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1. Introduction

The analysis of infinitesimal symmetries of (deterministic) ordinary and partial differ-
ential equations (ODEs and PDEs) is a classical and well-developed tool in studying
differential equations providing a very powerful method to both compute some of their
explicit solutions or to analyze their qualitative behavior (see [4, 38] for an introduc-
tion to the subject).
The application of Lie symmetry analysis techniques to stochastic differential equa-
tions (SDEs) and stochastic partial differential equations (SPDEs) has received a
growing interest in recent years. Without claiming to be exhaustive, from the first
studies on Brownian-motion-driven SDEs (see [7, 3, 24]) and Markov processes (see
[26, 27, 36, 8]) many different notions of symmetries for Brownian-motion-driven SDEs
has been proposed (see the symmetries with random time change [47, 45, 20], W-
symmetry in [21, 23], weak symmetries in [15], random symmetries in [22, 25, 32] and
symmetries of diffusions in [16]). Moreover, random transformations of semimartin-
gales on Lie groups has been introduced (see [1]) and the notion of symmetry has been
extended also to SDEs driven by general semimartingales (see [2, 35]). Furthermore
the idea of reduction and reconstruction of differential equations admitting a solvable
Lie algebra of symmetries has been generalized from the deterministic to the stochastic
setting (see [35, 30] for strong symmetries and [14] for weak symmetries). Symmetries
of SDEs arising from variational problems has been considered and Noether theorem
and integration by quadratures have been generalized to variational stochastic prob-
lems (see [34, 41, 46]). Finally, a generalization of differential constraint method to
SPDEs has been proposed in [12, 13], while in [2, 17] symmetries have been applied
to the study of invariant numerical methods for SDEs.

In the case of Brownian-motion-driven SDEs or Lévy-process-driven SDEs, the
solution process to the equation is a Markov process. This means that the mean value
of a Markovian function of the process solves a deterministic linear PDE called Kol-
mogorov equation (whose adjoint is the also very well known Fokker-Planck equation).
In this setting, a natural problem is the comparison between the set of Lie point sym-
metries of Kolmogorov (or Fokker-Planck) equation and the set of symmetries of the
corresponding SDE (for the importance of Lie point symmetries of Kolmogorov equa-
tion in integrating the associated diffusion process see [11, 9, 10, 28, 29]). In the case
of Brownian-motion-driven SDEs all the different notions of symmetry introduced for
SDEs (strong symmetries, W symmetries, weak symmetries) have been proved to be
also symmetries of the corresponding Kolmogorov equation, but the converse is false
(see [16, 21, 24, 31, 33]). In this paper we provide an appropriate extension of the
notion of symmetry of an SDE so that the converse of the previous result holds.

In order to do this we extend the approach first proposed in [15], where the con-
cept of weak symmetry of an SDE has been introduced considering a three components
stochastic transformation for the weak solutions to a Brownian-motion-driven SDE.
Indeed, this stochastic transformation is composed by a deterministic transformation
of the state variable X, a random time change and a random rotation of the Brow-
nian motion W . Since the set of these stochastic transformations forms an infinite
dimensional Lie group, it is possible to consider the associated Lie algebra, whose ele-
ments are called infinitesimal stochastic transformations. The infinitesimal stochastic
transformations constitute the infinitesimal generators of the finite stochastic transfor-
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mations. When the process PT (X,W ), obtained transforming a weak solution (X,W )
to an SDE through the stochastic transformation T , is again a (weak) solution to
the same SDE, we say that T is a (finite) weak symmetry for the SDE. The same
notion can be extended to the case of infinitesimal transformations, and this allows
us to obtain explicitly a set of determining equations characterizing the infinitesimal
symmetries of an SDE.

In the present paper we enlarge the previous class of stochastic transformations
introducing a new component which represents the possibility of changing the un-
derlying probability measure of the solution process (X,W ) via the use of Girsanov
theorem. We call this kind of transformations extended stochastic transformations and
the corresponding symmetries extended (weak) symmetries.
The first result of the paper is, thus, the introduction of this new family of stochastic
transformations and the study of their geometric properties (they form an infinite
dimensional Lie group with associated Lie algebra).
The second main result is that for any infinitesimal Lie point symmetry of Kolmogorov
equation there exists an infinitesimal extended (weak) symmetry of the correspond-
ing SDE. Furthermore, the family of infinitesimal extended weak symmetries of the
SDE is larger than the set of Lie point symmetries of the corresponding Kolmogorov
equation. Indeed, we find that any extended weak symmetry of the SDE that is also a
symmetry of the Kolmogorov equation is associated with a Doob change of measure.
Since Doob transformations form a strict subset of the class of absolutely continuous
changes of measure which can be obtained within a Girsanov approach, we prove that
the extended weak symmetries of an SDE are in general more than the Lie point
symmetries of the Kolmogorov equation. To the best of our knowledge, these re-
sults represent the first purely stochastic interpretation of the whole set of symmetries
of Kolmogorov equations. In particular, for one-dimensional Brownian motion, our
stochastic symmetry analysis permits us to individuate not only all the symmetries
of the one-dimensional heat equation, but also a new infinite dimensional family of
symmetries associated with the random time invariance of the process (see Remark
5.1). Analogously, for two-dimensional Brownian motion, besides the symmetries of
the corresponding two-dimensional heat equation, we find two new infinite dimen-
sional families of symmetries: the first one is related to random time invariance and
the second one is related to random rotations invariance of the process (see Remark
5.2).

The plan of the paper is the following: in Section 2 we briefly recall the symmetry
analysis of the Brownian-motion-driven SDEs given in [15]. In Section 3 we introduce
the fourth transformation of an SDE which allows the change of the underlying
probability measure into another equivalent probability measure and we show how
the new global stochastic transformation acts on the solution process and on the
SDE coefficients. We also provide a geometrical description of the group of stochastic
transformations and we derive the new determining equations for the infinitesimal
symmetries. In Section 4 we compare the extended weak symmetries of an SDE with
the Lie point symmetries of the corresponding Kolmogorov equation, proving that
the two notions coincide as long as we consider extend weak symmetries with a Doob
change of measure. In Section 5 the theoretical results of the paper are applied to
a list of SDEs which are important both from a theoretical point of view and for
their applications. Finally in Section 6 we give a proof of the martingale property of
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the exponential supermartingale in our framework which is necessary for rigorously
applying Girsanov theorem.

2. A three components stochastic transformation of an SDE

Since in this paper we generalize the stochastic transformations introduced in [15] and
[14] for Brownian-motion-driven SDEs, for the convenience of the reader we collect
in this section the main facts and definitions that can be useful in the following. A
more detailed exposition, as well as all the proofs, can be found in [15] and [14]. In
the following, the Einstein summation convention on repeated indices is used.

Let M,M ′ be open subsets of Rn. We consider the filtered probability space
(Ω,F ,Ft,P), where Ft ⊂ F is a filtration. We fix a finite time horizon [0, T ] with
T ≥ 0. Let W =

(
W 1, . . . ,Wm

)
= (Wα) be an Ft-m-dimensional Brownian motion

and let µ : M → Rn and σ : M → Mat (n,m) be two smooth functions.

Definition 2.1. The process (X,W ) solves (in a weak sense) the SDE with coefficients
µ, σ (shortly solves the SDE (µ, σ)) if, for all t ∈ [0, T ],

Xi
t −Xi

0 =

∫ t

0

µi (Xs) ds+

∫ t

0

σiα (Xs) dW
α
s i = 1, . . . , n.

When (X,W ) solves the SDE (µ, σ) we write, as usual

dXt = µ (Xt) dt+ σ (Xt) · dWt

= µdt+ σ · dWt
(1)

In order to ensure that the integrals in the above definition are well defined we
suppose that the processes (|µ (Xs) |

1
2 )s∈[0,T ] and (σ (Xs))s∈[0,T ] belong to the class

M2
loc([0, T ]), i.e. to the class of processes (Ys)s∈[0,T ] that are progressively measurable

and such that
∫ t
0
Y 2
s (ω) ds <∞ for almost every ω ∈ Ω and t ∈ [0, T ]. We recall that,

given an SDE (µ, σ), we can introduce the corresponding infinitesimal generator given
by

L =
1

2

(
σσT

)ij
∂i∂j + µi∂i. (2)

In the following we only consider autonomous SDEs, and we introduce three different
transformations for their solution processes.

Spatial transformations

We call spatial transformation of an SDE a transformation Φ acting on the process
component X through a generic diffeomorphism Φ : M → M ′. Let us denote with
∇Φ : M → Mat (n,m) the Jacobian matrix

(∇Φ)ij = ∂jΦ
i.

By using the well-known Itô formula (see, e.g., [43] Section 32 or [37] Chapter 4)
it is easy to compute how the coefficients of the SDE change.

Proposition 2.2. Given a diffeomorphism Φ : M → M ′, if the process (X,W ) is
solution to the SDE (µ, σ), then the process (Φ (X) ,W ) is solution to the SDE (µ′, σ′)
with

µ′ = L (Φ) ◦ Φ−1

σ′ = (∇Φ · σ) ◦ Φ−1

We remark that the spatial transformation does not act on the Brownian motion.
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Random time changes

In the following we consider only Markovian absolutely continuous random time
changes of the solution process to an SDE through a smooth and strictly positive
density η : M → R+. We denote by Hη the transformation

t′ =

∫ t

0

ηs(Xs)ds.

This time transformation necessarily acts on both components of the solution process
(X,W ). In particular, given a Brownian motion Wt and denoting by W ′t the stochastic
process solution to

dW ′t =
√
η (Xt)dWt,

it is possible to prove that Hη (W ′) is also a Brownian motion.
The total action of the random time change transformation on the coefficients of

an SDE is described by the following proposition.

Proposition 2.3. Let η : M → R+ be a smooth and strictly positive function and
let (X,W ) be a solution to the SDE (µ, σ). Then the process (Hη (X) , Hη (W ′)) is
solution to the SDE (µ′, σ′) with

µ′ =
1

η
µ

σ′ =
1
√
η
σ.

Random rotations

Since Brownian motion is invariant with respect to random rotations (see [15] and
[1] for the general concept of gauge transformations), and the solution to the SDE is
understood in a weak sense, an additional possible transformation of the SDE consists
in a random rotation of the driving Brownian motion.

By using the Lévy characterization of Brownian motion the following result states
how an SDE is modified by a random rotation of its driving process.

Proposition 2.4. Let B : M → SO (m) be a smooth function and let (X,W ) be a
solution to the SDE (µ, σ). Then (X,W ′), where

dW ′t = B (Xt) · dWt,

is a solution to the SDE (µ′, σ′) with

µ′ = µ,

σ′ = σ ·B−1.

Stochastic transformations

Collecting the natural transformations introduced above, we can give the following
definition.

Definition 2.5. Given a diffeomorphism Φ : M → M ′ and two smooth functions
B : M → SO(m) and η : M → R+, the triad T = (Φ, B, η) is called a stochastic
transformation.
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We can distinguish two actions of the stochastic transformation T = (Φ, B, η):
one on the solution processes and the other one on the coefficients of an SDE.

Definition 2.6. If (X,W ) is a solution process, we define the transformed process
PT (X,W ) = (X ′,W ′) as

X ′ = Φ(Hη(X))

W ′ = Hη(W̃ ),

where

W̃α
t =

∫ t

0

Bαβ (Xs)dW
β
s .

Definition 2.7. If (X,W ) is a solution process of an SDE (µ, σ), we define the
transformed SDE ET (µ, σ) = (µ′, σ′) as

µ′ =

(
1

η
L(Φ)

)
◦ Φ−1

σ′ =

(
1
√
η
∇Φ · σ ·BT

)
◦ Φ−1.

By composing the previous propositions one can prove the following result.

Proposition 2.8. If T is a stochastic transformation and (X,W ) is a solution to the
SDE (µ, σ), then PT (X,W ) is a solution to the SDE ET (µ, σ).

Since the set of all stochastic transformations is a group with composition law
given by

T ′ ◦ T = (Φ′ ◦ Φ, (B′ ◦ Φ) ·B, (η′ ◦ Φ)η)

and unit 1M = (idM , Im, 1), we can consider a one parameter group Ta of stochastic
transformations such that Ta ◦ Tb = Ta+b and T0 = 1M and the corresponding
infinitesimal generator V .

Definition 2.9. A triad V = (Y,C, τ), where Y is a vector field on M , C : M →
so (m) and τ : M → R are smooth functions, is called an infinitesimal stochastic
transformation if

Y (x) = ∂a(Φa(x))|a=0

C(x) = ∂a(Ba(x))|a=0

τ(x) = ∂a(ηa(x))|a=0

(3)

On the other side, considering the triad (Y,C, τ) defined as above, the solution
(Φa, Ba, ηa) to the equations

∂a (Φa (x)) = Y (Φa (x))
∂a (Ba (x)) = C (Φa (x)) ·Ba (x)
∂a (ηa (x)) = τ (ηa (x)) ηa (x)

(4)

with initial data Φ0 (x) = idM (x), B0 (x) = Im, η0 (x) = 1, is a one-parameter group
of stochastic transformations.
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Weak symmetries and determining equations

The introduction of a (global) stochastic transformation of the solution process to an
SDE allows us to provide a good definition of (weak) symmetry for the SDE.

Definition 2.10. A stochastic transformation T is a (finite weak) symmetry of an
SDE (µ, σ) if, for every solution process (X,W ), PT (X,W ) is a solution process to
the same SDE.

The following characterization of the symmetry property in terms of the
coefficients of the SDE holds.

Proposition 2.11. A stochastic transformation T = (Φ, B, η) is a (finite weak)
symmetry of an SDE (µ, σ) if and only if

µ =
(

1
ηL (Φ)

)
◦ Φ−1

σ =
(

1√
η∇Φ · σ ·B−1

)
◦ Φ−1.

(5)

An infinitesimal stochastic transformation V generating a one parameter group
Ta is called an infinitesimal symmetry of the SDE (µ, σ) if Ta is a (finite) symmetry
of (µ, σ).

A useful characterization of the infinitesimal symmetries of an SDE is provided
by the following statement.

Theorem 2.12. An infinitesimal stochastic transformation V is an (infinitesimal
weak) symmetry of the SDE (µ, σ) if and only if V generates a one-parameter group
on M and the following determining equations hold

[Y, σ] = − 1

2
τσ − σ · C (6)

Y (µ)− L(Y ) = − τµ, (7)

where [Y, σ]iα = Y (σiα)− ∂k(Φi)σkα.

The determining equations obtained in Theorem 2.12 provide a powerful tool
for the explicit computation of the symmetries of an SDE. Indeed, they are definitely
easier to solve than the equations introduced in Proposition 2.11 for finite symmetries.

3. An additional random transformation: a probability measure change

3.1. Extended stochastic transformations

In this section we introduce an additional transformation of an SDE and of its solu-
tion process given by the change of measure through Girsanov theorem. We propose
here only a short introduction of the probabilistic theory of absolutely continuous
predictable change of measure of Brownian motion. The interested reader is referred,
e.g., to [43] Section 38 and to [37] Section 8.6 for an extended treatment of the subject.

Let (Ω,F , (Ft),P) be a filtered probability space where an (Ft)-Brownian motion
Wt is defined. We fix a finite time horizon I = [0, T ] with T > 0 and we work with
the filtration FT = {Ft, 0 < t < T }.
Given a process (θs)s∈[0,T ] ∈M2

loc[0, T ] , we define the process (Zt)t∈[0,T ] by setting

Zt = Zt(θ) := exp

{∫ t

0

θsdWs −
1

2

∫ t

0

θ2sds

}
. (8)
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An application of Itô formula gives

dZt = ZtθtdWt,

which says that Z is a local martingale. Since Zt is strictly positive, we have that Zt
is always a supermartingale. The process Zt is called exponential supermartingale and
can be used as a Radon-Nikodym derivative of a new probability measure Q. This
means that we can define on Ω the probability law QFT (dω) := ZT (ω)PFT (dω), i.e.
QFT (A) :=

∫
A
ZT (ω) dPFT (ω),∀A ∈ F .

We recall the fundamental result allowing the change of a probability measure
into an equivalent one.

Theorem 3.1 (Girsanov’s theorem). Let (Zt)t∈[0,T ] be the exponential supermartin-

gale defined in (8). If (Zt)t∈[0,T ] is a P-martingale, then the process
(
Ŵt

)
t∈[0,T ]

given

by

Ŵt = Wt −
∫ t

0

θsds

is an (F)t-Brownian motion with respect to the probability measure Q, where

dQFT
dPFT

= ZT .

Proof. The proof can be found for example in [43], Theorem 38.5.

In order to better explain the probabilistic meaning of the previous theorem, we
recall the following notion.

Definition 3.2. Let P and Q two probability measures on a measurable space (Ω,F).
Q is called absolutely continuous with respect to P, and we write Q� P, if

P (A) = 0⇒ Q (A) = 0 for allA ∈ F .
The measures P and Q are equivalent if Q � P and P � Q, that is if they have the
same set of null events.

Since the Radon-Nikodym derivative in Girsanov theorem is strictly positive, i.e.
dQFT
d PFT

= ZT > 0, one can prove that the measure QFT is actually equivalent to PFT .

In order to be able to apply Girsanov theorem we need Z to be a true martingale
and not only a local one. Establishing when the supermartingale Zt is a (global)
martingale is in general not an easy task. Instead of using the well known Novikov
condition (see [42], Chapter VIII, Proposition 1.14), we introduce the following
definition and lemma which allow us to achieve the same goal.

Definition 3.3. A smooth SDE (µ, σ) is called non explosive if any solution (X,W )
to (µ, σ) is defined for all times t ≥ 0. A smooth vector field h is called non explosive
for the non explosive SDE (µ, σ) if the SDE (µ+ σ · h, σ) is a non explosive SDE. A
positive smooth function η is called a non explosive time change for the non explosive

SDE (µ, σ) if the SDE
(
µ
η ,

σ√
η

)
is non explosive.

Lemma 3.4. Suppose that the equation (µ, σ) is a non explosive SDE, let h : M → Rn
be a smooth non explosive vector field, and suppose that (X,W ) is a solution to the
SDE (µ, σ). Then the exponential supermartingale Zt associated with θt = h(Xt) is a
(global) martingale.
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Proof. The present lemma is a special case of [19, Theorem 9.1.4] or of [44], proved
under very general conditions. In Section 6, following [44], we propose a proof
specialized to our non explosiveness hypothesis.

Remark 3.5. It is simple to see that, if (µ, σ) is a non explosive SDE and T =
(Φ, B, 1) is a stochastic transformation, then also PT (µ, σ) is non explosive.

Theorem 3.6. Let (X,W ) be a solution to the non explosive SDE (µ, σ) on the
probability space (Ω,F ,P) and let h be a smooth non explosive vector field for (µ, σ).
Then (X, Ŵ ) is a solution to the SDE (µ′, σ′) = (µ+ σ · h, σ) on the probability space
(Ω,F ,Q) where

Ŵt = −
∫ t

0

h(Xs)ds+Wt

dQFT
dPFT

= exp

∫ T
0

hα(Xs)dW
α
s −

1

2

∫ T
0

m∑
α=1

(hα(Xs))
2ds.

Proof. The proof is a simple application of Girsanov theorem and Lemma 3.4.

We define a new (finite) stochastic transformation including, besides the three
transformations described in the previous section, also a change of the underlying
probability measure.

Definition 3.7. Let Φ : M → M ′ be a diffeomorphism and let B : M → SO (m),
η : M → R+ and h : M → Rm be smooth functions. We call T := (Φ, B, η, h) a
(weak finite) extended stochastic transformation.

Since we cannot apply the previous transformation to any SDE, we give the
following definition.

Definition 3.8. Let T = (Φ, B, η, h) be an extended stochastic transformation. If the
pair (X,W ) is a continuous stochastic process where X takes values in M and W is
an m-dimensional Brownian motion in the space (Ω,F ,P) and (X,W ) is a solution to
the non explosive SDE (µ, σ) for which h and η are non explosive, we can define the
process PT (X,W ) = (X ′,W ′), where X ′ takes values in M ′ and W ′ is a Brownian
motion in the space (Ω,F ,Q). The process components are given by

X ′ = Φ (Hη (X))

dW̃t =
√
η (Xt)B (Xt) (dWt − h (Xt) dt)

W ′ = Hη

(
W̃
)

dQFT
dPFT

= exp

(∫ T
0

hα(Xs)dW
α
s −

1

2

∫ T
0

m∑
α=1

(hα(Xs))
2ds

)
.

We call PT (X,W ) the transformed process of (X,W ) with respect to T and we call
the function PT the process transformation associated with T .

The previous definition is necessary if we are interested in defining the
transformation PT on the set of solutions (X,W ) to the SDE (µ, σ). If we focus
only on the SDE identified with the pair of smooth functions (µ, σ) and on the action
ET of the stochastic transformation T , the previous definition is no more necessary
and we can define the transformed SDE ET (µ, σ) without making any request on the
non explosiveness of the process (X,W ).
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Definition 3.9. Let T = (Φ, B, η, h) be an extended stochastic transformation. If
(µ, σ) is an SDE on M then we define ET (µ, σ) := (ET (µ) , ET (σ)) the SDE on M ′

defined as

ET (µ) =

(
1

η
[L (Φ) +∇Φ · σ · h]

)
◦ Φ−1

ET (σ) =

(
1
√
η
∇Φ · σ ·B−1

)
◦ Φ−1.

We call ET (µ, σ) the transformed SDE of (µ, σ) with respect to T and we call the map
ET the SDE transformation associated with T .

We stress that a specific choice on the order according to which the
transformations are applied was performed. First the change of measure and then
the rotation together with the random time change. While the diffusion coefficient
does not change, the form of the transformed drift strongly depends on this choice.

Theorem 3.10. Let T = (Φ, B, η, h) be an extended stochastic transformation and
let (X,W ) be a solution to the non explosive SDE (µ, σ) such that ET (µ, σ) is non
explosive. Then PT (X,W ) is solution to the SDE ET (µ, σ) .

Proof. We show how the SDE (µ, σ) changes when we apply the transformations in
the order specified above. For simplicity we omit the explicit dependence on the values
of the process. The starting equation is

dXt = µdt+ σ · dWt

We apply first the measure change obtaining

dX ′t = (µ+ σ · h) dt+ σ · dW ′t
and then the rotation of the Brownian motion and the random time change, obtaining

dX ′′t =
1

η
(µ+ σ · h) dt+

1
√
η
σ ·B−1 · dW ′′t

=
1

η
µ̃dt+ σ̃ · dW ′′t

where we set µ̃ = µ + σ · h and σ̃ = 1√
ησ · B

−1. Finally, we apply the

spatial transformation considering only the drift (since the equations involving σ
coincide with the analogous equations obtained considering non extended stochastic
transformation), and we get

ET (µ) =

(
1

η

[
1

2

(
σ · σT

)ij
∂i∂jΦ + µ̃i∂iΦ

])
◦ Φ−1

=

(
1

η
[L (Φ) +∇Φ · σ · h]

)
◦ Φ−1.

Exploiting Definition 3.9 and Theorem 3.10, this concludes the proof.

In the following, in order to simplify notations, we refer to extended stochastic
transformations just as stochastic transformations.
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3.2. Stochastic transformations group and associated infinitesimal transformations

Let G = SO(m) × R+ n Rm be the group of rototranslations with a scaling factor
whose elements g = (B, η, h) can be identified with the matrices of the form( √

η ·B−1 h
0 1

)
If we consider the trivial principal bundle π : M × G → M with structure group G,
we can define the following action of G on M ×G

Rg2 : M ×G→M ×G
(x, g1) → (x, g1 · g2)

which leaves M invariant, where g1 · g2 denotes the standard product g1 · g2 =
(B1, η1, h1) ·(B2, η2, h2) = (B2B1, η2η1,

√
η1B

−1
1 h2+h1). If we consider another trivial

principal bundle π′ : M ′×G→M ′, we say that a diffeomorphism F : M×G→M ′×G
between the two principal bundles M×G and M ′×G is an isomorphism if F preserves
the structures of principal bundles of both M × G and M ′ × G, i.e. there exists a
diffeomorphism Φ : M →M ′ such that

F ◦ π′ = π ◦ Φ

F ◦Rg = Rg ◦ F
for any g ∈ G. It is easy to check that an isomorphism of the previous form
is completely determined by its value on (x, e), where e is the unit element of
G. Therefore, there is a natural identification between a stochastic transformation
T = (Φ, B, η, h) and the isomorphism FT such that FT (x, e) = (Φ(x), g) where
g = (B, η, h). In particular we can exploit the natural composition of isomorphisms
in order to define a composition of stochastic transformations in the following way: if
T1 = (Φ1, B1, η1, h1) and T2 = (Φ2, B2, η2, h2) then

T2 ◦ T1 =
(
Φ2 ◦ Φ1, (B2 ◦ Φ1) ·B1, (η2 ◦ Φ1) η1,

√
η1B

−1
1 · (h2 ◦ Φ1) + h1

)
.

Moreover we can consider the inverse transformation of T = (Φ, B, η, h) given by

T−1 =

(
Φ−1,

(
B ◦ Φ−1

)−1
,
(
η ◦ Φ−1

)−1
,− 1
√
η
B · h ◦ Φ−1

)
.

The following theorem, generalizing a result obtained in [15] for stochastic
transformations without the change of probability measure, shows that the
identification of stochastic transformations with the isomorphisms of a suitable trivial
principal bundle has a deep probabilistic counterpart in terms of SDE and process
transformations.

Theorem 3.11. Let T1, T2 be two stochastic transformations, let (µ, σ) be a non
explosive SDE such that ET1

(µ, σ) and ET2
(ET1

(µ, σ)) are non explosive and let
(X,W ) be a solution to the SDE (µ, σ) on the probability space (Ω,F ,P). Then on
the probability space (Ω,F ,Q) we have

PT2(PT1(X,W )) = PT2◦T1(X,W )

ET2(ET1(µ, σ)) = ET2◦T1(µ, σ).

Proof. The proof of this result without the change of probability measure can be
found in [15], hence we have just to add the part related to the last component of the
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stochastic transformation.
Applying the two transformations to the Brownian motion, according to the fixed
specified order, we obtain

dW ′t =
√
η1B1 · (dWt − h1dt)

dW ′′t =
√
η2B2 · (dW ′t − h2dt′)

=
√
η2B2 · (

√
η1B1 (dWt − h1dt)− η1h2dt)

=
√
η2η1B2 ·B1 ·

(
dWt −

(
h1 +

√
η1B

−1
1 · h2

)
dt
)

=
√
η̃B̃ ·

(
dWt − h̃dt

)
,

where

h̃ =
√
η1B

−1
1 · h2 + h1.

Noting that, after the first transformation T1, the state variable is Φ (X), we obtain
the statement.

Since the set of stochastic transformations is a group with respect to the
composition ◦, we can consider the one parameter group Ta = (Φa, Ba, ηa, ha) and
the corresponding infinitesimal transformation V = (Y,C, τ,H) obtained in the usual
way

Y (x) = ∂a (Φa (x)) |a=0

C (x) = ∂a (Ba (x)) |a=0

τ (x) = ∂a (ηa (x)) |a=0

H (x) = ∂a (ha (x)) |a=0.

On the other hand, given V = (Y,C, τ,H), where Y is a vector field on M ,
C : M → so (m), τ : M → R and H : M → Rm are smooth functions, we
can reconstruct the one parameter transformation group Ta exploiting the following
relations

∂a (Φa (x)) = Y (Φa (x))
∂a (Ba (x)) = C (Φa (x)) ·Ba (x)
∂a (ηa (x)) = τ (Φa (x)) ηa (x)

with initial data Φ0 (x) = idM (x), B0 (x) = Im, η0 (x) = 1. Moreover, using Theorem
3.11 and the properties of the flow, we obtain

hb+a (x) =
√
ηa (x)B−1a (x) · hb (Φa (x)) + ha (x)

∂b (hb+a (x)) =
√
ηa (x)B−1a (x) · ∂b (hb (Φa (x)))

∂b (hb+a (x)) |b=0 = ∂a (ha (x)) =
√
ηa (x)B−1a (x) ·H (Φa (x))

subjected to the initial condition h0 (x) = 0.

The notions of composition and one parameter group of stochastic transfor-
mations allow us to consider the action of a finite stochastic transformation on an
infinitesimal one, as well as the Lie brackets between two infinitesimal stochastic
transformations. Let T = (Φ, B, η, h) be a finite stochastic transformation and let
V = (Y,C, τ,H) be an infinitesimal stochastic transformation with associated one
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parameter group given by Ta. Then there exists an infinitesimal stochastic transfor-
mation T∗(V ), called push forward of V through the transformation T , generating the
one parameter group given by T ◦ Ta ◦ T−1 and having the following form

T∗(V ) =
(

Φ∗(Y ), (B · C ·B−1 + Y (B) ·B−1) ◦ Φ−1,
(
τ + Y (η)

η

)
◦ Φ−1,(

− 1√
ηB ·

(
− τ2 + C

)
· h+ 1√

ηB ·H + 1√
ηB · Y (h)

)
◦ Φ−1

)
,

where Φ∗(Y ) denotes the push forward of the vector field Y . Using the
previous expression we can define the Lie brackets between two infinitesimal stochastic
transformations V1 = (Y1, C1, τ1, H1) and V2 = (Y2, C2, τ2, H2) which is

[V1, V2] = ([Y1, Y2], Y1(C2)− Y2(C1)− {C1, C2}, Y1(τ2)− Y2(τ1)
Y1(H2)− Y2(H1)−

(
− τ12 + C1

)
·H2 +

(
− τ22 + C2

)
·H1

)
.

3.3. Determining equations

In this section we provide the new determining equations (including the probability
measure change) for the infinitesimal symmetries of an SDE.

Proposition 3.12. An (extended) stochastic transformation T = (Φ, B, η, h) is a
(finite) symmetry of the non explosive SDE (µ, σ) if and only if

µ =

(
1

η
[L (Φ) +∇Φ · σ · h]

)
◦ Φ−1

σ =

(
1
√
η
∇Φ · σ ·B−1

)
◦ Φ−1.

Proof. The proof is a simple generalization of the proof of Proposition 2.11 (see [15])
using Theorem 3.10 in replacement of Proposition 2.8. It is important to note that
since ET (µ, σ) = (µ, σ), in order to use Lemma 3.4, we need only to require that (µ, σ)
is non explosive.

The characterization expressed by Proposition 2.11 for the coefficients ET (µ) and
ET (σ) under the symmetry hypothesis still holds because the new probability measure
Q is equivalent to P (see Definition 3.2).

Theorem 3.13. Let V = (Y,C, τ,H) be an infinitesimal stochastic transformation.
Then V is an infinitesimal symmetry of the SDE (µ, σ) if and only if V generates a
one parameter group defined on M and we have

Y (µ)− L (Y )− σ ·H + τµ = 0
[Y, σ] + 1

2τσ + σ · C = 0.

Proof. We prove only that the property of V to be an infinitesimal symmetry is a
sufficient condition for the validity of determining equations. The one parameter group
Ta = (Φa, Ba, ηa, ha) associated with the infinitesimal transformation V = (Y,C, τ,H)
is a symmetry if and only if the following equations are satisfied

µ =

(
1

ηa
[L (Φa) +∇Φa · σ · ha]

)
◦ Φ−1a ,

σ =

(
1
√
ηa
∇Φa · σ ·B−1a

)
◦ Φ−1a .
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The first equation is equivalent to

L (Φa) +∇Φa · σ · ha = ηaµ (Φa) .

Deriving both sides with respect to the parameter a and then evaluating them in
a = 0, we obtain

L (∂a (Φa) |a=0) + ∂a (∇Φa · σ) |a=0 · h0 +∇Φ0 · σ · ∂a (ha) |a=0 =
= ∂a (ηa) |a=0 µ (Φ0) + η0 ∂a (µ (Φa)) |a=0

and therefore the first determining equation

L (Y ) + σ ·H = τµ+ Y (µ) .

The second equation, not depending on the measure change, coincides with the
analogous equation obtained in Theorem 2.12 and this concludes the proof.

4. Doob transformations and symmetries of Kolmogorov equation

4.1. Lie point symmetries of Kolmogorov equation

In the previous section we showed how the determining equations modify if we include
in the stochastic transformation the change of the probability measure underlying
the SDE. A natural question arising in this setting is the comparison between the
determining equations for the infinitesimal symmetries of an SDE introduced in
Theorem 3.13 and the determining equations for the symmetries of the associated
Kolmogorov equation.
The symmetries of the Kolmogorov equations usually involves transformations
explicitly depending on time that would be lost if we consider only autonomous
transformations for our system. For this reason we have to extend our analysis in
order to permit also non autonomous transformations. In order to achieve this, we use
the standard trick, well known in the literature of dynamical system, for transforming
a non autonomous system into an autonomous one. Indeed, given an SDE of the form
(1), we introduce a trivial extra component dZt = dt, i.e., we consider the system

dXi
t = µi(Xt)dt+ σiα(Xt)dW

α
t

dZt = dt
(9)

In this setting, the Kolmogorov equation associated with (1) can be written as
L(u) = 0, where L is the infinitesimal generator associated with (9), i.e.

L(u) = Aij∂xixju+ µ∂xiu+ ∂zu = 0, (10)

and A = 1
2σ · σ

T . In the following we always suppose that the matrix A has constant
rank.
Equation (10) is a second order partial differential equation in the independent vari-
ables (xi, z) and in the dependent variable u describing the behavior of the mean
value of regular functions of the solution process Xt. More precisely, a solution u(x, z)
to equation (10) is of the form E[f(XT )|Xz = x] = u(x, z), with z ∈ [0, T ] and
u(x, T ) = f(x) (see, e.g., [37] Section 8.1).

Since (10) is a PDE, it can be seen as a submanifold of the second order jet bundle
J2(Rn+1,R) described by the equation L(u) = 0 (see [38] Chapter 2). In this setting a
Lie point infinitesimal symmetry for (10) is a vector field Ξ on J0(Rn+1,R) such that

Ξ(2)(L(u))|L(u)=0 = 0, (11)
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where Ξ(2) denotes the second order prolongation of the vector field Ξ. If we rewrite
(11) for a vector field of the form

Ξ = m(x, z)∂z + φi(x, z)∂xi + Ψ(x, z, u)∂u (12)

we get the following determining equations for the Lie point infinitesimal symmetries
of (10)

Ψ(x, z, u) = − k(x, z)u+ k0(x, z) (13)

L(k0) = 0 (14)

L(k) = 0 (15)

L(φ)− Ξ(µ) + 2A · ∇k − L(m)µ = 0 (16)

L(m)A+ Ξ(A)−∇φ ·A−A · (∇φ)T = 0 (17)

A · ∇m = 0 (18)

We remark that the function k0 only appears in the first two conditions and corre-
sponds to the trivial symmetry k0(x, t) ∂

∂u which takes into account the superposition
principle for the solutions to any linear PDEs. Therefore, later on, we omit k0 (and
the corresponding condition L(k0) = 0) in the determining equations.

The comparison between the determining equations for the Lie point infinitesimal
symmetries of the PDE (10) and the determining equation for the stochastic
symmetries for the SDE (9) arising in Theorem 3.13 is not straightforward, first of
all due to the different nature of the involved objects. Indeed, when we look for the
infinitesimal symmetries of the PDE we look for a vector field of the form (12), while
when we search symmetries for SDE (9), we deal with an infinitesimal transformation
V = (Y,C, τ,H), where Y is a vector field on Rn+1, C : Rn+1 → so(m), τ : Rn+1 → R
and H : Rn+1 → Rm are smooth functions.

In the following, in order to compare the determining equations arising in these
two different settings we restrict the class of transformations for the probability
measure, introducing the notion of Doob transformations.

4.2. Doob transformations

The Doob transformation is a special kind of change of measure, and so a particular
case of Girsanov transformation, in general related with Markov processes. Originally
introduced by Doob (see [18]) it has been generalized in many directions (see [43] for
the continuous case and [6] and references therein for an overview on the topic).
In this paper we only consider the original Doob transformation, which can be seen
as a transformation of the infinitesimal generator L of a given diffusion process.
In the conservative case (i.e. when the probability is conserved at each time) this
transformation assumes the following simple form:

Lϕ = ϕ−1Lϕ

with ϕ a strictly positive function on the state spaceM such that ϕ(Xt) is a martingale.
The new diffusion process corresponding to the infinitesimal generator Lϕ has a path
measure Q (i.e. a measure on the pathspace of the process trajectories) which is
absolutely continuous with respect to the original path measure P with density given
by the following Radon-Nikodym derivative on the time interval [0, T ]:

dQFT
dPFT

= ϕ−1(X0)ϕ(XT ).
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In the following we fix a non explosive SDE (µ, σ) and a solution (X,W ) to it and
we give a simplified definition of Doob transformation adapted to our setting. Aiming
to make more explicit the link between Girsanov transformations and Doob ones we
introduce the auxiliary function h(x) := log(ϕ(x)).

Definition 4.1. Given a smooth function h : M → Rm which is non explosive with
respect to (µ, σ), we say that h is a Doob transformation characterized by the smooth
function h : M → R if the measure Q generated by the Girsanov transformation h is
such that

dQFT
dPFT

= exp (h(XT )− h(X0)).

Remark 4.2. Using the martingale property of ϕ(Xt) and the fact that h(Xt) =
log(ϕ(Xt)) we have that

dQFt
dPFt

= exp (h(Xt)− h(X0)),

for any t ≤ T .

The next result provides suitable conditions on the functions h and h in order to
guarantee that a Girsanov transformation is also a Doob one.

Proposition 4.3. Let h : M → Rm be a non explosive smooth function associated
with a Girsanov transformation of a non explosive SDE (µ, σ). If h : M → Rm is a
smooth function satisfying

hα(x) = σiα(x)∂xi(h)(x) (19)

1

2

m∑
α=1

(hα(x))2 = − L(h)(x), (20)

then h is also a Doob transformation.

Proof. By equating the Radon-Nikodym derivative given in Theorem 3.6 with the one
given in Definition 4.1 we obtain the equality∫ T

0

hα(Xs)dW
α
s −

1

2

∫ T
0

m∑
α=1

(hα(Xs))
2ds = h(XT )− h(X0). (21)

Applying Itô formula to the function h we get

h(XT )− h(X0) =

∫ T
0

Lh(Xt)dt+

∫ T
0

∇h(Xt)σ(Xt)dWt. (22)

The proof follows by the uniqueness of canonical semimartingale decomposition of
continuous processes (see, e.g. Section 31 and Definition 31.3 in [43]) and by
uniqueness of martingale representation theorem for processes adapted to Brownian
filtration (see, e.g., Theorem 36.1 in [43]).

Remark 4.4. It is important to note that the fact that a change of measure h is a
Doob transformation strongly depends on the coefficients of the SDE (µ, σ). Indeed,
the right hand side of equation (19) contains σ and the right hand side of equation
(20) involves, through the operator L, both µ and σ.
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Relations (19) and (20) allow us to derive also the conditions under which
a stochastic transformation T = (Φ, B, η, h) involves the Doob transformation
associated with h. Using relations (19) and (20) it is indeed possible to write a
condition such that the one-parameter group Ta of the stochastic transformations is
generated by an infinitesimal stochastic transformation V = (Y,C, τ,H). Indeed if in
equations (19) and (20) both ha and ha depend on a parameter a and we take the
derivative with respect to that parameter in a = 0 (when h0 = 0 as well as h0 = 0),
we obtain that there exists a function k = ∂a(ha)|a=0 such that

Hα(x) = σiα(x)∂xi(k)(x) (23)

0 = L(k). (24)

Using the previous characterization we can state the following theorem.

Theorem 4.5. An infinitesimal stochastic transformation V = (Y,C, τ,H) is a
symmetry of the SDE (µ, σ) involving only Doob transformations with respect to (µ, σ)
if and only if V generates a one parameter group of transformations and there exists
a smooth function k such that the following equations hold

H − σT · ∇k = 0
Y (µ)− L(Y )− σ · σT · ∇k + τµ = 0

[Y, σ] + 1
2τσ + σ · C = 0

L(k) = 0.

Proof. The proof is an easy consequence of the determining equations in Theorem
3.13 and equations (23) and (24).

4.3. Relation between determining equations for PDEs and SDEs

In this section we compare the determining equations for the symmetries of an SDE
of the form (9) with the determining equations for Lie point infinitesimal symmetries
of the corresponding Kolmogorov equation (10). In particular, we prove the following
result.

Theorem 4.6. Let V = (Y,C, τ,H) be an infinitesimal symmetry of Doob type for
the SDE (9), with Y = m(x, z) ∂∂z + φi(x, z) ∂

∂xi and H = σT · ∇k. Then the vector

field Ξ = Y − k(x, z)u ∂
∂u is a Lie point infinitesimal symmetry for the associated

Kolmogorov equation (10).

Proof. Since V is a symmetry for (9), Theorem 4.5 provides the following determining
equations for V

L(k) = 0 (25)

L(m) = τ (26)

L(φ)− Y (µ) + σ · σT · ∇k − τµ = 0 (27)

Y (σ)−∇φ · σ +
1

2
τσ + σ · C = 0 (28)

σT · ∇m = 0 (29)

We want to prove that, if A = 1
2σ ·σ

T is of constant rank, the vector field Ξ = Y −ku ∂
∂u

satisfies the determining equation for the Kolmogorov PDE (10).
The first condition, i.e. L(k) = 0, is the same in both the sets of determining equations
and, since µi do not depend on u, Ξ(µi) = Y (µi) and equations (26) and (27) imply
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(16). Moreover, multiplying on the left (29) by σ, we immediately get (18). In order
to prove that (17) holds, we consider the right multiplication of (28) by σT and we
get, using σ · σT = 2A,

Y (σ)σT − 2∇φ ·A+ τA+ σ · C · σT = 0 (30)

Hence, considering the semi-sum of (30) and its transposed and using the fact that C
is an antisymmetric matrix, we get

Y (A) + τA−∇φ ·A−A · (∇φ)T = 0.

Since A does not depend on u, Y (A) = Ξ(A) and, using (26), we get (17)

Now we prove the converse of the previous theorem, showing that with any
infinitesimal Lie point symmetry of the Kolmogorov equation it is possible to associate
an infinitesimal Doob symmetry of the corresponding SDE.

Theorem 4.7. Let Ξ = m(x, z) ∂∂z +φi(x, z) ∂
∂xi −k(x, z)u ∂

∂u be a Lie point symmetry
for the PDE (10), with A = 1

2σ · σ
T of constant rank. Then there exist smooth

functions C : Rn+1 → so(m) and τ : Rn+1 → R, such that V = (Y,C, τ,H), with
Y = Ξ + k(x, z)u ∂

∂u and H = σT · ∇k, is a Doob infinitesimal symmetry for the SDE
(9).

Proof. As in the proof of Theorem 4.6, (25) and (15) coincide and, in order to satisfy
(26) and (27) we have to choose τ = L(m) and exploit the fact that Ξ(µi) = Y (µi),
since µi do not depend on u. Moreover, the hypothesis of constant rank for A ensures
that (18) implies (29). Hence, we have to choose the matrix C in order to satisfy (28).
Considering the left product of (28) with σT , we get the following expression for C,
where, once again, we exploit the fact that A is of constant rank

C = (σT · σ)−1σT∇φ · σ − (σT · σ)−1σTY (σ)− 1

2
τI.

The last step is to prove that the matrix C defined above is antisymmetric. Following
the same line of the proof of Theorem 4.6, if we consider the sum of (30) with its
transpose, we find

Y (σ · σT ) + 2τA− 2∇φ ·A− 2A · (∇φ)T + σ · (C + CT ) · σT = 0

and, using (17), we get σ · (C + CT ) · σT = 0. Therefore, since A is of constant rank,
C + CT = 0, i.e. C is an antisymmetric matrix, and this concludes the proof.

Remark 4.8. Theorems 4.6 and 4.7 show that there exists a one-to-one
correspondence between infinitesimal symmetries of Doob type of the SDE and Lie
point infinitesimal symmetries of the corresponding Kolmogorov equation. On the
other hand, if we allow more general changes of the probability measure of Girsanov
type, the family of symmetries of the SDE introduced in this paper is wider than the
family of the symmetries for the corresponding Kolmogorov equation. The new (non
Doob type) symmetries can belong to two different families.
The first family consists of non Doob symmetries such that the function k satisfying
H = σT∇k does exist, but does not satisfies L(k) = 0. We call these kind of
symmetries almost Doob symmetries.
The second family of non Doob symmetries contains symmetries V = (Y,C, τ,H) such
that does not exist any function k for which H = σT∇k. We remark that the second
family is not empty only for SDEs driven by m dimensional Brownian motions with
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m > 1, while for SDEs driven by one-dimensional Brownian motions only almost
Doob symmetries exist. In the next section we provide some examples of this fact and,
in particular, we find almost Doob symmetries for one-dimensional Brownian motion,
Ornstein-Uhlenbeck process and CIR model. Moreover, we show that two-dimensional
Brownian motion admits non Doob infinitesimal symmetries of both the types described
above.

5. Examples

In this last section we propose some non trivial examples, in order to show that the
introduction of the probability measure change allows us to obtain a larger number of
symmetries with respect to the methods available in the previous literature.

5.1. One-dimensional Brownian motion

Let us consider the following SDE(
dXt

dZt

)
=

(
0
1

)
dt+

(
1
0

)
dW 1

t

corresponding to a one-dimensional Brownian motion, where the second component,
admitting solution Zt = t, has been introduced in order to include in our setting also
time dependent transformations.

If we are interested in finding symmetries of Doob type for this SDE, we have to
look for

V = (Y,C, τ,H) =

((
f (x, z)
m (x, z)

)
, 0, τ (x, z) , H1(x, z)

)
(31)

where H1 = kx and the functions k, f,m, τ satisfy the following determining equations
1
2kxx + kz = 0

1
2fxx + fz + kx = 0

1
2mxx +mz = τ

fx = 1
2τ

mx = 0.

In order to solve this system, we look for a function k(x, z) satisfying the first equation.
If we chose k = c1 + c2x + c3(x2 − z), we can solve the remaining equations and we
find

f(x, z) = −c2z − 2c3xz + c4x+ c5
m(x, z) = −2c3z

2 + 2c4z + c6
τ(x, z) = −4c3z + 2c4

Therefore, the Doob symmetries for the one-dimensional Brownian motion associated
with the function k = c1 + c2x+ c3(x2 − z) are

V1 =

((
z
0

)
, 0, 0,−1

)
V2 =

((
2xz
2z2

)
, 0, 4z,−2x

)
V3 =

((
x
2z

)
, 0, 2, 0

)
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V4 =

((
1
0

)
, 0, 0, 0

)
V5 =

((
0
1

)
, 0, 0, 0

)
Hence, exploiting Theorem 4.6 and adding the symmetry V6 corresponding to H1 =
0, we recover, in our framework, the following generators of the well known six
dimensional algebra of Lie point symmetries for the Kolmogorov equation associated
with one dimensional Brownian motion

Ξ1 = z∂x + xu∂u
Ξ2 = 2xz∂x + 2z2∂z + u(x2 − z)∂u
Ξ3 = x∂x + 2z∂z
Ξ4 = ∂x
Ξ5 = ∂z
Ξ6 = u∂u.

Let us now consider the determining equations for general symmetries (not
necessarily of Doob type) of the one-dimensional Brownian motion. In this case the
determining equations provided by Theorem 3.13 are

1
2fxx + fz +H1 = 0

1
2mxx +mz = τ

fx = 1
2τ

mx = 0.

Here we have no conditions on H1 and we can find the following infinite-dimensional
family of almost Doob symmetries (depending on an arbitrary deterministic function
of the time α(z))

Ṽα =

((
1
2α(z)x∫
α(z) dz

)
, 0, α(z),−1

2
xα′(z)

)
.

We remark that, even if H satisfies the condition H = H1 = σT∇k for k = − 1
4x

2α′(z),
we cannot ensure that

1

2
kxx + kz = 0

since this condition holds only if α′(z) = 0. Therefore, for general (non constant)
functions α(z), Ṽα is not a Doob symmetry and Theorem 4.6 does not apply. This
means that we cannot associate with Ṽα any symmetry of the Kolmogorov PDE
1
2uxx + uz = 0.

Remark 5.1. The symmetries Vα are related with the random time invariance of
Brownian motion (see Section 2). Indeed, if we consider the deterministic time change

t′ = f(t), then W ′t′ =
∫ t′
0

√
f ′(f−1(s))dWf−1(s) is a new Brownian motion (see [15]).

The symmetry Ṽα provides a generalization of the previous fact, considering W̃t′ =√
f ′(f−1(t′))Wf−1(t′) instead of the integral

∫ t′
0

√
f ′(f−1(s)dWf−1(s). Obviously, since

W ′t′ is a P-Brownian motion, W̃t′ cannot be a P-Brownian motion. But, since Ṽα is a
symmetry, using Girsanov transformation we have that W̃t′ is a Q-Brownian motion,
where Q has density with respect to P given by

dQFT
dPFT

= exp

∫ T
0

f ′′(s)

2
√
f(s)

WsdWs −
1

2

∫ T
0

(
f ′′(s)Ws

2
√
f(s)

)2

ds

 .
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5.2. Ornstein-Uhlenbeck model

Let us consider the Ornstein-Uhlenbeck process, solution to the following SDE(
dXt

dZt

)
=

(
aXt + b

1

)
dt+

(
1
0

)
dW 1

t

where, as in the previous example, the second component has been introduced
in order to include in our framework time dependent transformations. In this case, if
we look for a Doob type symmetries of the form (31) and we consider H1 = kx, the
determining equations are

1
2kxx + (ax+ b) kx + kz = 0
1
2fxx + (ax+ b) fx + fz = af + τ (ax+ b)− kx

1
2mxx + (ax+ b)mx +mz = τ

fx = 1
2τ

mx = 0.

(32)

With a suitable ansatz we can find a solution to the first equation of the form

k (x, z) = c1 + c2 (ax+ b) e−az + c3

(
ax2 + 2bx+

a+ 2b2

2a

)
e−2az

so that

H1 (x, z) = c2ae
−az + 2c3 (ax+ b) e−2az.

The remaining determining equations read

− (ax+ b) fx + fz = af − c2ae−az − 2c3(ax+ b)e−2az

mz = τ
τ = 2fx

mx = 0,

(33)

whose solution is

f(x, z)) = c3
2ae
−2az(ax+ b) + c4

2ae
2az(ax+ b) + c2

2 e
−az + c5e

az

m(x, z) = − c3
2ae
−2az + c4

2ae
2az + c6

τ(x, z) = c3e
−2az + c4e

2az.

Therefore we have the following family of infinitesimal symmetries of Doob type for
the Ornstein-Uhlenbeck SDE

V1 =

((
1
2e
−az

0

)
, 0, 0, ae−az

)
V2 =

((
1
2ae
−2az(ax+ b)
− 1

2ae
−2az

)
, 0, e−2az, 2(ax+ b)e−2az

)
V3 =

((
1
2ae

2az(ax+ b)
1
2ae

2az

)
, 0, e2az, 0

)
V4 =

((
eaz

0

)
, 0, 0, 0

)
V5 =

((
0
1

)
, 0, 0, 0

)
.

Using Theorem 4.6, we can associate with Vi the generators for the symmetry
algebra of the Kolmogorov equation associated with the Ornstein-Uhlenbeck SDE,
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where the vector field Ξ6 corresponds to the trivial symmetry V6 associated with
H1 = 0.

Ξ1 = 1
2e
−az∂x − u(ax+ b)e−az∂u

Ξ2 = 1
2ae
−2az(ax+ b)∂x − 1

2ae
−2az∂z − ue−2az(ax2 + 2bx+ a+2b2

2a )∂u
Ξ3 = 1

2ae
2az(ax+ b)∂x + 1

2ae
2az∂z

Ξ4 = eaz∂x
Ξ5 = ∂z
Ξ6 = u∂u.

Let us now consider the determining equations for general symmetries (not
necessarily of Doob type) for the Ornstein-Uhlenbeck process. In this case the
determining equations provided by Theorem 3.13 are

1
2fxx + (ax+ b) fx + fz = af + τ (ax+ b)−H1

1
2mxx + (ax+ b)mx +mz = τ

fx = 1
2τ

mx = 0.

(34)

Solving these equations we find the following symmetries

Ṽ1 =

((
1
2 ( 1
a + e2az)x− 1

2
b
a2 + 1

2
b
ae

2az

z
a + 1

2ae
2az

)
, 0,

1

a
+ e2az, x

)
Ṽ2 =

((
x
2a −

b
2a2 + eaz
z
a

)
, 0,

1

a
, x

)
.

We remark that Ṽ1 and Ṽ2 are not symmetries of Doob type, since we have H1 = x =
σT∇k, for k = 1

2x
2 + k1(z), but L(k) 6= 0.

5.3. CIR model

In this section we look for the symmetries of the CIR model(
dXt

dZt

)
=

(
aXt + b

1

)
dt+

(
σ0
√
Xt

0

)
dW 1

t ,

which is widely used in mathematical finance to describe the behavior of the interest
rates (see [5] Chapter 3). We remark that CIR model is also important for the fact that
closed formulas for its Laplace transform and its transition probability are known. In
particular, the advantages of the knowledge of Lie point symmetries of the Kolmogorov
equation associated with CIR model and their relationship with closed formulas is
discussed in [11].
If we consider infinitesimal transformations V of the form (31) and H1 = σ0

√
xkx, the

determining equations for the symmetries of Doob type for the CIR model are
1
2σ

2
0xkxx + (ax+ b) kx + kz = 0

1
2σ

2
0xfxx + (ax+ b) fx + fz = af + (ax+ b)τ − σ2

0xkx
1
2σ

2
0xmxx + (ax+ b)mx +mz = τ

σ0
√
xfx − 1

2σ0
1√
x
f = 1

2σ0
√
xτ

σ0
√
x mx = 0.

The first step to solve these equations is to find a function k satisfying the first
determining equation. If we chose

k (x, z) = c1 (ax+ b) e−az + c2
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we can solve the remaining determining equations and we obtain

f(x, z) = 1
2c1σ

2
0xe
−az + c3xe

az

m(x, z) = − 1
2ac1σ

2
0e
−az + c3

a e
az + c4

τ(x, z) = 1
2c1σ

2
0e
−az + c3e

az

corresponding to the infinitesimal symmetries

V1 =

((
σ2
0

2 xe
−az

−σ
2
0

2a e
−az

)
, 0,

σ2
0

2
e−az, σ0a

√
xe−az

)

V2 =

((
xeaz
1
ae
az

)
, 0, eaz, 0

)
V3 =

((
0
1

)
, 0, 0, 0

)
.

Once again we can exploit Theorem 4.6 in order to find the Lie point infinitesimal
symmetries for the Kolmogorov equation associated with the CIR model, i.e.

Ξ1 =
σ2
0

2 xe
−az∂x − σ2

0

2a e
−az∂z − u(ax+ b)e−az∂u

Ξ2 = xeaz∂x + 1
ae
az∂z

Ξ3 = ∂z
Ξ4 = u∂u

where the last symmetry, as usual, corresponds to the choice H1 = 0. They form the
generators of all non trivial symmetries of Kolmgorov CIR model equation (see [11]).

Let us now consider the determining equations for general symmetries (not
necessarily of Doob type) for the CIR model. In this case the determining equations
provided by Theorem 3.13 are

1
2σ

2
0xfxx + (ax+ b) fx + fz = af + (ax+ b)τ − σ0

√
xH1

1
2σ

2
0xmxx + (ax+ b)mx +mz = τ

σ0
√
xfx − 1

2σ0
1√
x
f = 1

2σ0
√
xτ

σ0
√
x mx = 0,

and we can find the solution

f(x, z) = c1
√
x+ c2

σ0

a x
m(x, z) = c2

σ0

a z
τ(x, z) = c2

σ0

a

H1 = c1

(
σ0

8x −
b

2σ0x
+ a

2σ0

)
+ c2
√
x

corresponding to the infinitesimal symmetries

Ṽ1 =

(( √
x

0

)
, 0, 0,

σ0
8x
− b

2σ0x
+

a

2σ0

)
Ṽ2 =

((
σ0

a x
σ0

a z

)
, 0,

σ0
a
,
√
x

)
.

We remark that Ṽ1 and Ṽ2 are not symmetries of Doob type, since we have H1 =√
x = σT∇ki, for k1 = − 1

4
√
x

+ b
σ2
0

√
x

+ a
√
x

σ2
0

and k2 = x
σ0

but, as in the previous cases,

ki do not satisfy L(ki) = 0.
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5.4. Two-dimensional Brownian motion

Let us consider the following SDE dXt

dYt
dZt

 =

 0
0
1

 dt+

 1 0
0 1
0 0

( dW 1
t

dW 2
t

)
corresponding to a two-dimensional Brownian motion. As in the previous examples,
the third component dZt = dt has been introduced in order to include time dependent
transformations in our setting.

When we look for Doob type infinitesimal symmetries for this SDE, we have to
find an infinitesimal transformation V = (Y,C, τ,H)

V =

 f(x, y, z)
g(x, y, z)
m(x, y, z)

 ,

(
0 c(x, y, z)

−c(x, y, z) 0

)
, τ (x, y, z) ,

(
H1(x, y, z)
H2(x, y, z)

)
where H1 = kx, H2 = ky and the functions k, f, g,m, τ, c satisfy the following
determining equations

1
2kxx + 1

2kyy + kz = 0
1
2fxx + 1

2fyy + fz + kx = 0
1
2gxx + 1

2gyy + gz + ky = 0
1
2mxx + 1

2myy +mz = τ
fx = 1

2τ
fy = c
gx = −c
gy = 1

2τ
mx = 0
my = 0.

If we chose k = c1 + c2x + c3y + c4(x2 + y2 − 2z), we can solve the previous system
and we find

f(x, y, z) = −2c4xz + 1
2c5x− c2z + c6y + c7

g(x, y, z) = −2c4yz + 1
2c5y − c3z − c6x+ c8

m(x, y, z) = −2c4z
2 + c5z + c9

τ(x, y, z) = −4c4z + c5
c(x, y, z) = c6.

Therefore, the infinitesimal symmetries for the two-dimensional Brownian motion
associated with the Doob function k = c1 + c2x+ c3y + c4(x2 + y2 − 2z) are

V1 =

 −z0
0

 ,

(
0 0
0 0

)
, 0,

(
1
0

)
V2 =

 0
−z
0

 ,

(
0 0
0 0

)
, 0,

(
0
1

)
V3 =

 −2xz
−2yz
−2z2

 ,

(
0 0
0 0

)
,−4z,

(
2x
2y

)
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V4 =

 1
2x
1
2y
z

 ,

(
0 0
0 0

)
, 1,

(
0
0

)
V5 =

 y
−x
0

 ,

(
0 1
−1 0

)
, 0,

(
0
0

)
V6 =

 1
0
0

 ,

(
0 0
0 0

)
, 0,

(
0
0

)
V7 =

 0
1
0

 ,

(
0 0
0 0

)
, 0,

(
0
0

)
V8 =

 0
0
1

 ,

(
0 0
0 0

)
, 0,

(
0
0

) .

Using Theorem 4.6, we can associate with any Vi a corresponding symmetry of the
Kolmogorov equation

1

2
uxx +

1

2
uyy + uz = 0. (35)

In this way we recover, adding the trivial symmetry V9 corresponding to H1 = H2 = 0,
the following generators for the well known nine-dimensional Lie algebra of Lie point
symmetries of (35)

Ξ1 = z ∂x+ xu∂u
Ξ2 = z∂y + yu∂u
Ξ3 = 2xz∂x + 2yz∂y + 2z2∂z + u(x2 + y2 − 2z)∂u
Ξ4 = 1

2x∂x + 1
2y∂y + z∂z

Ξ5 = y∂x − x∂y
Ξ6 = ∂x
Ξ7 = ∂y
Ξ8 = ∂z
Ξ9 = u∂u.

Let us now consider the determining equations for general symmetries (not necessarily
of Doob type) of the two-dimensional Brownian motion. In this case the determining
equations provided by Theorem 3.13 are

1
2fxx + 1

2fyy + fz +H1 = 0
1
2gxx + 1

2gyy + gz +H2 = 0
1
2mxx + 1

2myy +mz = τ
fx = 1

2τ
fy = c
gx = −c
gy = 1

2τ
mx = 0
my = 0.
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Here we have no conditions on the components of the vector field H and we can find
two infinite-dimensional families of symmetries (each one depending on an arbitrary
function of z) which are not of Doob type.

The first family is the generalization of the almost Doob symmetries already found
for the one-dimensional Brownian motion, i.e.

Ṽα =

 1
2α(z)x
1
2α(z)y∫
α(z) dz

 ,

(
0 0
0 0

)
, α(z),

(
− 1

2xα
′(z)

− 1
2yα

′(z)

) .

We remark that, despite H satisfies the condition H = σT∇k for k =
− 1

4α
′(z)(x2 + y2), we cannot ensure that

1

2
kxx +

1

2
kyy + kz = 0

since this condition is satisfied only if α′(z) = 0. Therefore, since for general (non
constant) functions α(z), Ṽα is not a Doob symmetry, Theorem 4.6 does not apply
and we cannot associate with Ṽα any symmetries of the Kolmogorov PDE (35).

The second family of non Doob-type symmetries is given by

Ṽβ =

 β(z)y
−β(z)x

0

 ,

(
0 β(z)

−β(z) 0

)
, 0,

(
−yβ′(z)
xβ′(z)

)
and does not have an analogous for the one-dimensional Brownian motion. In fact, in
this case the vector field H does not satisfy the condition H = σT∇k = ∇k for any k.

Remark 5.2. The presence of the symmetries Ṽβ is related to the invariance with
respect to random rotations of Brownian motion (see Section 2) in the same way
as Ṽα is related to the invariance of Brownian motion with respect to random time
changes (see Remark 5.1). Indeed if B(t) is a smooth deterministic function of time
taking values in O(2) we have that W̃t = B(t) ·Wt is a Brownian motion with respect
to the new probability measure Q having density

dQFT
dPFT

= exp

(
−
∫ T
0

WT
s ·B′(s)T · dWs −

1

2

∫ T
0

|B′(s) ·Ws|2ds

)
.

Therefore, the introduction of the notion of stochastic transformation for an SDE
allows us to enlarge the class of symmetries, showing that the stochastic approach is
successful in providing a wider family of symmetries which would be lost in a purely
deterministic approach throughout the Kolmogorov equation associated with the SDE.

6. Proof of Lemma 3.4

In this section we give a proof of Lemma 3.4, specializing to our setting a general result
obtained in [44]. Since in Lemma 3.4 we consider a smooth SDE (µ, σ) which is non
explosive and a smooth function h : M → Rn such that (µ+σ ·h, σ) is a non explosive
SDE, in order to provide a rigorous proof, first of all we have to suitably extend the
filtered probability space (Ω,Mt ⊂ F ,P). Considering on Rn∪{∞} and Rm∪{∞} the
topology given by the one point compactification of the standard topology of Rn,Rm,
we take

Ω ⊂ C0(R+, (Rn ∪ {∞})× (Rm ∪ {∞}))
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as the space containing the functions for which ω(t) =∞, for every t such that there
exists a t′ ≤ t for which ω(t′) =∞, i.e. the space of continuous functions which once
arrived at ∞ they remain at ∞. The probability law P is such that, if Xi

t(ω) = ωi(t)
and Wα(ω)t = ωn+α(t) (i = 1, ..., n, α = 1, ...,m), then (X,W ) is a solution to the
SDE (µ, σ) and the filtration Mt is the right continuous modification of the natural
filtration generated by (X,W ) (in general Mt is not completed as Ft). Denoting by
τ̂ = inf{t : Xt = ∞} the explosion time of the process X, the hypotheses of non
explosiveness in Lemma 3.4 ensure that τ̂ =∞ P-almost surely.
In this setting, we consider the process M given by

Mt :=

∫ t

0

h(Xs)
T · dWs ∀t ≥ 0,

with quadratic variation given by

[M,M ]t :=

∫ t

0

h(Xs)
T · h(Xs)ds ∀t ≥ 0,

and we introduce the non negative process Z defined by

Zt := exp

(
Mt −

1

2
[M,M ]t

)
∀t ≥ 0.

By applying Ito-formula one can easily see that the process Z is a non negative
continuous P-local martingale. In order to limit the quadratic variation we consider
the stopping times defined as

τn := inf{t ≥ 0|[M,M ]t > n},

where n ∈ N0. The stopping times τn are increasing with respect to n ∈ N0 and we
write τ = supn∈N0

τn = limn↑∞ τn. Novikov condition (see, e.g., [42, Chapter VIII,
Proposition 1.14]) ensures that the stopped P-local martingale Zτn is a uniformly
integrable P-martingale ∀n ∈ N0.

Proposition 6.1. There exists a probability measure Q such that for any n ∈ N0

dQMτn

dPMτn

= Zτn∞ .

Proof. For any stopping time η, let Mη− be the σ-algebra defined as

Mη− := σ(X0) ∨ σ({A ∩ {η > t}|A ∈Mt, t ≥ 0}).

Considering the sequence of probability measures {Qn}n∈N0
given by dQn = Zτn∞ dP,

and observing that

Qn(A) = Qm(A) ∀A ∈M(τn∧τm)− and ∀m,n ∈ N,

we get that the set function

Q :
⋃
n∈N
Mτn− −→ [0, 1]

A 7−→ Qn(A) ∀A ∈Mτn−

is well defined.
Using [39, Theorem V.4.1], we can extend the family of compatible probabilities Qn
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to a probability measure Q on
∨
n∈NMτn− =Mτ−. Moreover, by [40, Theorem E.2]

we can further extend Q to a probability measure on (Ω,M), with M :=
∨
n∈NM

and, with a slight abuse of notation, we denote it again by Q.
If we fix n ∈ N0 and A ∈ Mτn , we note that τn(ω) < τn+1(ω) on {τn < ∞}, since
[M,M ]t(ω) is absolutely continuous and it is P-almost surely finite by the hypothesis
of non explosiveness of h. This then yields

Q(A) = Q(A ∩ {τn <∞}) + Q(A ∩ {τn =∞})
= EP[Zτn+1

∞ χA∩{τn<∞}] + EP[Zτn∞χA∩{τn=∞}] = EP[Zτn∞χA]

since A ∩ {τn =∞} ∈Mτn−. The statement then follows.

Remark 6.2. The probability measure Q constructed in Proposition 6.1 is in general
non unique. An important consequence of the proof of Lemma 3.4 is that if both (µ, σ)
and (µ+ σ · h, σ) are non explosive, then Q is unique.

Introducing

Ŵt = W τ
t −

∫ t∧τ

0

h(Xs)ds,

by Girsanov theorem Ŵ is a Brownian motion till the stopping time τ . We have
that (X,W ) is a solution to the SDE (µ+ σ · h, σ) under any probability Q (given by
Proposition 6.1) till the stopping time τ .

Remark 6.3. It is clear that τ̂ is the explosion time of both the solution processes
X of the SDEs (µ, σ) and (µ + σ · h, σ). We have that τ̂ ≤ τ . Indeed, since h is
smooth and Xt is a continuous process, the only possibility for which τ 6= ∞ is when
the process Xt diverges to infinity. Since the converse is in general not true, i.e. Xt

can go to infinity and [M,M ]t can remain bounded, we have τ̂ ≤ τ . This implies that
(X, Ŵ ) is a solution to the SDE (µ+σ ·h, σ) till its explosion stopping time τ̂ for any
probability Q built using Proposition 6.1.

Proof of Lemma 3.4. By Remark 6.3 we have τ̂ ≤ τ , which implies that

{τ <∞} ⊆ {τ̂ <∞}.

For any probability measure Q constructed using Proposition 6.1, in particular by
monotonicity, we obtain that

Q(τ <∞) ≤ Q(τ̂ <∞) = 0,

where we used the fact that (µ + σ · h, σ) is non explosive. This means that, ∀t ≥ 0
and for all A ∈Mt with P(A) = 0, we have

Q(A) = lim
n↑∞

Q(A ∩ {τn > t}) ≤ lim
n↑∞

EP[Zτn∞χA] = 0.

Hence Q is absolutely continuous with respect to P on Mt, ∀t ≥ 0. Moreover, if we
consider the P-martingale R defined by

Rt :=
dQMt

dPMt

∀t ≥ 0,

we have that Rτnt = Zτnt , ∀n ∈ N and P-almost surely. Since limn↑∞ τn = τ and
τ = ∞ P-almost surely, taking the limit n ↑ ∞, we get Rt = Zt. Thus, Z is a
P-martingale.
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Remark 6.4. Since a posteriori the measure Q is absolutely continuous with respect
to the measure P we can consider the measure Q as defined on the whole completion
F of M.
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