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Synopsis In this paper, we present in details a new method that extends the Jayatilaka X-ray 

constrained wave function approach in the framework of the Spin-Coupled technique of the Valance 

Bond theory. The proposed strategy enables the extraction of traditional chemical information (e.g., 

weights of resonance structures) from experimental X-ray diffraction data without imposing 

constraints a priori or performing further analyses a posteriori. Compared to the preliminary version 

of the method, X-ray constrained Hartree-Fock molecular orbitals are used in the calculations and a 

more balanced description of the electronic structure and better electron densities are obtained.   

Abstract Nowadays, one of the well-established methods of modern Quantum Crystallography is 

undoubtedly the X-ray constrained wave function (XCW) approach, a technique that enables the 

determination of wave functions that not only minimize the energy of the system under examination, 

but that also reproduce experimental X-ray diffraction data within the limit of the experimental errors. 

Initially proposed in the framework of the Hartree-Fock method, the strategy has been gradually 

extended to other techniques of Quantum Chemistry, but always remaining limited to a single-

determinant ansatz for the wave function to extract. This limitation has been recently overcome 

through the development of the novel X-ray constrained Spin-Coupled (XCSC) approach (Genoni, 

Franchini et al., 2018) that merges the XCW philosophy with the traditional Spin-Coupled strategy of 

Valence Bond theory. The main advantage of this new technique is the possibility of extracting 

traditional chemical descriptors (e.g., resonance structure weights) compatible with the experimental 
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diffraction measurements, without the need of introducing information a priori or performing 

analyses a posteriori. In this paper, we provide a detailed theoretical derivation of the fundamental 

equations at the basis of the XCSC method and we also introduce a further advancement of its original 

version, mainly consisting in the use of molecular orbitals resulting from XCW calculations at 

Hartree-Fock level to describe the inactive electrons in the X-ray constrained Spin-Coupled 

computations. Furthermore, we present and discuss extensive test calculations that we have performed 

by exploiting high-resolution X-ray diffraction data for salicylic acid and by adopting different basis-

sets. The computational tests have shown that the new technique does not suffer of particular 

convergence problems. Moreover, all the XCSC calculations provided resonance structure weights, 

spin-coupled orbitals and global electron densities slightly different form those resulting from the 

corresponding unconstrained computations. These discrepancies can be ascribed to the capability of 

the novel strategy in capturing the information intrinsically contained in the experimental data used as 

external constraints. 

Keywords: X-ray constrained wave function; Quantum Crystallography; Valence Bond theory; 

Spin-Coupled method.  

 

1. Introduction 

As is well known, in theoretical chemistry there exist two main approaches to investigate molecular 

electronic structure: the Valence Bond (VB) (Heitler & London, 1927; London, 1928; Pauling, 1939) 

and the Molecular Orbital (MO) (Hückel, 1930; Hückel, 1931; Roothaan, 1951; Dewar, 1952) 

theories. The former has been strictly related to the traditional chemical perception since its origin and 

significantly contributed to the definition of concepts (e.g., Lewis structures, resonance structure, 

hybridization, local bonds, electronegativity, etc.) that, even today, are of customary use among 

chemists and constitute the basis of the traditional chemical reasoning to interpret bonding and 

reactivity. On the contrary, the latter provides pictures of the electronic structure that are generally 

delocalized over the whole molecules under exam and that are consequently far from the traditional 

chemical notions. Despite this fact, the MO-based methods have become more and more predominant 

in electronic structure investigations, mainly due to their high predictive power, their intrinsic lower 

computational cost (at least for the basic strategies) and the ease with which they could be 

implemented into working computer codes (Shurki, 2006; Hiberty, 2007). Nevertheless, owing to the 

unquestionable higher chemical interpretability associated with the VB theory, different Valence 

Bond approaches have been continuously proposed over the years (Shurki, 2006; Hiberty & Shaik, 

2007; Goddard, 1967; Ladner & Goddard, 1969; Goddard et al., 1973; Gerratt & Lipscomb, 1968; 

Gerratt, 1971; Cooper et al., 1986; Cooper et al., 1991; Karadakov et al., 1992; Cooper et al., 1993; 

Raimondi et al., 1996; Thorsteinsson et al., 1996; Hirao et al., 1996; Voter & Goddard, 1981; 
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Hollauer & Nascimento, 1993; McDouall, 1992; van Lenthe & Balint-Kurti, 1983; Hiberty et al., 

1994; Song et al., 2003), each of them with its own features and with its main field of application. In 

this paper, we will particularly consider the Spin-Coupled (SC) method (Gerratt & Lipscomb, 1968; 

Gerratt, 1971; Cooper et al., 1986; Cooper et al., 1991; Karadakov et al., 1992; Cooper et al., 1993; 

Raimondi et al., 1996), a technique that uses a very general single-configuration wave function by 

including all the possible spin-coupling modes and without imposing any constraints (e.g., 

orthogonality constraints) on the orbitals expansions. Despite its intrinsically correlated nature, the 

approach keeps a high-degree of chemical interpretability. For example, the coefficients associated 

with the spin-coupling modes considered in the wave function are generally interpreted as a measure 

of the weights corresponding to the resonance structures of the investigated system, while the spatial 

extensions of the SC orbitals are generally exploited to get insights into the electron distributions 

around atoms and, consequently, into the atomic hybridizations. 

Therefore, due to the wealth of information that one can generally extract from SC wave functions, 

we have recently combined the Spin-Coupled method of the Valence Bond theory with the X-ray 

constrained wave function (XCW) philosophy (Jayatilaka, 1998; Jayatilaka & Grimwood, 2001; 

Grimwood & Jayatilaka, 2001; Bytheway, Grimwood & Jayatilaka, 2002; Bytheway, Grimwood, 

Figgis et al., 2002; Grimwood et al., 2003; Hudák et al., 2010; Jayatilaka, 2012; Bučinský et al., 

2016), thus giving rise to the novel X-ray constrained Spin-Coupled (XCSC) technique (Genoni, 

Franchini et al., 2018), with the final goal of proposing another useful method to extract chemical 

information directly from experimental X-ray diffraction data. 

In fact, along with strategies as the multipole models (Stewart, 1976; Hansen & Coppens, 1978) and 

the maximum entropy methods (MEM) (Sakata & Sato, 1990; Roversi et al., 1998; Van Smaalen & 

Netzel, 2009), which are density-based approaches, the XCW technique introduced by Jayatilaka in 

1998 (Jayatilaka, 1998) is currently one of the most important methods in the rising field of Quantum 

Crystallography (Genoni, Bučinský et al., 2018; Novara et al., 2018; Grabowsky et al., 2017; Massa 

& Matta, 2017; Tsirelson, 2017) and probably the most popular tool to extract wave functions and/or 

density matrices from experimental X-ray diffraction and/or scattering measurements. Its roots 

obviously date back to the pioneering methods proposed by Clinton, Massa and their coworkers to 

obtain N-representable one-electron density matrices from X-ray diffraction data (Clinton & Massa, 

1972; Clinton et al., 1973; Frishberg & Massa, 1981; Goldberg & Massa, 1983; Massa et al., 1985). 

Inspired by these works, different researchers have devised alternative techniques to determine 

“experimental” wave functions/density matrices (Aleksandrov et al., 1989; Howard et al., 1994; 

Snyder & Stevens, 1999; Tanaka, 1988; Tanaka, 2018; Hibbs et al., 2005; Waller et al., 2006; 

Schmider et al., 1990; Schmider et al., 1992; Weyrich, 2006; Gillet et al., 2001; Gillet & Becker, 

2004; Gillet, 2007; Guedidda et al.; 2018). Among them, it is worth citing Tanaka’s X-ray Atomic 

Orbital (XAO) (Tanaka, 1988) and X-ray Molecular Orbital (XMO) (Tanaka, 2018) methods, the 
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Molecular Orbital Occupation Number (MOON) approach (Hibbs et al., 2005; Waller et al., 2006) 

and, above all, the strategies introduced by Weyrich & Smith (Schmider et al., 1990; Schmider et al., 

1992; Weyrich, 2006) and by Gillet, Becker and coworkers (Gillet et al., 2001; Gillet & Becker, 2004; 

Gillet, 2007; Guedidda et al.; 2018) to reconstruct both the diagonal and the off-diagonal parts of the 

one-electron density matrices through joint refinements of X-ray diffraction data, magnetic structure 

factors and inelastic Compton scattering measurements. However, the above-mentioned Jayatilaka’s 

XCW approach (Jayatilaka, 1998; Jayatilaka & Grimwood, 2001; Grimwood & Jayatilaka, 2001) 

represents the major breakthrough in this research field. In fact, bearing in mind Gilbert’s corollary to 

Coleman’s theorem (Gilbert, 1975), according to which there is in principle an infinite number of 

wave functions compatible with a given electron density, Jayatilaka proposed a method that can be 

considered as a practical implementation of Henderson & Zimmermann’s idea (Henderson & 

Zimmermann, 1976) and that consists in finding wave functions that not only fit a set of 

diffraction/scattering data within the limit of the experimental uncertainties (as in all the other 

methods mentioned above), but that also minimize the energy of the systems under exam. 

Originally devised in the framework of the Restricted Hartree-Fock (RHF) formalism (Jayatilaka, 

1998; Jayatilaka & Grimwood, 2001; Grimwood & Jayatilaka, 2001; Bytheway, Grimwood & 

Jayatilaka, 2002; Bytheway, Grimwood, Figgis et al., 2002; Grimwood et al., 2003; Jayatilaka, 2012), 

the XCW method has been progressively improved by combining it to other strategies of quantum 

chemistry, such as the unrestricted Hartree-Fock technique (Hudák et al., 2010), relativistic 

approaches (particularly, the second-order Douglas-Kroll-Hess (Hudák et al., 2010) and the Infinite-

Order Two-Component (Bučinský et al., 2016) methods) and Density Functional Theory (DFT) 

(Jayatilaka, 2012). Therefore, the proposed XCW strategies have been mainly developed in 

combination with Molecular Orbital approaches, thus providing completely delocalized pictures of 

molecular electronic structures. To recover the traditional chemical interpretability from the obtained 

“experimental” wave functions, suitable a posteriori techniques have been exploited, as done for 

example by Jayatilaka, Grabowsky and coworkers (Jayatilaka & Grimwood, 2004; Grabowsky et al., 

2010; Grabowsky et al., 2011; Grabowsky et al., 2012), who have successfully applied topological 

strategies (e.g., Quantum Theory of Atoms in Molecules (QTAIM) (Bader, 1990), the Electron 

Localization Function (ELF) (Becke & Edgecombe, 1990), the Electron Localizability Indicator (ELI) 

(Kohout, 2004) and the Localized Orbital Locator (LOL) (Schmider & Becke, 2000)) to get back to 

the traditional bonding patterns for the investigated systems. For the sake of completeness, another 

possibility suggested by the Grabowsky group is the application of the Natural Bond Orbitals (NBO) 

method (Weinhold & Landis, 2001) and of the Natural Resonance Theory (NRT) (Glendening & 

Weinhold, 1998) to determine the weights of the resonance structures for the molecules under exam 

(Fugel, Klemiss et al., 2018; Fugel, Beckmann et al., 2018). 
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Before the recent introduction of the XCSC method (Genoni, Franchini et al., 2018), which will be 

described in detail in this paper, the only techniques that allowed to directly obtain X-ray constrained 

wave functions already close to the traditional chemical perception without the application of 

subsequent bonding-analyses were the XC-ELMO (Genoni, 2013a; Genoni, 2013b; Dos Santos et al., 

2014; Genoni & Meyer, 2016) and XC-ELMO-VB (Genoni, 2017; Casati et al., 2017) approaches, 

even if both of them are characterized by the introduction of preliminary chemical constraints. In fact, 

the XC-ELMO really provides X-ray constrained molecular orbitals strictly localized on elementary 

molecular fragments corresponding to atoms, bonds and functional groups, namely the so-called 

Extremely Localized Molecular Orbitals (ELMOs) (Stoll et al., 1980; Fornili et al., 2003; Genoni & 

Sironi, 2004; Genoni, Fornili & Sironi, 2005; Genoni et al., 2005; Sironi et al, 2007; Sironi et al, 

2009; Meyer et al., 2016a; Meyer et al., 2016b; Meyer & Genoni, 2018). Nevertheless, it is the user 

that preliminarily decides the fragmentation of the molecules into subunits according to the chemical 

intuition or the specific computational needs, thus partially biasing the results of the calculations. In a 

quite analogous way, in the XC-ELMO-VB method the global wave function is written as a linear 

combination of pre-computed ELMO wave functions corresponding to the different resonance 

structures that one wants to take into account, but, during the computations, only the weights of these 

resonance structures are determined, while the ELMO wave functions remain unchanged. 

This scenario has thus prompted us to develop a novel XCW technique able to extract chemically 

meaningful information from X-ray diffraction data without applying a posteriori techniques for the 

analysis of the obtained “experimental” wave functions or without imposing chemical constraints a 

priori. As mentioned above, this has been accomplished through the development of the new X-ray 

constrained Spin-Coupled method (Genoni, Franchini et al., 2018), which is the extension of the X-

ray constrained wave function approach to the Spin-Coupled strategy of the Valence Bond theory. 

Our very preliminary investigations (Genoni, Franchini et al., 2018) have shown that the 

determination of XCSC wave functions is quite straightforward. The new technique is efficiently able 

to capture crystal-field effects intrinsically contained in the experimental structure factors used as 

external constraints in the XCW calculations, particularly revealing slight but non-negligible 

differences between the electronic structures in the gas phase and in the solid-state. 

In this paper, after presenting for the first time all the theoretical details of the new method, we will 

also discuss the results of new test calculations to further evaluate the overall performances of the 

technique. Finally, in the last section, we will draw some general conclusions and we will indicate 

possible future perspectives and extensions of the proposed strategy. 

2. Theory 

In this section we will describe the theory at the basis of the new X-ray constrained Spin-Coupled 

method. In particular, we will focus i) on the basic assumptions of the technique, ii) on the 
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presentation of the new wave function ansatz, iii) on the expression of the Spin-Coupled electron 

density and iv) on the implementation of the new strategy. For the sake of completeness, the detailed 

mathematical derivation to obtain the analytical expressions of the first and second derivatives of the 

statistical agreement between theoretical and experimental structure factors amplitudes is given in the 

final Appendix of the paper. 

2.1. Basic assumptions of the method  

As in any XCW method ((Jayatilaka, 1998; Jayatilaka & Grimwood, 2001; Grimwood & Jayatilaka, 

2001; Bytheway, Grimwood & Jayatilaka, 2002; Bytheway, Grimwood, Figgis et al., 2002; 

Grimwood et al., 2003; Hudák et al., 2010; Jayatilaka, 2012; Bučinský et al., 2016; Genoni, 2013a; 

Genoni, 2013b; Dos Santos et al., 2014; Genoni & Meyer, 2016; Genoni, 2017; Casati et al., 2017), 

also the new X-ray constrained Spin-Coupled approach works for molecular crystals and assumes 

them as collections of non-interacting molecular units, which are described by formally identical and 

symmetry-related wave functions. On the basis of this working hypothesis and of the additional 

assumption that each non-interacting unit corresponds to a symmetry-unique portion of the crystal 

unit-cell, the electron density of the crystal unit-cell can be expressed as the sum of the 𝑁𝑚 crystal-

unit electron densities 𝜌𝑗(𝒓) related to the reference distribution 𝜌0(𝒓) through the unit-cell symmetry 

operations {𝑸𝑗, 𝒒𝑗}: 

𝜌𝑐𝑒𝑙𝑙(𝒓) =∑𝜌𝑗(𝒓)

𝑁𝑚

𝑗=1

=∑𝜌0[𝑸𝑗
−1(𝒓 − 𝒒𝑗)]

𝑁𝑚

𝑗=1

        (1) 

This equation is exact only provided that 𝜌0(𝒓) is not obtained by means of an isolated computation 

on the reference crystal-unit. In the XCW approaches this requirement is satisfied by looking for wave 

function Ψ0 associated with electron density 𝜌0(𝒓) that minimizes the energy of the reference crystal-

unit and that, at the same time, reproduces a set of experimental structure factors amplitudes within 

the limit imposed by the experimental uncertainties. In this way the effects of the surrounding crystal-

field are intrinsically taken into account in an effective way, although the XCW computations 

formally consist in single-molecule computations. 

In other words, the new XCSC method and all the XCW techniques consist in determining wave 

function Ψ0 of the reference crystal-unit that minimizes the Jayatilaka functional: 

𝐽[Ψ0] =
⟨Ψ0|ℋ̂0|Ψ0⟩

⟨Ψ0|Ψ0⟩
+ 𝜆 (𝜒2[Ψ0] − Δ)

= 𝑊[Ψ0] + 𝜆 (𝜒
2[Ψ0] − Δ)                 (2), 

In equation (2), the first term of the functional is obviously the energy part with ℋ̂0 as the non-

relativistic Hamiltonian operator for the reference unit, while the second term of the functional is the 
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part that takes into account the experimental constraints given by X-ray diffraction data, with 𝜆 as an 

external multiplier that is manually adjusted during the calculations and that gives the strength of the 

experimental constraints, Δ  as the desired agreement between theoretical and observed structure 

factors amplitudes (usually set equal to 1). 𝜒2  is a measure of the statistical agreement between 

calculated and experimental values: 

𝜒2 =
1

𝑁𝑟 −𝑁𝑝
 ∑

(𝜂|𝐹𝒉
𝑐𝑎𝑙𝑐| − |𝐹𝒉

𝑒𝑥𝑝
|)
2

𝜎𝒉
2

𝒉

       (3) 

with 𝑁𝑟 as the number of experimental constraints, 𝑁𝑝 as the number of adjustable parameters, 𝒉 as 

the triad of Miller indices that characterize the reflection, 𝜎𝒉 as the experimental error associated with 

the generic experimental structure factor amplitude |𝐹𝒉
𝑒𝑥𝑝
| and 𝜂 as an overall 𝒉-independent scale-

factor that multiplies each computed structure factor amplitude |𝐹𝒉
𝑐𝑎𝑙𝑐| and that is obtained through 

minimization of the 𝜒2 value. 

For the sake of completeness, considering the basic assumptions of the XCW philosophy and the fact 

that structure factors are Fourier transforms of the unit-cell electron density, we remind that the 

calculated structure factors can be computed like this: 

𝐹𝒉
𝑐𝑎𝑙𝑐 = 𝑇𝑟[𝑫0 𝑰𝒉]       (4) 

with 𝑫0 as the one-particle density matrix associated with wavefunction Ψ0 for the reference crystal-

unit and 𝑰𝒉 as the matrix of the Fourier-transform integrals of the basis functions products summed 

over the 𝑁𝑚 equivalent unit-cell sites, namely 

[ 𝑰𝒉]𝜇𝜐 =∑𝑒𝑖2𝜋 𝒒𝒋∙(𝑩𝒉) 𝑇𝜇𝜐[𝑩
−1𝑸𝑗

𝑇𝑩𝒉; 𝑼𝜇 , 𝑼𝜈]

𝑁𝑚

𝑗=1

∫𝑑𝒓 𝜒𝜇(𝒓) 𝜒𝜐(𝒓) 𝑒
𝑖2𝜋 (𝑸𝑗𝒓)∙(𝑩𝒉)     (5) 

In equation (5), 𝑩 is the reciprocal lattice matrix and 𝑇𝜇𝜐[𝑩
−1𝑸𝑗

𝑇𝑩𝒉; 𝑼𝜇 , 𝑼𝜈] is a term that accounts 

for the influence of the thermal motion on the electron density and that, in our new XCSC technique, 

has been evaluated following the thermal smearing approach proposed by Stewart (Stewart, 1969). It 

is worth noting that this term parametrically depends on the symmetric matrices 𝑼𝜇 and 𝑼𝜈 of the 

Anisotropic Displacement Parameters (ADPs) of the atoms on which basis functions 𝜒𝜇(𝒓) and 𝜒𝜐(𝒓) 

are centered. As in any X-ray constrained wavefunction fitting calculation, these ADPs are read as 

input parameters and never optimized during the computations. 

2.2. The Spin-Coupled wave function ansatz 

In the novel X-ray constrained Spin-Coupled method, the analytical form for wave function Ψ0 

associated with the reference crystal-unit is the one of the traditional Spin-Coupled wave function for 

a system of 𝑁 electrons in the spin-state (𝑆,𝑀): 
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Ψ0 = 𝒩 Ψ0
𝑆𝐶 = 𝒩∑𝑐𝑆,𝑘  𝜓𝑆,𝑀;𝑘

𝑁 =

𝑓𝑆
𝑁𝑣

𝑘=1

= 𝒩∑𝑐𝑆,𝑘

𝑓𝑆
𝑁𝑣

𝑘=1

 𝒜̂(𝜙1
𝑐 𝜙̅1

𝑐…𝜙𝑗
𝑐  𝜙̅𝑗

𝑐…𝜙𝑁1
𝑐  𝜙̅𝑁1

𝑐  𝛗v Θ𝑆,𝑀;𝑘
𝑁𝑣 )  (6) 

where S and M are the quantum numbers associated with the spin operators 𝑆̂2 and  𝑆̂𝑧, respectively, 

𝒩  is the normalization constant,   𝑓𝑆
𝑁𝑣  is the number of linearly independent spin-eigenfunctions 

{Θ𝑆,𝑀;𝑘
𝑁𝑣 } and, equivalently, of linearly independent Spin-Coupled structures {𝜓𝑆,𝑀;𝑘

𝑁 }  with weights 

given by the spin-coupling coefficients {𝑐𝑆,𝑘}, and 𝒜̂ is the antisymmetrizer defined as: 

𝒜̂ =
1

√𝑁!
 ∑ (−1)𝑝 

𝒫̂∈𝑆𝑁

𝒫̂        (7) 

with 𝒫̂  as a permutation operator belonging to the symmetric group 𝑆𝑁  and with parity (−1)𝑝 . 

Furthermore, {𝜙𝑖
𝑐}𝑖=1
𝑁1  is the set of frozen, doubly occupied “core orbitals” that can be preliminarily 

obtained by means of unconstrained Hartree-Fock or X-ray constrained Hartree-Fock calculations and 

that describe the subset of 2𝑁1 core (or inactive) electrons, while 𝛗v is the product of the 𝑁𝑣 “Spin-

Coupled orbitals” 

𝛗v (𝒓1, 𝒓2, … 𝒓𝑁𝑣) =  𝜑1(𝒓1) 𝜑2(𝒓2)…  𝜑𝑁𝑣(𝒓𝑁𝑣)      (8) 

that describe the 𝑁𝑣  valence (or active) electrons. As in every SC calculations, these are the only 

electrons that are really treated at Spin-Coupled level in order to reduce the computational cost. The 

“core orbitals” are constructed orthonormal among each other and orthogonal to the “Spin-Coupled 

orbitals”, on which, on the contrary, no orthogonality constraints are imposed: 

{
 
 

 
 ⟨𝜙𝑖

𝑐|𝜙𝑗
𝑐⟩ = 𝛿𝑖𝑗

⟨𝜙𝑖
𝑐|𝜑𝑗⟩ = 0                       (9) 

⟨𝜑𝑖|𝜑𝑗⟩ = 𝑠𝑖𝑗
  

 

Here it is worth noting that, since both unconstrained and X-ray constrained Hartree-Fock orbitals are 

generally delocalized over all the systems under examination, they are usually localized by means of 

traditional a posteriori techniques (Boys, 1969; Foster & Boys, 1969; Edmiston & Ruedenberg, 1963; 

Edmiston & Ruedenberg, 1965; Pipek & Mezey, 1989) to select which of them have to be used to 

describe the core (inactive) electrons. As a consequence, the “core orbitals” are automatically 

orthonormal among each other, while, to guarantee the orthogonality between the “core orbitals” and 

the Spin-Coupled orbitals, the latter are expanded on the set of the remaining localized occupied 
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molecular orbitals (namely, those non-selected as “core orbitals”) and of all the virtual (Hartree-Fock 

or X-ray constrained Hartree-Fock) molecular orbitals, namely: 

𝜑𝑖(𝒓) = ∑ 𝐶𝜇𝑖  𝜙𝜇
(𝑋𝐶)𝐻𝐹(𝒓)

𝑀

𝜇=𝑁1+1

          (10), 

where M is the size of the adopted basis-set (i.e., the number of atomic basis functions initially used to 

perform the preliminary Hartree-Fock or X-ray constrained Hartree-Fock calculation). 

Due to the non-orthogonality of the SC orbitals, also the Spin-Coupled structures in equation (6) are 

non-orthogonal. Therefore, the spin-coupling coefficients {𝑐𝑆,𝑘} do not directly give the weights of the 

corresponding structures {𝜓𝑆,𝑀;𝑘
𝑁 }. One of the possible ways of obtaining the real weights is given by 

the Chirgwin-Coulson coefficients (Chirgwin & Coulson, 1950), which have been used in this work 

and are defined like this: 

𝑤𝑆,𝑘 = |𝑐𝑆,𝑘|
2
+∑𝑐𝑆,𝑘  𝑐𝑆,𝑗 𝑆𝑘𝑗
𝑗≠𝑘

    (11) 

where  𝑆𝑘𝑗 is the overlap integral between Spin-Coupled structures 𝜓𝑆,𝑀;𝑘
𝑁  and 𝜓𝑆,𝑀;𝑗

𝑁 . 

To complete the overview on the SC wave function ansatz, it is also important to note that each 

generic spin-eigenfunction can be expressed as linear combination of spin primitive functions, namely 

Θ𝑆,𝑀;𝑘
𝑁𝑣 =∑𝑑𝑖,𝑘

𝑆  𝜗𝑖 

𝑁𝑑

𝑖=1

       (12) 

where  𝑁𝑑 = (
𝑁𝑣
𝑁𝛼
) = (

𝑁𝑣
𝑁𝛽
), with 𝑁𝛼 and 𝑁𝛽  as the number of spin functions 𝛼 and 𝛽 in the generic 

spin primitive function, respectively. The values of the coefficients {𝑑𝑖,𝑘
𝑆 } depend on the adopted basis 

to describe the spin-space. In our work we have chosen the one constituted of Rumer spin-

eigenfunctions (Simonetta et al., 1968) and, for this reason, {𝑑𝑖,𝑘
𝑆 } can be only equal to 0 and ±1. 

Now, if we introduce equation (12) into (6), the Spin-Coupled wave function ansatz can be also 

rewritten like this: 

Ψ0 =  𝒩∑𝑏𝑆,𝑖

𝑁𝑑

𝑖=1

 𝒜̂(𝜙1
𝑐 𝜙̅1

𝑐…𝜙𝑗
𝑐  𝜙̅𝑗

𝑐…𝜙𝑁1
𝑐  𝜙̅𝑁1

𝑐  𝛗v 𝜗𝑖)    (13) 

where 

𝑏𝑆,𝑖 = ∑ 𝑐𝑆,𝑘 𝑑𝑖,𝑘
𝑆

𝑓𝑆
𝑁𝑣

𝑘=1

      (14) 
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Since the generic spin primitive function 𝜗𝑖 is a product of 𝑁𝑣 spin functions 𝛼 and 𝛽, product 𝛗v 𝜗𝑖 

in equation (13) is actually a product of spinorbitals, namely 

𝛗v 𝜗𝑖 = 𝜑1 𝜑2…  𝜑𝑁𝑣𝜗𝑖 = 𝜑1
𝑖  𝜑2

𝑖 … 𝜑𝑁𝑣 
𝑖        (15) 

where  𝜑𝑗
𝑖 = 𝜑𝑗  𝜔𝑗

𝑖  with 𝜔𝑗
𝑖 as the j-th spin function (𝛼 or 𝛽) of the i-th spin primitive function 𝜗𝑖. 

Therefore, in equation (13), the antisymmetrizer applied to the spinorbitals product generates a Slater 

determinant and, consequently, the Spin-Coupled ansatz becomes:  

Ψ0 = 𝒩∑
𝑏𝑆,𝑖

√𝑁!
 |𝜙1

𝑐  𝜙̅1
𝑐…𝜙𝑗

𝑐  𝜙̅𝑗
𝑐…𝜙𝑁1

𝑐  𝜙̅𝑁1
𝑐  𝜑1

𝑖  𝜑2
𝑖 … 𝜑𝑁𝑣 

𝑖 |

𝑁𝑑

𝑖=1

 = 𝒩∑𝑏𝑆,𝑖

𝑁𝑑

𝑖=1

Ω𝑖    (16), 

namely, it can be written as a linear combination of Slater determinants {Ω𝑖}. Furthermore, exploiting 

equation (16) and bearing in mind the Löwdin rules (Löwdin, 1955; McWeeny, 1992) for the 

computation of overlap integrals and matrix elements between Slater determinants constructed with 

non-orthogonal orbitals, it is easy to show that 

𝒩 = 𝔇−
1
2     (17) 

where 𝔇 is the zero-th order supercofactor given by 

𝔇 = ∑ 𝑏𝑆,𝑖

𝑁𝑑

𝑖,𝑗=1

𝑏𝑆,𝑗 det[𝑶𝒊𝒋]      (18) 

with 𝑶𝒊𝒋 as the matrix of the overlap integrals between the spinorbitals of Slater determinants Ω𝑖 and 

Ω𝑗 appearing in equation (16). Therefore, the wave function ansatz for the reference crystal-unit can 

be finally rewritten in this way: 

Ψ0 = 𝔇
−1
2∑

𝑏𝑆,𝑖

√𝑁!
 |𝜙1

𝑐  𝜙̅1
𝑐…𝜙𝑗

𝑐  𝜙̅𝑗
𝑐…𝜙𝑁1

𝑐  𝜙̅𝑁1
𝑐  𝜑1

𝑖  𝜑2
𝑖 … 𝜑𝑁𝑣 

𝑖 |

𝑁𝑑

𝑖=1

 = 𝔇−
1
2∑𝑏𝑆,𝑖

𝑁𝑑

𝑖=1

Ω𝑖    (19) 

2.3. The Spin-Coupled electron density 

Exploiting wave function Ψ0, the electron density 𝜌0(𝒓) of the reference crystal-unit can be simply 

obtained like this: 

𝜌0(𝒓) = ∫ 𝑑𝜔1 𝑑𝒙2 𝑑𝒙3…  𝑑𝒙𝑁  Ψ0(𝒙1, 𝒙2, … , 𝒙𝑁) Ψ0
∗(𝒙1, 𝒙2, … , 𝒙𝑁)

 𝒙1= 𝒙

     (20) 

Substituting (19) in (20) and using again the Löwdin rules, we obtain: 

𝜌0(𝒓) = 𝜌𝑐𝑜𝑟𝑒(𝒓) +
𝜌𝑆𝐶(𝒓)

𝔇
= 2 ∑ |𝜙𝑡

𝑐(𝒓)|2 +

𝑁1

𝑡=1

1

𝔇
 ∑ 𝜑𝑡(𝒓) 𝜑𝑢(𝒓) 𝔇(𝑡|𝑢)

𝑁𝑣

𝑡,𝑢=1

     (21) 
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where 𝔇(𝑡|𝑢) is the fist-order supercofactor, which is defined like this: 

𝔇(𝑡|𝑢) = ∑ 𝑏𝑆,𝑖

𝑁𝑑

𝑖,𝑗=1

𝑏𝑆,𝑗  𝐼𝑡𝑢
𝑖𝑗

  (−1)𝑡+𝑢  det[𝑶𝒊𝒋(𝑡|𝑢)]       (22)      

with 𝐼𝑡𝑢
𝑖𝑗

 as the spin-integral between the spin-part of the t-th spinorbital of the i-th Slater determinant 

and the spin-part of the u-th spinorbital of the j-th Slater determinant, and  𝑶𝒊𝒋(𝑡|𝑢) as the (N-1)-th 

order matrix obtained by deleting row t and column u of matrix 𝑶𝒊𝒋, which was defined above (the 

more general definition of r-th order supercofactors and the main properties of the different kind of 

supercofactors are given in Appendix A1). 

2.4. Implementation of the XCSC technique 

Considering the analytical form of the new wave function ansatz (see particularly equation (6)) and of 

the active SC orbitals (see equation (10)), the new X-ray constrained Spin-Coupled method consists in 

determining the coefficients {𝐶𝜇𝑖}  of the Spin-Coupled orbitals expansions and the spin-coupling 

coefficients {𝑐𝑆,𝑘} that minimize the Jayatilaka functional shown in equation (2), which can be re-

expressed in this way to stress the dependence of the functional on the coefficients that must be 

determined: 

𝐽[{𝐶𝜇𝑖}, {𝑐𝑆,𝑘}] = 𝑊[{𝐶𝜇𝑖}, {𝑐𝑆,𝑘}] + 𝜆 (𝜒
2[{𝐶𝜇𝑖}, {𝑐𝑆,𝑘}] − Δ)      (23) 

To accomplish this task, we started from a working Spin-Coupled program (Cooper et al., 1993) 

where we have implemented a Newton-Raphson procedure based on the “quadratic hill climbing” 

algorithm proposed by Goldfield and coworkers (Goldfield et al., 1966). The algorithm requires the 

computation of analytical first and second derivatives of functional (23) with respect to Spin-Coupled 

orbitals and spin-coupling coefficients, whose mathematical derivations and expressions are shown in 

Appendix A2. Convergence is reached when the norm of the functional gradient is lower than 1 ∙

10−6  and all the Hessian eigenvalues are positive. 

 

3. Test Calculations 

3.1. Preliminary information 

To better assess the performances of the new X-ray constrained Spin-Coupled method, we have 

exploited the high-resolution X-ray diffraction data (𝑠𝑖𝑛𝜃 𝜆⁄ = 1.08 Å−1) for salicylic acid collected 

at 90 K by Munshi and Guru-Row (Munshi & Guru-Row, 2006). In particular, the molecular 

geometry obtained from the X-ray diffraction experiment (see Figure 1) has been exploited to carry 

out calculations at Restricted Hartree-Fock (RHF), X-ray constrained Restricted Hartree-Fock (XC-
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RHF), Spin-Coupled (SC) and X-ray constrained Spin-Coupled (XCSC) levels. Furthermore, since 

one of the goals of our investigation was also to evaluate how the results obtained through the new 

XCSC strategy change in function of the adopted basis-sets, we have performed all the above 

mentioned computations using the 6-31G, 6-311G, 6-31G(d) and 6-311G(d) sets of basis functions. 

 

Figure 1 X-ray crystal structure of salicylic acid with labels for the carbon atoms of the aromatic 

ring and Spin-Coupled resonance structures taken into account in the unconstrained and X-ray 

constrained Spin-Coupled calculations (A, D: Kekulé resonance structures; B, C and E: Dewar 

resonance structures). 

For all the unconstrained and X-ray constrained Spin-Coupled calculations, only the 6 𝜋 electrons of 

the aromatic ring have been considered as valence (active) electrons and, consequently, fully treated 

at spin-coupled level (see wave function ansatz (6)). The other core (inactive) electrons have been 

described by frozen doubly occupied “core” molecular orbitals and always kept orthogonal to the 

(active) spin-coupled space (see equations (9) and following paragraph in the Theory Section). In 

particular, two kinds of core orbitals have been considered for our SC and XCSC computations. In 

one case (and in analogy with the original version of the XCSC approach (Genoni, Franchini et al., 

2018)) we have used unconstrained RHF molecular orbitals, which allowed us to perform calculations 

that will be hereafter labeled as SC.0 and XCSC.0. In the other case we have used molecular orbitals 

that resulted from preliminary XC-RHF computations and that enabled us to carry out new types of 

Spin-Coupled and X-ray constrained Spin-Coupled calculations. They will be labeled as SC.1 and 

XCSC.1, respectively. As we will discuss hereinafter, this represents an important step forward 

compared to the previous version of the X-ray constrained Spin-Coupled strategy (Genoni, Franchini 

et al., 2018) because also the inactive part of the spin-coupled wave function intrinsically takes into 

account the effect of the experimental diffraction data, thus leading to a more balanced description of 

the electronic structure. 
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For the sake of completeness, it is also worth noting that, due to their intrinsic delocalized nature, the 

RHF and XC-RHF occupied molecular orbitals have been preliminarily localized exploiting the 

Pipek-Mezey localization technique (Pipek & Mezey, 1989) to determine which of them to freeze for 

the description of the inactive electrons and which of them to use in the expansion of the active Spin-

Coupled orbitals (see equation (10)). 

Furthermore, since for a system of 𝑁𝑣 active electrons in the spin-state (𝑆,𝑀) the number of possible 

spin-coupling modes are given by 

𝑓𝑆
𝑁𝑣 =

(2𝑆 + 1)𝑁𝑣!

(
1
2𝑁𝑣 + 𝑆 + 1) ! (

1
2𝑁𝑣 − 𝑆) !

      (24)     

and since in our investigations we treated only singlet states, in all our SC and XCSC calculations we 

have considered 5 spin-coupled structures (see again equation (6)), which correspond to the 5 

resonance structures depicted in Figure 1, where structures A and D correspond to the traditional 

Kekulé resonance structures, while B, C and E are the Dewar ones.  

Concerning the XC-RHF and all types of XCSC calculations we also exploited the lattice parameters 

(namely, unit-cell lengths and angles), ADPs and structure factors amplitudes deposited with the 

considered crystallographic structures. Only structure factor amplitudes characterized by |𝐹𝒉
𝑒𝑥𝑝
| >

3 𝜎𝒉 were considered in the computations, which resulted in the selection of 6157 unique reflections. 

Furthermore, all the X-ray constrained computations (i.e., XC-RHF, XCSC.0 and XCSC.1) were 

carried out by gradually increasing the value of the external multiplier 𝜆  from 0 (unconstrained 

computations) and, as we will show below in more details, to halt the XCSC calculations we have 

proposed and adopted a novel termination criterion based on the sign of the second derivative of 𝜒2 

with respect to 𝜆. 

While unconstrained RHF and XC-RHF computations were carried out using the quantum chemistry 

package Gaussian09 (Frisch et al., 2009) and the quantum crystallography software TONTO 

(Jayatilaka & Grimwood, 2003), respectively, all kind of XCSC calculations were performed by 

exploiting our in-house program mentioned in the Theory section. 

To evaluate the general capabilities of the XCSC technique, in the next subsections we will show the 

changes in the 𝜒2 statistical agreements, in the weights of the resonance structures and in the Spin-

Coupled orbitals when the experimental X-ray diffraction data are taken into account in the Spin-

Coupled calculations. Furthermore, we will also present how these changes are influenced by the 

adopted basis-set.  

For the sake of clarity, we will start discussing the results of the SC.0 and XCSC.0 computations. 

Afterwards we will focus on the outcomes of the SC.1 and XCSC.1 calculations. Finally, in the last 

part of this section, we will also show the effects of accounting for the experimental structure factors 
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on the global electron density distributions, both by visual inspection of density differences and 

through the evaluation of similarity indexes between the obtained electron densities. 

3.2. Calculations based on unconstrained RHF molecular orbitals 

In the first validation tests, both Spin-Coupled and X-ray constrained Spin-Coupled calculations were 

performed using the unconstrained RHF molecular orbitals to describe the inactive electrons. The 𝜒2 

and energy values resulting from these computations are reported in Table 1 (“RHF MOs” column), 

where it is easy to observe that, for all the considered basis-sets, the statistical agreement with the 

experimental data always slightly improves when the XCSC.0 computations are performed. 

Furthermore, as one should expect, the XCSC.0 description improves (always in terms of agreement 

with the experimental data) when larger and more flexible basis-sets are taken into account, with the 

𝜒2 value decreasing from 13.51 (6-31G basis-set) to 8.07 (6-311G(d) basis-set). Nevertheless, it is 

also evident that, despite the application of the X-ray constrained Spin-Coupled approach, for all the 

basis sets, the values of the statistical agreements remain quite high and close to those associated with 

the unconstrained RHF and SC.0 computations. The reason is that, in all the XCSC.0 calculations, 

only 6 electrons were actually treated at XCSC level, while the remaining ones (namely, the inactive 

electrons) were described by doubly occupied molecular orbitals that resulted from unconstrained 

RHF computations and that, consequently, cannot take into account the effect of the experimental X-

ray diffraction data. To reach lower values of the 𝜒2  statistical agreements by means of XCSC 

calculations, the only possibility is to exploit XC-RHF molecular orbitals to describe the core 

electrons. This has been actually done through the SC.1 and XCSC.1 computations, which will be 

discussed in the next subsection. For the sake of completeness, in Table 1 it is also possible to notice 

that, for all the basis-sets, the energies associated with the XCSC.0 wave functions are higher than 

those corresponding to the SC.0 wave functions. As already discussed in our preliminary work on the 

XCSC method (Genoni, Franchini et al., 2018), this arises from the fact that in every X-ray 

constrained wave function technique, the determination of the “experimental” wave function is 

accomplished without introducing new variational parameters.  Consequently, the resulting spin-

coupled orbitals and the spin-coupling coefficients represent a minimum point for the Jayatilaka 

functional (see equation (23)), but not for the energy of the system. 
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Table 1 𝜒2 statistical agreement and energy values for all the unconstrained and X-ray constrained 

calculations performed on salicylic acid. The value of the external parameter 𝜆 is also reported for X-

ray constrained calculations. 

 

Method & Basis-Set 

 Calculations with RHF MOs (a)  Calculations with XC-RHF MOs (b) 

 𝜆𝑚𝑎𝑥 𝜒2 Energy (𝐸ℎ)  𝜆𝑚𝑎𝑥 𝜒2 Energy (𝐸ℎ) 

6-31G         

RHF / XC-RHF    14.05 -492.975931  0.100 5.66 -492.817879 

SC.0 / SC.1    14.01 -493.037815    5.87 -492.884062 

 XCSC.0 / XCSC.1  0.100 13.51 -493.020372  0.326 5.58 -492.861463 
         

6-311G         

RHF / XC-RHF    13.70 -493.088826  0.105 4.93 -492.919497 

SC.0 / SC.1    13.66 -493.150622    5.14 -492.984446 

XCSC.0 / XCSC.1  0.105 13.08 -493.129330  0.315 4.86 -492.961320 
         

6-31G(d)         

RHF / XC-RHF    9.34 -493.179441  0.150 3.59 -493.053881 

SC.0 / SC.1    9.14 -493.238706    3.74 -493.120653 

XCSC.0 / XCSC.1  0.150 8.56 -493.207299  0.610 3.52 -493.096062 
         

6-311G(d) 

        

RHF / XC-RHF 
 

  8.85 -493.285839 
 

0.140 3.49 -493.172468 

SC.0 / SC.1 
 

  8.67 -493.344578 
 

  3.63 -493.237150 

XCSC.0 / XCSC.1 
 

0.140 8.07 -493.314518 
 

0.640 3.41 -493.209195 

(a) Results for RHF, SC.0 and XC.0 calculations 

(b) Results for XC-RHF, SC.1 and XCSC.1 calculations 

As already anticipated, for the termination of the XCSC calculations performed in this study we have 

adopted a new criterion. This point deserves to be discussed in more details because, despite many 

suggestions have been proposed over the years, the determination of the exact value of 𝜆 at which 

stopping the X-ray constrained computations is still an open and debated problem. The new criterion 

simply consists in halting the X-ray constrained calculations when the curvature of the typical graph 

of 𝜒2  in function of 𝜆  changes, namely when the second derivative 𝜕2𝜒2 𝜕𝜆2⁄  becomes negative 

(inflection point). In fact, by plotting 𝜒2 against 𝜆 for all the XCSC.0 calculations, we easily observed 

clear changes in the curvature of the graphs (see Figures S1-S4 in the Supporting Information) and, 

above all, we have also noted that the XCSC computations generally stopped converging few steps 

after the inflection point. This observation was further corroborated by the fact that, for 𝜆 values only 
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slightly larger than the detected inflection points, even the more traditional XC-RHF computations 

showed instabilities and difficulties in reaching convergence. In other words, the second derivative 

𝜕2𝜒2 𝜕𝜆2⁄  can be considered as a useful descriptor to detect the onset of instability in the X-ray 

constrained wave function procedure. Although at the moment it is only based on empirical 

observations, the new criterion seems quite promising and robust. In our opinion, it will deserve 

further investigations in the future by means of more extensive tests and statistical analyses, also 

applying it to traditional X-ray constrained calculations as the XC-RHF ones. However, it is also 

worth pointing out that the use of the adopted termination criterion does not invalidate the new X-ray 

constrained Spin-Coupled method and the assessment of its performances discussed in the present 

paper. 

In the Introduction we have also mentioned that one of the novelties introduced through the new X-

ray constrained Spin-Coupled techniques is the possibility of extracting resonance structures weights 

for the systems under examination directly from the collected experimental diffraction data. In Table 

2, we have reported the Chirgwin-Coulson weights corresponding to resonance structures of salicylic 

acid in its singlet state as obtained from the SC.0 and XCSC.0 calculations. The trend is generally 

analogous for almost all the basis-sets. Concerning Kekulé structures A and D, we can see that, while 

the weight of the former slightly increases in almost all the cases when experimental data are taken 

into account (the only exception is for basis-set 6-31G(d)), the importance of the latter always 

decreases, with the largest variations observed for basis-sets with polarization functions (∆ = -2.5 and 

∆ = -3.3 for basis-sets 6-31G(d) and 6-311G(d), respectively). Considering the remaining Dewar 

structures (namely, structures B, C and E), we can observe that structure B loses its weight when X-

ray data are included in the calculations and, interestingly, all the X-ray constrained computations 

provided very close values. On the contrary, structure C is characterized by larger weights in the 

XCSC.0 calculations and, also in this case, the resulting values are very similar among them. 

Structure E is the only one for which the trends are different for basis-sets with and without 

polarization functions, with its importance that decreases for basis-sets 6-31G and 6-311G and that, 

conversely, increases for basis-sets 6-31G(d) and 6-311G(d). 
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Table 2 Chirgwin-Coulson weights (in %) of the salicylic acid resonance structures resulting from 

the SC.0 and XCSC.0 calculations for all the considered basis-sets. 

 

Structures 
6-31G  6-311G  6-31G(d)  6-311G(d) 

SC.0 XCSC.0  SC.0 XCSC.0  SC.0 XCSC.0  SC.0 XCSC.0 

A 16.6 17.2  16.6 18.4  15.7 15.7  15.7 16.9 

B 8.8 7.6  8.7 7.6  9.3 7.5  9.1 7.8 

C 9.5 12.2  9.4 12.3  9.7 12.9  9.6 12.4 

D 54.7 52.9  55.0 52.6  53.8 51.3  54.3 51.0 

E 10.4 10.1  10.2 9.1  11.5 12.6  11.3 11.9 

 

To complete the analysis of the results obtained from the XCSC.0 calculations, we have finally 

decided to focus on the Spin-Coupled orbitals for the 6 active electrons obtained from the X-ray 

constrained Spin-Coupled calculations performed on salicylic acid (see Figure 2). In particular, we 

analyzed their variations with respect to the corresponding unconstrained SC.0 orbitals, namely we 

evaluated the effect of the experimental diffraction data on the spin-coupled orbitals. From Figure 3 it 

is clear that the orbitals variations resulting from the calculations with basis-sets without polarization 

functions are very similar between each other. Likewise, also the orbitals variations obtained from 

calculations with basis-sets including polarization functions present a high degree of similarity.  

Through a more detailed inspection, it is also possible to see that, for orbitals 𝜑2, 𝜑3 and 𝜑4, when 

basis-sets 6-31G and 6-311G are used, the variations mainly consist in a slight delocalization from the 

atoms on which the unconstrained SC.0 orbitals are mainly localized to the neighbor atoms. 

Conversely, for the same orbitals, when basis-sets 6-31G(d) and 6-311G(d) are exploited, we have an 

opposite trend, with the spin-coupled orbitals that tend to further localize on the central atoms. This 

opposite behavior can be ascribed to the effect of the experimental diffraction data. In fact, in absence 

of polarization functions, the SC.0 orbitals 𝜑2, 𝜑3 and 𝜑4  are less polarized towards the neighbor 

atoms and the effect of the X-ray diffraction data in the XCSC.0 computations is a delocalization over 

the neighbor carbon atoms. On the contrary, in presence of polarization functions, the starting SC.0 

orbitals are already polarized towards the other atoms, probably at a higher level than the one 

compatible with the collected experimental data. Therefore, accounting for the X-ray diffraction data 

in the XCSC.0 calculations, the polarization of the orbitals is tempered mainly through a shift of the 

electronic clouds from the bonding regions to the central carbon atom (especially for orbitals 𝜑3 and 

𝜑4). 
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Figure 2 Three-dimensional plots of the unconstrained SC.0 Spin-Coupled orbitals (0.06 e/bohr3 

isosurfaces are plotted). The unconstrained SC.1 Spin-Coupled orbitals have analogous shapes. 
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Figure 3 Two-dimensional plots of the differences between the square moduli of the XCSC.0 and 

SC.0 Spin-Coupled orbitals for all the considered basis-sets. The contours are drawn at ±1 ∙ 10−3 

e/bohr3 and at ±2, 4, 8 ∙ 10𝑛 e/bohr3 (with 𝑛 as an integer ranging from -3 to 0) in a plane parallel to 

and 0.5 Å above the aromatic ring. Red and blue contours indicate positive and negative values, 

respectively. 
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For orbitals 𝜑1, 𝜑5 and 𝜑6, the variations within the aromatic ring are quite similar for all the basis-

sets aside from the use of polarization functions in the calculations, even if for basis-sets 6-31G(d) 

and 6-311G(d) these orbitals delocalize towards the carboxylic group when experimental data are 

taken into account. For orbitals 𝜑1 and 𝜑5 it is possible to notice stronger localizations on the carbon 

atoms on which the spin-coupled orbitals are mainly localized, with shifts of electron density from the 

neighbor bonding regions that are more pronounced when polarization functions are used. For orbital 

𝜑6 the variation is more convoluted, with a shift of the electronic cloud mainly from the carbon atom 

bearing the hydroxyl group to the neighbor atoms. In this case the effect is more evident when basis-

sets without polarization functions are used, while it is barely sketched with basis-sets 6-31G(d) and 

6-311G(d). 

3.3. Calculations based on X-ray constrained RHF molecular orbitals 

To improve the description provided by the XCSC.0 calculations, we have afterwards performed a 

new series of X-ray constrained Spin-Coupled computations (XCSC.1 computations) that exploit XC-

RHF molecular orbitals to describe the inactive electrons. 

Energy and 𝜒2 values resulting from these calculations are reported in Table 1 (“XC-RHF MOs” 

column) where it is immediately evident that the statistical agreements associated with the XCSC.1 

wave functions are significantly better than the corresponding XCSC.0 ones. Furthermore, as for the 

SC.0 and XCSC.0 computations, the 𝜒2  values associated with the XCSC.1 wave functions are 

always slightly lower than the unconstrained SC.1 values and, as expected, the statistical agreement 

with the experimental data improves as richer basis-sets are used, with 𝜒2 decreasing from 5.58 (6-

31G basis-set) to 3.41 (6-311G(d) basis-set). Finally, it is worth noting that, in Table 1, the SC.1 𝜒2 

values are always larger than the XC-RHF ones, which is in contrast with the results obtained from 

the calculations with unconstrained RHF molecular orbitals. This different behavior can be explained 

considering that, in the SC.1 computations, only the core orbitals fully take into account the effect of 

the experimental data, while the spin-coupled ones (which describe the active electrons) are obtained 

by simply minimizing the energy of the system and not the Jayatilaka functional. Conversely, in the 

XC-RHF computation all the molecular orbitals result from the minimization of the functional given 

by Equation (2) and, for this reason, they completely take into account the influence of the X-ray 

diffraction data. Anyway, as seen above, the SC.1 descriptions are improved by carrying out the 

XCSC.1 calculations, through which also the active spin-coupled orbitals are optimized by fully 

considering the constraints of the experimental data. 

Concerning the termination of the XCSC.1 computations, we have used again the criterion based on 

the sign of second derivative 𝜕2𝜒2 𝜕𝜆2⁄ . In these cases, the curves representing the trend of 𝜒2 in 

function of 𝜆  are much more regular and smoother than those associated with the XCSC.0 
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calculations, but they are anyway characterized by inflection points (see Figures S5-S8 in the 

Supporting Information), after which convergence rapidly becomes difficult or impossible.  

As in the previous subsection, in Table 3 we report the obtained Chirgwin-Coulson weights for the 

resonance structures of salicylic acid, as obtained from the SC.1 and XCSC.1 calculations. The trends 

are almost identical for all the basis-sets and are generally analogous to those resulting from the 

calculations based on unconstrained RHF molecular orbitals. Moreover, despite unavoidable 

discrepancies in the absolute values, the results show quite consistently how the resonance structure 

weights change when the experimental X-ray diffraction data are used as external constraints in the 

computations. In particular, Kekulé resonance structure A gains weight when X-ray data are taken 

into account, with the only exception of basis-set 6-31G, for which a 0.3 drop has been observed. 

Conversely, the other Kekulé structure (namely, structure D) consistently loses its importance for all 

the considered basis-sets, also with significant reductions compared to the SC.1 values (e.g., ∆= −4.3 

for basis-set 6-311G(d)). Concerning the Dewar resonance structures, when experimental constraints 

are introduced in the calculations, the weight of B slightly decreases, while both C and E acquire 

importance, with the only exception of the 6-311G(d) calculations, for which the Chirgwin-Coulson 

coefficient for structure E decreases from 11.3 to 10.9. 

Table 3 Chirgwin-Coulson weights (in %) of the salicylic acid resonance structures resulting from 

the SC.1 and XCSC.1 calculations for all the considered basis-sets. 

 

Structures 
6-31G  6-311G  6-31G(d)  6-311G(d) 

SC.1 XCSC.1  SC.1 XCSC.1  SC.1 XCSC.1  SC.1 XCSC.1 

A 15.1 14.8  15.8 17.7  14.8 17.8  15.2 20.0 

B 9.3 7.8  9.4 7.7  9.9 8.6  9.7 8.4 

C 9.5 15.2  9.3 13.0  9.4 11.1  9.1 10.3 

D 55.6 50.3  55.5 50.4  54.5 50.4  54.7 50.4 

E 10.5 11.9  10.1 11.1  11.4 12.0  11.3 10.9 

 

Also in this case we have completed the analysis of the SC.1 and XCSC.1 computations by analyzing 

the obtained spin-coupled orbitals and, in particular, by focusing on the orbitals variations when the 

X-ray data are directly taken into account in the calculations (see Figure 4). In most of the cases the 

trends are analogous to those observed in Figure 3 for the SC.0 and XCSC.0 calculations, even if with 

different intensities for the concentrations and depletions of electronic charge. Furthermore, as for the 

calculations based on unconstrained RHF molecular orbitals, it is possible to notice high similarities 

between the orbital variations resulting from the computations with the 6-31G and 6-311G basis-sets 

and, at the same time, between the orbitals variations obtained from the calculations exploiting basis-

sets that include polarization functions. 
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However, the most important and evident difference between the XCSC.1-SC.1 and XCSC.0-SC.0 

orbitals variations can be observed in the region of the carboxylic group, especially for orbitals 𝜑1, 𝜑5 

and 𝜑6. We have previously pointed out that, using basis-sets 6-31G(d) and 6-311G(d), the XCSC.0 

calculations provided orbitals 𝜑1, 𝜑5 and 𝜑6 characterized by significant charge redistributions on the 

carbon atom of the carboxylic group compared to the unconstrained computation (see Figure 3). 

Conversely, in Figure 4, we can observe that these charge redistributions disappear or significantly 

reduce when we consider the XCSC.1-SC.1 variations of the same orbitals. For orbital 𝜑1, if we 

consider the results of the computations with basis-sets 6-31G and 6-311G, we can even notice a 

slight depletion of electronic charge close the carboxylic group, which is not detected when the 

XCSC.0-SC.0 orbitals variations are considered. All these differences in the region of the carboxylic 

group actually derive from the different treatment of the inactive electrons in the X-ray constrained 

Spin-Coupled calculations. In fact, in our computations, only the 6 𝜋 electrons of the aromatic ring 

were fully treated at Spin-Coupled level, while the remaining ones (including those associated with 

the carboxylic group) were described by frozen doubly occupied molecular orbitals. In the XCSC.0 

calculations, the molecular orbitals describing the electrons of the carboxylic group are obtained from 

unconstrained RHF computations and do not take into account the influence of the experimental X-

ray diffraction data, which anyway contain information on the full electron density of the system 

(therefore, also on the electron density “basins” corresponding to the carboxylic group). Hence, the 

active spin-coupled orbitals (and the corresponding electron density distributions, see next subsection) 

resulting from the XCSC.0 calculations delocalize towards the carboxylic group to compensate the 

fact that the information contained in the X-ray diffraction data for the carboxylic group is not already 

captured by the frozen molecular orbitals used to describe the inactive electrons. On the contrary, 

when XCSC.1 calculations are carried out, the inactive electrons are described by orbitals resulting 

from XC-RHF computations and, therefore, the information contained in the X-ray data for the 

inactive electrons is already taken into account. This is probably the reason why in the active XCSC.1 

orbitals (and in the related electron densities) the degree of the delocalization towards the carboxylic 

group is significantly lower.  

The previous observation clearly reveals that, unlike the original version of the XCSC method 

(Genoni, Franchini et al., 2018), the new X-ray constrained Spin-Coupled technique based on XC-

RHF molecular orbitals enables to correctly deconvolute the X-ray constrained treatment of the 

inactive electrons from the one of the active electrons, thus leading to more balanced descriptions of 

the electronic structures and to better electron density distributions for the systems under exam.  
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Figure 4 Two-dimensional plots of the differences between the square moduli of the XCSC.1 and 

SC.1 Spin-Coupled orbitals for all the considered basis-sets. The contours are drawn at ±1 ∙ 10−3 

e/bohr3 and at ±2, 4, 8 ∙ 10𝑛 e/bohr3 (with 𝑛 as an integer ranging from -3 to 0) in a plane parallel to 

and 0.5 Å above the aromatic ring. Red and blue contours indicate positive and negative values, 

respectively. 
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3.4. Analysis of the obtained electron densities 

Since X-ray structure factors used as constraints in XCW methods are strictly related to electron 

density, in our investigation we also analyzed the charge density distributions resulting from the 

performed calculations. In particular, we determined how the inclusion of the experimental structure 

factors in the XCSC computations influences the electron distributions. Therefore, we have evaluated 

and plotted the difference-maps between corresponding XCSC and SC electron densities, both for 

calculations using unconstrained RHF molecular orbitals and for calculations using XC-RHF 

molecular orbitals. These maps are depicted in Figure 5, where it can be easily noticed that the 

obtained differences are strictly related to the orbitals variations shown in Figures 2 and 3. For this 

reason, as for the orbitals variations, also in this case we observe high similarities between the 

difference-maps associated with basis-sets without polarization functions and between those 

corresponding to basis-sets including d functions. This is true both for the 𝜌𝑋𝐶𝑆𝐶.0 − 𝜌𝑆𝐶.0 maps (see 

Figure 5, left panel) and for the 𝜌𝑋𝐶𝑆𝐶.1 − 𝜌𝑆𝐶.1 maps (see Figure 5, right panel). 

Analyzing Figure 5 in more detail, the difference-maps obtained with basis-sets 6-31G and 6-311G 

are generally characterized by a charge density accumulation on atoms C1 and C5 (see Figure 1 for 

the labels of the atoms belonging to the aromatic ring) and in the C3-C4 bonding region. At the same 

time, they also present charge depletions on atoms C2, C3, C4 and C6. All these charge 

accumulations and depletions decrease in intensity when XC-RHF molecular orbitals are used in the 

SC and XCSC computations. Furthermore, we can observe that, while in the 𝜌𝑋𝐶𝑆𝐶.0 − 𝜌𝑆𝐶.0 maps 

there is a slight accumulation of charge on the carbon atom belonging to the carboxylic group, in the 

𝜌𝑋𝐶𝑆𝐶.1 − 𝜌𝑆𝐶.1 maps it is actually possible to observe a slight charge depletion for the same atom. An 

analogous trend can be observed for atom C5 when basis-set 6-311G is used. These trends and the 

observation that the intensities of charge accumulations and depletions decrease in the 𝜌𝑋𝐶𝑆𝐶.1 − 𝜌𝑆𝐶.1 

maps can be ascribed again to the fact that, in the SC.1 and XCSC.1 calculations, XC-RHF orbitals 

are used to describe the inactive electrons. As explained in the previous subsection, these orbitals 

already take into account the effects of the experimental data and enable to deconvolute the treatment 

of the active electrons from the one of the inactive electrons, thus leading to better descriptions of the 

electronic structures and to better electron densities. 
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Figure 5 Two-dimensional plots of the differences between X-ray constrained and unconstrained 

Spin-Coupled electron densities for all the considered basis-sets. The contours are drawn at ±1 ∙ 10−3 

e/bohr3 and at ±2, 4, 8 ∙ 10𝑛 e/bohr3 (with 𝑛 as an integer ranging from -3 to 0) in a plane parallel to 

and 0.5 Å above the aromatic ring. Red and blue contours indicate positive and negative values, 

respectively. 
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However, unlike the difference-densities obtained for basis-sets without polarization functions, those 

corresponding to basis sets 6-31G(d) and 6-311G(d) are more similar, regardless of the use of XC-

RHF orbitals in the computations. In particular, charge accumulations are mainly observed for almost 

all the atoms belonging to the aromatic ring and for the carbon atom of the carboxylic group, while 

charge depletions are seen in the bonding regions and for atom C6. However, also in this case, in the 

𝜌𝑋𝐶𝑆𝐶.1 − 𝜌𝑆𝐶.1 maps we have noted a slight decrease of the intensities (especially for the carboxylic 

group region), which is again due to the use of X-ray constrained orbitals to treat the inactive 

electrons. 

Finally, to perform a more global comparison, we have also computed similarity indexes between the 

obtained electron densities. In particular, we have adopted the Walker-Mezey similarity measure 

𝐿(𝜌𝑥 , 𝜌𝑦, 𝑎, 𝑎
′) (Walker & Mezey, 1994), which allows the comparison of two charge distributions 𝜌𝑥 

and 𝜌𝑦 in a three-dimensional region bound by two isosurfaces characterized by the values 𝑎 and 𝑎′ 

(hereinafter indicated in e/bohr3; see Supporting Information for more details about this similarity 

index). By changing 𝑎 and 𝑎′ , the similarities between the electron densities can be evaluated in 

different 3D basins. Therefore, for all our comparisons, two Walker-Mezey similarity indexes have 

been taken into account: i) the 𝐿(𝜌𝑥 , 𝜌𝑦, 0.1, 10) index to compare the electron densities in regions 

close to the nuclei (core regions); ii) 𝐿(𝜌𝑥 , 𝜌𝑦, 0.001, 0.1) index to compare the charge distributions in 

the valence regions. 

At first, we focused on the similarities between all the XCSC.1 electron densities. Both in the core 

and valence regions (see Tables 4 and 5, respectively), the Walker-Mezey similarity index confirms 

what was already observed in Figure 5, namely the fact that charge distributions obtained with the 

same kind of basis-set (i.e., with or without polarization functions) are generally more similar between 

each other. Completely analogous results have been obtained for the XCSC.0 electron distributions 

(see Tables S1 and S2 in the Supporting Information). 

Table 4 Values of the Walker-Mezey similarity index 𝐿(𝜌𝑥 , 𝜌𝑦, 0.1, 10)  corresponding to the 

comparisons of the XCSC.1 electron densities obtained with the different basis-sets. 

𝐿(𝜌𝑥 , 𝜌𝑦, 0.1, 10) 6-31G 6-311G 6-31G(d) 6-311G(d) 

6-31G 100.00       

6-311G 99.24 100.00   

6-31G(d) 97.31 97.52 100.00  

6-311G(d) 97.44 97.71 99.47 100.00 
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Table 5 Values of the Walker-Mezey similarity index 𝐿(𝜌𝑥 , 𝜌𝑦, 0.001, 0.1) corresponding to the 

comparisons of the XCSC.1 electron densities obtained with the different basis-sets. 

𝐿(𝜌𝑥 , 𝜌𝑦, 0.001, 0.1) 6-31G 6-311G 6-31G(d) 6-311G(d) 

6-31G 100.00       

6-311G 95.38 100.00   

6-31G(d) 93.36 92.09 100.00  

6-311G(d) 92.47 93.57 95.89 100.00 

 

Afterwards, we compared the complete set of electron densities obtained for each basis-set. For the 

sake of clarity, we here report and discuss only the results obtained for basis set 6-31G(d) (see Tables 

6 and 7), but completely analogous results have been obtained also for the other sets of basis functions 

(see Tables S3-S8 in the Supporting Information). In Table 6, which shows the values for similarity 

index 𝐿(𝜌𝑥 , 𝜌𝑦, 0.1, 10), we can see that all the electron distributions resulting from calculations based 

on unconstrained RHF molecular orbitals (RHF, SC.0 and XCSC.0) are very similar (values greater 

than 99%). This holds true also for the electron densities associated with computations based on XC-

RHF molecular orbitals (XC-RHF, SC.1 and XCSC.1). This observation is obviously in line with the 

fact that, for the two different families of computations, the real core electrons (which are a subset of 

the inactive electrons) have been treated in exactly the same way. 

Finally, in Table 7, we show the values for index 𝐿(𝜌𝑥 , 𝜌𝑦, 0.001, 0.1), which measures the degree of 

similarity in the valence region. Also in this case, despite lower values for the similarity indexes, it is 

easy to distinguish the two different groups of electron densities (in one group: RHF, SC.0 and 

XCSC.0; in the other one: XC-RHF, SC.1 and XCSC.1). It is interesting to notice that, for the first 

group, the similarity with the RHF electron density clearly decreases from SC.0 to XCSC.0. This is a 

clear indication of the different way in which we determined the orbitals that describe the active 

electrons for the system under exam (i.e., the 6 𝜋 electrons of the aromatic ring). In fact, in the RHF 

and SC.0 calculations, these orbitals have been obtained by simply minimizing the energy of the 

molecule, while, in the XCSC.0 case, they resulted from the minimization of the Jayatilaka functional. 

Conversely, in the second group of electron distributions, the similarity with the XC-RHF charge 

slightly increases passing from SC.1 to XCSC.1. This is due to the fact that, in the XC-RHF and 

XCSC.1 wave functions, the active electrons are described by orbitals that include the effect of the 

experimental X-ray diffraction data, while, in the SC.1 computations, the Spin-Coupled orbitals for 

the active electrons are obtained by only minimizing the energy functional, without introducing the 

constraint of the experimental structure factors. The effect of this different treatment also obviously 
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reflects in the lower value of the similarity index between the SC.1 and XCSC.1 electron density 

distributions. 

Table 6 Values of the Walker-Mezey similarity index 𝐿(𝜌𝑥 , 𝜌𝑦, 0.1, 10)  corresponding to the 

comparisons of all the electron densities obtained with basis-set 6-31G(d). 

𝐿(𝜌𝑥 , 𝜌𝑦, 0.1, 10) RHF SC.0 XCSC.0 XC-RHF SC.1 XCSC.1 

RHF 100.00           

SC.0 99.61 100.00     

XCSC.0 99.15 99.34 100.00    

XC-RHF 97.04 97.25 97.56 100.00   

SC.1 97.16 97.39 97.57 99.65 100.00  

XCSC.1 96.88 97.09 97.45 99.75 99.47 100.00 

 

Table 7 Values of the Walker-Mezey similarity index 𝐿(𝜌𝑥 , 𝜌𝑦, 0.001, 0.1) corresponding to the 

comparisons of all the electron densities obtained with basis-set 6-31G(d). 

𝐿(𝜌𝑥 , 𝜌𝑦, 0.001, 0.1) RHF SC.0 XCSC.0 XC-RHF SC.1 XCSC.1 

RHF 100.00           

SC.0 98.59 100.00     

XCSC.0 96.52 97.57 100.00    

XC-RHF 93.50 94.23 93.84 100.00   

SC.1 94.19 94.81 93.24 98.63 100.00  

XCSC.1 92.79 93.53 93.91 98.77 97.63 100.00 

 

4. Conclusions and perspectives 

In this paper, we have presented the novel X-ray constrained Spin-Coupled method, a technique that 

introduces the typical high chemical interpretability of the Spin-Coupled strategy of Quantum 

Chemistry into the X-ray constrained wave function approach of Quantum Crystallography. In 

particular, we have shown the detailed derivation of the fundamental equations for the new method 

and we have discussed the results of further test calculations that were performed to better evaluate 

the capabilities of the proposed strategy. 
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The tests have revealed that the XCSC computations are quite straightforward and that the new 

strategy does not present particular convergence problems compared to the corresponding 

unconstrained Spin-Coupled technique. In analogy with results obtained by means of other X-ray 

constrained wave function methods, our calculations have also shown that the novel strategy provides 

better results and better statistical agreements with the experimental X-ray diffraction data as larger 

and more flexible basis-sets are used. Furthermore, as we initially expected, the new XCSC technique 

has always provided better (i.e., lower) 𝜒2  values compared to all the other strategies taken into 

account for the comparison. 

One of the advantages of the novel XCSC consists in extracting the weights of the resonance 

structures for the system under investigation that are compatible with the X-ray structure factors 

observed experimentally. Notwithstanding some unavoidable variations in the absolute values, the X-

ray constrained Spin-Coupled calculations generally provided resonance weights that changed 

consistently and with very similar trends when the X-ray diffraction data have been considered, 

practically regardless of the used basis-set. 

Furthermore, to evaluate the effects of including the experimental structure factors in the calculations, 

we have also compared the obtained spin-coupled orbitals and electron densities, particularly focusing 

on the direct comparison between corresponding unconstrained and X-ray constrained quantities. The 

results indicate that the XCSC procedure entails clear redistributions of the electron density, which are 

generally similar for all the performed calculations. However, they sometimes show also some 

discrepancies depending on the adopted basis-set and, above all, on the treatment of the inactive 

electrons in the computations. In fact, compared to the original version of the X-ray constrained Spin-

Coupled method (Genoni, Franchini et al., 2018), in this paper we have introduced a further 

advancement of the technique consisting in using molecular orbitals obtained from a preliminary XC-

RHF calculation to describe the inactive electrons in the XCSC procedure. The analysis of the 

obtained orbitals and electron densities have highlighted that the use of this new strategy enables to 

better deconvolute the description of the inactive electrons from the one of the active electrons, which 

consequently gives better and more balanced descriptions of the electronic structures for the systems 

under exam. Therefore, this will definitely be the procedure to follow for future XCSC computations 

and, for this reason, the new X-ray constrained Spin-Coupled technique can be also fully classified as 

the first post-XC-RHF method. 

Finally, in the present study, we have proposed a new possible criterion to stop the XCW procedure, 

which consists in halting the computations when a clear inflection point is detected in the graph 

representing the trend of the 𝜒2 statistical agreement in function of the external multiplier 𝜆. So far, 

the new criterion has been tested only for XCSC calculations and, at least for them, it seems robust 

and consistent. Anyway, further computational tests will be obviously necessary also on other types of 

X-ray constrained wave function methods to test its general applicability.  
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In conclusion, in this paper we have introduced a new X-ray constrained wave function strategy able 

to improve the description provided by the traditional X-ray constrained Hartree-Fock approach. 

Moreover, one of the main advantages of the novel strategy is that traditional chemical information 

(i.e., resonance structure weights, but also spatial distributions of the electronic clouds around atoms) 

can be directly obtained without imposing any preliminary constraint a priori or applying techniques 

a posteriori to the obtained wave function. However, notwithstanding the promising results obtained 

with the new method, here we do not claim the superiority of our novel approach over the existing 

ones. On the contrary, we want to point out that the proposed XCSC strategy will be only one of the 

different tools currently available in Quantum Crystallography to investigate chemical/physical 

problems/phenomena in the solid-state from different perspectives. In fact, each technique has its own 

features and provides specific answers. Therefore, as already highlighted by Fugel et al. (Fugel, 

Beckmann et al., 2018), we believe that only the application of different and complementary methods 

can lead to a more global and complete description of the physical reality. 

Concerning the future perspectives of the method, two aspects should be considered. First of all, it is 

worth pointing out that the proposed XCSC technique is a real many-determinant X-ray constrained 

wave function strategy. For this reason, it might be fruitfully used to obtain two-particle density 

matrices from experimental scattering data and also to shed further light on the capability of the XCW 

approach to capture electron correlation effects, a problem that, so far, has been investigated only 

inspecting how the wave function fitting reflects on the electron density (Genoni et al., 2017; 

Grabowsky, 2017), but without taking into account quantities more strictly related to electron 

correlation (e.g., two-particle quantities as the intracule densities). In the context of these 

investigations, we are also planning to evaluate the capabilities of the XCSC method when the 

external constraints are only the low-angle reflections, which are those reflections that actually 

contain information on the electron correlation effects (Genoni et al., 2017). Finally, considering that 

spin-coupled wave functions are exact spin-eigenfunctions also in case of open-shell systems, another 

tantalizing future perspective for the XCSC approach is its extension to the joint refinement of X-ray 

diffraction and Polarized Neutron diffraction data, with the final goal of obtaining experimental spin 

densities, which could be analysed through advanced quantum chemical topology techniques (Gatti et 

al., 2015; Gatti et al., 2017; Macetti et al., 2018). This will be in line with techniques already 

developed in this context, as those proposed in the framework of the multipole models (Deutsch et al., 

2012; Deutsch et al., 2014; Voufack et al., 2017) and those already based on a wave function ansatz 

(Guedidda et al., 2018). 
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Appendix A. Further theoretical details  

A1. Higher order supercofactors 

As we will show in section A2, supercofactors play a fundamental role in the XCSC method for the 

computation of the first and second derivatives of the Jayatilaka functional and can be actually 

defined in a very general way for the generic order r: 

𝔇(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟) =

= ∑ 𝑏𝑆,𝑖

𝑁𝑑

𝑖,𝑗=1

𝑏𝑆,𝑗 𝐼𝑡1𝑢1
𝑖𝑗 

 𝐼𝑡2𝑢2
𝑖𝑗 

… 𝐼𝑡𝑟𝑢𝑟
𝑖𝑗 

 ℰ𝑡1𝑡2…𝑡𝑟  ℰ𝑢1𝑢2…𝑢𝑟  (−1)
∑ 𝑡𝑘+
𝑟
𝑘=1 𝑢𝑘   det[𝑶𝒊𝒋(𝑡1𝑡2…𝑡𝑟|𝑢1𝑢2…𝑢𝑟)] (25) 

where symbols {𝐼𝑡𝑘𝑢𝑘
𝑖𝑗 

} are analogous to the one in equation (22), 𝑶𝒊𝒋(𝑡1𝑡2…𝑡𝑟|𝑢1𝑢2…𝑢𝑟) is the (N-

r)-th order matrix obtained by deleting rows 𝑡1, 𝑡2, …, 𝑡𝑟 and columns 𝑢1, 𝑢2, …, 𝑢𝑟 of matrix 𝑶𝒊𝒋 

and ℰ𝑣1𝑣2…𝑣𝑟 is a kind of Levi-Civita symbol related to the number of permutations that lead from the 

collection of integer numbers (𝑣1𝑣2…𝑣𝑟) to the ordered collection (𝑣1
′𝑣2
′ …𝑣𝑟

′) with 𝑣1
′  < 𝑣2

′ < ⋯ <

𝑣𝑟
′. In particular, the symbol is defined like this: 

ℰ𝑣1𝑣2…𝑣𝑟 = {
+1   for an even number of permutations 

−1   for an odd number of permutations  
        (26) 

By applying the Laplace theorem for the computation of the determinants, it is possible to show that 

every supercofactor of order r can be expressed in terms of the supercofactors of order r+1 through 

the following recurrence relation: 

𝔇(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟) = ∑ ⟨𝜙𝑤  | 𝜙𝑣⟩ 𝔇(𝑡1 𝑡2…  𝑡𝑟 𝑤 | 𝑢1 𝑢2…  𝑢𝑟 𝑣)

𝑁

𝑤≠𝑡1,𝑡2,,…,𝑡𝑟

   (27) 

where 𝜙𝑣 and 𝜙𝑤 can be “core” or Spin-Coupled orbitals in wave function (19), while 𝑣 is a dummy 

index that can be arbitrary chosen provided that it is different from the indices appearing in the “ket 

part” of the r-th order supercofactor. For the development of the traditional and the new X-ray 

constrained Spin-Coupled methods, it is also important to introduce two other classes of 

supercofactors: i) the indexed supercofactors and ii) the symmetrized indexed supercofactors. For the 

generic order r, the former are defined like this: 

𝔇𝑘(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟) =

= ∑ 𝑏𝑆,𝑖

𝑁𝑑

𝑖,𝑗=1

𝑑𝑗,𝑘  𝐼𝑡1𝑢1
𝑖𝑗 

 𝐼𝑡2𝑢2
𝑖𝑗 

… 𝐼𝑡𝑟𝑢𝑟
𝑖𝑗 

 ℰ𝑡1𝑡2…𝑡𝑟  ℰ𝑢1𝑢2…𝑢𝑟  (−1)
∑ 𝑡𝑘+
𝑟
𝑘=1 𝑢𝑘   det[𝑶𝒊𝒋(𝑡1𝑡2…𝑡𝑟|𝑢1𝑢2…𝑢𝑟)] (28) 

where 𝑑𝑗,𝑘  represents the weight of the j-th Slater determinant in the k-th Spin-Coupled structure. 

Consequently, always for the generic r-th order, the latter are 
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𝔇𝑘
′′(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟) = 𝔇𝑘(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟) + 𝔇𝑘(𝑢1 𝑢2…  𝑢𝑟| 𝑡1 𝑡2…  𝑡𝑟)   (29) 

It is easy to show that this relation exists between ordinary supercofactors and indexed supercofactors: 

𝔇(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟) = ∑ 𝑐𝑆,𝑘

𝑓𝑆
𝑁𝑣

𝑘=1

𝔇𝑘(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟)   (30) 

Furthermore, the following two other properties are also valid and exploited in the derivation of the 

working equations for the XCSC technique: 

𝔇(𝑄̂[𝑡1 𝑡2…  𝑡𝑟] | 𝑄̂[ 𝑢1 𝑢2…  𝑢𝑟]) = 𝔇(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟)    (31), 

where 𝑄̂ is a generic permutation of the symmetric group of order r, and 

𝔇(𝑢1 𝑢2…  𝑢𝑟| 𝑡1 𝑡2…  𝑡𝑟) = 𝔇(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟)     (32) 

However, while equation (31) is valid for every class of supercofactors, relation (32) can be used only 

for the ordinary and the symmetrized indexed ones. 

A2. Derivatives of the 𝝌𝟐 statistical agreement 

To obtain the derivatives of functional (23), we clearly need both the derivatives of its energy part 𝑊 

and the derivatives of the statistical agreement between experimental and theoretical structure factors 

amplitudes, with the latter that must be obviously multiplied by 𝜆 and added to the former. The energy 

derivatives are identical to those already exploited in the traditional Spin-Coupled method (Cooper et 

al., 1993) and, therefore, in this subsection, we will only focus on the formal derivation of the first 

and second derivatives of 𝜒2 with respect to the coefficients of the Spin-Coupled orbitals and with 

respect to the spin-coupling coefficients. 

Exploiting the fact that |𝐹𝒉
𝑐𝑎𝑙𝑐| = [𝐹𝒉

𝑐𝑎𝑙𝑐 (𝐹𝒉
𝑐𝑎𝑙𝑐)

∗
]
1 2⁄

, the first derivative of 𝜒2  with respect to a 

generic variable 𝑥 can be written like this: 

𝜕𝜒2

𝜕𝑥
=∑

𝐾𝒉
2
 (
𝜕𝐹𝒉

𝑐𝑎𝑙𝑐

𝜕𝑥
 (𝐹𝒉

𝑐𝑎𝑙𝑐)
∗
+ 𝐹𝒉

𝑐𝑎𝑙𝑐 𝜕(𝐹𝒉
𝑐𝑎𝑙𝑐)

∗

𝜕𝑥
)

𝒉

         (33) 

 where 𝑥 can be a generic spin-coupled orbital coefficient 𝐶𝜇𝑘 or a generic spin-coupling coefficient 

𝑐𝑠,𝑘 and where 

𝐾𝒉 =
2𝜂

𝑁𝑟 −𝑁𝑝
 
𝜂|𝐹𝒉

𝑐𝑎𝑙𝑐| − |𝐹𝒉
𝑒𝑥𝑝
|

𝜎𝒉
2 |𝐹𝒉

𝑐𝑎𝑙𝑐|
       (34) 

Furthermore, since we assume to work with real orbitals, both for the first derivatives with respect to 

𝐶𝜇𝑘 and for the first derivatives with respect to 𝑐𝑠,𝑘, it is possible to show that 
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𝜕(𝐹𝒉
𝑐𝑎𝑙𝑐)

∗

𝜕𝑥
= (

𝜕𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑥
)

∗

      (35)   

and, consequently, equation (33) can be simply rewritten like this: 

𝜕𝜒2

𝜕𝑥
=∑𝐾𝒉 [Re{𝐹𝒉

𝑐𝑎𝑙𝑐} Re {
𝜕𝐹𝒉

𝑐𝑎𝑙𝑐

𝜕𝑥
} +  Im{𝐹𝒉

𝑐𝑎𝑙𝑐}  Im {
𝜕𝐹𝒉

𝑐𝑎𝑙𝑐

𝜕𝑥
}]     (36)

𝒉

 

Now, introducing the definition of structure factor operator 

𝐼𝒉 =∑𝑒𝑖2𝜋(𝑸𝑗𝒓 + 𝒒𝒋) ∙𝑩𝒉
𝑁𝑚

𝑗=1

= 𝐼𝒉,𝑅 + 𝑖 𝐼𝒉,𝐶     (37) 

where 𝐼𝒉,𝑅  and 𝐼𝒉,𝐶  (real and imaginary parts of 𝐼𝒉 , respectively) are Hermitian operators, and 

exploiting equations (1) and (21), we obtain: 

𝐹𝒉
𝑐𝑎𝑙𝑐 = 𝐹𝒉

𝑐𝑜𝑟𝑒 +
𝐹𝒉
𝑆𝐶

𝔇
= 2∑⟨ 𝜙𝑡

𝑐  | 𝐼𝒉 | 𝜙𝑡
𝑐  ⟩

𝑁1

𝑡=1

+
1

𝔇
 ∑ ⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ 𝔇(𝑡|𝑢)     (38)

𝑁𝑣

𝑡,𝑢=1

 

Therefore, considering that 𝐹𝒉
𝑐𝑜𝑟𝑒  depends neither on the Spin-Coupled orbitals nor on the spin-

coupling coefficients, the first derivatives of the calculated structure factors can be expressed in this 

way 

𝜕𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑥
= −

𝐹𝒉
𝑆𝐶

𝔇2
 
𝜕𝔇

𝜕𝑥
+ 
1

𝔇
 
𝜕𝐹𝒉

𝑆𝐶

𝜕𝑥
     (39) 

and the expression for the first derivatives of the statistical agreement becomes: 

𝜕𝜒2

𝜕𝑥
=∑𝐾𝒉 [Re{𝐹𝒉

𝑐𝑎𝑙𝑐} (−
Re{𝐹𝒉

𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑥
+ 
1

𝔇
 Re {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
})

𝒉

+ Im{𝐹𝒉
𝑐𝑎𝑙𝑐} (−

Im{𝐹𝒉
𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑥
+ 
1

𝔇
 Im {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
})]     (40) 

where we have exploited the fact that 𝔇 is a real quantity.  

From equation (40) it clearly follows that, in order to compute the first derivatives of 𝜒2, other than 

the calculated structure factors given by equation (38), it is also necessary to know the first derivatives 

𝜕𝔇 𝜕𝑥⁄  and 𝜕𝐹𝒉
𝑆𝐶 𝜕𝑥⁄ .  

First of all, let us consider the first derivatives with respect to the coefficients of the Spin-Coupled 

orbitals and, for the sake of example, let us consider in detail the mathematical derivation of the 

analytical expression for 𝜕𝐹𝒉
𝑆𝐶 𝜕𝐶𝜇𝑘⁄ . To this purpose, let us expand 𝐹𝒉

𝑆𝐶 in this way: 
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𝐹𝒉
𝑆𝐶 =∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ 𝔇(𝑡|𝑢)

𝑁𝑣

𝑢≠𝑘

+

𝑁𝑣

𝑡≠𝑘

∑⟨ 𝜑𝑘| 𝐼𝒉 | 𝜑𝑢⟩ 𝔇(𝑘|𝑢)

𝑁𝑣

𝑢≠𝑘

+∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑘⟩ 𝔇(𝑡|𝑘)

𝑁𝑣

𝑡≠𝑘

+ ⟨ 𝜑𝑘| 𝐼𝒉 | 𝜑𝑘⟩ 𝔇(𝑘|𝑘)            (41)    

By using the properties of supercofactors (particularly, equation (32)) and bearing in mind that we 

assume to work with real orbitals, we easily obtain:  

𝜕𝐹𝒉
𝑆𝐶

𝜕𝐶𝜇𝑘
=∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ 

𝜕𝔇(𝑡|𝑢)

𝜕𝐶𝜇𝑘

𝑁𝑣

𝑢≠𝑘

+

𝑁𝑣

𝑡≠𝑘

∑⟨ 𝜑𝑘| 𝐼𝒉 | 𝜑𝑢⟩ 
𝜕𝔇(𝑘|𝑢)

𝜕𝐶𝜇𝑘

𝑁𝑣

𝑢≠𝑘

+∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑘⟩ 
𝜕𝔇(𝑡|𝑘)

𝜕𝐶𝜇𝑘

𝑁𝑣

𝑡≠𝑘

+ 2∑⟨ 𝜒𝜇| 𝐼𝒉 | 𝜑𝑢⟩ 𝔇(𝑘|𝑢)    (42)

𝑁𝑣

𝑢=1

 

Now, exploiting recurrence relation (27), 𝔇(𝑡|𝑢) can be simply expressed like this: 

𝔇(𝑡|𝑢) = ∑⟨𝜑𝑘|𝜑𝑟⟩ 

𝑁𝑣

𝑟≠𝑢

 𝔇(𝑡𝑘|𝑢𝑟)   (43) 

and 𝜕𝔇(𝑡|𝑢) 𝜕𝐶𝜇𝑘⁄  becomes: 

𝜕𝔇(𝑡|𝑢)

𝜕𝐶𝜇𝑘
= ⟨𝜒𝜇| 𝜑𝑘⟩ 𝔇(𝑡𝑘|𝑢𝑘) + ⟨𝜑𝑘|𝜒𝜇⟩ 𝔇(𝑡𝑘|𝑢𝑘) + ∑ ⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑡𝑘|𝑢𝑟)

𝑁𝑣

𝑟≠𝑢,𝑘

+ ∑ ⟨𝜑𝑘|𝜑𝑟⟩ 
𝜕𝔇(𝑡𝑘|𝑢𝑟)

𝜕𝐶𝜇𝑘

𝑁𝑣

𝑟≠𝑢,𝑘

                                                                    (44) 

Using again recurrence relation (27) for 𝔇(𝑡𝑘|𝑢𝑟), we have: 

𝔇(𝑡𝑘|𝑢𝑟) = ∑ ⟨𝜑𝑠|𝜑𝑘⟩ 

𝑁𝑣

𝑠≠𝑡,𝑘

𝔇(𝑡𝑘𝑠|𝑢𝑟𝑘)         (45)    

and, therefore, equation (44) can be rewritten like this: 

𝜕𝔇(𝑡|𝑢)

𝜕𝐶𝜇𝑘
= ⟨𝜒𝜇| 𝜑𝑘⟩ 𝔇(𝑡𝑘|𝑢𝑘) + ⟨𝜑𝑘|𝜒𝜇⟩ 𝔇(𝑡𝑘|𝑢𝑘) + ∑ ⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑡𝑘|𝑢𝑟)

𝑁𝑣

𝑟≠𝑢,𝑘

+ ∑ ⟨𝜑𝑠|𝜒𝜇⟩ ∑ ⟨𝜑𝑘|𝜑𝑟⟩ 𝔇(𝑡𝑘𝑠|𝑢𝑟𝑘)

𝑁𝑣

𝑟≠𝑢,𝑘

                                           (46) 

𝑁𝑣

𝑠≠𝑡,𝑘

 

Now, since 𝔇(𝑡𝑘𝑠|𝑢𝑟𝑘) is equivalent to 𝔇(𝑡𝑠𝑘|𝑢𝑘𝑟) (see equation (31)), by exploiting the recurrence 

relation for supercofactors in the reverse way, we obtain 
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∑ ⟨𝜑𝑘|𝜑𝑟⟩ 𝔇(𝑡𝑠𝑘|𝑢𝑘𝑟)

𝑁𝑣

𝑟≠𝑢,𝑘

= 𝔇(𝑡𝑠|𝑢𝑘)    (47) 

Therefore, introducing (47) into (46), we can write 

𝜕𝔇(𝑡|𝑢)

𝜕𝐶𝜇𝑘
= ∑⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑡𝑘|𝑢𝑟)

𝑁𝑣

𝑟≠𝑢

+∑⟨𝜒𝜇|𝜑𝑠⟩  𝔇(𝑡𝑠|𝑢𝑘)   (48) 

𝑁𝑣

𝑠≠𝑡

 

Furthermore, always exploiting recurrence relation (27), the other derivatives of the first-order 

supercofactor appearing in (42) can be expressed like this: 

𝜕𝔇(𝑘|𝑢)

𝜕𝐶𝜇𝑘
=∑⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑘𝑟|𝑢𝑘)

𝑁𝑣

𝑟≠𝑘

    (49) 

and 

𝜕𝔇(𝑡|𝑘)

𝜕𝐶𝜇𝑘
= ∑⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑡𝑘|𝑘𝑟)    (50)

𝑁𝑣

𝑟≠𝑢

 

Now, using relations (48), (49) and (50) into (42), we obtain 

𝜕𝐹𝒉
𝑆𝐶

𝜕𝐶𝜇𝑘
=∑∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑡𝑘|𝑢𝑟)

𝑁𝑣

𝑟≠𝑢

𝑁𝑣

𝑢=1

𝑁𝑣

𝑡≠𝑘

+∑∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑡𝑟|𝑢𝑘)

𝑁𝑣

𝑟≠𝑡

𝑁𝑣

𝑢≠𝑘

𝑁𝑣

𝑡=1

+ 2∑⟨ 𝜒𝜇| 𝐼𝒉 | 𝜑𝑡⟩ 𝔇(𝑘|𝑡)                            (51)

𝑁𝑣

𝑡=1

 

Finally, considering that 𝔇(𝑡𝑟|𝑢𝑘) is equivalent to 𝔇(𝑢𝑘|𝑡𝑟) (see relation (32)) and exchanging the 

labels t and u in the second term of the right-hand side of the previous equation, the expression of 

𝜕𝐹𝒉
𝑆𝐶 𝜕𝐶𝜇𝑘⁄  can be simply written in this way: 

𝜕𝐹𝒉
𝑆𝐶

𝜕𝐶𝜇𝑘
= 2 [∑∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑡𝑘|𝑢𝑟) +∑⟨ 𝜒𝜇| 𝐼𝒉 | 𝜑𝑡⟩ 𝔇(𝑘|𝑡)

𝑁𝑣

𝑡=1

𝑁𝑣

𝑟≠𝑢

𝑁𝑣

𝑢=1

𝑁𝑣

𝑡≠𝑘

]   (52) 

By means of a similar mathematical procedure, namely by expanding supercofactors in terms of the 

higher-order ones and by exploiting the supercofactors properties (in particular properties (31) and 

(32)), it is also possible to obtain the analytical expression for the first derivatives of 𝔇 with respect to 

the coefficients of the Spin-Coupled orbitals: 
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𝜕𝔇

𝜕𝐶𝜇𝑘
= 2∑⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇(𝑘|𝑟)

𝑁𝑣

𝑟=1

      (53) 

Now, let us take into account the first derivatives with respect to the spin-coupling coefficients {𝑐𝑆,𝑘}. 

In this regard, it is worth observing that the derivative of any 𝑟-th order ordinary supercofactor gives a 

symmetrized indexed supercofactor of the same order: 

𝜕𝔇(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟)

𝜕𝑐𝑆,𝑘
= 𝔇𝑘

′′(𝑡1 𝑡2…  𝑡𝑟| 𝑢1 𝑢2…  𝑢𝑟)     (54) 

Therefore, exploiting the previous property and using the analytical expressions of 𝐹𝒉
𝑆𝐶  and 𝔇 in 

equations (38) and (18), respectively, it is easy to see that: 

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑐𝑆,𝑘
= ∑ ⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ 𝔇𝑘

′′(𝑡| 𝑢)     (55)

𝑁𝑣

𝑡,𝑢=1

 

and 

𝜕𝔇

𝜕𝑐𝑆,𝑘
= 𝔇𝑘

′′     (56) 

As mentioned above, to determine the coefficients of the Spin-Coupled orbitals and the spin-coupling 

coefficients that minimize functional (23), the second derivatives of 𝜒2 are also necessary. To obtain 

their analytical form, let us start from equation (33) and let us derive it with respect to the generic 

variable 𝑦. In compact form, we can write: 

 
𝜕2𝜒2

𝜕𝑦 𝜕𝑥
=∑𝐾𝒉

𝜕𝐴𝒉
𝜕𝑦

𝒉

+
𝜕𝐾𝒉
𝜕𝑦

 𝐴𝒉      (57) 

where 𝐴𝒉 is given by 

𝐴𝒉 =
1

2
 (
𝜕𝐹𝒉

𝑐𝑎𝑙𝑐

𝜕𝑥
 (𝐹𝒉

𝑐𝑎𝑙𝑐)
∗
+ 𝐹𝒉

𝑐𝑎𝑙𝑐 𝜕(𝐹𝒉
𝑐𝑎𝑙𝑐)

∗

𝜕𝑥
) =

= Re{𝐹𝒉
𝑐𝑎𝑙𝑐} (−

Re{𝐹𝒉
𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑥
+ 
1

𝔇
 Re {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
})

+ Im{𝐹𝒉
𝑐𝑎𝑙𝑐} (−

Im{𝐹𝒉
𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑥
+ 
1

𝔇
 Im {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
})       (58)      

and where 𝜕𝐾𝒉 𝜕𝑦⁄  is 
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𝜕𝐾𝒉
𝜕𝑦

=  Γ𝒉 [
Re{𝐹𝒉

𝑐𝑎𝑙𝑐}

|𝐹𝒉
𝑐𝑎𝑙𝑐|

3 (−
Re{𝐹𝒉

𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑦
+ 
1

𝔇
 Re {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑦
})

+
Im{𝐹𝒉

𝑐𝑎𝑙𝑐}

|𝐹𝒉
𝑐𝑎𝑙𝑐|

3 (−
Im{𝐹𝒉

𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑦
+ 
1

𝔇
 Im {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑦
})]       (59) 

with 

Γ𝒉 =
2𝜂 |𝐹𝒉

𝑒𝑥𝑝
|

(𝑁𝑟 −𝑁𝑝) 𝜎𝒉
2
      (60) 

Therefore, equation (58) and equation (59) depend only on 𝐹𝒉
𝑐𝑎𝑙𝑐 and on the first derivatives of 𝐹𝒉

𝑆𝐶 

and 𝔇, which are already known. On the contrary, if we consider the derivative 𝜕𝐴𝒉 𝜕𝑦⁄ , we have: 

𝜕𝐴𝒉
𝜕𝑦

=
1

2
 (
𝜕2𝐹𝒉

𝑐𝑎𝑙𝑐

𝜕𝑦  𝜕𝑥
 (𝐹𝒉

𝑐𝑎𝑙𝑐)
∗
+
𝜕𝐹𝒉

𝑐𝑎𝑙𝑐

𝜕𝑥
 
𝜕(𝐹𝒉

𝑐𝑎𝑙𝑐)
∗

𝜕𝑦
+
𝜕𝐹𝒉

𝑐𝑎𝑙𝑐

𝜕𝑦
 
𝜕(𝐹𝒉

𝑐𝑎𝑙𝑐)
∗

𝜕𝑥

+ 𝐹𝒉
𝑐𝑎𝑙𝑐  

𝜕2(𝐹𝒉
𝑐𝑎𝑙𝑐)

∗

𝜕𝑦𝜕𝑥
)                                                                       (61) 

Also in this case, since we assume to work with real orbitals, both for the second derivatives with 

respect to the coefficients of the Spin-Coupled orbitals and for the second derivatives with respect to 

the spin-coupling coefficients, it is possible to show that 

𝜕2(𝐹𝒉
𝑐𝑎𝑙𝑐)

∗

𝜕𝑦𝜕𝑥
= (

𝜕2𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑦  𝜕𝑥
)

∗

     (62) 

Therefore, taking into account relations (35) and (62), we obtain: 

𝜕𝐴𝒉
𝜕𝑦

=  Re{𝐹𝒉
𝑐𝑎𝑙𝑐} Re {

𝜕2𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑦 𝜕𝑥
} + Re {

𝜕𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑥
}  Re {

𝜕𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑦
}

+ Im{𝐹𝒉
𝑐𝑎𝑙𝑐} Im {

𝜕2𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑦 𝜕𝑥
} + Im {

𝜕𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑥
}  Im {

𝜕𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑦
}      (63) 

Now, starting from equation (39), we have 

𝜕2𝐹𝒉
𝑐𝑎𝑙𝑐

𝜕𝑦𝜕𝑥
= 2

𝐹𝒉
𝑆𝐶

𝔇3
 
𝜕𝔇

𝜕𝑦
 
𝜕𝔇

𝜕𝑥
 −

1

𝔇2
 
𝜕𝔇

𝜕𝑥
 
𝜕𝐹𝒉

𝑆𝐶

𝜕𝑦
−
𝐹𝒉
𝑆𝐶

𝔇2
 
𝜕2𝔇

𝜕𝑦𝜕𝑥
−
1

𝔇2
 
𝜕𝔇

𝜕𝑦
 
𝜕𝐹𝒉

𝑆𝐶

𝜕𝑥

+
1

𝔇
 
𝜕2𝐹𝒉

𝑆𝐶

𝜕𝑦𝜕𝑥
             (64) 

and substituting (39) and (64) into (63), 𝜕𝐴𝒉 𝜕𝑦⁄  becomes: 
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𝜕𝐴𝒉
𝜕𝑦

= Re{𝐹𝒉
𝑐𝑎𝑙𝑐} (

2 Re{𝐹𝒉
𝑆𝐶}

𝔇3
 
𝜕𝔇

𝜕𝑦
 
𝜕𝔇

𝜕𝑥
 −

1

𝔇2
 
𝜕𝔇

𝜕𝑥
 Re {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑦
} −

Re{𝐹𝒉
𝑆𝐶}

𝔇2
 
𝜕2𝔇

𝜕𝑦𝜕𝑥
       

−
1

𝔇2
 
𝜕𝔇

𝜕𝑦
 Re {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
} +

1

𝔇
 Re {

𝜕2𝐹𝒉
𝑆𝐶

𝜕𝑦𝜕𝑥
})

+  Im{𝐹𝒉
𝑐𝑎𝑙𝑐} (

2 Im{𝐹𝒉
𝑆𝐶}

𝔇3
 
𝜕𝔇

𝜕𝑦
 
𝜕𝔇

𝜕𝑥
 −

1

𝔇2
 
𝜕𝔇

𝜕𝑥
 Im {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑦
} −

Im{𝐹𝒉
𝑆𝐶}

𝔇2
 
𝜕2𝔇

𝜕𝑦𝜕𝑥

−
1

𝔇2
 
𝜕𝔇

𝜕𝑦
 Im {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
} +

1

𝔇
 Im {

𝜕2𝐹𝒉
𝑆𝐶

𝜕𝑦𝜕𝑥
})

+ (−
Re{𝐹𝒉

𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑥
+ 
1

𝔇
 Re {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
}) (−

Re{𝐹𝒉
𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑦
+ 
1

𝔇
 Re {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑦
})

+ (−
Im{𝐹𝒉

𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑥
+ 
1

𝔇
 Im {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑥
})(−

Im{𝐹𝒉
𝑆𝐶}

𝔇2
 
𝜕𝔇

𝜕𝑦
+ 
1

𝔇
 Im {

𝜕𝐹𝒉
𝑆𝐶

𝜕𝑦
})  (65) 

Therefore, it is clear that 𝜕𝐴𝒉 𝜕𝑦⁄  does not depend only on 𝐹𝒉
𝑐𝑎𝑙𝑐 and on the first derivatives of 𝐹𝒉

𝑆𝐶 

and 𝔇, but also on the second derivatives 𝜕2𝐹𝒉
𝑆𝐶 𝜕𝑦⁄ 𝜕𝑥 and 𝜕2𝔇 𝜕𝑦⁄ 𝜕𝑥, which will be discussed 

below. 

Let us consider the orbital-orbital second derivatives of 𝐹𝒉
𝑆𝐶 and 𝔇, namely the second derivatives of 

𝐹𝒉
𝑆𝐶  and 𝔇  only with respect to the coefficients of the Spin-Coupled orbitals. These second 

derivatives can be obtained by following the mathematical procedure already adopted to derive the 

expression of 𝜕𝐹𝒉
𝑆𝐶 𝜕𝐶𝜇𝑘⁄ , namely by exploiting the properties of the supercofactors and, in 

particular, by using recurrence relation (27). Nevertheless, since these derivations require a large 

number of steps, here, for the sake of simplicity, we will report only the final analytical expressions of 

the second derivatives. It is necessary to distinguish between two different cases: i) the simplest one, 

in which the derivatives are with respect to two coefficients of the same Spin-Coupled orbital (case 

ℎ = 𝑘) and ii) the one in which the derivatives are with respect to two coefficients of different Spin-

Coupled orbitals (case ℎ ≠ 𝑘). 
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Let us consider the case ℎ = 𝑘. It is possible to show that: 

𝜕2𝐹𝒉
𝑆𝐶

𝜕𝐶𝜈𝑘𝜕𝐶𝜇𝑘
= 2 [∑∑ ∑ ∑ ⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ ⟨𝜒𝜈| 𝜑𝑠⟩  𝔇(𝑡𝑘𝑠|𝑢𝑟𝑘)

𝑁𝑣

𝑠≠𝑡,𝑘

𝑁𝑣

𝑟≠𝑢,𝑘

𝑁𝑣

𝑢≠𝑘

𝑁𝑣

𝑡≠𝑘

+∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇|𝜒𝜈⟩  𝔇(𝑡𝑘|𝑢𝑘) 

𝑁𝑣

𝑢≠𝑘

𝑁𝑣

𝑡≠𝑘

+∑∑(⟨ 𝜒𝜈| 𝐼𝒉 | 𝜑𝑡⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ + ⟨ 𝜒𝜇| 𝐼𝒉 | 𝜑𝑡⟩ ⟨𝜒𝜈| 𝜑𝑟⟩)  𝔇(𝑡𝑘|𝑘𝑟) 

𝑁𝑣

𝑟≠𝑘

𝑁𝑣

𝑡≠𝑘

+ ⟨ 𝜒𝜇| 𝐼𝒉 |𝜒𝜈⟩  𝔇(𝑘|𝑘)]                                                     (66) 

and  

𝜕2𝔇

𝜕𝐶𝜈𝑘𝜕𝐶𝜇𝑘
= 2 [∑∑⟨𝜒𝜇| 𝜑𝑟⟩ ⟨𝜒𝜈| 𝜑𝑠⟩ 𝔇(𝑘𝑠|𝑟𝑘)

𝑁𝑣

𝑠≠𝑘

+ ⟨𝜒𝜇|𝜒𝜈⟩ 𝔇(𝑘|𝑘)

𝑁𝑣

𝑟≠𝑘

]       (67) 

For the case ℎ ≠ 𝑘 the derivation is slightly more cumbersome and we obtain: 

𝜕2𝐹𝒉
𝑆𝐶

𝜕𝐶𝜈ℎ𝜕𝐶𝜇𝑘
= 2 [ ∑ ∑∑ ∑ ⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ ⟨𝜒𝜈| 𝜑𝑠⟩  𝔇(𝑡𝑘ℎ|𝑢𝑟𝑠)

𝑁𝑣

𝑠≠𝑢,𝑟

𝑁𝑣

𝑟≠𝑢

𝑁𝑣

𝑢=1

𝑁𝑣

𝑡≠𝑘,ℎ

+∑∑ ∑ ∑ ⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ ⟨𝜒𝜈| 𝜑𝑠⟩  𝔇(𝑡𝑘𝑠|𝑢𝑟ℎ)

𝑁𝑣

𝑠≠𝑡,𝑘

𝑁𝑣

𝑟≠𝑢,ℎ

𝑁𝑣

𝑢≠ℎ

𝑁𝑣

𝑡≠𝑘

+∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇|𝜒𝜈⟩  𝔇(𝑡𝑘|𝑢ℎ) 

𝑁𝑣

𝑢≠ℎ

𝑁𝑣

𝑡≠𝑘

+∑∑⟨ 𝜒𝜈| 𝐼𝒉 | 𝜑𝑡⟩ ⟨𝜒𝜇| 𝜑𝑟⟩  𝔇(𝑡𝑘|ℎ𝑟) 

𝑁𝑣

𝑟≠ℎ

𝑁𝑣

𝑡≠𝑘

+∑∑⟨ 𝜒𝜈| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩  𝔇(ℎ𝑘|𝑢𝑟) 

𝑁𝑣

𝑟≠𝑢

𝑁𝑣

𝑢=1

+∑∑⟨ 𝜒𝜇| 𝐼𝒉 | 𝜑𝑡⟩ ⟨𝜒𝜈| 𝜑𝑠⟩  𝔇(𝑘ℎ|𝑡𝑠) + 

𝑁𝑣

𝑠≠𝑡

𝑁𝑣

𝑡=1

+∑∑⟨ 𝜒𝜇| 𝐼𝒉 | 𝜑𝑡⟩ ⟨𝜒𝜈| 𝜑𝑠⟩ 𝔇(𝑘𝑠|𝑡ℎ) + 

𝑁𝑣

𝑠≠𝑘

𝑁𝑣

𝑡≠ℎ

⟨ 𝜒𝜇| 𝐼𝒉 |𝜒𝜈⟩ 𝔇(𝑘|ℎ)]   (68) 

and 
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𝜕2𝔇

𝜕𝐶𝜈ℎ𝜕𝐶𝜇𝑘
= 2 [∑∑⟨𝜒𝜇| 𝜑𝑟⟩ ⟨𝜒𝜈| 𝜑𝑠⟩ 𝔇(𝑘ℎ|𝑟𝑠)

𝑁𝑣

𝑠≠𝑟

+

𝑁𝑣

𝑟=1

∑∑⟨𝜒𝜇| 𝜑𝑟⟩ ⟨𝜒𝜈| 𝜑𝑠⟩  𝔇(𝑘𝑠|𝑟ℎ)

𝑁𝑣

𝑠≠𝑘

𝑁𝑣

𝑟≠ℎ

+ ⟨𝜒𝜇|𝜒𝜈⟩  𝔇(𝑘|ℎ)]    (69) 

Now, let us take into account the spin-orbital second derivatives of 𝐹𝒉
𝑆𝐶 and 𝔇. Unlike the orbital-

orbital second derivatives, the derivation is really straightforward. In fact, exploiting property (54) 

and applying it to equations (52) and (53), we easily obtain: 

𝜕2𝐹𝒉
𝑆𝐶

𝜕𝑐𝑆,ℎ 𝜕𝐶𝜇𝑘
= 2 [∑∑∑⟨ 𝜑𝑡| 𝐼𝒉 | 𝜑𝑢⟩ ⟨𝜒𝜇| 𝜑𝑟⟩ 𝔇ℎ

′′(𝑡𝑘|𝑢𝑟) +∑⟨ 𝜒𝜇| 𝐼𝒉 | 𝜑𝑡⟩ 𝔇ℎ
′′(𝑘|𝑡)

𝑁𝑣

𝑡=1

𝑁𝑣

𝑟≠𝑢

𝑁𝑣

𝑢=1

𝑁𝑣

𝑡≠𝑘

]   (70) 

and 

𝜕2𝔇

𝜕𝑐𝑆,ℎ  𝜕𝐶𝜇𝑘
= 2∑⟨𝜒𝜇| 𝜑𝑟⟩  𝔇ℎ

′′(𝑘|𝑟)

𝑁𝑣

𝑟=1

      (71) 

Finally, to obtain the analytical expressions of the spin-spin second derivatives of 𝐹𝒉
𝑆𝐶 and 𝔇, namely 

the analytical expressions of the second derivatives only with respect to spin-coupling coefficients, we 

have used a different approach. To this purpose, let us start considering the spin-spin second 

derivatives of 𝔇. It is easy to see that, using equations (6) and (17), 𝔇 can be also expressed in this 

way: 

𝔇 = ⟨ Ψ0
𝑆𝐶| Ψ0

𝑆𝐶⟩ = ∑∑𝑐𝑆,𝑝

𝑓𝑆
𝑁𝑣

𝑞=1

𝑓𝑆
𝑁𝑣

𝑝=1

𝑐𝑆,𝑞 ⟨𝜓𝑆,𝑀;𝑝
𝑁 |𝜓𝑆,𝑀;𝑞

𝑁 ⟩   (72) 

Therefore, it is straightforward to show that: 

𝜕2𝔇

𝜕𝑐𝑆,ℎ  𝜕𝑐𝑆,𝑘
= 2 ⟨𝜓𝑆,𝑀;ℎ

𝑁 |𝜓𝑆,𝑀;𝑘
𝑁 ⟩ = 2 ∑ 𝑑𝑖,ℎ

𝑁𝑑

𝑖,𝑗=1

𝑑𝑗,𝑘  ⟨Ω𝑖|Ω𝑗⟩    (73) 

where we have exploited the fact that each generic spin-coupled structure 𝜓𝑆,𝑀;𝑘
𝑁  can be written as a 

linear combination of Slater determinants {Ω𝑖}. The coefficients of the linear combination {𝑑𝑖,𝑘} are 

identical to the coefficients in the expansion of the corresponding spin-eigenfunction in terms of spin 

primitive functions (see equation (12)). 

In order to compute the spin-spin second derivatives of 𝐹𝒉
𝑆𝐶, first of all it is worth nothing that, after 

introducing the 𝑁-electron structure factor operator 

ℑ̂𝒉 = ∑  𝐼𝒉(𝒙𝑎)

𝑁

𝑎=1

         (74), 
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 𝐹𝒉
𝑐𝑎𝑙𝑐 can be rewritten like this: 

𝐹𝒉
𝑐𝑎𝑙𝑐 = ⟨Ψ0|ℑ̂𝒉|Ψ0⟩ = 𝐹𝒉

𝑐𝑜𝑟𝑒 +
𝐹𝒉
𝑆𝐶

𝔇
=

=
1

𝔇
 ∑∑𝑐𝑆,𝑝

𝑓𝑆
𝑁𝑣

𝑞=1

𝑓𝑆
𝑁𝑣

𝑝=1

𝑐𝑆,𝑞 ⟨𝜓𝑆,𝑀;𝑝
𝑁 |ℑ̂𝒉|𝜓𝑆,𝑀;𝑞

𝑁 ⟩      (75) 

Therefore,  

𝐹𝒉
𝑆𝐶 = ∑∑𝑐𝑆,𝑝

𝑓𝑆
𝑁𝑣

𝑞=1

𝑓𝑆
𝑁𝑣

𝑝=1

𝑐𝑆,𝑞 ⟨𝜓𝑆,𝑀;𝑝
𝑁 |ℑ̂𝒉|𝜓𝑆,𝑀;𝑞

𝑁 ⟩ − 𝐹𝒉
𝑐𝑜𝑟𝑒 𝔇        (76) 

and it is easy to obtain: 

𝜕2𝐹𝒉
𝑆𝐶

𝜕𝑐𝑆,ℎ  𝜕𝑐𝑆,𝑘
= 2 ⟨𝜓𝑆,𝑀;ℎ

𝑁 |ℑ̂𝒉|𝜓𝑆,𝑀;𝑘
𝑁 ⟩ − 𝐹𝒉

𝑐𝑜𝑟𝑒 𝜕2𝔇

𝜕𝑐𝑆,ℎ  𝜕𝑐𝑆,𝑘
=

= 2 ∑ 𝑑𝑖,ℎ

𝑁𝑑

𝑖,𝑗=1

𝑑𝑗,𝑘  ⟨ Ω𝑖  |ℑ̂𝒉| Ω𝑗⟩ − 𝐹𝒉
𝑐𝑜𝑟𝑒 𝜕2𝔇

𝜕𝑐𝑆,ℎ  𝜕𝑐𝑆,𝑘
       (77) 

with 𝜕2𝔇 𝜕𝑐𝑆,ℎ  𝜕𝑐𝑆,𝑘⁄  given by equation (73). 
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