull, the affine hull, and the linear hull
of 𝐴. Scalar product on ℝ𝑑 is denoted by ⟨⋅, ⋅⟩. For a cone 𝐴, we let 𝐴∗ be the (positive) polar of 𝐴,
defined by

𝐴∗ ∶= {𝑦 ∈ ℝ𝑑 ∣ ⟨𝑦, 𝑥⟩ ≥ 0 ∀𝑥 ∈ 𝐴}.

A map𝑈 defined on a state spaceΩ and taking values in the power set ofℝ𝑑 is called a correspondence.
We indicate that a map is a correspondence by writing 𝑈 ∶ Ω ⇉ ℝ𝑑 . The domain of 𝑈 is denoted by
dom𝑈 ∶= {𝜔 ∈ Ω ∣ 𝑈 (𝜔) ≠ ∅}.

Let  be a sigma-algebra onΩ and𝑈 ∶ Ω ⇉ ℝ𝑑 be a correspondence. We say that𝑈 is measurable
if {𝜔 |𝑈 (𝜔) ∩ 𝑂 ≠ ∅} ∈  for all open sets𝑂 ⊂ ℝ𝑑 . We denote by (;𝑈 ) the set of all -measurable
selections of 𝑈 .

Extended real numbers are denoted by ℝ ∶= [−∞,+∞]. Let 𝑓 ∶ Ω ×ℝ𝑑 → ℝ be a function. We
denote the domain and the epigraph correspondences by

dom 𝑓 (𝜔) ∶=
{
𝑥 ∈ ℝ𝑑 ∣ 𝑓 (𝜔, 𝑥) < ∞

}
,

epi 𝑓 (𝜔) ∶=
{
(𝑥, 𝛼) ∈ ℝ𝑑 ×ℝ ∣ 𝑓 (𝜔, 𝑥) ≤ 𝛼

}
.

By  we denote the set of all finite support probability measures on Ω and by (𝜔) we denote the
set of all 𝑄 ∈  such that 𝜔 ∈ supp𝑄; by supp𝑄 we denote the support of the measure 𝑄, that is, the
smallest closed set with full 𝑄 measure.
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2 SETUP

Let (Ω,(Ω)) be a Polish space endowed with its Borel sigma-algebra. Let  ∶= {0,… , 𝑇 } with 𝑇 ∈
ℕ. Let (𝐸,(𝐸)) be a separable metric space endowed with its Borel sigma-algebra and let (𝜓𝑡)𝑡∈ be
a set of Borel maps

𝜓𝑡 ∶ Ω ←→ 𝐸.

We assume that the mapping 𝜓0 is constant, that is, there exists a 𝑦 ∈ 𝐸, such that 𝜓0(𝜔) = 𝑦 for each
𝜔 ∈ Ω.

We define a filtration 𝔽 = (̂𝑡)𝑡∈ on Ω: for any 𝑡 ∈  we denote by ̂𝑡 the sigma-algebra generated
by maps 𝜓𝑠 as follows

̂𝑡 = 𝜎
(
{𝜓−1

𝑠 (𝐴) ∣ 𝑠 ≤ 𝑡, 𝐴 ∈ (𝐸)}
)
.

This is the “natural filtration” generated by the process (𝜓𝑡). We will work with the larger filtration
𝔽 ∶= (𝑡)𝑡∈ given by

𝑡 =
⋂
𝑃∈

̂𝑡 ∨ 𝑃
𝑡 ,  𝑃

𝑡 ∶=
{
𝐴 ⊂ 𝐴′ ∈ ̂𝑡 |𝑃 (𝐴′) = 0

}
.

This is a technical condition used to ensure the measurability of the correspondences of Section 3. Note
that the assumption on the map 𝜓0 implies that 0 = {∅,Ω}.

Remark 2.1. We can define maps Ψ𝑡 ∶ Ω → 𝐸𝑡+1 by

Ψ𝑡(𝜔) =
(
𝜓0(𝜔),… , 𝜓𝑡(𝜔)

)
. (1)

As 𝐸 is a separable metric space, also (𝐸𝑡+1) =
⨂𝑡

𝑠=0(𝐸). Hence, we may write ̂𝑡 = 𝜎({Ψ−1
𝑠 (𝐴) ∣

𝐴 ∈ (𝐸𝑡+1)}).

The following Lemma identifies the “atoms” of sigma algebras 𝑡, defined above, and shows their
measurability. Because 𝑡 is the -completion of ̂𝑡, it implies that we obtain an 𝑡-measurable object
by simply specifying its value on every atom. In particular, this will allow us to modify any 𝑡 mea-
surable object only on one particular atom and preserve measurability.

Lemma 2.2. The set Σ𝜔𝑡 ⊂ Ω, defined by

Σ𝜔𝑡 ∶=
{
�̄� ∈ Ω |𝜓𝑠(�̄�) = 𝜓𝑠(𝜔), ∀𝑠 ≤ 𝑡

}
, (2)

is Borel measurable for every 𝜔 ∈ Ω and 𝑡 ∈ ; in particular, Σ𝜔𝑡 ∈ 𝑡 for all 𝜔.

Proof. Simply observe that Σ𝜔𝑡 = Ψ−1
𝑡 (𝜏), where Ψ𝑡 is a Borel mapping and 𝜏 = Ψ𝑡(𝜔) is a singleton,

thus a closed subset of 𝐸𝑡+1. The second statement is clear because already Σ𝜔𝑡 ∈ ̂𝑡 by the definition

of ̂𝑡. □

Some classical examples in financial mathematics. For the convenience of the reader, we anticipate
the type of applications that we have in mind. The following are examples of maps 𝜓𝑡, which collects
the most typical models of discrete-time financial markets studied in the literature.
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Example 2.3. Assume that we are modeling the frictionless market, given by the stock price process
(𝑆𝑡). Then one can take 𝐸 = ℝ𝑑 , where 𝑑 is the number of risky assets, and 𝜓𝑡(𝜔) = 𝑆𝑡(𝜔). This is
why we call 𝔽 the natural filtration.

Example 2.4. As above, one can model the market with a single risky asset by a pair of processes:
the bid and ask price process. Those we denote by (𝑆

𝑡
, 𝑆𝑡). Then one takes 𝐸 = ℝ2 and 𝜓𝑡(𝜔) =

(𝑆
𝑡
(𝜔), 𝑆𝑡(𝜔)).

Example 2.5. The basic model of proportional transaction costs, the Kabanov’s model of currency
markets, is given by a family of closed convex solvency cones (𝐾𝑡)𝑡∈ . The set 𝐾𝑡(𝜔) represents the
set of solvent positions at time 𝑡 if 𝜔 occurs. If the correspondence 𝐾𝑡 ∶ Ω ⇉ ℝ𝑑 is Borel measurable,
then it is also a Borel measurable map with values in the metric space CL(ℝ𝑑), of closed subsets of
ℝ𝑑 , with its Borel sigma algebra; see Rockafellar and Wets (2004, Chapters 4 and 14). Now, we may
define 𝜓𝑡 = 𝐾𝑡 and the filtration 𝔽 as above.

Remark 2.6. Throughout the paper all the characterization results are given using finite support prob-
ability measures. In particular, this is the case for the versions of the FTAP of Theorems 5.1, 5.9, and
5.23. To get an intuition why this is enough, one can think in terms of a frictionless market as in Exam-
ple 2.3. Essentially, the existence of an arbitrage opportunity reduces to the question of whether 0 can
be separated from the increments of (𝑆𝑡) by an hyperplane. In a pointwise framework, this is a ques-
tion regarding only the geometry of the price process rather than the support of the desired martingale
measures.

3 PROJECTIONS OF MEASURABLE CORRESPONDENCES

Analyzing the martingale selection theorem will follow dynamic programming ideas. Therefore, the
first step is to have an object that generalizes the “conditional support” of a correspondence to this,
pointwise, setting. Let 𝑋 be an 𝑡+1-measurable random variable and 𝑡 ∈ ∖{𝑇 }. In the classical case,
a reference measure 𝑃 is given and the conditional support of 𝑋, given 𝑡, is the smallest closed
valued, 𝑡-measurable, correspondence 𝐴 such that 𝑋 is a selection of 𝐴 𝑃 -a.s. The existence of such
a conditional support and that of regular versions of the conditional distribution are instrumental for
the approach of Rokhlin (2006, 2007). In this pointwise setting, one generalizes the conditional support
as follows

𝑋𝑡(𝜔) ∶=
{
𝔼𝑄[𝑋|𝑡](𝜔) |𝑄 ∈ (𝜔)

}
. (3)

The correspondence 𝑋𝑡 ∶ Ω ⇉ ℝ𝑑 is well defined by definition of (𝜔) (see Section 1.1); indeed,
{𝜔} is an atom for every 𝑄 ∈ (𝜔). Moreover, by the choice of 𝑡, it is also measurable. Clearly,
𝑋(𝜔) ∈ 𝑋𝑡(𝜔) for every 𝜔 ∈ Ω.

Lemma 3.1. Let 𝑡 ∈  and let 𝑈 ∶ Ω ⇉ ℝ𝑑 be an 𝑡+1-measurable correspondence. Then the corre-
spondence

𝑈♯(𝜔) ∶= conv
({
𝑥 ∈ ℝ𝑑 | 𝑥 ∈ 𝑈 (�̄�) for some �̄� ∈ Σ𝜔𝑡

})
is 𝑡-measurable and convex valued.

Proof. Obvious, because 𝑈♯(𝜔) depends only on Σ𝜔𝑡 . □
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Remark 3.2. We are assuming neither closed nor convex values of the correspondence 𝑈 in the lemma
above. Because we want, ultimately, that our correspondences have convex values, we define𝑈♯ imme-
diately as such. Let us rewrite it as follows

𝑈♯(𝜔) = conv
⋃
�̄�∈Σ𝜔𝑡

𝑈 (�̄�). (4)

This makes it clear that the convex hull operation is necessary. Note, however, that 𝑈♯ need not to be
closed. Moreover, one can write it as

𝑈♯(𝜔) =
{
𝑦 |∃�̄� ∈ Σ𝜔𝑡 , 𝜉 ∈ (𝑡+1;𝑈 ), 𝑄 ∈ (�̄�) ∶ 𝔼𝑄[𝜉|𝑡](𝜔) = 𝑦

}
; (5)

this is a direct consequence of the Carathéodory’s theorem on convex hulls.

The representation (5) highlights the connection between 𝑈♯ and the classical notion of conditional
expectation of a correspondence that is defined through the conditional expectation of its selections;
see Molchanov (2005). For any measure 𝑃 ∈  , the conditional expectation of any selection of 𝑈
will be a selection of 𝑈♯. However, in general, 𝑈♯ will be a larger set as it includes the 𝑃 -conditional
expectation of 𝑈 with respect to any 𝑃 ∈  (on the support of the measure).

The correspondence𝑈♯ is too big for our needs; this will become evident in Section 4. We, therefore,
define a smaller set valued map

𝑈♭(𝜔) ∶=
⋂
�̄�∈Σ𝜔𝑡

⋃
𝜆∈(0,1)

[
𝜆𝑈 (�̄�) + (1 − 𝜆)𝑈♯(𝜔)

]
. (6)

Lemma 3.3. Let 𝑡 ∈ ∖{𝑇 } and let 𝑈 ∶ Ω ⇉ ℝ𝑑 be a convex valued 𝑡+1-measurable correspon-
dence. Then 𝑈♭(𝜔) is convex valued and 𝑡-measurable.

Proof. For �̄� ∈ Σ𝜔𝑡 , we define the set

𝑈 (�̄�) ∶=
⋃

𝜆∈(0,1)

[
𝜆𝑈 (�̄�) + (1 − 𝜆)𝑈♯(𝜔)

]
.

To show that the correspondence𝑈♭ is convex valued, it is enough to observe that the set𝑈 (�̄�) is convex
for each �̄�. Because ri𝑈♯(𝜔) ⊂ 𝑈 (�̄�) ⊂ 𝑈♯(𝜔) for every �̄� ∈ Σ𝜔𝑡 , it follows directly that ri𝑈♯(𝜔) ⊂
𝑈♭(𝜔) ⊂ 𝑈♯(𝜔). Hence, 𝑈♭ is measurable by lemma 18.3 in Aliprantis and Border (2006). □

Remark 3.4. We will use the (⋅)♯ and (⋅)♭ operators, on elements of adapted sequences of correspon-
dences 𝑊 . Thus, measurability of the resulting correspondence will be clear: 𝑊 ♯

𝑡+1 is 𝑡 measurable,

because 𝑊𝑡+1 is 𝑡+1 measurable; the same for 𝑊 ♭
𝑡+1.

We showed in the proof of the above lemma that

ri𝑈♯(𝜔) ⊆ 𝑈♭(𝜔) ⊆ 𝑈♯(𝜔), (7)

that is, 𝑈♭ is obtained from 𝑈♯ by, possibly, omission of some points from the relative boundary of
𝑈♯. The significance of this construction is contained in the following statement.

Lemma 3.5. Let 𝑡 ∈ ∖{𝑇 } and let 𝑈 ∶ Ω ⇉ ℝ𝑑 be a convex valued 𝑡+1-measurable correspon-
dence. Then

𝑈♭(𝜔) =
{
𝑦 ∈ ℝ𝑑 |∀�̄� ∈ Σ𝜔𝑡 ∃ 𝜉 ∈ (𝑡+1;𝑈 ), 𝑄 ∈ (�̄�) ∶ 𝔼𝑄[𝜉|𝑡](𝜔) = 𝑦

}
.



266 BURZONI AND ŠIKIĆ

In words, 𝑦 ∈ 𝑈♭(𝜔) if and only if for every �̄� ∈ Σ𝜔𝑡 there exists a selection 𝜉 of 𝑈 , and a measure
𝑄 ∈ (�̄�), such that 𝔼𝑄[𝜉|𝑡](𝜔) = 𝑦. The crucial difference with 𝑈♯ can be seen by comparing a
similar characterization, given in Equation (5). There, the union of the supports of the measures 𝑄
does not necessarily contain every �̄� ∈ Σ𝜔𝑡 , but only at least one.

Proof. Note that if Σ𝜔𝑡 = {𝜔} there is nothing to prove. Otherwise, let us start by showing the inclusion
⊆. Fix �̄� ∈ Σ𝜔𝑡 . Because 𝑦 ∈ 𝑈♭(𝜔), there exists a 𝜆 ∈ (0, 1) such that 𝑦 ∈ [𝜆𝑈 (�̄�) + (1 − 𝜆)𝑈♯(𝜔)].
The rest of the claim follows from Carathéodory’s theorem. Indeed, we may write 𝑦 = 𝜆𝑥 + (1 − 𝜆)𝑧
for 𝑥 ∈ 𝑈 (�̄�) and 𝑧 ∈ 𝑈♯(𝜔). Because 𝑈♯(𝜔) is a convex hull of a union, we may write 𝑧 = 𝜆1𝑧1 +
⋯ + 𝜆𝑛𝑧𝑛 for some 𝑧𝑖 ∈ 𝑈 (𝜔𝑖), 𝜔𝑖 ∈ Σ𝜔𝑡 , and 𝜆𝑖 ∈ (0, 1), such that 𝜆1 +⋯ + 𝜆𝑛 = 1. We may assume
that 𝑥 and 𝑧𝑖 in this decomposition are chosen such that 𝑛 is minimal. This implies, in particular, that
the sets Σ�̄�

𝑡+1 and Σ𝜔𝑖

𝑡+1 are pairwise disjoint. Then

𝑄 = 𝜆𝛿�̄� + (1 − 𝜆)
𝑛∑
𝑖=1

𝜆𝑖𝛿𝜔𝑖
and 𝜉(𝜔) = 𝑥𝟙Σ�̄�

𝑡+1
+

𝑛∑
𝑖=1

𝑧𝑖𝟙Σ𝜔𝑖
𝑡+1
,

where we denoted by 𝛿𝜔 the Dirac measure with mass concentrated in𝜔. Note that 𝜉 can be extended in
an arbitrary way to a selection of 𝑈 on the complement of Σ�̄�

𝑡+1
⋃

𝑖 Σ
𝜔𝑖

𝑡+1; see Lemma A.2, Lemma 2.2,
and the comment above it.

As for the converse, we need to show that for any element 𝑦 ∉ 𝑈♭(𝜔) there exists an �̄� ∈ Σ𝜔𝑡 , such
that as soon as the pair (𝜉,𝑄) satisfies 𝑄[Σ�̄�

𝑡+1] > 0, we have 𝔼𝑄[𝜉|𝑡](𝜔) ≠ 𝑦. If 𝑦 ∉ 𝑈♯(𝜔), it is clear

from (5), that any �̄� ∈ Σ𝜔𝑡 will satisfy the desired properties. Assume, therefore, that 𝑦 ∈ 𝑈♯(𝜔)∖𝑈♭(𝜔).
Because the set 𝑈♭(𝜔) is convex and cl𝑈♭ = cl𝑈♯, 𝑦 is a point in the relative boundary of 𝑈♯(𝜔).
Denote by 𝐹 the extremal face of 𝑈♯(𝜔) containing 𝑦, that is,

𝐹 =
{
𝑧 ∈ 𝑈♯(𝜔) |∃𝑥 ∈ 𝑈♯(𝜔), 𝜆 ∈ (0, 1) ∶ 𝑦 = 𝜆𝑧 + (1 − 𝜆)𝑥

}
.

If 𝑈 (�̄�) ∩ 𝐹 ≠ ∅ for each �̄� ∈ Σ𝜔𝑡 , then, by the definition of 𝑈♭(𝜔), we have 𝑦 ∈ 𝑈♭(𝜔), which con-
tradicts our assumption. Therefore, there exists an �̄� ∈ Σ𝜔𝑡 such that 𝑈 (�̄�) ∩ 𝐹 = ∅. It is easy to
see that for any selection 𝜉 of 𝑈 and finite support measure 𝑄, such that �̄� ∈ supp𝑄, we have that
𝔼𝑄[𝜉|𝑡](𝜔) ∉ 𝐹 . □

The representation of Lemma 3.5 shows a fundamental robustness property of the correspondence
𝑈♭. Indeed, an element 𝑦 ∈ 𝑈♭ is not only the conditional expectation with respect to a certain 𝑃 ∈ 

but, using the convexity property of Lemma 4.4, it is also possible to enlarge the support of 𝑃 with an
arbitrary �̄� ∈ Σ𝜔𝑡 and still find a selection of 𝑈 with the same conditional expectation 𝑦. In relation to
the martingale selection problem, this will be instrumental for preventing that for every (𝜉,𝑄) solution
to the MSP, the support of 𝑄 must be limited to a certain subset of Ω.

Although, in general, ri(𝑈♯) ≠ 𝑈♭, there are easy conditions ensuring equality; cf. Equation (7).
This is the content of the following two lemmas.

Lemma 3.6. Let 𝑈 ∶ Ω ⇉ ℝ𝑑 be an 𝑡+1 measurable correspondence with open values. Then the
correspondence 𝑈♯ has open values. In particular, 𝑈♭ = 𝑈♯.

Proof. An easy consequence of the Carathéodory’s theorem is that the convex hull of an open set is
open. Thus, from Equation (4), 𝑈♯ is open. The final statement follows from Equation (7). □

Lemma 3.7. Let𝑈 ∶ Ω ⇉ ℝ𝑑 be an𝑡+1-measurable correspondence with convex and relatively open
values. Then 𝑈♭ = ri(𝑈♯); in particular, 𝑈♭ has relatively open values.
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Proof. Fix 𝜔 ∈ Ω. Argue by contradiction and choose 𝑥 ∈ 𝑈♭(𝜔)∖ ri𝑈♯(𝜔). There exists a halfspace
 ∶= {𝑧 ∈ ℝ𝑑 | ⟨ℎ, 𝑧⟩ ≥ 𝛼} for some ℎ ∈ ℝ𝑑 and 𝛼 ∈ ℝ, such that 𝑈♯(𝜔) ⊂ , ⟨ℎ, 𝑥⟩ = 𝛼 and such
that 𝑈♯(𝜔) ∩ int ≠ ∅. By the choice of 𝑥,

𝑥 ∈
⋃

𝜆∈(0,1)
[𝜆𝑈 (�̄�) + (1 − 𝜆)𝑈♯(𝜔)] ∀�̄� ∈ Σ𝜔𝑡 .

This implies that 𝑈 (�̄�) ∩ {𝑧 | ⟨ℎ, 𝑧⟩ = 𝛼} ≠ ∅ for every �̄� ∈ Σ𝜔𝑡 . Because 𝑈 is relatively open, it needs
to be 𝑈 (�̄�) ⊂ {𝑧 | ⟨ℎ, 𝑧⟩ = 𝛼}; see theorem 18.1 in Rockafellar (1970). Because �̄� ∈ Σ𝜔𝑡 is arbitrary,
the same inclusion holds for 𝑈♯(𝜔). This contradicts the assumption that 𝑈♯(𝜔) ∩ int ≠ ∅. □

4 THE MARTINGALE SELECTION THEOREM AND THE
MAIN RESULT

In this section, we will define the MSP. The problem was initially studied by Rokhlin in a series of
papers, see, for example, Rokhlin (2006, 2007). Start with the Polish space Ω with the Borel 𝜎-algebra
(Ω) and the filtration 𝔽 = (𝑡)𝑡∈ defined as in the previous section.

Definition 4.1. Let 𝑉 and 𝐶 be two 𝔽 -adapted sequences of correspondences Ω ⇉ ℝ𝑑 such that

𝑉 = (𝑉𝑡)𝑡∈ has relatively open, convex values;

𝐶 = (𝐶𝑡)𝑡∈ has closed, convex values.

Such a pair (𝑉 , 𝐶) we call an MSP.

Definition 4.2. We say that the martingale selection problem (𝑉 , 𝐶) is solvable if for every �̄� ∈ Ω there
exists an 𝔽 -adapted process 𝜉 = (𝜉𝑡)𝑡∈ and a probability measure 𝑄 ∈ (�̄�) such that 𝜉𝑡 ∈ (𝑡;𝑉𝑡)
and

𝔼𝑄
[
𝜉𝑡+1 − 𝜉𝑡|𝑡

]
∈ 𝐶𝑡 𝑄−𝑎.𝑠. for all 𝑡 ∈ ∖{𝑇 }. (8)

We call the pair (𝜉,𝑄) with 𝑄 ∈ (�̄�) a local solution of (𝑉 , 𝐶) at �̄�.

Remark 4.3. Let (𝜉,𝑄) be any solution to the MSP: (𝑉 , 𝐶 = ({0})). Condition (8) states that 𝜉 is a
𝑄 martingale; recall that 𝑄 is a finite support measure, hence 𝜉 is integrable. This is where the name
“martingale selection problem” comes from. The terminology “local” in the above definition aims at
emphasizing the fact that a given �̄� is in the support of 𝑄. When we do not need that a specific �̄�

belongs to the support, we will simply call (𝜉,𝑄) a solution to the MSP.

Before proceeding further with the analysis of the MSP, let us first state a basic observation about
the set of (local) solutions. It will prove instrumental in the proof of the main theorem. The statement
is, essentially, that the set of solutions enjoys a form of convexity property.

Lemma 4.4. Let (𝜉𝑘,𝑄𝑘) be solutions to the MSP (𝑉 , 𝐶) for 𝑘 = 1,… , 𝑛. Then, for any convex com-
bination 𝑄 of measures (𝑄𝑘) there exists a process 𝜉, such that (𝜉,𝑄) is a solution to the MSP.

Proof. Write 𝑄 =
∑𝑛

𝑘=1 𝜆𝑘𝑄
𝑘, where 𝜆𝑘 ∈ (0, 1) for all 𝑘 and 𝜆1 +⋯ + 𝜆𝑛 = 1. Let us show that the

process

𝜉𝑡(𝜔) =
𝑛∑

𝑘=1

𝜆𝑘𝑄
𝑘
[
Σ𝜔𝑡
]

𝑄
[
Σ𝜔𝑡
] 𝜉𝑘𝑡 (𝜔) (9)
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together with the measure 𝑄 solves the MSP. Note that we can extend the process 𝜉𝑡 outside of the
support of the measure 𝑄 by setting 0

0 = 1 in (9). First, it is clear that the process 𝜉 is adapted and that
it is a selection of 𝑉 ; Indeed, a cursory inspection of the definition of 𝜉 will reveal the sum to be a
convex combination. Moreover, measurability follows from Σ𝜔𝑡 ∈ 𝑡. Hence, the only thing to prove is
that it satisfies (8). Calculate

𝔼𝑄[𝜉𝑡+1 − 𝜉𝑡|𝑡](𝜔) =
∑

Σ�̄�
𝑡+1⊂Σ

𝜔
𝑡

𝑄
[
Σ�̄�
𝑡+1

]
𝑄
[
Σ𝜔𝑡
] 𝜉𝑡+1(�̄�) − 𝜉𝑡(𝜔)

=
∑

Σ�̄�
𝑡+1⊂Σ

𝜔
𝑡

𝑛∑
𝑘=1

𝜆𝑘𝑄
𝑘
[
Σ�̄�
𝑡+1

]
𝑄
[
Σ𝜔𝑡
] 𝜉𝑘

𝑡+1(�̄�) − 𝜉𝑘𝑡 (𝜔)

=
𝑛∑

𝑘=1

𝜆𝑘𝑄
𝑘
[
Σ𝜔𝑡
]

𝑄
[
Σ𝜔𝑡
] ⎡⎢⎢⎢⎣

∑
Σ�̄�
𝑡+1⊂Σ

𝜔
𝑡

𝑄𝑘
[
Σ�̄�
𝑡+1

]
𝑄𝑘
[
Σ𝜔𝑡
] 𝜉𝑘

𝑡+1(�̄�) − 𝜉𝑘𝑡 (𝜔)
⎤⎥⎥⎥⎦

=
𝑛∑

𝑘=1

𝜆𝑘𝑄
𝑘
[
Σ𝜔𝑡
]

𝑄
[
Σ𝜔𝑡
] 𝔼𝑄𝑘

[
𝜉𝑘
𝑡+1 − 𝜉𝑘𝑡 |𝑡

]
(𝜔).

Note that the last sum is a convex combination of elements of 𝐶𝑡(𝜔). Hence, we conclude by convexity
of 𝐶 . □

Remark 4.5. Observe the definition of 𝜉 in the proof of the Lemma above. One sees that this is given
by

𝜉𝑡(𝜔) =
𝑛∑

𝑘=1
𝜆𝑘

d
(
𝑄𝑘|𝑡)

d
(
𝑄|𝑡) (𝜔)𝜉𝑘𝑡 (𝜔),

where by
d(𝑄𝑘|𝑡 )
d(𝑄|𝑡 ) (𝜔) we denote the Radon–Nikodym derivative of the measures restricted to 𝑡.

Remark 4.6. Observe that, in general, there is no unique local solution to the MSP at a given �̄�. Indeed,
unless the space Ω is a finite number of events, there is no measure that assign positive mass to every
𝜔 ∈ Ω. Therefore, given (𝜉1, 𝑄1) a local solution at �̄� and (𝜉2, 𝑄2) a local solution at a certain �̂� ∉
supp(𝑄1), Lemma 3.5 yields a new local solution (𝜉,𝑄) at �̄�.

The main theorem. Consider a martingale selection problem (𝑉 , 𝐶). Define the following (adapted)
sequence 𝑊 = (𝑊𝑡)𝑡∈ of measurable correspondences: Set 𝑊𝑇 ∶= 𝑉𝑇 and

𝑊𝑡 ∶= 𝑉𝑡 ∩
(
𝑊 ♭

𝑡+1 − 𝐶𝑡

)
for 𝑡 = 𝑇 − 1,… , 0. (10)

The following is the main result of the paper.

Theorem 4.7. The martingale selection problem (𝑉 , 𝐶) is solvable if and only if 𝑊𝑡(𝜔) ≠ ∅ for all
𝑡 ∈  and 𝜔 ∈ Ω.

We prove the result in several steps. Sufficiency is a consequence of the following lemma.
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Lemma 4.8. Let �̄� ∈ Ω and 𝑡 ∈ . Assume that 𝑊𝑠(𝜔) ≠ ∅ for every 𝜔 ∈ Ω and every 𝑠 = 𝑡,… , 𝑇 .
Then, for every 𝜉 ∈ 𝑊𝑡(�̄�) there exists a 𝑄 ∈ (�̄�) and a process (𝜉𝑠)𝑠=𝑡,…,𝑇 with 𝜉𝑠 ∈ (𝑠;𝑉𝑠) for
every 𝑠 = 𝑡,… , 𝑇 , such that 𝜉𝑡(�̄�) = 𝜉 and

𝔼𝑄
[
𝜉𝑠+1 − 𝜉𝑠|𝑠

]
∈ 𝐶𝑠 𝑄-a.s. 𝑠 = 𝑡,… , 𝑇 − 1.

Proof. If 𝑡 = 𝑇 , there is nothing to prove, one simply chooses (𝜉, 𝛿�̄�).
Let us assume that the result is true for 𝑡 + 1 and let us show it for 𝑡. We can write each 𝜉 ∈ 𝑊𝑡(�̄�)

as

𝜉 = 𝑤 − 𝑐 with 𝑤 ∈ 𝑊 ♭
𝑡+1(�̄�), 𝑐 ∈ 𝐶𝑡(�̄�).

There exists a measure �̄� ∈ (�̄�) and a random vector𝜓 ∈ (𝑡+1;𝑊𝑡+1) such that𝑤 = 𝔼�̄�[𝜓|𝑡](�̄�);
see Lemma 3.5. We may assume that supp𝑄 ⊂ Σ�̄�𝑡 . Denote by 𝜔𝑖, 𝑖 = 1,… , 𝑝, the atoms of �̄�. By

convexity of the correspondences, we can assume that Σ𝜔𝑖

𝑡+1, 𝑖 = 1,… , 𝑝, are pairwise disjoint. By the
induction hypothesis, there exists a solution (𝜉𝑖, 𝑄𝑖) to the MSP such that 𝑄𝑖 ∈ (𝜔𝑖) and 𝜉𝑖

𝑡+1(𝜔
𝑖) =

𝜓(𝜔𝑖). We may, furthermore, assume that supp𝑄𝑖 ⊂ Σ𝜔𝑖

𝑡+1. Define the process (𝜉𝑠) by

𝜉𝑡(�̄�) = 𝜉, 𝜉𝑠 =
𝑝∑
𝑖=1

𝜉𝑖𝑠𝟙Σ𝜔𝑖
𝑡+1

for 𝑠 = 𝑡 + 1,… , 𝑇 ,

where we extend it to any selection of 𝑊𝑡+1 on the complement of the considered sets. The measure 𝑄
is defined by

𝑄[𝐴] =
𝑝∑
𝑖=1

�̄�
[
Σ𝜔𝑖

𝑡+1

]
𝑄𝑖[𝐴] 𝐴 ∈ 𝑇 .

Note that �̄� is an atom of �̄� by assumption. This finishes the proof. □

The case when 𝑉𝑡 are open. To show necessity in the main theorem, we first study a simpler case.
The following observation is the main reason why considering open valued correspondences makes
the problem significantly easier.

Lemma 4.9. Let 𝑉𝑡(𝜔) be open for every 𝜔, 𝑡. Then 𝑊𝑡(𝜔) are open.

Proof. If 𝑊𝑡(𝜔) = ∅, then it is open by definition. Let us, thus, assume the contrary. Observe that, by
definition,𝑊𝑇 (𝜔) is open for every𝜔. The statement follows by induction: assume that the same is true
for 𝑠 = 𝑡 + 1 and let us show it for 𝑠 = 𝑡. As 𝑊𝑡+1(𝜔) is open for every 𝜔, so is 𝑊 ♯

𝑡+1(𝜔) = 𝑊 ♭
𝑡+1(𝜔) by

Lemma 3.6. The set 𝑊𝑡(𝜔) is therefore an intersection of open sets, hence open.

We now want to show that, if the MSP is solvable, 𝑊𝑡(𝜔) ≠ ∅ for all 𝑡 ∈  and 𝜔 ∈ Ω. The idea is
simple: we will show that any local solution (𝜉,𝑄) to the MSP with 𝑄 ∈ (𝜔) satisfies 𝜉𝑡(𝜔) ∈ 𝑊𝑡(𝜔).

Lemma 4.10. Let (𝜉,𝑄) be a local solution to the MSP (𝑉 , 𝐶) at 𝜔 ∈ Ω. Then 𝜉𝑠(𝜔) ∈ 𝑊𝑠(𝜔) for all
𝑠 ∈ . Consequently, 𝑊𝑠(𝜔) ≠ ∅ for all 𝑠 ∈ .

Proof. First note that, in light of Lemma 4.9, the sequence 𝑊𝑡 could have been defined as follows:
𝑊𝑇 ∶= 𝑉𝑇 and

𝑊𝑡 ∶= 𝑉𝑡 ∩
(
𝑊

♯

𝑡+1 − 𝐶𝑡

)
for 𝑡 = 𝑇 − 1,… , 0.



270 BURZONI AND ŠIKIĆ

Let (𝜉,𝑄) be the local solution to the MSP at 𝜔. By definition, 𝜉𝑠(𝜔) ∈ 𝑉𝑠(𝜔) and also

𝔼𝑄
[
𝜉𝑠+1 − 𝜉𝑠|𝑠

]
(𝜔) ∈ 𝐶𝑠(𝜔) ∀𝑠 = 0,… , 𝑇 − 1.

But this last expression can be read out as 𝜉𝑠(𝜔) ∈ (𝔼𝑄[𝜉𝑠+1|𝑠](𝜔) − 𝐶𝑠(𝜔)).
Now, we come to the induction argument: clearly, 𝜉𝑇 (�̄�) ∈ 𝑊𝑇 (�̄�) for each �̄� ∈ Ω and in particu-

lar for every �̄� ∈ supp𝑄. Assume that 𝜉𝑡+1(�̄�) ∈ 𝑊𝑡+1(�̄�) for each �̄� ∈ supp𝑄. Then, noticing that

𝔼𝑄[𝜉𝑠+1|𝑠](�̄�) ∈ 𝑊
♯

𝑡+1(�̄�), we have

𝜉𝑡(�̄�) ∈
(
𝔼𝑄[𝜉𝑡+1|𝑡](�̄�) − 𝐶𝑡(�̄�)

)
⊂ 𝑊

♯

𝑡+1(�̄�) − 𝐶𝑡(�̄�).

This proves the claim. □

We come to the proof of the main theorem.

Proof (Proof of the main theorem for 𝑉 open). One implication follows directly from Lemma 4.8.
The other follows from Lemma 4.10. □

The general case. When the correspondence 𝑉𝑡 is open valued, we showed that 𝑊 ♯ = 𝑊 ♭ holds and

𝔼𝑄[𝜉𝑠+1|𝑠] ∈ 𝑊
♯
𝑠 𝑄-a.s. for every solution (𝜉,𝑄) to the MSP. In general, 𝑊 ♯ does not necessarily

coincide with 𝑊 ♭, thus we may fail to have 𝔼𝑄[𝜉𝑠+1|𝑠] ∈ 𝑊 ♭
𝑠 𝑄-a.s. for some solution (𝜉,𝑄) to the

MSP.

Example 4.11. Consider 𝑇 = 1 and Ω = [0, 1] with 𝑑 = 1. Define 𝐶0 = {0} and 𝑉1(𝜔) = {𝜔} and

𝑉0 = {0}. Then one easily sees that 𝑊 ♯

1 = [0, 1] (which is not an open set). Nevertheless, one can

compute that 𝑊 ♭
1 = (0, 1) ≠ 𝑊

♯

1 and, thus, 𝑊0 = ∅. Note that MSP is not solvable in this example.
Indeed, if (𝜉,𝑄) is a local solution of the MSP at 𝜔, we necessarily have 𝜔 = 0, in other words, 𝑄 = 𝛿0
is the only martingale measure.

Example 4.12. Rokhlin (2007) proposes a different iteration for the sequence of measurable corre-
spondences 𝑊𝑡, which we denote by 𝑤. Define 𝑤𝑇 ∶= 𝑉𝑇 and

𝑤𝑡 ∶= 𝑉𝑡 ∩
(
ri𝑤♯

𝑡+1 − 𝐶𝑡

)
for 𝑡 = 𝑇 − 1,… , 0.

He claims, albeit without proof, that 𝑤𝑡(𝜔) ≠ ∅ for all 𝑡 ∈  and 𝜔 ∈ Ω is equivalent to the MSP

being solvable. Observe, however, the following example: let 𝑖 be trivial for each 𝑡 = 0, 1, 2. Define
𝑉0 = 𝑉2 = (−1, 1) × {0} and 𝑉1 = (−1, 1)2. Define also 𝐶0 = {0} and 𝐶1 = {(𝑥, 𝑦)|𝑦 ≥ 0}. One eas-
ily gets 𝑤1 = (−1, 1) × (−1, 0] and 𝑤0 = ∅. However, MSP is clearly solvable, for example, take any
constant process 𝜉. This implies that the sets 𝑤𝑡 are too small, and this motivated the definition of the
(⋅)♭ operation.

Remark 4.13. As the previous example indicates, 𝑊 ♭
𝑡 are not necessarily relatively open, even if 𝑉𝑡

are. In the previous example, we get 𝑊1 = 𝑤1, which is not relatively open. We also get 𝑊0 = 𝑉0.

In the following, we show that the iteration based on the (⋅)♭ operation yields the result. We start by
providing a new characterization of the sets 𝑊𝑠, which is a simple corollary to Lemma 3.5.

Lemma 4.14. Let 𝑡 ∈ ∖{𝑇 } and assume that 𝑊𝑡+1(𝜔) ≠ ∅ for every 𝜔 ∈ Ω. Then

𝑊 ♭
𝑡+1(𝜔) − 𝐶𝑡(𝜔) =

{
𝑦 ∈ ℝ𝑑

|||||∀�̄� ∈ Σ𝜔𝑡 ∃ 𝜉 ∈ (𝑡+1;𝑊𝑡+1), 𝑄 ∈ (�̄�) ∶

𝔼𝑄[𝜉|𝑡](𝜔) − 𝑦 ∈ 𝐶𝑡(𝜔)

}
.
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Proof. To show ⊂ fix an �̄� ∈ Σ𝜔𝑡 . Let 𝑦 ∈ 𝑊 ♭
𝑡+1(𝜔) − 𝐶𝑡(𝜔) be arbitrary and write it as 𝑦 = 𝑤 − 𝑐,

where 𝑤 ∈ 𝑊 ♭
𝑡+1(𝜔) and 𝑐 ∈ 𝐶𝑡(𝜔). The rest follows from Lemma 3.5.

As for the converse, let 𝑦 be an element of the set on the right-hand side. The set 𝐶𝑡(𝜔) ∩ (𝑊 ♯

𝑡+1(𝜔) −
𝑦) is convex as it is an intersection of convex sets. To see that it is also nonempty, let �̄� ∈ Σ𝜔𝑡 be
arbitrary and let 𝜉 and 𝑄 be from the definition of the right-hand side. Then 𝔼𝑄[𝜉|𝑡] − 𝑦 ∈ 𝐶𝑡(𝜔) ∩
(𝑊 ♯

𝑡+1(𝜔) − 𝑦). We claim that 𝑦 + 𝑐 ∈ 𝑊 ♭
𝑡+1(𝜔) for every 𝑐 ∈ ri(𝐶𝑡(𝜔) ∩ (𝑊 ♯

𝑡+1(𝜔) − 𝑦)), from which
the result follows.

Proceed as in the proof of Lemma 4.4. Choose first an arbitrary 𝜔1 ∈ Σ𝜔𝑡 and the corresponding
𝜉1 ∈ (𝑡+1;𝑊𝑡+1) and 𝑄1 ∈ (𝜔1), 𝑄1[Σ𝜔𝑡 ] = 1, such that 𝑐1 = 𝔼𝑄1 [𝜉1|𝑡](𝜔) − 𝑦. Then, by the
choice of 𝑐 in the relative interior, there exists a 𝜉2 ∈ (𝑡+1;𝑊𝑡+1) with 𝑄2, a finite support measure
with 𝑄2[Σ𝜔𝑡 ] = 1, such that 𝑐2 = 𝔼𝑄2 [𝜉2|𝑡](𝜔) − 𝑦 and 𝑐 = 𝜆𝑐1 + (1 − 𝜆)𝑐2. Then, by choosing the
pair

𝑄 = 𝜆𝑄1 + (1 − 𝜆)𝑄2, 𝜉(𝜔) = 𝜆
𝑄1
[
Σ𝜔
𝑡+1

]
𝑄
[
Σ𝜔
𝑡+1

] 𝜉1(𝜔) + (1 − 𝜆)
𝑄2
[
Σ𝜔
𝑡+1

]
𝑄
[
Σ𝜔
𝑡+1

] 𝜉2(𝜔),
we have 𝑦 + 𝑐 ∈ 𝜆𝑈 (𝜔1) + (1 − 𝜆)𝑈♯(𝜔). Note that we use 0

0 = 1 in the last equation. From 𝜔1 being
arbitrary and from (6), the result follows. □

To prove the main theorem it remains to show that if the MSP (𝑉 , 𝐶) is solvable, then also the set
𝑊𝑡(𝜔) is nonempty for every 𝑡 ∈  and every 𝜔 ∈ Ω. To this aim, we need to connect the solution of
the MSP to sets 𝑊𝑡(𝜔). We define for every 𝑡 ∈  and 𝜔 ∈ Ω the following set

𝑡(𝜔) ∶=
{
𝜉𝑡(𝜔) | (𝜉,𝑄) local solution to MSP at 𝜔

}
⊂ 𝑉𝑡(𝜔).

It is nonempty by the assumption that MSP is solvable. To see that 𝑡(𝜔) is convex, choose two local

solutions (𝜉1, 𝑄1) and (𝜉2, 𝑄2) to the MSP (𝑉 , 𝐶) at 𝜔. For any 𝜇 ∈ (0, 1), set 𝜆 = 𝜇𝑄2[Σ𝜔𝑡 ]
𝜇𝑄2[Σ𝜔𝑡 ]+(1−𝜇)𝑄1[Σ𝜔𝑡 ]

.

By Lemma 4.4, there is a process 𝜉 such that the pair (𝜉,𝑄), with 𝑄 = 𝜆𝑄1 + (1 − 𝜆)𝑄2, is a solution
to the MSP; the process 𝜉 is given in Equation (9). The evaluation yields

𝜉𝑡(𝜔) = 𝜆
𝑄1 [Σ𝜔𝑡 ]
𝑄
[
Σ𝜔𝑡
] 𝜉1𝑡 (𝜔) + (1 − 𝜆)

𝑄2 [Σ𝜔𝑡 ]
𝑄
[
Σ𝜔𝑡
] 𝜉2𝑡 (𝜔) = 𝜇𝜉1𝑡 (𝜔) + (1 − 𝜇)𝜉2𝑡 (𝜔).

Example 4.11 shows that 𝑡(𝜔) ⊄ 𝑊𝑡(𝜔) in general. To establish the main theorem it is enough to
prove ri 𝑡(𝜔) ⊂ 𝑊𝑡(𝜔) for every 𝜔, 𝑡. We are going to prove this inclusion by showing that

ri 𝑡(𝜔) ⊂ (𝑊𝑡+1)♭(𝜔) − 𝐶𝑡(𝜔). (11)

Because ri 𝑇 ⊂ 𝑉𝑇 = 𝑊𝑇 , by showing (11) we also have ri 𝑡 ⊂ 𝑊𝑡, which is therefore nonempty.

Remark 4.15. We will prove (11) by showing that ri 𝑡(𝜔) ⊂ (ri 𝑡+1)♭(𝜔) − 𝐶𝑡(𝜔) holds, where the
objects are defined purely algebraically.

Proof of Theorem 4.7. If 𝑊𝑡(𝜔) ≠ ∅ for all 𝜔 and 𝑡, Lemma 4.8 implies that the MSP is solvable.
We now prove (11). Proceed with a sequence of easy observations.
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STEP 1: Let 𝑦 ∈ ri 𝑡(𝜔). We claim that for every �̄� ∈ Σ𝜔𝑡 there exists a solution (𝜉,𝑄) for the MSP

such that

𝑄
[
Σ�̄�
𝑡+1
]
> 0, 𝜉𝑡(𝜔) = 𝑦 and 𝜉𝑡+1(�̄�) ∈ ri 𝑡+1(�̄�).

Indeed, by the definition of 𝑡+1(�̄�), there exists a solution (𝜉′, 𝑄′) to MSP such that 𝑄′[Σ�̄�
𝑡+1] > 0 and

𝜉𝑡+1(�̄�) ∈ ri 𝑡+1(�̄�). Note that 𝜉′𝑡 (𝜔) ∈ 𝑡(𝜔). As 𝑦 ∈ ri 𝑡(𝜔), there exists a solution (𝜉′′, 𝑄′′) to the
MSP and a 𝜆 ∈ (0, 1) such that 𝑦 = 𝜆𝜉′𝑡 (𝜔) + (1 − 𝜆)𝜉′′𝑡 (𝜔). Use the construction of Lemma 4.4, that
is, the argument above this proof showing convexity of 𝑡+1(𝜔), to conclude.

STEP 2: Let 𝑦 ∈ ri 𝑡(𝜔). We claim that for each finite {𝜔1,… , 𝜔𝑝} ⊂ Σ𝜔𝑡 there exists a solution
(𝜉,𝑄) to the MSP such that

𝑄
[
Σ𝜔𝑖

𝑡+1

]
> 0, 𝜉𝑡(𝜔) = 𝑦 and 𝜉𝑡+1(𝜔𝑖) ∈ ri 𝑡+1 ∀𝑖 = 1,… , 𝑝.

Indeed, use Step 1 to get (𝜉𝑖, 𝑄𝑖), local solutions for the MSP at 𝜔𝑖, respectively, each satisfying the
conclusions of Step 1. Then any convex combination, in the sense of Lemma 4.4, that is, the argument
above this proof, will do.

STEP 3: (THE INDUCTION STEP) Assume that ri 𝑡+1(𝜔) ⊂ 𝑊𝑡+1(𝜔) for every 𝜔 ∈ Ω; in particular
that 𝑊𝑡+1(𝜔) is nonempty for every 𝜔. Then

ri 𝑡(𝜔) ⊂ 𝑊 ♭
𝑡+1(𝜔) − 𝐶(𝜔),

in particular, ri 𝑡(𝜔) ⊂ 𝑊𝑡(𝜔).
Note that the later statement follows directly from the former. Indeed, as 𝑡(𝜔) ⊂ 𝑉𝑡(𝜔) for every 𝜔,

we get ri 𝑡(𝜔) ⊂ 𝑉𝑡(𝜔) ∩ (𝑊 ♭
𝑡+1(𝜔) − 𝐶(𝜔)) = 𝑊𝑡(𝜔).

To show the inclusion, we will use Lemma 4.14. So, fix an 𝜔 ∈ Ω and let 𝑦 ∈ ri 𝑡(𝜔) be arbi-
trary. We want to show that there exists a selection 𝑌 ∈ (𝑡+1;𝑊𝑡+1) and a measure 𝑄 ∈ (𝜔) with
𝑄[Σ𝜔𝑡 ] = 1 such that

𝑌 (�̄�) ∈ ri 𝑡+1(�̄�) ∀�̄� ∈ supp𝑄 and 𝑦 ∈ 𝔼𝑄[𝑌 ] − 𝐶(𝜔).

To this aim, let {𝜔1,… , 𝜔𝑝} ⊂ Σ𝜔𝑡 be such that

aff(𝑡+1)♯(𝜔) = aff
𝑝⋃
𝑖=1

𝑡+1(𝜔𝑖).

Indeed, we are working in ℝ𝑑 , hence this set always exists and can be chosen such that 𝑝 ≤ 𝑑. Choose a
solution (𝜉, �̄�) to the MSP such that 𝜉𝑡+1(𝜔𝑖) ∈ ri 𝑡+1(𝜔𝑖) for every 𝑖 = 1,… , 𝑝; this exists by Step 2.
Denote 𝑐 = 𝔼�̄�[𝜉𝑡+1] − 𝑦 ∈ 𝐶𝑡(𝜔).

We claim that

𝑦 + 𝑐 ∈ ri conv
⋃

�̄�∈supp �̄�
𝑡+1(�̄�) = ri conv

⋃
�̄�∈supp �̄�

ri 𝑡+1(�̄�). (12)

The equality of the two sets in Equation (12) is clear, as both sets are convex, relatively open and
have the same closure. To see why this is enough, note that every element of the right-hand side in
Equation (12) may be written as∑

�̄�∈supp �̄�
𝜆�̄�𝜓�̄� with 𝜆�̄� ∈ (0, 1), 𝜓�̄� ∈ ri 𝑡+1(�̄�) ∀�̄� ∈ supp �̄�.
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Let 𝑌 be any selection of 𝑊𝑡+1 and modify it on
⋃

�̄�∈supp �̄� Σ�̄�
𝑡+1 as follows: 𝑌 (�̄�) = 𝜓�̄� for all �̄� ∈

supp �̄� and define the measure 𝑄 =
∑

�̄�∈supp �̄� 𝜆�̄�𝛿�̄�.
It remains to prove (12). Start by showing that the set

𝐴 ∶=

{
𝑝∑
𝑖=1

𝜆𝑖𝜁 𝑖 | 𝜁 𝑖 ∈ ri 𝑡+1(𝜔𝑖), 𝜆𝑖 ∈ (0, 1), 𝜆1 +⋯ + 𝜆𝑝 = 1

}

is relatively open; it is of maximal dimension by definition of {𝜔1,… , 𝜔𝑝}. Choose a maximal affinely
independent set {𝑥1,… , 𝑥𝓁} ⊂

⋃𝑝

𝑖=1 ri 𝑡+1(𝜔
𝑖). Then

𝐴 ⊇ 𝐵 ∶=

{
𝓁∑
𝑖=1

𝜆𝑖𝑥𝑖 | 𝜆𝑖 ∈ (0, 1), 𝜆1 +⋯ + 𝜆𝑝 = 1

}
,

and the set 𝐵 is relatively open and of maximal dimension. Then

𝐴 =
⋃

𝜆𝐵 + (1 − 𝜆)
𝑝∑
𝑖=1

𝜆𝑖𝜁 𝑖;

the union is over 𝜆 ∈ (0, 1) and the sum over 𝜁 𝑖 ∈ ri 𝑡+1(𝜔𝑖) and 𝜆𝑖 ∈ (0, 1) for every 𝑖 with 𝜆1 +⋯ +
𝜆𝑝 = 1. This proves that 𝐴 is relatively open. Coming back to Equation (12), we note that

𝑦 + 𝑐 = 𝔼�̄�[𝜉𝑡+1] =
𝑝∑
𝑖=1

�̄�[Σ𝜔𝑖

𝑡+1]𝜉𝑡+1(𝜔
𝑖) +

∑
�̄�∈supp �̄�

�̄�∉{𝜔1,…,𝜔𝑝}

�̄�[Σ�̄�
𝑡+1]𝜉𝑡+1(�̄�)

∈ (�̄�[Σ𝜔1

𝑡+1] +⋯ + �̄�[Σ𝜔𝑝

𝑡+1])𝐴 +
∑

�̄�∈supp �̄�
�̄�∉{𝜔1,…,𝜔𝑝}

�̄�[Σ�̄�
𝑡+1]𝜉𝑡+1(�̄�)

⊂ ri conv
⋃

�̄�∈supp �̄�
𝑡+1(�̄�).

This establishes (12).
STEP 4: We finish the proof by noticing that ri 𝑇 (𝜔) ⊂ 𝑊𝑇 (𝜔) for every 𝜔 and using Step 3

repeatedly. □

5 APPLICATIONS TO PROBLEMS OF MATHEMATICAL
FINANCE

In this section, we describe the connection between the martingale selection problem and the theory
of arbitrage in various types of financial markets. We will provide the examples in increasing order
of complexity. In what follows we always suppose that a Polish space Ω is given, it is endowed with
its Borel sigma-algebra (Ω), and that the trading dates are specified by  ∶= {0,… , 𝑇 } with 𝑇 ∈
ℕ fixed. Furthermore, we assume from now on that all correspondences have conical values, unless
explicitly stated otherwise. This is because we consider as arbitrage strategies only those that can be
arbitrarily scaled. Section 5.3 provides more context for this choice.
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5.1 The frictionless market model
The first example is that of a frictionless market model, described by a process 𝑆 ∶= (𝑆𝑡)𝑡∈ with
𝑆𝑡 ∶ (Ω,(Ω)) → (ℝ𝑑,(ℝ𝑑)) for every 𝑡 ∈ . In addition to 𝑆, the agent also holds a position in the
riskless asset, which we denote by 𝐵 = (𝐵𝑡)𝑡∈ . We assume that 𝐵𝑡(𝜔) = 1 for all 𝜔, 𝑡. Consider the
filtration 𝔽 ∶= (𝑡)𝑡∈ as constructed in Section 2. Positions in the risky asset are subject to constraints,
modeled by a sequence𝐴 ∶= (𝐴𝑡)𝑡∈ , with every𝐴𝑡 ∶ Ω ⇉ ℝ𝑑 an𝑡-measurable correspondence with
convex, closed and conical values. More precisely, admissible strategies, that is, positions in the risky
asset, are

𝐴 =
{
(ℎ𝑡)𝑡∈ |ℎ𝑡 ∈ (𝑡;𝐴𝑡) ∀𝑡 ∈ 

}
.

Clearly, 𝐴 is a convex cone. Position in the riskless asset, which we denote by ℎ0 = (ℎ0𝑡 )𝑡∈ can
be determined by the self-financing condition: At time 𝑡 ∈ , a change in the holdings in the risky
asset need to be financed by a change in position in the riskless ℎ0𝑡 − ℎ0

𝑡−1 = −⟨𝑆𝑡, ℎ𝑡 − ℎ𝑡−1⟩ with the
convention that ℎ−1 = 0 and ℎ0−1 ∈ ℝ is the initial capital. The value of a strategy ℎ ∈ 𝐴 is given by

𝑇 (ℎ) = ℎ0−1 +
𝑇−1∑
𝑡=0
⟨ℎ𝑡, 𝑆𝑡+1 − 𝑆𝑡⟩.

Note that 𝑇 (ℎ) = ℎ0
𝑇

with the assumption ℎ𝑇 = 0. We say that the market model is arbitrage-free if
for every ℎ ∈ 𝐴 with zero initial capital

𝑇 (ℎ) ≥ 0 ∀𝜔 ∈ Ω ⇐⇒ 𝑇 (ℎ) = 0 ∀𝜔 ∈ Ω.

Theorem 5.1. The market model given by (𝑆𝑡)𝑡∈ , (𝐵𝑡)𝑡∈ , and (𝐴𝑡)𝑡∈ is arbitrage free if and only if
for every �̄� ∈ Ω there exists a finite support measure 𝑃 ∈ (�̄�) such that

𝐸𝑃 [𝑆𝑡+1 − 𝑆𝑡 |𝑡] ∈ −𝐴∗
𝑡 𝑃 -a.s. for all 𝑡. (13)

Proof. First we show the “if” part of the statement. Let ℎ ∈ 𝐴 be such that ℎ0−1 = 0 and 𝑇 (ℎ)(𝜔) ≥ 0
for every 𝜔 ∈ Ω. By the statement of the theorem, for every �̄� ∈ Ω, there exists a measure 𝑃 ∈ (�̄�),
such that (13) is satisfied. However, Equation (13) implies that 𝐸𝑃 [𝑇 (ℎ)] =

∑𝑇−1
𝑡=0 𝐸𝑃 [⟨ℎ𝑡, 𝑆𝑡+1 −

𝑆𝑡⟩] ≤ 0, by the definition of the polar cone and the admissibility of ℎ. Because 𝑇 (ℎ) is nonnegative,
it follows that 𝑇 (ℎ)(𝜔) = 0 for all 𝜔 ∈ supp(𝑃 ) and, in particular, for �̄�. As �̄� ∈ Ω was arbitrary, the
thesis follows.

We now show the “only if” part. Assume that the martingale selection problem (𝑉 , 𝐶), given by

𝑉𝑡 = ri cone(1, 𝑆𝑡) and 𝐶𝑡 = −(ℝ × 𝐴𝑡)∗ = −{0} × 𝐴∗
𝑡 ,

is solvable. Let �̄� ∈ Ω be arbitrary and denote by ((𝑦, 𝜉), 𝑄) any local solution at �̄�. Then 𝜉𝑡 = 𝑦𝑡𝑆𝑡 for
all 𝑡, by the definition of 𝑉 . By the definition of 𝐶 , the process 𝑦 is a martingale. Using 𝑦 as the density
process, we obtained the desired measure 𝑃 .

It remains to show that the no-arbitrage condition implies the solvability of the MSP. By Theo-
rem 4.7, we need to show that the correspondences 𝑊𝑡, defined in (10), are nonempty for all 𝑡, 𝜔.
We argue by contradiction. Let 𝑡 ∈  be the largest index for which there exists an 𝜔 ∈ Ω such that
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𝑊𝑡(𝜔) = ∅. This means, in particular, that 𝑉𝑡(𝜔) and 𝑊 ♭
𝑡+1(𝜔) − 𝐶𝑡(𝜔) are disjoint convex cones.

Hence, there exists 𝑧 ∈ ℝ1+𝑑 such that

⟨𝑥, 𝑧⟩ ≤ 0 ≤ ⟨𝑦, 𝑧⟩ ∀𝑥 ∈ 𝑉𝑡(𝜔) and 𝑦 ∈ 𝑊 ♭
𝑡+1(𝜔) − 𝐶𝑡(𝜔). (14)

Moreover, 𝑧 can be chosen such that 0 < ⟨�̄�, 𝑧⟩ for some �̄� ∈ 𝑊 ♭
𝑡+1(𝜔). To understand this separation,

write 𝑧 = (𝑧0, �̄�), where 𝑧0 ∈ ℝ and �̄� ∈ ℝ𝑑 . First, a simple inspection of (14) yields 𝑧 ∈ (𝑊 ♭
𝑡+1(𝜔) −

𝐶𝑡(𝜔))∗ = (𝑊 ♭
𝑡+1(𝜔))

∗ ∩ −𝐶∗
𝑡 (𝜔), that is, �̄� ∈ 𝐴𝑡(𝜔). It is also easy to see that �̄� ≠ 0. Indeed, by the

maximality of 𝑡, 𝑊𝑡+1(𝜔) ≠ ∅ for any 𝜔 and, because 𝑉𝑡+1(𝜔) is a ray in ℝ𝑑+1, (10) implies that
𝑊𝑡+1(𝜔) = 𝑉𝑡+1(𝜔) for all 𝜔. If, therefore, �̄� = 0, the vector 𝑧 would not separate the two sets in (14),
as the first component of both sets is precisely the interval (0,∞). In addition, (14) and the fact that
𝐶𝑡(𝜔) is a cone, imply that 𝑧 ∈ (𝑊 ♯

𝑡+1)
∗(𝜔) and 𝑧 ∈ −𝑉 ∗

𝑡 (𝜔). We thus obtain that, for every �̄� ∈ Σ𝜔𝑡 ,

0 ≤ ⟨(1, 𝑆𝑡+1(�̄�)), (𝑧0, �̄�)⟩ − ⟨(1, 𝑆𝑡(𝜔)), (𝑧0, �̄�)⟩ = ⟨𝑆𝑡+1(�̄�) − 𝑆𝑡(𝜔), �̄�⟩ = 𝑇 (ℎ)(�̄�),

where ℎ ∈ 𝐴 is the strategy defined by ℎ𝑠 = 0 for 𝑠 = ∖{𝑡} and ℎ𝑡 = �̄�𝟙Σ𝜔𝑡 . Because there exists a

�̄� ∈ 𝑊
♯

𝑡+1(𝜔) such that the inequality is strict in (14), this is an arbitrage strategy.

Remark 5.2. In the particular case of short-selling constraint, that is, 𝐴𝑡 = ℝ𝑑
+, we get that the market

model is arbitrage free if and only if for each �̄� ∈ Ω there exists 𝑄 ∈ (�̄�) such that every component
of 𝑆 is a 𝑄 super-martingale.

Remark 5.3. In the course of the proof we have established that if a frictionless market model with
portfolio constraints admits arbitrage, it also admits a one-step arbitrage. This result is well known in
the theory of no-arbitrage market models without portfolio constraints.

Remark 5.4. The notion of arbitrage considered here is a particular case of arbitrage de la classe 

introduced in Burzoni, Frittelli, and Maggis (2016) and called 1p-arbitrage. In the proof of Theorem 13,
we showed that 1p-arbitrages can be constructed as separators of the sets 𝑉𝑡(𝜔) and 𝑊 ♭

𝑡+1(𝜔) − 𝐶𝑡(𝜔)
(for those Σ𝜔𝑡 for which they are disjoint). We can construct a 1p-arbitrage that is nonzero on every such

level set by taking 𝑧 ∶=
∑∞

𝑛=1
1

2𝑛|𝑧𝑛|𝑧𝑛, where {𝑧𝑛}𝑛∈ℕ is a Castaing representation of (𝑉𝑡 − (𝑊 ♭
𝑡+1 −

𝐶𝑡))∗. This is called a standard separator in Burzoni, Frittelli, Hou, et al. (2016) and it is instrumental
in deriving versions of the FTAP for arbitrages de la classe  . The same analysis could be replicated
here with minor modifications.

5.2 Kabanov’s model of currency markets
The financial market is fully described by a discrete-time process 𝐾 ∶= (𝐾𝑡)𝑡∈ , where every 𝐾𝑡 is a
(Ω)-measurable correspondence whose values are closed cones in ℝ𝑑 . We call the set 𝐾𝑡 a solvency
cone and its elements are portfolio compositions that can be liquidated, that is, for which one can find
a counterparty to take it at zero cost. We consider 𝔽 ∶= (𝑡)𝑡∈ as defined in Section 2.

An adapted processℎ = (ℎ𝑡)𝑡∈ is called a self-financing strategy if its increments can all be achieved
at zero cost, that is, ℎ𝑡−1 − ℎ𝑡 ∈ 𝐾𝑡 with the convention that ℎ−1 = 0. We can also expand the original
Kabanov’s model and introduce restrictions to the class of portfolios the trader is allowed to hold. We
do this by introducing a conical constraints set 𝐴 ∶= (𝐴𝑡)𝑡∈ , where the correspondence 𝐴𝑡 ∶ Ω ⇉ ℝ𝑑

is 𝑡-measurable. Denote by
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𝐾,𝐴 ∶=
{
(ℎ𝑡)ℎ∈ |ℎ𝑡 ∈ (𝑡;𝐴𝑡), ℎ is self-financing

}
,

the class of admissible strategies.
In this section, we will need the following condition.

Assumption 5.5. For every 𝑡 ∈  and every 𝜔 ∈ Ω

int𝐾𝑡(𝜔) ⊇ ℝ𝑑
+∖{0} and 𝐴𝑡(𝜔) ∩ℝ𝑑

+ ⧵ {0} ≠ ∅.

The first condition states that every nonnegative position in the market is considered solvent, stated
differently, one can freely dispose of assets. The second condition says that there exists at least one
nonnegative position that is allowed.

We next introduce some concepts of arbitrage.

Definition 5.6.

(a) Let 𝐾1, 𝐾2 be closed cones. We say that cone 𝐾1 dominates cone 𝐾2 if

𝐾2 ⧵ (𝐾2 ∩ −𝐾2) ⊂ ri𝐾1.

(b) We say that a market model (𝐾,𝐴) dominates the market model (𝐾,𝐴) if for every 𝑡 ∈  and
𝜔 ∈ Ω the cone 𝐾𝑡(𝜔) dominates the cone 𝐾𝑡(𝜔).

Definition 5.7. An admissible strategy ℎ ∈ 𝐾,𝐴 is an arbitrage strategy if ℎ𝑇 ∈ (𝑇 ;ℝ𝑑
+) ⧵ {0}.

Define two types of no-arbitrage condition

NA𝑤 weak no-arbitrage: (𝐾,𝐴) admits no arbitrage strategies;

NA𝑟 robust no-arbitrage: (𝐾,𝐴) is dominated by (𝐾,𝐴) satisfying NA𝑤.

In the above definition of an arbitrage strategy, it is assumed that ℎ−1 = 0 and that, before matu-
rity, it can be liquidated into a portfolio with nonnegative entries in every asset and strictly positive in
some. Clearly, this should not be allowed and it is excluded by the condition NA𝑤. The stronger condi-
tion, NA𝑟, excludes the possibility that an arbitrary small increase of solvency cones admits arbitrage
strategies.

Before stating the main result of this section, we need to make an additional technical assumption.

Assumption 5.8. One of the following conditions holds:

1. 𝐴𝑡(𝜔) = ℝ𝑑 for every 𝑡, 𝜔; or

2. 𝐾𝑡(𝜔) ∩ −𝐾𝑡(𝜔) = {0} for every 𝑡, 𝜔.

The second condition is known in the literature as efficient friction. It models a situation where any
trade in the market is subject to nonzero transaction costs. From a technical point of view, we only need
this condition in presence of portfolio constraints.

Theorem 5.9. Under Assumptions 5.5 and 5.8 robust no-arbitrage holds if and only if for every �̄� ∈ Ω
there exists 𝑃 ∈ (�̄�) and a process 𝜉 ∶= (𝜉𝑡)𝑡∈ such that

𝐸𝑃 [𝜉𝑡+1 − 𝜉𝑡|𝑡] ∈ −𝐴∗
𝑡 , 𝑃 -a.s.

and 𝜉𝑡 takes values in ri𝐾∗
𝑡 for every 𝑡 ∈ .
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This theorem is known in the financial mathematics literature as the fundamental theorem of asset
pricing, in the case when 𝐴𝑡(𝜔) = ℝ𝑑 for all 𝑡, 𝜔. Indeed, in that case 𝐴∗ = {0} and the pair (𝜉,𝑄) is
called “consistent price system”: the process 𝜉 is a𝑄-martingale that takes values in the relative interior
of the polar of the solvency cones; see Schachermayer (2004). A concrete example is 𝐾∗

𝑡 = cone({1} ×
[𝑏1𝑡 , 𝑎

1
𝑡 ] ×⋯ × [𝑏𝑑−1𝑡 , 𝑎𝑑−1𝑡 ]). Here the first asset serves as a numéraire and the two processes (𝑎𝑡)𝑡∈

and (𝑏𝑡)𝑡∈ describe the ask and bid prices of the remaining assets with respect to the numéraire.
In the presence of constrains, 𝑃 is a pricing measure in the market defined by 𝜉, because the value

process of any trading strategy ℎ is a super-martingale under 𝑃 . Indeed, because ℎ𝑡 ∈ (𝑡;𝐴𝑡) and
𝐸𝑃 [𝜉𝑡+1 − 𝜉𝑡|𝑡] ∈ −𝐴∗

𝑡 , 𝑃 -a.s., we have

𝐸𝑃 [ℎ𝑡 ⋅ (𝜉𝑡+1 − 𝜉𝑡)|𝑡] = ℎ𝑡 ⋅ 𝐸𝑃 [𝜉𝑡+1 − 𝜉𝑡|𝑡] ≤ 0,

from which the super-martingale property of (
∑𝑖

𝑡=0 ℎ𝑡 ⋅ (𝜉𝑡+1 − 𝜉𝑡))𝑖∈ follows.
As in the frictionless case, we will connect this problem with an appropriate martingale selection

problem. In fact, the main theorem is already stated in the form of an MSP, namely, we take

𝑉𝑡(𝜔) = ri𝐾∗
𝑡 (𝜔) and 𝐶𝑡(𝜔) = −𝐴∗

𝑡 (𝜔). (15)

In the rest of the section, we analyze the MSP (𝑉 , 𝐶).

Lemma 5.10. Under Assumptions 5.5 and 5.8, solvability of the MSP (𝑉 , 𝐶) implies NA𝑤.

Proof. Let ℎ ∈ 𝐾,𝐴 be such that ℎ𝑇 ∈ (𝑇 ;ℝ𝑑
+). Let �̄� ∈ Ω be arbitrary and denote by (𝜉,𝑄) a local

solution at �̄�. Because 𝜉𝑇 has strictly positive entries, by Assumption 5.5, also ⟨𝜉𝑇 (𝜔), ℎ𝑇 (𝜔)⟩ ≥ 0 for
every 𝜔. This implies 𝐸𝑄[⟨𝜉𝑇 , ℎ𝑇 ⟩] ≥ 0. Note that, for any 0 ≤ 𝑡 ≤ 𝑇 − 1, 𝜉𝑡 = 𝐸𝑄[𝜉𝑡+1|𝑡] − 𝜁𝑡 for
some 𝜁𝑡 ∈ −𝐴∗

𝑡 . By the tower property, 𝜉𝑡 = 𝐸𝑄[𝜉𝑇 |𝑡] − 𝐸𝑄[𝜁𝑇−1 +⋯ + 𝜁𝑡|𝑡]. Summing up, we
obtain

𝐸𝑄[⟨𝜉𝑇 , ℎ𝑇 ⟩] = 𝑇∑
𝑡=0

𝐸𝑄[⟨𝜉𝑇 , ℎ𝑡 − ℎ𝑡−1⟩] = 𝑇∑
𝑡=0

𝐸𝑄[⟨𝐸𝑄[𝜉𝑇 |𝑡], ℎ𝑡 − ℎ𝑡−1⟩]
=

𝑇∑
𝑡=0

𝐸𝑄[⟨𝜉𝑡, ℎ𝑡 − ℎ𝑡−1⟩] + 𝑇−1∑
𝑡=0

𝐸𝑄[⟨𝜁𝑡 +⋯ + 𝜁𝑇−1, ℎ𝑡 − ℎ𝑡−1⟩]
=

𝑇∑
𝑡=0

𝐸𝑄[⟨𝜉𝑡, ℎ𝑡 − ℎ𝑡−1⟩] + 𝑇−1∑
𝑡=0

𝐸𝑄[⟨𝜁𝑡, ℎ𝑡⟩],
Because 𝜉𝑡 ∈ 𝐾∗

𝑡 and ℎ𝑡 − ℎ𝑡−1 ∈ −𝐾𝑡 by admissibility, the first sum is nonpositive. Because 𝜁𝑡 ∈ −𝐴∗
𝑡

and ℎ𝑡 ∈ 𝐴𝑡 by admissibility, also the second sum is nonpositive. We conclude that 𝐸𝑄[⟨𝜉𝑇 , ℎ𝑇 ⟩] ≤ 0.
Because �̄� ∈ Ω was arbitrary, the claim follows. □

Let (𝐾,𝐴) be a market model with 𝐾 dominating 𝐾; we denote by (𝑉 , 𝐶) the MSP defined as in
Equation (15) with 𝐾 replacing 𝐾 .

Lemma 5.11. Suppose that (𝑉 , 𝐶) is solvable. Under Assumptions 5.5 and 5.8 there exists a market
model (𝐾,𝐴) that dominates (𝐾,𝐴) and such that (𝑉 , 𝐶) is solvable.

Proof. By Theorem 4.7, solvability of (𝑉 , 𝐶) implies 𝑊𝑡(𝜔) ≠ ∅ for all 𝑡, 𝜔. By Assumption 5.8 and
Lemma 3.7, those are also relatively open and we use this fact in a crucial way in the proof.

STEP 1. Define a sequence of relatively open cones {𝑈𝑛
𝑡 }𝑛∈ℕ for each 𝑡 ∈ , such that
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i. 𝑈𝑛
𝑡 ⧵ {0} ⊂ 𝑉𝑡 for any 𝑛 ∈ ℕ;

ii. for any 𝑥 ∈ 𝑉𝑡 there exists �̄� such that 𝑥 ∈ 𝑈�̄�
𝑡 ;

iii. 𝑈𝑛
𝑡 is 𝑡-measurable.

Let (𝜉𝑡)𝑡∈ be a collection of measurable selections of (𝑉𝑡)𝑡∈ and define

𝑈𝑛
𝑡 ∶= cone

(
𝑛

1 + 𝑛

(
𝑉𝑡 ∩ 𝐵1(0)

)
+ 1

1 + 𝑛
𝜉𝑡

)
,

where 𝐵1(0) denotes a closed unit ball around 0. It is easy to see that all the three properties are
satisfied. Furthermore, 𝑈𝑛

𝑡 (𝜔) ⊂ 𝑈𝑛+1
𝑡 (𝜔) for all 𝑛, 𝑡, 𝜔.

STEP 2. We will define an adapted sequence (𝑛𝑠)𝑠∈ such that the pair (𝑉 , 𝐶), where 𝑉𝑠 ∶= 𝑈
𝑛𝑠
𝑠

for all 𝑠, defines a solvable MSP; we use the characterization of solvability given in Theorem 4.7.
Set 𝑛𝑇𝑠 = 1 identically for all 𝑠 ∈ . Assume we defined (𝑛𝑡+1𝑠 )𝑠∈ for 𝑡 ∈ ∖{𝑇 } and we proceed to

define the sequence (𝑛𝑡𝑠)𝑠∈ . Consider the MSPs (𝑉 𝑡+1,𝑗 , 𝐶), given by 𝑉 𝑡+1,𝑗
𝑠 = 𝑈

𝑛𝑡+1𝑠 +𝑗
𝑠 for all 𝑗 ∈ ℕ

and 𝑠 ∈ . The corresponding sequences 𝑊 𝑡+1,𝑗
𝑠 are given by

𝑊 𝑡+1,𝑗
𝑠 = 𝑉 𝑡+1,𝑗

𝑠 ∩
(
(𝑊 𝑡+1,𝑗

𝑠+1 )♭ − 𝐶𝑠

)
for 𝑠 = 𝑇 − 1,… , 0.

By the inductive assumption, 𝑊 𝑡+1,𝑗
𝑠 (𝜔) ≠ ∅ for all 𝑗 ∈ ℕ and 𝑠 = 𝑡 + 1,… , 𝑇 . As 𝑉

𝑡+1,𝑗
𝑠 is an

increasing sequence whose union equals 𝑉𝑠, an analogous observation also holds for 𝑊 𝑡+1,𝑗
𝑠 and

(𝑊 𝑡+1,𝑗
𝑠 )♭ with respect to 𝑊𝑠 and 𝑊 ♭

𝑠 . Because the sets 𝑉𝑡 and 𝑊𝑡 are relatively open, the following
random variable

𝜁 = inf{𝑗 ∈ ℕ |𝑊 𝑡+1,𝑗
𝑡 ≠ ∅}

has finite values. Define 𝑛𝑡𝑠 = 𝑛𝑡+1𝑠 + 𝜁𝟙𝑠≥𝑡; it is clear that the sequence (𝑛𝑡𝑠) is adapted. Finish the
proof by setting 𝑛𝑠 = 𝑛0𝑠 for all 𝑠 ∈ . □

Corollary 5.12. Under Assumptions 5.5 and 5.8, solvability of the MSP (𝑉 , 𝐶) implies NA𝑟.

Proof. It follows directly from Lemma 5.10 and 5.11. □

To study the reverse implication, let us start by defining a sequence of measurable correspondences:
set 𝑤𝑇 = 𝑉𝑇 and

𝑤𝑡 = 𝑉𝑡 ∩ ri
(
𝑤
♯

𝑡+1 − 𝐶𝑡

)
for 𝑡 = 𝑇 − 1,… , 0. (16)

Remark 5.13. It is clear that 𝑤𝑡 ⊂ 𝑊𝑡 for every 𝑡 ∈ . Argue by induction: for 𝑡 = 𝑇 it is true by
definition, if 𝑤𝑡+1 ⊂ 𝑊𝑡+1, then also

cl
(
𝑤
♯

𝑡+1 − 𝐶𝑡

)
= cl

(
𝑤♭
𝑡+1 − 𝐶𝑡

)
⊂ cl

(
𝑊 ♭

𝑡+1 − 𝐶𝑡

)
,

which yields the same inclusion for 𝑡.

Lemma 5.14. Let 𝑡 ∈ ∖{𝑇 } and 𝜔 ∈ Ω such that 𝑤𝑡(𝜔) ≠ ∅. Then

𝑤∗
𝑡 (𝜔) = 𝐾𝑡(𝜔) +

((
𝑤
♯

𝑡+1

)∗
∩ −𝐶∗

𝑡

)
(𝜔).
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Proof. Because 𝜔 ∈ Ω is fixed, we omit, in what follows, the dependence on 𝜔. Observe that

𝑤∗
𝑡 =

(
𝑉𝑡 ∩ ri

(
𝑤
♯

𝑡+1 − 𝐶𝑡

))∗
= 𝑉 ∗

𝑡 +
(
𝑤
♯

𝑡+1 − 𝐶𝑡

)∗
= 𝐾𝑡 +

((
𝑤
♯

𝑡+1

)∗
∩ −𝐶∗

𝑡

)
.

Indeed, the first equality is simply the definition of 𝑤𝑡. The assumption 𝑤𝑡 ≠ ∅ implies that 𝑉𝑡 ∩
ri(𝑤♯

𝑡+1 − 𝐶𝑡) ≠ ∅. Thus, the assumption of Corollary 16.4.2 in Rockafellar (1970) is satisfied and
the second equality follows. The last one follows from corollary 16.4.2 in Rockafellar (1970) and the
definition of 𝑉𝑡. □

Lemma 5.15. Let 𝑡 ∈ ∖{𝑇 } and �̄� ∈ Ω. Assume that 𝑤𝑢(𝜔) ≠ ∅, for every 𝑡 ≤ 𝑢 ≤ 𝑇 and 𝜔 ∈ Ω. If
𝑧𝑡 ∈ (𝑤♯

𝑡+1 − 𝐶𝑡)∗(�̄�), then

𝑧𝑡 = 𝑘𝑡+1 +⋯ + 𝑘𝑇 with 𝑘𝑢 ∈ (𝑢;𝐾𝑢) for 𝑢 = 𝑡 + 1,… , 𝑇 . (17)

If, in addition, 𝑧𝑡 ∉ −(𝑤♯

𝑡+1 − 𝐶𝑡)∗(�̄�), then there exists an �̂� ∈ Σ�̄�𝑡 and 𝑡 + 1 ≤ �̂� ≤ 𝑇 such that
𝑘�̃�(�̂�) ∈ (𝐾�̂� ⧵ (𝐾�̂� ∩ −𝐾�̂�))(�̂�).

Proof. Fix 𝑡 ∈ ∖{𝑇 } and �̄� ∈ Ω. Because (𝑤♯

𝑡+1 − 𝐶𝑡)∗ = (𝑤♯

𝑡+1)
∗ ∩ −𝐶∗

𝑡 , we have 𝑧𝑡 ∈ (𝑤♯

𝑡+1)
∗.

From lemma 5.102 in Aliprantis and Border (2006)

(𝑤♯

𝑡+1)
∗ (�̄�) =

⋂
𝜔∈Σ�̄�𝑡

𝑤∗
𝑡+1(𝜔).

In particular, 𝑧𝑡 is a selection of𝑤∗
𝑡+1. Fix𝜔 ∈ Σ�̄�𝑡 . Because𝑤𝑡+1(𝜔) ≠ ∅, Lemmas 5.14 and A.1 imply

that

𝑧𝑡 = 𝑘𝑡+1 + 𝑧𝑡+1 (18)

with 𝑘𝑡+1 ∈ (𝑡+1;𝐾𝑡+1) and 𝑧𝑡+1 ∈ (𝑡+1; ((𝑤
♯

𝑡+2)
∗ ∩ −𝐶∗

𝑡+1)). If 𝑧𝑡+1 = 0, we set 𝑘𝑢 = 0 for 𝑢 =
𝑡 + 2,… 𝑇 and the representation (17) follows. If 𝑧𝑡+1 ≠ 0, we iterate the procedure on 𝑧𝑡+1 up to time
𝑇 − 1. Recalling that 𝑤𝑇 = 𝑉𝑇 , the representation (17) follows.

As for the second assertion, observe that if for all 𝑘𝑡+1, for which the decomposition (18) holds,

𝑘𝑡+1 ∈ 𝐾𝑡+1 ∩ −𝐾𝑡+1, then 𝑧𝑡 ∉ −(𝑤♯

𝑡+1 − 𝐶𝑡)∗(�̄�) implies 𝑧𝑡+1 ∉ −(𝑤♯

𝑡+2 − 𝐶𝑡+1)∗(�̂�) for some �̂� ∈
Σ�̄�𝑡 (in particular 𝑧𝑡+1 ≠ 0). Iterating the procedure on 𝑧𝑡+1 up to time 𝑇 − 1 and recalling that𝑤𝑇 = 𝑉𝑇 ,
the thesis follows. □

A useful tool for constructing arbitrage strategies is given by the following.

Lemma 5.16. Under Assumption 5.5, assume that there exists an admissible strategy ℎ ∈ 𝐾,𝐴 such
that ℎ𝑇 = 0 =

∑𝑇
𝑢=0 −𝑘𝑢 with 𝑘𝑡(𝜔) ∈ int𝐾𝑡(𝜔) for some 𝑡 ∈  and 𝜔 ∈ Ω. Then there exists an arbi-

trage strategy ℎ̂ ∈ 𝐾,𝐴.

Proof. Let ℎ ∈ 𝐾,𝐴 be a strategy as in the lemma.
CASE 1: if 𝑡 = 𝑇 , ℎ can be modified to an arbitrage strategy. Indeed, because 𝑘𝑡(𝜔) ∈ int𝐾𝑡(𝜔),

there exists 𝑥 ∈ 𝐴𝑡(𝜔) ∩ℝ𝑑
+∖{0} such that 𝑘𝑡(𝜔) − 𝑥 ∈ int𝐾𝑡(𝜔). The strategy ℎ̂ = ℎ + 𝑥𝟙𝑇 𝟙Σ𝜔

𝑇
is in

𝐾,𝐴 and satisfies ℎ̂𝑇 = 𝑥𝟙Σ𝜔
𝑇

.
CASE 2: assume 𝑡 < 𝑇 ; we want to show that there exists a strategy satisfying the condition with a

higher time index. As in CASE 1, there exists 𝑥 ∈ 𝐴𝑡(𝜔) ∩ℝ𝑑
+∖{0} such that 𝑘𝑡(𝜔) − 𝑥 ∈ int𝐾𝑡(𝜔). Let

us show that the strategy ℎ̂ = ℎ + 𝑥𝟙𝑡𝟙Σ𝜔
𝑇

is in 𝐾,𝐴. It is clear that ℎ̂𝑠 ∈ (𝑠, 𝐴𝑠) for all 𝑠 ∈ ∖{𝑡};

it is also true for 𝑠 = 𝑡, as ℎ̂𝑡 = ℎ𝑡 + 𝑥𝟙Σ𝜔
𝑇

and 𝐴𝑡(𝜔) is a convex cone. To check that the increments
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are contained in the correct sets, note that �̂�𝑠 = 𝑘𝑠 for 𝑠 ∈ ∖{𝑡, 𝑡 + 1}. Furthermore, �̂�𝑡 = 𝑘𝑡 − 𝑥𝟙Σ𝜔
𝑇

and �̂�𝑡+1 = 𝑘𝑡+1 + 𝑥𝟙Σ𝜔
𝑇

; the first element is a selection of 𝐾𝑡 by construction, the second one because

𝑥 ∈ ℝ𝑑
+∖{0} ⊂ int𝐾𝑡+1 by Assumption 5.5. The latter inclusion shows that the strategy ℎ̂ satisfies: ∃�̄�

such that �̂�𝑡+1(�̄�) ∈ int𝐾𝑡+1(�̄�).
This finishes the proof, because if there exists a strategy ℎ ∈ 𝐾,𝐴 such that ℎ𝑇 = 0 =

∑𝑇
𝑢=0 −𝑘𝑢

with 𝑘𝑡(𝜔) ∈ int𝐾𝑡(𝜔) for some 𝑡 ∈  and 𝜔 ∈ Ω, then one sees that there also exists a strategy ℎ′

satisfying the same property for 𝑡 = 𝑇 , by applying CASE 2 repeatedly. From CASE 1, there exists an
arbitrage strategy.

We are now ready to finish the proof of Theorem 5.9. Note that the proof only requires Assumption
5.5.

Lemma 5.17. Under Assumption 5.5, NA𝑟 implies that the MSP (𝑉 , 𝐶) is solvable.

Proof. We argue by contradiction. Assume that the MSP is not solvable; by Theorem 4.7, 𝑊𝑡(𝜔) = ∅
for some 𝑡 ∈ , and 𝜔 ∈ Ω. Because (𝑤𝑡)𝑡∈ , defined in (16), satisfies 𝑤𝑡 ⊂ 𝑊𝑡 for every 𝑡 ∈  (see
Remark 5.13), also 𝑤𝑡(𝜔) = ∅. Choose the largest index 𝑡 ∈  for which there exists an �̄� such that
𝑤𝑡(�̄�) = ∅. As 𝑤𝑇 = 𝑉𝑇 , this is well defined and 𝑡 ≤ 𝑇 − 1. The assumption 𝑤𝑡(�̄�) = ∅ implies that

𝑉𝑡(�̄�) and the relative interior of 𝑤♯

𝑡+1(�̄�) − 𝐶𝑡(�̄�) are disjoint. We deduce the existence of a vector
𝑧 ∈ ℝ𝑑∖{0} such that

⟨𝑥, 𝑧⟩ ≤ 0 ≤ ⟨𝑦, 𝑧⟩ ∀𝑥 ∈ 𝑉𝑡(�̄�) and 𝑦 ∈
(
𝑤
♯

𝑡+1 − 𝐶𝑡

)
(�̄�). (19)

This readily implies −𝑧 ∈ 𝑉 ∗
𝑡 (�̄�) = 𝐾𝑡(�̄�), and 𝑧 ∈ (𝑤♯

𝑡+1 − 𝐶𝑡)∗(�̄�). In particular, 𝑧 ∈ −𝐶∗
𝑡 (�̄�) =

𝐴𝑡(�̄�). Lemma 5.15, implies that

𝑧 = 𝑘𝑡+1 +⋯ + 𝑘𝑇 with 𝑘𝑢 ∈ (𝑢;𝐾𝑢).

The vector 𝑧 in (19) can be chosen such that one of the conditions hold.

1. There exists a vector �̄� ∈ 𝑤
♯

𝑡+1(�̄�) such that 0 < ⟨�̄�, 𝑧⟩, which implies 𝑧 ∉ −(𝑤♯

𝑡+1 − 𝐶𝑡)∗(�̄�). From
Lemma 5.15, there exist �̃� ∈ Σ�̄�𝑡 and 𝑡 + 1 ≤ �̃� ≤ 𝑇 such that 𝑘�̃� ∉ (𝐾�̃� ∩ −𝐾�̃�)(�̃�).

2. There exists a vector �̄� ∈ 𝑉𝑡(�̄�) such that ⟨�̄�, 𝑧⟩ < 0, which implies 𝑧 ∉ 𝐾𝑡(�̄�) ∩ −𝐾𝑡(�̄�). In this
case, set �̃� = 𝑡 and 𝑘𝑡 ∶= −𝑧𝟙Σ�̄�𝑡 .

Consider an arbitrary process 𝐾 ∶= (𝐾𝑢)𝑢∈𝐼 that dominates (𝐾𝑢)𝑢∈ . Because 𝑘�̃� ∈ (𝐾�̃� ⧵ (𝐾�̃� ∩
−𝐾�̃�))(�̃�) ⊂ int𝐾�̃�(�̃�), from Lemma 5.16, NA𝑟 fails. □

Proof of Theorem 5.9. Necessity follows from Lemma 5.17. Sufficiency follows from Corollary
5.12. □

5.3 Models of illiquidity
A quite general form of discrete-time financial market model, including illiquid markets, is proposed
in Pennanen (2011) in a probabilistic framework. The main modeling tool is a cost process 𝑆 = (𝑆𝑡)𝑇𝑡=0
which satisfies, for every 𝑡 = 0,… , 𝑇 , the following properties

• 𝑆𝑡 ∶ Ω ×ℝ𝑑 → ℝ is Borel-measurable;

• for every 𝜔 ∈ Ω fixed, the map 𝑆𝑡(𝜔, ⋅) is convex, lower semi-continuous. and 𝑆𝑡(𝜔, 0) = 0.
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These two properties, together with the assumption int(dom𝑆𝑡) ≠ ∅, imply that 𝑆𝑡 is a normal inte-
grand; see Rockafellar and Wets (2004, Chapter 14). Normality, in turn, guarantees that the recession
map of 𝑆𝑡 and evaluations are measurable.

We will present a somewhat simplified version of the model proposed in Pennanen (2011); our
formulation is similar to Çetin and Rogers (2007). The reader is referred to Pennanen (2011) for a
general modeling considerations of illiquidity. Our modification consists in assuming that, in addition
to 𝑆, there exists a riskless asset 𝐵 = (𝐵𝑡)𝑡∈ , which we assume normalized to 𝐵𝑡(𝜔) = 1 for all 𝜔, 𝑡.
Positions in the riskless asset are denoted by ℎ0 = (ℎ0𝑡 )𝑡∈ . This allows us the following simple inter-
pretation of the cost process: a change of position in the risky asset of ℎ𝑡 − ℎ𝑡−1 at time 𝑡 ∈  elicits a
change of position in the riskless asset

ℎ0𝑡 ≤ ℎ0
𝑡−1 − 𝑆𝑡(ℎ𝑡 − ℎ𝑡−1) ∀𝑡 ∈ 

with the convention that ℎ−1 = 0 and ℎ0−1 ∈ ℝ is the initial capital. Some examples of this model are
the following:

1. Frictionless markets: 𝑆𝑡(𝜔, 𝑥) = ⟨𝑥, 𝑠𝑡(𝜔)⟩, for an ℝ𝑑-valued stochastic process (𝑠𝑡)𝑇𝑡=0 representing
the price of 𝑑 assets at time 𝑡 ∈ .

2. Bid-ask spreads: 𝑆𝑡(𝜔, 𝑥) = 𝑥(𝑎𝑡𝟙𝑥≥0 + 𝑏𝑡𝟙𝑥<0), where the processes (𝑎𝑡)𝑇𝑡=0 and (𝑏𝑡)𝑇𝑡=0 represent
the bid and ask prices of a single asset.

3. Nonlinear transaction costs: 𝑆𝑡(𝜔, 𝑥) = 𝑠𝑡(𝜔)𝜑(𝑥) for a real-valued stochastic process (𝑠𝑡)𝑇𝑡=0 and a
strictly positive, increasing and convex function 𝜑 representing the cost of illiquidity; see Çetin and
Rogers (2007).

Remark 5.18. In Section 5.2, a model with physical delivery is considered. It asks for all the positions
𝑋 ∈ ( ;ℝ𝑑) that can be superhedged in the market with respect to partial relation given by the cone
ℝ𝑑
+. In this section, we consider claims with cash delivery.

Trading restriction are introduced by means of a conical process 𝐴 of portfolio constraints, so that,
the class of admissible strategies is given by

𝐴 ∶=
{
(ℎ𝑡)𝑡∈ |ℎ𝑡 ∈ (𝑡;𝐴𝑡), ∀𝜔, 𝑡 ∈ , ℎ𝑇 = 0

}
.

The value of a strategy ℎ ∈ 𝐴 is given by

𝑇 (ℎ) = ℎ0−1 −
∑
𝑡∈

𝑆𝑡(𝜔, ℎ𝑡 − ℎ𝑡−1);

remember the assumption ℎ−1 = 0. Note that 𝑇 (ℎ) = ℎ0
𝑇

.

Definition 5.19. A strategy ℎ ∈ 𝐴 with zero initial capital ℎ0−1 = 0 is called an arbitrage if𝑇 (ℎ) ≥ 0
for any 𝜔 ∈ Ω and is strictly positive for some �̄� ∈ Ω. An arbitrage is called scalable if 𝛼ℎ is an
arbitrage strategy for every 𝛼 > 0.

Remark 5.20. The no scalable arbitrage condition does not exclude strategies yielding positive gains at
no risk. Nevertheless, these gains cannot be arbitrarily scaled. This is a conceptual difference between
liquid and illiquid markets.
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For a convex, lower semi-continuous function 𝑆𝑡(𝜔, ⋅) with 𝑆𝑡(𝜔, 0) = 0, the horizon function 𝑆∞
𝑡

is given by

𝑆∞
𝑡 (𝜔, 𝑥) ∶= lim

𝛼→∞
1
𝛼
𝑆𝑡(𝜔, 𝛼𝑥) ∀𝑥 ∈ ℝ𝑑, 𝜔 ∈ Ω.

Remark 5.21. If 𝑆𝑡 is positively homogeneous 𝑆∞
𝑡 coincides with 𝑆𝑡. More generally, when 𝑆∞ is

pointwise finite, it represents the minimal positively homogeneous model whose cost process is greater
or equal than 𝑆.

By Exercise 14.54 in Rockafellar and Wets (2004), if 𝑆𝑡 is a normal integrand the same is true for
𝑆∞
𝑡 ; convexity is obviously preserved by the operation (⋅)∞. By using theorem 14.56 and proposition

14.11 in Rockafellar and Wets (2004), the following are Borel-measurable correspondences, for every
𝑡 ∈ 

𝑉𝑡 ∶= ri cone
{
(1, 𝑣) | 𝑣 ∈ 𝜕(𝑆∞

𝑡 )(⋅, 0)
}
. (20)

Note that the set of scalable portfolio rebalancings is given by

−𝐾𝑡(𝜔) =
{
(𝛿,Δ) ∈ ℝ ×ℝ𝑑 | 𝛿 + 𝑆∞

𝑡 (Δ) ≤ 0
}
= −𝑉 ∗

𝑡 . (21)

We say that a cost process 𝑆 dominates 𝑆 if the corresponding 𝐾 , as in (21), dominates 𝐾 in the sense
of Definition 5.6.

Let us introduce the definition of arbitrage.

Definition 5.22. Robust no (scalable) arbitrage holds if 𝑆 is dominated by 𝑆 and 𝑆 satisfies no (scal-
able) arbitrage.

Similarly as in Section 5.2, we require Assumptions 5.5 and 5.8 to hold for the associated market
model (𝐾,𝐴). Let us be more explicit on the assumptions. First, the assumption ℝ𝑑+1

+ ∖{0} ⊂ int𝐾𝑡(𝜔)
implies that the function 𝑥 → 𝑆𝑡(𝜔, 𝑥) is strictly increasing for each 𝑡, 𝜔. Indeed, choose an arbitrary
Δ ∈ ℝ𝑑

+, Δ ≠ 0. Then, because (0,Δ) ∈ int𝐾𝑡, there exists a 𝛿 < 0 such that (𝛿,Δ) ∈ int𝐾𝑡. Going
back to the cost process, this implies that𝑆∞

𝑡 (−Δ) ≤ 𝛿 < 0, that is, the cost process is strictly increasing
with respect to relation induced by the cone ℝ𝑑 . Finally, the assumption that 𝐾𝑡 ∩ −𝐾𝑡 = {0} is easy
to interpret and implies that for each 𝑥 ∈ ℝ𝑑∖{0} we have 𝑆∞

𝑡 (𝑥) > −𝑆∞
𝑡 (−𝑥).

The following is the main result of the section.

Theorem 5.23. Under Assumptions 5.5 and 5.8 robust no scalable arbitrage holds if and only if for
every �̄� ∈ Ω there exists 𝑃 ∈ (�̄�) and a process 𝜉 ∶= (𝜉𝑡)𝑡∈ such that

𝐸𝑃 [𝜉𝑡+1 − 𝜉𝑡 |𝑡] ∈ −𝐴∗
𝑡 𝑃 -a.s.

and 𝜉𝑡 takes values in ri𝐾∗
𝑡 , for every 𝑡 ∈ .

The financial interpretation of the pair (𝜉, 𝑃 ) is similar to the one after Theorem 5.9, namely, (𝜉, 𝑃 )
defines an arbitrage-free frictionless price process that is compatible with the frictions considered for
the market. Indeed, as in Theorem 5.9, the measure 𝑃 is fair in the sense that the value process of
every trading strategy is a super-martingale under 𝑃 . Moreover, the price process modeled by 𝜉 takes
values in the range of prices that are observable in the market if agents trade with the market impact
prescribed by 𝑆.

Once again, we relate the problem to the solution of the appropriate MSP (𝑉 , 𝐶) with 𝑉 as in (20)
and 𝐶𝑡 = −(ℝ × 𝐴𝑡)∗.
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Lemma 5.24. If the MSP (𝑉 , 𝐶) is solvable, then robust no scalable arbitrage holds.

Proof. Because (𝑉 , 𝐶) is solvable, from Lemma 5.11 there exists a dominating conical market 𝐾
such that the MSP (𝐾∗, 𝐶) is solvable. From the definition of the correspondence 𝐾 , Equation (21),
it is clear how it induces a market 𝑆 ∶= (𝑆𝑡)𝑡∈ which, by construction, dominates 𝑆 and satisfies
𝑆𝑡 = 𝑆∞

𝑡 . Assume that there exists ℎ such that

𝑇 (ℎ)(𝜔) = −
𝑇∑
𝑡=0

𝑆𝑡(𝜔, ℎ𝑡 − ℎ𝑡−1) ≥ 0 ∀𝜔 ∈ Ω

and strictly positive in some �̄� ∈ Ω. Denote by (𝜉,𝑄) the local solution of (𝐾∗, 𝐶) at �̄�. From theo-
rem 8.30 in Rockafellar and Wets (2004)

𝑆𝑡(𝜔, 𝑥) = sup
{⟨𝑣, 𝑥⟩ | 𝑣 ∈ 𝜕𝑆𝑡(𝜔, 0)

}
, 𝜔 ∈ Ω, 𝑡 ∈ , 𝑥 ∈ ℝ𝑑.

We now argue as in the frictionless case. From 𝜉𝑡 ∈ (𝑡; ri𝐾∗
𝑡 ) and the particular form of the con-

straint correspondence 𝐶𝑡, we write 𝜉𝑡 = (𝑧𝑡, 𝑦𝑡), where 𝑧𝑡 is a martingale, which is strictly positive by
assumptions. We use it to change the measure and obtain 𝑃 . By definition of the correspondence 𝑉𝑡,
we get that 𝑦𝑡∕𝑧𝑡 is a selection of 𝜕𝑆𝑡(0). We, thus, have

0 ≤ −
𝑇∑
𝑡=0

𝑆𝑡(𝜔, ℎ𝑡 − ℎ𝑡−1) ≤ −
𝑇∑
𝑡=0

⟨
𝑦𝑡
𝑧𝑡
, ℎ𝑡 − ℎ𝑡−1

⟩
=

𝑇−1∑
𝑡=0

⟨
ℎ𝑡,

𝑦𝑡+1
𝑧𝑡+1

−
𝑦𝑡
𝑧𝑡
,

⟩
.

Because �̄� ∈ supp𝑃 , by taking expectations with respect to 𝑃 we obtain 0 < −
∑𝑇

𝑡=0 𝐸𝑃 [𝑆𝑡(⋅, ℎ𝑡 −
ℎ𝑡−1)] ≤ 0, which is clearly a contradiction. □

Lemma 5.25. Robust no scalable arbitrage implies solvability of the MSP (𝑉 , 𝐶).

Proof. Suppose, by contradiction, that the MSP is not solvable. By Theorem 4.7, 𝑊𝑡(𝜔) is empty for
some 𝑡 ∈  and 𝜔 ∈ Ω. We argue as in the proof of Lemma 5.17. First we observe that 𝑤𝑡(𝜔), defined
in (16), is also empty. We next choose the largest index 𝑡 ∈  for which there exists an �̄� such that
𝑤𝑡(�̄�) = ∅. We deduce the existence of a vector 𝑧 ∈ ℝ𝑑∖{0} such that

⟨𝑥, 𝑧⟩ ≤ 0 ≤ ⟨𝑦, 𝑧⟩ ∀𝑥 ∈ 𝑉𝑡(�̄�) and 𝑦 ∈ (𝑤♯

𝑡+1 − 𝐶𝑡)(�̄�).

By the same argument as in the proof of Lemma 5.17, we have

𝑧 = 𝑘𝑡+1(𝜔) +⋯ + 𝑘𝑇 (𝜔) with 𝑘𝑢(𝜔) ∈ (𝑢;𝐾𝑢). (22)

Moreover, by setting 𝑘𝑡 ∶= −𝑧𝟙Σ�̄�𝑡 , there exist �̃� ∈ Σ�̄�𝑡 and 𝑡 ≤ �̃� ≤ 𝑇 − 1 such that 𝑘�̃� ∈ (𝐾�̃� ⧵ (𝐾�̃� ∩
−𝐾�̃�))(�̃�).

Consider an arbitrary process 𝑆 ∶= (𝑆𝑡)𝑡∈ which dominates 𝑆. By definition, the corresponding
𝐾 as in (21) dominates 𝐾 and, in particular, 𝑘�̃� ∈ int𝐾�̃�(�̃�). As 𝑘𝑢 ∈ 𝐾𝑢 for every 𝑡 ≤ 𝑢 ≤ 𝑇 , in par-
ticular,

0 ≤ ⟨(1, 𝑣), 𝑘𝑢⟩ = 𝑘0𝑢 + ⟨𝑣, �̄�𝑢⟩ ∀𝑣 ∈ 𝜕𝑆∞
𝑢 (𝜔, 0).

From theorem 8.30 in Rockafellar and Wets (2004), we have

𝑆∞
𝑢 (𝜔,−�̄�𝑢) = sup

{⟨𝑣,−�̄�𝑢⟩ | 𝑣 ∈ 𝜕𝑆∞
𝑢 (𝜔, 0)

}
≤ 𝑘0𝑢,
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and strictly negative for �̃� and �̄�. Recall that, by definition of horizon function,

𝑆𝑢(𝜔,−�̄�𝑢) ≤ 𝑆∞
𝑢 (𝜔,−�̄�𝑢).

Therefore, the self-financing strategy ℎ with ℎ𝑢 = 0 for 𝑢 ≤ 𝑡 − 1 and ℎ𝑢 − ℎ𝑢−1 = −�̄�𝑢 for 𝑡 ≤ 𝑢 ≤ 𝑇 ,
satisfies

𝑇 (ℎ) =
𝑇∑
𝑢=𝑡

−𝑆𝑢(𝜔, ℎ𝑢 − ℎ𝑢−1) ≥ −
𝑇∑
𝑢=𝑡

𝑘0𝑢(𝜔) = 0,

where the last equality follows from (22). As the above inequality is strict for �̃�, we deduce that ℎ is
an arbitrage. As 𝐾 is conical, the same considerations apply to 𝛼𝑧, for any 𝛼 > 0. This contradicts the
robust no-arbitrage condition. □

Proof of Theorem 5.23. Necessity follows from Lemma 5.24. Sufficiency follows from
Lemma 5.25. □

Remark 5.26. Our findings are not directly comparable with those of Pennanen (2011). First our results
are shown without any reference probability measure and second the notion of arbitrage and dual ele-
ments are different. In particular, as the existence of a riskless asset 𝐵 is not assumed in Pennanen
(2011), the dual elements are martingale deflators as opposed to martingale measures. We also note
that the Fundamental Theorem of Asset Pricing in Pennanen (2011) holds under the additional hypoth-
esis that 𝑆∞ is finite. In particular, theorem 5.4 in Pennanen (2011) cannot be applied to models
of superlinear transaction costs as in, for example, Çetin and Rogers (2007). We do not require this
assumption here.

Remark 5.27. In general, the family of correspondences 𝐶 ∶= (𝐶𝑡)𝑡∈ , with 𝐶𝑡 ∶= {𝑥 ∈ ℝ𝑑|𝑆𝑡(⋅, 𝑥) ≤
0}, describes a market with physical delivery where the solvency region is convex rather than conical.
These models have been studied in Pennanen and Penner (2010) where the notion of NA𝑟 is given in
terms of recession cones. Namely, 𝐶 satisfies robust no-arbitrage if and only if 𝐶∞ satisfies NA𝑟 as in
Section 5.2, where 𝐶∞ is the family of recession cones associated to 𝐶 . It is clear that Theorem 5.9
extends in a straightforward way to this case. Note also that, as opposed to Pennanen and Penner (2010),
portfolio constraints are also allowed in our model.
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APPENDIX A: SOME TECHNICAL TOOLS
Lemma A.1. Let 𝐴, 𝐵 ∶ Ω ⇉ ℝ𝑑 be two 𝑡 measurable correspondences and let 𝜁 ∈ (𝑡;𝐴 + 𝐵)
be the selection of the sum. Then, we may write 𝜁 = 𝜂 + 𝜃 with some 𝜂 ∈ (𝑡;𝐴) and 𝜃 ∈ (𝑡;𝐵).

Proof. By proposition 14.11(d) in Rockafellar and Wets (2004), the correspondence 𝐴 × 𝐵 ∶ Ω ⇉
ℝ2𝑑 is measurable. The correspondence 𝐶(𝜔) ∶= {(𝑥, 𝑦) ∈ ℝ𝑑 ×ℝ𝑑 | 𝑥 + 𝑦 = 𝜁 (𝜔)} is measurable by
theorem 14.13(a) in Rockafellar and Wets (2004). It is enough to take any selection (𝜂, 𝜃) ∈ (𝐴 × 𝐵) ∩
𝐶; see proposition 14.11(a) in Rockafellar and Wets (2004).

Lemma A.2. Let𝑈 ∶ Ω ⇉ ℝ𝑘 be an𝑡+1 measurable, convex valued correspondence (not necessarily
closed). Then it admits a measurable selection taking values in its relative interior.

Proof. For each 𝑛, define an 𝑡+1-measurable, closed, convex valued correspondence 𝑈𝑛 ∶=
cl (𝑈 ∩ 𝐵𝑛(0)), where 𝐵𝑛(0) is the closed ball around 0 of radius 𝑛. Define a sequence of sets by
𝐷0 ∶= ∅ and 𝐷𝑛+1 ∶= dom𝑈𝑛∖𝐷𝑛 and let (𝜁𝑛

𝑘
)𝑘 be the Castaing representation of 𝑈𝑛. Then

𝜁 ∶=
∑
𝑛∈ℕ

𝟙𝐷𝑛

∑
𝑘∈ℕ

2−𝑘𝜁𝑛
𝑘

is the sought for selection. □


