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Secondary relaxation in the terahertz range in 2-adamantanone from theory and experiments
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We applied the recently developed Generalized Langevin equation (GLE) approach for dielectric response
of liquids and glasses to link the vibrational density of states (VDOS) to the dielectric response of a model
orientational glass. The dielectric functions calculated based on the GLE, with VDOS obtained in experiments
and simulations as input, are compared with experimental data for the paradigmatic case of 2-adamantanone
at various temperatures. The memory function is related to the integral of the VDOS times a spectral coupling
function γ (ωp), which tells the degree of dynamical coupling between molecular degrees of freedom at different
eigenfrequencies. With respect to previous empirical fittings, the GLE-based fitting reveals a broader temperature
range over which the secondary relaxation is active. Furthermore, the theoretical analysis provides clear evidence
of secondary relaxation being localized within the THz (0.5 − 1 THz) range of eigenfrequencies, and thus not
too far from the low-energy modes involved in α relaxation. In the same THz region, the same material displays
a crowding of low-energy optical modes that may be related to the secondary relaxation.
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I. INTRODUCTION

The dynamics of structural glasses (SGs), those obtained
by cooling or pressurizing the liquid state, is one of the major
unsolved problems in condensed-matter physics [1–4]. In
addition to the inescapable collective structural (α) relaxation,
a faster (β) secondary relaxation often appears [5–8]. Such a
process emerges in the susceptibility function as a separate
peak or as an excess (shoulder) contribution to the main α

relaxation. Johari and Goldstein [9,10] revealed that such
a process is an intrinsic dynamical process associated with
noncooperative local reorientations and must be differentiated
from relaxations attributed to internal molecular degrees of
freedom. In spite of the huge amount of experimental and
simulations studies [2,4–9,11,12] as well as the existence of
models [13–17] aimed at the understanding of this secondary
relaxation, the physics behind this is still under discussion.
Two main interpretations are generally assumed, the exis-
tence of islands of mobility (involving only local regions,
so a heterogeneous picture) and the alternative homogeneous
interpretation in which molecules show small-angle reorien-
tational diffusion. Whatever the interpretation assumed, the
microscopic origin and the relation with low-energy eigen-
modes of the system, i.e., soft optical modes, have not been
investigated. This is commonly due to the difficulty to access
different kinds of disorder appearing in SG, i.e., translational
and orientational disorder, besides the conformational molec-
ular disorder or internal molecular degrees of freedom. One

strategy to simplify the problem is to reduce, as far as possible,
the number of degrees of freedom of the studied system.

Under this premise, orientationally disordered (OD) phases
(plastic crystal phases) giving rise to orientational glasses
(OGs) are not affected by the translational disorder [18–21]
but still keep the orientational disorder large enough to be
controlled. By further decreasing the disorder of the system,
molecular systems displaying occupational well-defined dis-
order appear as those with less degrees of freedom [22–29].
In these systems, molecules can occupy well-defined crys-
tallographic sites for which the fractional occupancies are
perfectly determined, owing to the ergodic assumption. More-
over, for some cases [22,30], a closely packed ordered phase
exists for the same system and, thus, fundamental properties,
such as those concerning thermodynamics or those related to
the VDOS, are known and can be successfully compared.

This is the case of 2-adamantanone (C10H14O, hereinafter
called 2O = A). 2O = A is a “rigid” psedoglobular molecule
of C2v symmetry obtained from adamantane by means of
the substitution of two hydrogen atoms by one oxygen atom
linked to a secondary carbon atom by a double bond.

The polymorphic behavior of this compound has been
described many times in the literature in the past
[22,30–32]. The OD room temperature phase melts at 529 K
and exhibits a face-centered-cubic structure (space group
Fm3̄m.) On cooling the OD phase, it transforms at around
178K to an “ordered” low-temperature monoclinic M phase
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FIG. 1. Vibrational density of states (VDOS) from various ap-
proaches for 2-adamantanone. Solid lines show experimental INS
spectra, black for M phase, and red for O phase. Dashed lines
show VDOS from DFT lattice dynamic calculations of O phase,
orange for VDOS using full phonon dispersion contribution, and dark
yellow for VDOS with only optical-mode contribution.

(space group P21/c) with statistical disorder in the occupancy
of oxygen atoms along three different sites (with fractional
occupancies of 25%, 25%, and 50%), and returns to the OD
phase on heating at ca. 205 K. In addition, submitting the
2O = A to a thermal cycling at normal pressure between 150
and 250 K (i.e., around the low-temperature to OD phase
transition) a new denser low-temperature (stable) orthorhom-
bic O phase (space group Cmc21) appears at the expense of
the low-temperature (metastable) M phase and the transition
temperature from the low-temperature O phase to the OD
phase is found to be shifted from 205 K up to 221 K.
Regardless of the occupational disorder of the M phase and the
full ordered character of the O phase, specific heat capacities
were determined to be strikingly close [30]. This experimental
evidence is coherent and comes from the close similarity of
the experimental VDOS measured for both phases [30]. When
comparing both VDOS, the fully ordered O phase shows
sharper low-frequency excitations than the occupationally
disordered M phase at energies between 4 and 12 meV (i.e., 1
to 3 THz, the range comprised between low-energy phonons
and the low-energy localized frequencies, see Fig. 1). It should
be noted that the low-energy range for those excitations
was initially associated with some mixing of acoustic and
optical modes. The excess excitations for the M phase with
respect to the O phase then appear only in that low-energy
range.

Despite the Kohlrausch stretched-exponential function and
its Fourier transform analog Havriliak-Negami function still
providing the most popular empirical functions to describe
the slow α relaxation in any type of supercooled systems
(SGs, OGs, etc.), a different approach, which starts from first
principles, was recently proposed [33]. This simple approach
(see next section) was successfully applied to two OGs, Freon
112 and Freon 113 [34], for which the appearance of the

secondary β relaxation for Freon 112 was rationalized on
the basis of lower and intermediate-energy excitations in the
VDOS.

Here, we bring further insight into this complex problem
by analyzing the paradigmatic case of 2O = A, i.e., a system
with well-defined occupational disorder (M phase) and for
which the fully ordered (O) phase is known. By using the
modified theoretical model previously developed [34], we
are able to account for the secondary relaxation appearing
in the disordered M phase of 2O = A as well as the dy-
namical coupling of molecular disorder as a function of the
eigenfrequencies, in particular, those concerning low-energy
localized (optical) modes. Even more, we will demonstrate
that the small differences in the VDOS between disordered M
and ordered O phases are so subtle (just some optical modes
shifted to lower energy for the disordered phase) that the
dielectric susceptibility can be reproduced by using either of
the two VDOS, despite that glassy features emerge due to the
piling up of those optical modes (see also Ref. [35]) at low
energy in the occupationally disordered M phase.

II. INELASTIC-NEUTRON-SCATTERING
MEASUREMENTS

Vibrational features of monoclinic and orthorhombic
phases of 2-adamantanone were studied by means of inelas-
tic neutron scattering (INS) experiments using the TOSCA
spectrometer at the ISIS Pulsed Neutron and Muon Source
of the Rutherford Appleton Laboratory (Oxfordshire, United
Kingdom). In addition, Density Functional Theory (DFT)
lattice dynamics calculations were performed for the stable
fully ordered orthorhombic phase to understand and interpret
the INS data (see Supplemental Material [36] and Refs. [7,37–
39]).

The TOSCA indirect geometry time-of-flight spectrom-
eter [40,41] is characterized with high spectral resolu-
tion (�E/E ∼ 1.25%) and broad spectral range (−24 :
4000 cm−1). The sample was placed in a thin-walled and flat
aluminum can (2 mm of thickness). The monoclinic phase was
reached upon cooling from room temperature down below
178 K and the stable orthorhombic one was found cycling
between 150 K and 240 K for six times monitoring the
evolution of the growth of the O phase over the M phase. The
cycling was done with a controlled speed of heating/cooling
(10 K/min). For both phases, the sample chamber was cooled
down to 10 K by a closed cycle refrigerator to reduce the
effect of the Debye − Waller factor on the spectra, and the
INS spectra were recorded. Finally, the data were converted
to the dynamic structure factor, S(Q, ω), using the MANTID

software framework.

III. THEORETICAL GLE MODEL

Focusing on a tagged particle (e.g., a molecular subunit
carrying a partial charge which reorients under the electric
field), it is possible to describe its motion under the applied
field using a particle-bath Hamiltonian of the Caldeira-Leggett
type, in the classical dynamics regime. The particle’s Hamil-
tonian is bilinearly coupled to a bath of harmonic oscillators
which represent all other molecular degrees of freedom in
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TABLE I. Parameters of the memory function

Temperature 128 K 130 K 132 K 134 K 136 K 154 K 178 K 202 K

b1 0.39 0.40 0.40 0.38 0.4 0.46 0.5 0.53
τ1 (seconds) 418.04 200.47 144.76 69.09 32 0.222 0.0016 3.50 · 10−5

b2 0.225 0.21 0.19 0.18 0.18
τ2 (seconds) 7.4 · 10−5 5.00 · 10−5 1.77 · 10−5 9.60 · 10−6 9.60 · 10−6

ν2 0.023 0.021 0.02 0.02 0.025 0 0 0

the system [42]. Any complex system of oscillators can be
reduced to a set of independent oscillators by performing
a suitable normal mode decomposition. This allows us to
identify the spectrum of eigenfrequencies of the system, i.e.,
the experimental VDOS, with the spectrum of the set of
harmonic oscillators forming the bath.

The particle-bath Hamiltonian under a uniform AC electric
field, is given by [33] H = HP + HB, where HP = P2/2m +
V (Q) − qeQE0 sin (ωt ) is the Hamiltonian of the tagged par-
ticle with the external electric field (qe is the charge carried

by the particle), HB = 1
2

∑N
α=1 [ P2

α

mα
+ mαω2

α (Xα − Fα (Q)
ω2

α
)
2
] is

the Hamiltonian of the bath of harmonic oscillators that are
coupled to the tagged particle [42]. HB consists of two parts:
The first part is the ordinary harmonic oscillator; the second is
the coupling term between the tagged particle position Q and
the bath oscillator position Xα . The coupling function is taken
to be linear in the displacement of the particle, Fα (Q) = cαQ,
where cα is known as the strength of coupling between the
tagged atom and the αth bath oscillator. Hence, there is a
spectrum of coupling constants cα by which each particle
interacts with all other molecular degrees of freedom in the
system. This spectrum of coupling strengths will play a major
role in the subsequent analysis.

As shown in previous work [33,43], this particle-bath
Hamiltonian leads to a generalized Langevin equation (GLE)
for the mass-rescaled coordinate q of the tagged particle:

q̈ = −V ′(q) −
∫ t

−∞
ν(t ′)

dq

dt ′ dt ′ + qeE0 sin (ωt ), (1)

where the non-Markovian friction or memory kernel ν(t ) is
expressed in terms of the spectrum of coupling constants cα

as ν(t ) = ∑
α

c2
α

ω2
α

cos (ωαt ).
Then we can let the spectrum be continuous and cα be a

function of eigenfrequency ωp which leads to the following
expression for the friction kernel [42]:

ν(t ) =
∫ ∞

0
dωpD(ωp)

γ (ωp)2

ω2
p

cos ωpt, (2)

where γ (ωp) is the continuous spectrum of coupling con-
stants, i.e., the continuous version of the discrete set {cα}
and D(ωp) ∝ ∑

α δ(ωp − ωα ) is the continuous spectrum of
vibrational frequencies, i.e., the VDOS.

The inverse cosine transform in turn gives the spectrum of
coupling constants γ (ωp) as a function of the memory kernel:

γ 2(ωp) = 2ω2
p

πD(ωp)

∫ ∞

0
ν(t ) cos (ωpt )dt . (3)

This coupling function contains information on how strongly
the single particle motion is coupled to the motion of other
particles in a mode with vibrational eigenfrequency ωp. This
is an important information because it reveals the degree
of medium- and long-range (anharmonic) couplings in the
motion of the molecules.

Following the same steps as those described in Ref. [33],
we obtain the complex dielectric function

ε∗(ω) = 1 − A
∫ ωD

0

D(ωp)

ω2 − iων̃(ω) − ω2
p

dωp, (4)

where A is an arbitrary positive rescaling constant and ωD is
the Debye cutoff frequency (i.e., the highest eigenfrequency
in the VDOS spectrum). The complex quantity (ν̃)(ω) is the
Fourier transform of the memory kernel ν(t ). As one can
easily verify, if D(ωp) were given by a Dirac delta, one would
recover the standard simple-exponential (Debye) relaxation.

The VDOS is an important key input to the theoreti-
cal framework. The experimental VDOS, D(ωp), of M and
O phases, measured at T = 10 K by means of INS using
TOSCA spectrometer are shown in Fig. 1, together with
VDOS obtained by a DFT ab-initio lattice-dynamics calcula-
tion for the orthorombic phase at �-point (only optical modes
contributes to VDOS) as well as using full phonon dispersions
(see Supplemental Material [36]). This set of VDOS will be
used as the input to explore the link between the vibrational
spectrum and the dielectric response.

IV. RESULTS AND DISCUSSION

A. Fitting of dielectric loss

For data sets exhibiting secondary β relaxation in loss
modulus of dielectric permittivity, we take the form of mem-
ory function ν(t ) in Eq. (1) to be the sum of two terms,
both of which are stretched exponential. A motivation for the
stretched-exponential form of the memory kernel comes from
related approaches of Kia Ngai’s coupling model [1,14–16].
As in previous work for the case of Freon 112 [34], we take
the following phenomenological expression for our memory
function:

ν(t ) = ν0

∑
i

νie
−(t/τi )bi

, (5)

where τi is a characteristic timescale, with i = 1 for α relax-
ation and i = 2 for β relaxation. ν0 is a constant prefactor
while νi with i = 1, 2 indicates the weight for the two different
stretched exponentials. Without loss of generality, we set ν1 to
be unity. Fitting parameters at different temperatures are listed
in Table I.
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FIG. 2. Fitting of experimental data using the proposed theoreti-
cal model for 2-adamantanone at the same temperature with different
VDOS as inputs.

To explore the effect of VDOS on dielectric relaxation
behavior, in Fig. 2, we only fit one temperature at T =
128 K with different VDOS data sets in Fig. 1, using the
same memory kernel. The results are the same for other
temperatures. The differences between the VDOS of the
ordered and disordered phases are negligible, such that the
procedure can hardly feel differences when comparing the
dielectric loss (while keeping the memory kernel constant).
The calculation using the VDOS calculated from DFT for
the ordered phase also provides the same results. The result
that the susceptibility is not so sensitive to the fine structure
of VDOS might be the reason why the dielectric losses of
some materials, such as ethanol [44], levoglucosan [45], etc.,
in supercooled and plastic crystal phases show only subtle
differences and in particular very small differences for the β

relaxation. Conversely, if VDOS for some supercooled and
plastic phases are similar, it means that orientational degrees
of freedom dominate the system, i.e., the translational degrees
of freedom (nonexistent in the plastic phase) are not relevant,
which has been demonstrated a long time ago [18].

Moreover, an important consideration is that concerning
optical modes. Fittings of the experimental data under various
temperatures of the dielectric loss modulus with the VDOS
of the monoclinic phase are shown in Fig. 3. For the fitting
procedure, we have assumed that D(ωp) and the overall
scaling in the stretched exponential, ν0, are temperature in-
dependent. We used the algorithm in Ref. [46] to perform
the Fourier transform of stretched exponential functions. The
so-obtained relaxation times are plotted in Fig. 4.

B. Analysis of spectrum of dynamic coupling constants

To physically understand secondary relaxation in these
systems, the spectrum of dynamical coupling parameters
[Eq. (3)] has been analyzed (see Figs. 5 and 6). In gen-
eral, the coupling spectrum decays from the highest Debye
cutoff frequency of short-range high-frequency in-cage mo-
tions (above 5 THz), down to the low eigenfrequency part
where the coupling goes up with decreasing ωp towards zero,
due to phonons or phononlike excitations, which are collective

FIG. 3. Fitting of experimental data using the proposed theoreti-
cal model for 2-adamantanone at various temperatures with the same
(experimental monoclinic) input VDOS.

and long wavelengths, and hence result in a larger value of
coupling parameter γ . The latter region of eigenfrequency is
also the one corresponding to α relaxation. In the intermediate
range of vibration frequency (3 − 4 THz), fluctuations in the
coupling spectrum are observed.

Looking at Fig. 5, at about 0.5 THz, there is a clear peak
for DFT full VDOS, which seems to become a “divergence”
for the DFT optical modes due to the optical gap. Effectively,
a maximum in VDOS corresponds to a minimum in the
coupling and vice versa (whenever there is a gap in the
VDOS there is a divergence in the coupling spectrum), which
is clear in Eq. (3). Because of the sampling of the VDOS
(with dispersions), at low energy there are some numerical
fluctuations which cause a pronounced artificial peak at low
frequency in coupling. In the case of the VDOS obtained

FIG. 4. Relaxation times as a function of reciprocal of tempera-
ture for the different relaxation processes. Open circles: α relaxation
(experimental values); open squares: β relaxation (calculated values
according to the CM model (Refs. [15,16]); full green squares: β

relaxation (experimental values). Pink symbols are calculated ac-
cording to our proposed theoretical model (see Table I): Full-empty
circles for α relaxation and stars for β relaxation.
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FIG. 5. Spectrum of coupling constants as a function of the
vibrational eigenfrequency computed according to Eq. (3) using the
same phenomenological memory functions ν(t ) used in the fitting of
dielectric response in Fig. 2, with the same color code used for the
input VDOS of Fig. 1.

without taking into account the dispersions of the branches
(only optical modes contribute to VDOS), there is a gap from
0 to the first optical mode and this causes the divergence in
the coupling spectrum. On the other hand, in the experimental
orthorombic and monoclinic data, the coupling appears more
attenuated and no divergences are observed.

C. Analysis of secondary relaxation processes

As shown in previous work [34], secondary relaxation
shows up in the plot of a dynamic coupling constant in an
intermediate range comprised between low-energy phonons
and the high-energy localized frequencies at the Debye cutoff.

Searching for the signature of the secondary relaxation pro-
cess in Fig. 6, we first note that the bump in the intermediate

FIG. 6. Spectrum of coupling constants as a function of the
vibrational eigenfrequency computed according to Eq. (3) using
the phenomenological memory functions ν(t ) used in the fitting of
dielectric response in Fig. 3, with same color setting for the different
temperatures.

(a)

(b)

(c)

FIG. 7. Time decay of the square-root of total memory function
for the friction ν(t ) according to the relation F (q, t ) ∼ √

ν(t ). Color
settings are the same as in Fig. 3 (a) Comparing the results of
different weight ν2; (b) T = 154 K; (c) Higher temperature.

energy range 3–4THz cannot represent a genuine relaxation
process because this bump is just the smeared-out version of
a highly divergent feature visible in Fig. 5 and due to the
presence of an optical gap in the VDOS in that energy range.
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Hence, by exclusion, we can identify the emergence of
the secondary relaxation as the other bump (or shoulder) in
the plot just below 1 THz in Fig. 6. A strong correlation
of the β relaxation with the amplitude of the nearly constant
loss modulus related to the caged dynamics in the region of
sub-THz has recently been shown [47], whose relevance has
been proven to explain why several high-frequency quantities
(including mean squared displacement from neutron scatter-
ing or � from Brillouin spectroscopy) related to caged dy-
namics amplitude show transitions at the temperatures where
the β relaxation and the α relaxation are frozen [48–50]. The
bump is not too far from the steeply increasing tail formed
by collective modes active in the phononlike regime and
boson-peak soft modes responsible for α relaxation [33]. This
is also the reason why the contributions of α and secondary
relaxation to the ε′′ curves are not always easily distinguish-
able, except for the lowest temperatures considered. In partic-
ular, it is interesting to observe the opposite behavior of an
overall spectrum of coupling constant curves for temperatures
above and below T = 136 K (which is comparable with glass
transition temperature at Tg ≈ 132 K). The coupling spectra
for temperatures below T = 136 K lie on top of the coupling
spectra above T = 136 K, which goes along with the fact that
the data of dielectric loss in Fig. 3 are deprived of secondary
relaxation processes above T = 136 K. Hence, the lack of
secondary relaxation processes manifests overall as lower in
magnitude values of dynamical coupling among degrees of
freedom.

D. Deducing the intermediate scattering function
decays from dielectric loss fittings

As shown by Sjogren and Sjolander [51] and as discussed
in previous work [52], the time dependence of the memory
function is proportional to the square of the time dependence
of the intermediate scattering function (ISF), see also the
discussion in Ref. [53]. Hence, for a process with pure α

relaxation there is a simple stretched-exponential decay of the
ISF, whereas two decays are produced for systems with both
α and β. To model both α and β relaxations under certain
temperatures, we take ν(t ) to be the sum of two stretched
exponential functions as in Eq. (5) above, with independent
parameters, which results in a two-step decay in the ISF.

This behavior is shown in Fig. 7, following the relation
F (q, t ) ∼ √

ν(t ). Since the weight ν2 used in the fitting for β

relaxation is small, we hardly see the characteristic two-step
stretched-exponential decay of F (q, t ) present in systems with

well-separated α and β relaxations at low temperatures (T �
136 K). However, on the other hand, at high temperatures, the
α peak in ε′′, and the corresponding decay in F (q, t ), can be
reduced to a single characteristic time, as the timescale range
of the α relaxation contains a strong contribution from soft
modes in the VDOS. This is clear from Eq. (3), where the
term ω2

p in the denominator gives a large weight to the low-ωp

part of the VDOS, which contains the boson peak (excess over
Debye ∼ω2

p law) proliferation of soft modes.

V. CONCLUSION

In conclusion, we have examined, for the paradigmatic
case of 2-adamantanone, how its VDOS influences dielectric
relaxation. We have found that (i) only small differences in
the VDOS between ordered and disordered phases exist, and
can be seen only at very low energy; (ii) such differences
concern mostly the optical modes, which for the monoclinic
disordered phase are at lower energies; (iii) the piling up of
the optical modes at low energy (at least in these organic
compounds) are the root cause for the “glassy behavior,” but
in a very subtle way. Regarding the last point, the role of
the optical modes is so subtle that a property directly linked
to the VDOS such as the dielectric loss of the disordered
phase (experimentally measured) and the “hypothetical” di-
electric loss of the orthorhombic fully ordered phase (not
available experimentally) would be the same. Finally, the
fitting using the GLE theoretical model allows one to isolate
the energy range of vibrational eigenmodes which participate
in the secondary (β) relaxation. This is particularly important
in systems like 2-adamantanone where there is no separa-
tion between α and secondary relaxations in the dielectric
loss. It is seen that the vibrational eigenmodes responsi-
ble for secondary relaxation fall in an energy range around
0.5 − 1 THz, which corresponds to the range where soft
optical modes appear in the VDOS. This points at an un-
precedented link between low-energy optical modes in or-
ganic molecular systems and secondary β relaxation, which
deserves further investigation in future work.
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