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Abstract 24 

Purpose: To evaluate the choriocapillaris flow in regions of enlarged or new incident drusen in patients 25 

with early and intermediate age-related macular degeneration (AMD). 26 

Methods: We retrospectively reviewed and analyzed structural optical coherence tomography (OCT) 27 

and OCT angiography (OCTA) images of consecutive patients with early or intermediate AMD evaluated 28 

at the Doheny-UCLA Eye Centers between 2015 and 2018. All patients were imaged using a Cirrus OCT, 29 

and only one eye was included in the study. To be eligible for this analysis, patients were required to 30 

have a 3 x 3 mm OCTA scan acquired during the first visit (considered as baseline) and a fovea-centered 31 

512 x 128 macular cube (6 x 6 mm) acquired at both the baseline visit and after a minimum of 1 year 32 

follow-up. The drusen maps generated from the macular cubes were used to generate a drusen area 33 

(DA) measurement and compute the difference between baseline and follow-up (ΔDA).  After registering 34 

the structural OCTs to the baseline choriocapillaris (CC) OCTA, we analyzed and compared the baseline 35 

flow deficits (FD) within drusen free region (FDDF), regions into which  drusen enlarged or expanded at 36 

follow-ip (FDEN), and regions in which new incident drusen (FDND) appeared at follow-up.  37 

Results: Forty-six patients were eligible for the analysis and had a mean follow-up of 1.47 years. Twelve 38 

eyes of 12 subjects had a ΔDA<0.1 mm2. In these eyes only the FDDF was calculated (40.37±2.29%) and it 39 

was not significantly different from the FDDF  of eyes with ΔDA≥0.1 mm2 (40.25±4.37%, p=0.849).  When 40 

comparing the different regions within the eyes with ΔDA≥0.1 mm2, there was no significant difference 41 

between FDED and FDND (43.61 ± 4.36% and 44.16±2.38%, p=528), but both were significantly higher than 42 

FDDF (p=0.001 and p<0.001 respectively).  43 

 Conclusions: Significant CC flow impairment is present under regions of intact RPE where existing 44 

drusen will enlarge into or new drusen will appear within 2 years. These findings suggest that location of 45 

drusen may not be stochastic, but may be driven by regional deficits in the choriocapillaris. 46 



Keywords: age-related macular degeneration, optical coherence tomography angiography, drusen, 47 

choriocapillaris. 48 

 49 

Introduction 50 

Age related macular degeneration (AMD) can result in progressive and irreversible central vision loss 51 

among older individuals[1]. Drusen is a characteristic feature of the early and intermediate stages of the 52 

disease. AMD is a complex disease with multifactorial etiologies with aging, genetics, inflammation, 53 

oxidative damage, and environmental influences all having been implicated in its pathogenesis and 54 

progression. [2, 3] Regardless of the etiologic mechansism, the AMD disease process ultimately results in  55 

damage to the retinal pigment epithelium (RPE), Bruch’s membrane, and choriocapillaris (CC) unit.[4, 5] 56 

The dysfunction of this complex may contribute to the development of drusen between the RPE and 57 

Bruch’s membrane with eventual progressive RPE and CC loss and photoreceptor atrophy.  58 

Multiple studies on histopathologic samples have suggested that CC loss may be an important early 59 

finding in the evolution of AMD, but whether it is a primary dysfunction or it is secondary to RPE 60 

abnormalities, remains a topic of controversy.  Histologic studies, of course, are not amenable to 61 

longitudinal follow-up, and thus the sequence of events has been difficult to establish. Recently, optical 62 

coherence tomography angiography (OCTA) has evolved into a useful non-invasive imaging technology 63 

that allows the retinal and choriocapillaris circulations to be evaluated and quantified in vivo. With OCTA 64 

imaging, the CC has a grainy appearance with bright spots corresponding to flow alternating with dark 65 

regions which have been referred to as flow voids. The appearance of the CC may  change with age, 66 

myopia, or retinal diseases[6, 7]. Flow voids evident on OCTA images of the CC may represent normal 67 

intercapillary spaces, but they may also be secondary to CC dropout.[8] However, it is important to note 68 

that the detectable flow range of OCTA is limited, and flows below the decorrelation threshold are 69 



indistinguishable from background noise and are thus undetectable[8]. Considering this, CC flow voids 70 

have recently been renamed flow or signal deficits[9]. Thanks to advanced image processing software, 71 

the quantification of these CC flow deficits is now possible, allowing an estimation of CC flow 72 

impairment in different diseases[8, 10–13]. The main aim of this study was to correlate the CC 73 

impairment with the incidence of new drusen in patients with early or intermediate AMD, using OCTA 74 

analysis. 75 

Methods 76 

 77 

In this retrospective study, we collected and analyzed structural OCT and OCTA images of consecutive 78 

patients with early and intermediate AMD acquired at the Doheny Eye Centers between 2015 and 2018 79 

using the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) with Angioplex OCTA software.  80 

Eligible patients had drusen on OCT in at least one eye and no evidence of any other pathology involving 81 

the macula. Eyes with non-visually significant vitreoretinal interface disease, such as a subtle epiretinal 82 

membrane only visible by OCT, were not excluded. All eligible patients needed to have one 3 x 3 mm 83 

OCTA scan acquired during the first visit (considered as baseline) and two fovea-centered 512 x 128 84 

cubes (6 x 6 mm) acquired at baseline and at a second visit with a follow-up of at least 12 months. Only 85 

subjects with scans that fulfilled the image quality acceptance criteria (signal strength >7, absence of 86 

motion artifact) of the Doheny Image Reading Center (DIRC) according to the evaluation of two certified 87 

readers, were selected and analyzed[14, 15]. When both eyes were eligible, the right eye was chosen for 88 

the analysis. 89 

 90 

Image Analysis 91 

 92 



The two fovea-centered 512 x 128 macular cubes (6 x 6 mm) for each eligible eye were used to generate 93 

the respective drusen maps by the FDA-cleared Cirrus RPE analysis software (Cirrus HD-OCT, software 94 

V.6.0; Carl Zeiss Meditec, Inc., Dublin, CA, USA). The drusen map is a color-encoded elevation map 95 

generated using a slab between the RPE and the RPE fit line. The accuracy and reproducibility of the 96 

drusen map, has been demonstrated in previous studies[16]. The map was verified using the 97 

corresponding structural B-scans and if any errors were present due to segmentation, the latter was 98 

manually refined by the operator. 99 

The 3 x 3 mm OCTA scan consisted of a 245 A-scans x 245 B-scan pattern. A fully-automated retinal layer 100 

segmentation algorithm was applied to the three-dimensional structural OCT data, in order to segment 101 

the CC slab as defined previously (10 μm thick starting 31 μm posterior to the RPE reference).[6] This 102 

segmentation was then applied to OCTA flow intensity data to obtain vascular images. Maximum 103 

projection analyses of the flow intensity were performed to generate the en-face images of the CC 104 

(1024x1024 pixels). Projection artifacts were removed using the automated algorithm included with the 105 

instrument software. 106 

Both drusen maps and the CC en face image were registered using ImageJ software version 1.50 107 

(National Institutes of Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/index.html)[17]. The 108 

large superficial vessels visible on OCTA and on the OCT fundus image of the 6 x 6 mm scans (i.e. the en 109 

face reconstruction of the sum of all the signals coming from each of the A-scans acquired [18]) were 110 

used as a reference for the registration. 111 

 The registered drusen maps were thresholded using the “Max Entropy” method after splitting the color 112 

channels and selecting the green channel image.  The resulting binarized images were analyzed using 113 

the “Analyze particles” command in order to obtain the drusen areas (DA) and compare them between 114 

the baseline and follow-up visits. Based on the difference between the two values, patients were divided 115 



into 2 groups: subjects with stable DA (difference between DA at baseline and follow-up [ΔDA] <0.1 116 

mm2); subjects with increased DA after follow-up (ΔDA>0.1 mm2). 117 

The CC en-face image was binarized for quantitative analysis of the signal deficits using the Phansalkar 118 

method (radius, 15 pixels) as previously described.[6, 19, 20]  119 

Using the selection from both drusen maps, the flow deficits could be calculated in three different 120 

zones: drusen free region (FDDF), region of enlarged drusen (FDED), region of new drusen (FDND) (Fig. 1). 121 

For patients with ΔDA <0.1 mm2 , only the FDDF  was calculated. For patients with ΔDA >0.1 mm2, FDDF  122 

and FDED  were always calculated, while FDND  was calculated only in presence of new drusen in the 123 

follow-up visit. 124 

The entire procedure was repeated by two independent, experienced operators in order to investigate 125 

the repeatability of all measurements. All values were then averaged to perform the statistical analysis. 126 

 127 

Statistics 128 

Statistical analyses were performed using SPSS Statistics version 20 (IBM, Armonk, NY). Intraclass 129 

correlation coefficients (ICC) were calculated for drusen area and CC flow deficit measurements.  130 

The differences between the two cohorts and among the different regions were investigated with the 131 

Mann-Whitney test. All data are presented as mean ± standard deviation, median and interquantile 132 

range (IQR: third quartile – first quartile). In all analyses, P values < 0.05 were considered as statistically 133 

significant.  134 

 135 

Results 136 



 137 

Forty-eight patients (23 males, mean age: 79.5 ± 7.26 years, median: 79.5, IQR: 84.25 - 75) met the 138 

eligibility criteria for this retrospective analysis (Fig 2). The mean follow-up time was 1.47 ± 0.32 years 139 

(median: 1.43, IQR: 1.67 – 1.24) . 140 

Among those subjects only 12 had a ΔDA<0.1 mm2. All remaining subjects had an increase of DA ≥ 0.1 141 

mm2 and 25 of them had new incident drusen in the second visit. 142 

The mean DA at baseline (DAB) was 0.87 ± 0.59 mm2 (median 0.72, IQR: 1.15 – 0.5) and at follow-up 143 

(DAF) it was 1.15 ± 0.71 mm2 (median: 0.9, IQR: 1.56 – 0.65). More specifically, patients with ΔDA<0.1 144 

mm2 had a mean DAB of 0.64 ± 0.33 mm2 (median: 0.55, IQR: 0.78 – 0.46) and a mean DAF of 0.69 ± 0.33 145 

mm2 (median: 0.6, IQR: 0.82 – 0.5) while patients with ΔDA≥0.1 mm2 had a mean DAB of 0.95 ± 0.64 mm2 146 

(median: 0.73, IQR: 1.23 – 0.54) and a mean DAF of 1.31 ± 0.73 mm2 (median: 0.97, IQR: 1.76 – 0.79). 147 

The 12 subjects with no significant increase in DA, had a FDDF  of 40.37 ± 2.29 % (median: 41.23, IQR: 148 

42.21 – 38.31) while the other 36 had a FDDF  of 40.25  ± 4.37 % (median: 40.36, IQR: 42.75 – 37.9)  149 

(p=0.849). 150 

When comparing the different regions among the patients with ΔDA≥0.1 mm2, there was no significant 151 

difference between FDED and FDND (43.61 ± 4.36 % [median: 44.22, IQR: 46.02 – 40.93] and 44.16 ± 2.38% 152 

[median: 45.22, IQR: 45.83 – 42.52], p=528), but these were both significantly higher than FDDF (p=0.001 153 

and p<0.001 respectively) (Fig. 3). 154 

Repeatability assessment 155 

Between graders, the ICC of all DA measurements was 0.992 (95% confidence interval (CI) 0.964-156 

0.999) while the calculation of the FD had an ICC of 0.951 (95% CI 0.931-0.983) in the drusen free 157 

regions, 0.867 (95% CI 0.821-0.935) in the region of enlarged drusen, and 0.905 (95% CI 0.871-0.963) in 158 

the region of new drusen. 159 



  160 

Discussion 161 

In this study we retrospectively investigated the status of the choriocapillaris in different regions 162 

of the macula in eyes with early/intermediate AMD and correlated CC flow deficit in these regions with 163 

the subsequent development or enlargement of drusen.  Both regions demonstrating new incident 164 

drusen or enlargement of existing drusen, showed greater CC flow deficits compared to regions which 165 

did not show involvement by drusen.  166 

Several studies using different approaches have demonstrated a strong association between 167 

microvascular choroidal changes and AMD from early to advanced stages. Histopathological studies 168 

have highlighted increasing CC alterations with age and the presence of drusen[21–23] .  169 

It has been suggested that the location in which drusen appear may not be stochastic, but may be 170 

influenced by the anatomy of the underlying CC.[24, 25] For example, Lengyel et al. demonstrated a 171 

spatial relationship between equatorial drusen and intercapillary pillars of the CC, which may represent 172 

an initial site of drusen deposition[26]. Furthermore an increased sub-RPE deposit density has been 173 

correlated with CC loss and the development of drusen over areas of the choroid with ghost vessels [27]. 174 

However, this topic is still debated as other authors reported RPE atrophy with a preserved 175 

choriocapillaris at the edges of GA [28, 29]. Bhutto and Lutty, following a comprehensive literature 176 

review, postulated that RPE dysfunction may represent the trigger for atrophic AMD, whereas in 177 

exudative AMD, a primary insult to the choroidal vasculature might lead to the subsequent disruption of 178 

the RPE/ Bruch’s membrane/choroidal vascular complex [30]. 179 

The mechanism(s) driving the RPE alterations (i.e. drusen, pigment changes, and eventual 180 

atrophy) and the basis for the predilection of these alterations to form in regions associated with CC 181 



impairment, is still unknown. One hypothesis is that primary CC vascular impairment, due to 182 

inflammatory or degenerative mechanisms or other genetic and non-genetic factors, may lead to RPE 183 

ischemia and dysfunction[31–33]. Alternatively, as the CC relies on vascular endothelial growth factor 184 

(VEGF) secretion by the RPE, early dysfunction of the overlying RPE cells could impair this trophic 185 

signaling process leading to endothelial cell loss[29, 34]. 186 

 Several OCTA studies have now investigated CC alterations at nearly all stages of AMD[11, 13, 15, 35–187 

39].  188 

Our group recently studied the CC features in eyes affected by intermediate AMD, confirming the co-189 

localization of the CC flow impairment under and around the edges of drusen [15, 38].  190 

To the best of our knowledge, this study is the first to report two important findings: (1) there is a 191 

significant impairment of the choriocapillaris in the area of future drusen enlargement; given that, we 192 

may hypothesize that CC impairment may be a key factor influencing enlargement of the drusenoid 193 

lesions; (2) there is a significant flow impairment in areas with intact RPE where a new drusen lesion will 194 

develop within 2 years of follow-up (Fig. 4).  Interestingly, there was no difference in the CC flow deficit 195 

overall between eyes which showed an increase in drusen area at follow-up, compared to those that did 196 

not show much change in area. This observation would appear to highlight the importance of 197 

regional/loval changes in the CC compared to more diffuse changes in these early and intermediate 198 

AMD eyes. 199 

This observation is perhaps not surprising as these regions of greater CC impairment would be expected 200 

to be associated with a greater impairment of the overlying RPE.  One would expect that these more 201 

impaired RPE cells would be most susceptible to lipofusin accumulation, drusen development, and 202 

eventual progressive manifest RPE alterations 203 



Although the precise role of alterations of the CC in the pathogenesis of drusen and AMD requires 204 

further investigation, the results of our study may facilitate further investigations of a topographic 205 

characterization of the CC in AMD patients which may allow, in a longitudinal setting, the prediction not 206 

only of the location of the new lesions, but also their expansion. 207 

Despite this mounting evidence, it is still impossible to exclude that RPE dysfunction, not revealed by 208 

current imaging modalities, may still be the primary trigger for CC flow impairment. The use of new 209 

multimodal imaging techniques including fluorescence lifetime imaging ophthalmoscopy [40, 41] or 210 

quantitative fundus autofluorescence [42–44] or adaptive optics imaging[45, 46] may eventually provide 211 

further clarity to this issue. Regardless, the status of the CC on OCTA may prove to be useful as an early 212 

biomarker of the status of the overlying RPE. 213 

Among our cohort, no patients showed a reduction of drusen area during our follow-up period. A sharp 214 

reduction in drusen volume has been reported prior to the development of advanced AMD. If the 215 

patients included in our study were followed for a longer period of time, we suspect we would have 216 

observed advanced AMD events and a reduction in drusen volume in some eyes. Future studies with 217 

longer follow-up may be able to determine whether the severity of CC impairment can predict which 218 

drusen go on to develop atrophy. 219 

Our study is not without limitations, including its retrospective design (with potential for selection bias) 220 

and a relatively small sample size. In addition, as this was an exclusively OCT-based study, we were not 221 

able correlate these CC findings on OCTA with abnormalities on other imaging modalities such as color 222 

photographs or FAF images.  Another limitation of our study is the use of an SD-OCT system for OCT 223 

angiography. Current commercially available SD-OCT machines, use a shorter wavelength (i.e. ~840 nm) 224 

and have more sensitivity loss with depth compared with swept source systems22,23, and thus may have 225 

more difficulty achieving adequate signal levels at the CC because of its location beneath the highly 226 



scattering RPE. This issue could be especially problematic under drusen. However, this was not a major 227 

concern in our study as we focused on the baseline OCTA in regions free of drusen or RPE abnormalities 228 

at baseline. Thus, our analysis is less susceptible to signal loss and related artifacts. 229 

In summary, we report a significant CC flow impairment under areas of intact RPE where “old” 230 

drusen tend to expand and new incident drusen develop within 2 years of follow-up. Several structural 231 

OCT findings are already recognized as risk factors for AMD progression including drusen volume[47], 232 

intraretinal hyper-reflective foci[48, 49], hyporeflective foci within drusenoid lesions[50] and subretinal 233 

drusenoid deposits[51]. If replicated in future prospective, longitudinal studies, a more precise 234 

topographic representation of CC flow deficits on OCTA, may prove to be another useful parameter for 235 

evaluating the prognosis of these eyes.  236 
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Figure Legends 403 

Figure 1. The 6x6 mm drusen maps generated from the baseline and follow-up visits (A and C) were 404 

registered with the OCT angiogram (B) and automatically cut, obtaining two 3x3 mm maps (D and F). 405 

The latter were binarized to obtain the drusen areas (G and I) while the choriocapillaris (CC) angiogram 406 

was binarized to analyze the percentage of flow deficits (E). In figure H the drusen area from the baseline 407 

visit is highlighted with a white line, while the area from the follow-up visit is highlighted with a yellow 408 

line (H). In figure H, the region outside the white line is the drusen free region, while “#” represents the 409 

region of enlarged drusen and “*” the regions of new drusen. 410 

Figure 2. Flow chart diagram explaining the selection process of eligible eyes for the study. Among the 411 

initial cohort of 95 subjects with early or intermediate age related macular degeneration (AMD) in at 412 



least one eye, only 48 met all the inclusion criteria and were included in the analysis. OCT-A: Optical 413 

coherence tomography angiography; SSI: Signal Strength Index; ΔDA: difference in drusen area between 414 

the baseline and the follow-up visit.  415 

Figure 3. Box plots showing the percentage of flow deficits in the patients where the difference between 416 

the follow-up and baseline drusen area (ΔDA) was inferior or superior to 0.1 mm2. Flow deficits were 417 

calculated in the drusen free region (DF) in the region of enlarged drusen (ED) and in the region of new 418 

incident drusen (ND). Significant p values are shown in red. All p values were calculated with a Mann-419 

Whitney U test. 420 

Figure 4. Two patients (rows) with an eye with intermediate age-related macular degeneration . 421 

Registered 3x3mm drusen maps for the baseline (A and E) and follow-up visit (B and F) were used to 422 

delineate the drusen areas. After binarization of the optical coherence tomography angiography 423 

choriocapillaris slab (C and G) the percentages of flow deficits were calculated in the regions between the 424 

baseline area (white line) and follow-up area (yellow line) (D and H). The percentage of flow deficits (FD) 425 

in the first patient was 36.86 % and 44.93 % in the drusen free region (FDDF) and in the region of enlarged 426 

drusen (FDED) respectively. The second patient had a FDDF of 42.23% while FDED  and FD in the region of 427 

new drusen were 44.53 % and 45.13%. 428 
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