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Abstract

In this paper, we consider the evolution of the Vortex Filament equa-
tion (VFE):

Xt = Xs ∧Xss,

taking M -sided regular polygons with nonzero torsion as initial data. Us-
ing algebraic techniques, backed by numerical simulations, we show that
the solutions are polygons at rational times, as in the zero-torsion case.
However, unlike in that case, the evolution is not periodic in time; more-
over, the multifractal trajectory of the point X(0, t) is not planar, and
appears to be a helix for large times.

These new solutions of VFE can be used to illustrate numerically that
the smooth solutions of VFE given by helices and straight lines share
the same instability as the one already established for circles. This is
accomplished by showing the existence of variants of the so-called Rie-
mann’s non-differentiable function that are as close to smooth curves as
desired, when measured in the right topology. This topology is motivated
by some recent results on the well-posedness of VFE, which prove that
the selfsimilar solutions of VFE have finite renormalized energy.

Keywords:
Multifractality, Talbot Effect, Turbulence, Vortex Filament Equation

1 Introduction

Given an initial curve X0 : R→ R3, we consider the binormal flow

Xt = κb, (1)
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where κ is the curvature and b is the binormal component of the Frenet-Serret
system T

n
b


s

=

 0 κ 0
∓κ 0 τ
0 −τ 0

T
n
b

 . (2)

The binormal flow can be expressed as

Xt = Xs ∧± Xss, (3)

where s is the arc-length parameter, and ∧± is the usual cross product with
positive and negative sign, corresponding respectively to the Euclidean and
hyperbolic geometries. In this paper, we will consider only the positive sign,
and, for simplicity’s sake, we will omit writing it. (1) and its equivalent version
(3) are also referred to as the vortex filament equation (VFE), denomination
which we will use along this paper, or as the local induction approximation
(LIA). The latter name comes from the local approximation of the Biot-Savart
integral that is used to obtain (1) from the Euler equations (see [3, p. 510] and
[20]).

We can also consider the tangent vector T = Xs. Then, differentiating (3)
with respect to s yields

Tt = T ∧Tss, (4)

which is the Schrödinger map equation onto the sphere S2. Moreover, it follows
immediately that T preserves its length, so we can assume after a scaling that
T ∈ S2. In [15], Hasimoto made a fundamental contribution by defining the
filament function:

ψ(s, t) = κ(s, t)ei
∫ s
0
τ(s′,t)ds′ , (5)

and proving that such a ψ solves the nonlinear Schrödinger (NLS) equation:

ψt = iψss + i

(
1

2
(|ψ|2 +A(t))

)
ψ, A(t) ∈ R. (6)

Coming back to VFE, some of its explicit solutions are the circle, the helix, and
the straight line. The last case corresponds to the line vortex, which does not
move [3, p. 93]. As for the circle, it moves normal to its plane with a constant
velocity given by the inverse of the radius, and the choice of the direction is
determined by the orientation given to the circle; this example represents the
smoke rings that are generated in real fluids [3, p. 522]. Finally, the helix does
not change its shape either, but it screws up or down, depending also on the
orientation. Vortices with a helical shape are easy to generate; for example,
they can be seen behind the tips of the blades of a propeller. In fact, there are
explicit solutions of Euler equations that have a helical shape [14, 19].

In [8], the case of regular planar polygons of M sides with zero torsion
(from now on, referred to as planar M -polygons) was considered. Because of
the mix of lack of regularity (due to the presence of corners) and periodicity,
the available analytical techniques are not sufficient to treat this type of curves.
Recently, it has been proved that, for polygonal lines that, at any given time, are
asymptotically close at infinity to two straight lines, the initial value problem is
well posed in an appropriate topology [1]. This asymptotic behavior allows the
waves generated by the corners to escape to infinity, so that their interaction
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is not strong enough to generate new corners. As observed in [17], this is not
the case when closed polygons are considered. As proved in [8] for planar M -
polygons, these waves can interact in a rather complicated way, so new corners
appear at rational multiples of the time period 2π/M2, in a similar way as that
exhibited by optical waves in the so-called Talbot effect [4, 10, 18]. As explained
in [8], similar effects have been observed in the evolution of noncircular jets [11].
In particular, if nozzles with the shape of equilateral triangles or squares are
considered, some complex structures in the shape of skew polygons are observed
at later times (see [11, Fig. 6], and also [12, Fig. 10 and p. 1492], where it
is mentioned “[...] a consistent eightfold distribution pattern is also suggested
[...]”, for square nozzles).

This complicated dynamics is also present when one looks at the trajec-
tory of any of the corners of a planar M -polygon. The trajectory seems to be
a multifractal, very reminiscent of the graph of Riemann’s non-differentiable
function:

∞∑
k=1

sinπk2t

πk2
, t ∈ [0, 2]. (7)

Indeed, in [8, Section 5.1], it was observed that, as the polygonal curve X(s, t)
evolves in time, it also moves in the vertical direction with constant speed cM .
Additionally, taking into account the symmetries of the problem, it is easy to
see that, for a given M , the trajectory of a single point X(0, t) lies in a plane.
Hence, removing the vertical movement, and using complex coordinates, we can
define

z̃M (t) = −‖(X1(0, t), X2(0, t))‖2 + i(X3(0, t)− cM t), t ∈ [0, 2π/M2],

which is a closed, 2π/M2-periodic curve. Then, using an appropriate scaling
that depends on M , very strong numerical evidence is given to show that, as
M →∞, z̃M (t) converges to a complex version of Riemann’s non-differentiable
function, namely

φ(t) =

∞∑
k=1

eπik
2t

iπk2
, t ∈ [0, 2]. (8)

We refer the reader to [8] for the details, to [16] for the proof of the multifractality
of Riemann’s function, and to [6], where other relevant trigonometric sums are
considered. On the other hand, since the planar M -polygon tends initially to
a circle as M → ∞, it is proved as a consequence that the time evolution of a
circle is not stable, at least at the numerical level. In other words, a particle
can be located in a curve arbitrarily close to a circle, but in the right topology,
its trajectory converges to the multifractal graph given by φ.

Later on, in [9, Section 6], the linear momentum of X (sometimes also called
impulse in the fluid literature) was studied. In particular, it was observed that
it is a periodic function with a period depending on M . After renormalizing
the period, a spectral analysis was done and it was proved numerically that the
leading Fourier coefficients behave as those in (7). A similar analysis can be
done for z̃M (t), obtaining

lim
M→∞

|n ãn,M | =

{
1, if n = k2, k ∈ N,
0, otherwise;
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where ãn,M are the Fourier coefficients of the scaled z̃M (t), and N = {1, 2, 3, . . .}.
The main purpose of this paper (described in Section 4) is to prove that

helices and straight lines also have the same kind of instability as the circle. We
will show this by approximating them using regular M -polygons with nonzero
torsion (from now on, referred to as helical M -polygons), i.e., regular polygons
whose tangent vectors are 2π-periodic functions that take just M values on S2.
As a consequence, we can say that Riemann’s non-differentiable function and
its variants appear as universal objects in the dynamics of singular solutions
of (3). Moreover, these universal objects are, in the right topology, as close as
desired to smooth curves.

The paper is organized as follows. After defining the problem in Section
2.1, we introduce in Section 2.2 the parametric form of our initial data, i.e., the
curve X and its tangent vector T, whose third component is a constant denoted
by b ∈ (0, 1). Note that b = 0 reduces back to the planar M -polygon case,
b = 1 to the straight line, and, for an intermediate value of b, the corresponding
polygonal curve has a helical shape. Thus, the initial data is characterized by
two parameters: M (which reflects the periodicity of T) and b. These two
parameters also determine the curvature angle ρ0 and the torsion angle θ0. On
the other hand, at the level of the NLS equation, the nonzero-torsion problem
can be seen as a Galilean transformation of the planar M -polygon problem.
Thus, denoting (5) as ψθ, when θ0 6= 0, and as ψ, when θ0 = 0, the initial data
for the two problems can be related by

ψθ(s, 0) = C eiγsψ(s, 0),

where γ = Mθ0/2π, and C is a constant depending on the initial structure of
the M -polygons in both cases. Then, using the Galilean invariance of (6), we
obtain

ψθ(s, t) = C eiγs−iγ
2tψ(s− 2γt, t). (9)

In Section 2.3, we compute ψθ(s, t), at t = tpq = (2π/M2)(p/q), with gcd(p, q) =
1, i.e., at times that are rational multiple of 2π/M2. Since ψ(s, tpq) is known
from the zero-torsion case, it follows from (9) that the helical M -polygon curve
at time tpq is a polygon with Mq sides (if q odd) or Mq/2 sides (if q even). The
structure of the new polygon can be determined by the generalized quadratic
Gauß sums G(−p,m, q), as in [8]; but the presence of torsion causes a lack of
space and time periodicity. In other words, unlike in the planar polygon case,
we observe, at the end of one time-period, a polygonal curve with the same
number of sides in a spatial period, but with the corners moved by a certain
amount, which we call Galilean shift, and rotated by a certain angle, which we
call phase shift. Both shifts depend on the torsion introduced in the problem.

In Section 2.4, we construct the algebraic solution at any rational time tpq.
The arguments on the Dirac deltas in (18) determine the Galilean shift, and thus,
we know the exact location of the new corners. Then, a principle of conservation
of energy proved in [1] allows us to compute the angle ρq between any two
adjacent sides of the resulting polygon, so, using the generalized quadratic Gauß
sums, we can construct the polygonal curve, up to a rigid movement. Later on,
using algebraic techniques as in [9], an expression for the speed of the center
of mass cM is given. With all these ingredients, the algebraic solution can be
computed up to a rotation that remains undetermined.
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In Section 3, we comment on the numerical method to solve (3)-(4); as in
[8], we are able to make use of the symmetries of the tangent vectors and reduce
the computation cost quite effectively. As already said, it was noted in [8] that,
as the polygonal curve evolves in time, it also moves in the vertical direction
with constant speed. A similar phenomenon is observed for the helical polygon
as well; we compute the angle between any two adjacent sides of the polygonal
curve, the speed of the center of mass, and compare those values with their
algebraic counterparts.

In Section 4, we study the trajectories of one corner initially located at
s = 0. The helical case is studied in Section 4.1. During the time evolution,
the numerical simulations suggest that, for a given M , and b ∈ (0, 1), besides a
constant vertical movement, the polygonal curve rotates around the z-axis. The
trajectory of a single point is a multifractal, but no more planar. Moreover, by
taking b, such that θ0 = πc/d, with gcd(c, d) = 1, c, d ∈ N, the periodicity in
space can be recovered. Furthermore, for such time period, after removing the
vertical height, the third component of X(0, t) is periodic, and its structure can
be compared with the imaginary part of

φc,d(t) =
∑

k∈Ac,d

e2πikt

k
, t ∈

{
[0, 1/2], if c · d odd,

[0, 1], if c · d even,

where the set Ac,d is defined in (27). After applying a scaling as before, and
expressing it in terms of its Fourier expansion, we get

lim
M→∞

|n bn,M | =


1/4, if n ∈ Ac,d and c · d odd,

1/2, if n ∈ Ac,d and c · d even,

0, otherwise.

where bn,M are the Fourier coefficients.
In the case of the straight lines, studied in Section 4.2, b must be taken very

close to 1. Here, the trajectory X(0, t) in the XY-plane tends to a 2π-periodic
closed curve, which can be compared to

φM (t) =
∑
k∈AM

e2πik
2t

k2
, t ∈ [0, 1],

where the set AM is defined in (30). Thus, we consider first

z(t) =
X1(0, t)

1 + X̃3(t)
+ i

X2(0, t)

1 + X̃3(t)
,

with X̃3(0, t) = X3(0, t) − cM t, t ∈ [0, 2π], and after rotating it counterclock-
wise π/2 − π/M radians, define zM (t). As before, we approximate the Fourier
coefficients cn of a properly scaled version of zM , to show that, for a given M ,

lim
b→1−

|n cn| =

{
1, if n ∈ AM ,
0, otherwise.

In Section 5, we examine the behavior of T for rational times tpq, with q � 1,
and compare it with the zero-torsion case. Finally, Section 6 describes briefly
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the numerical relationship between the M -corner and the one-corner problems.
Following the same steps as in [9], we try to answer how the helical M -polygon
problem can be understood as a superposition of M one-corner problems at
infinitesimally small times.

2 A solution of Xt = Xs∧Xss for a regular helical
M-polygon

The first goal of this paper is to construct the solutions of (3) and describe
their corresponding dynamics, for initial data given by regular non-planar M -
polygons. As will be explained in this section, the behavior of regular polygons
with nonzero torsion is a consequence of the Galilean symmetry present in the
set of solutions of (6). Therefore, this paper can be regarded an extension of
the zero-torsion case considered in [8], and as a result, [8, Th. 1] holds true here
as well, only needing to change [8, (23)] and [8, (25)] by (18) and (20) below,
respectively.

a

b

o y

z

x

Figure 1: Unit sphere S2, and parameters a and b, where a2 + b2 = 1.

2.1 Problem definition

Let us consider an arc-length parameterized regular M -polygon with torsion
depending on a parameter b. Due to the fact that (3) and (4) are rotation
invariant, we can assume that the 2π-periodic tangent vector T(s, 0) lies on a
circle of radius a, with a2 + b2 = 1 (see Figure 1):

T(s, 0) =

(
a cos

(
2πk

M

)
, a sin

(
2πk

M

)
, b

)
≡ (a e2πik/M , b), s ∈ (sk, sk+1),

(10)
where k = 0, 1, . . . ,M − 1. The corresponding curve X(s, 0) is a helical polygon
with corners located at

X(sk, 0) =

(
aπ sin(π(2k − 1)/M)

M sin(π/M)
,−aπ cos(π(2k − 1)/M)

M sin(π/M)
, b sk

)
, (11)
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so that, for any s ∈ (sk, sk+1), the corresponding point X(s, 0) lies on the
line segment joining X(sk, 0) and X(sk+1, 0). Since T ∈ S2, it follows that
b ∈ [−1, 1]; in this paper, we work with b > 0, because the case with b < 0 can
be recovered by the symmetries.

Let us denote Tk = T(s, 0), for s ∈ (sk, sk+1). The curvature angle ρ0 does
not depend on k, and it is defined as the angle between Tk and Tk+1, for all k:

ρ0 = 2 arcsin
(
a sin

( π
M

))
. (12)

On the other hand, the torsion angle θ0 does not depend on k, either, and it is
defined as the angle between (Tk−1 ∧Tk) and (Tk ∧Tk+1), for all k:

θ0 = 2 arctan
(
b tan

( π
M

))
. (13)

Observe that both angles satisfy

cos
(ρ0

2

)
cos

(
θ0
2

)
= cos

(
arcsin

(
a sin

( π
M

)))
cos
(

arctan
(
b tan

( π
M

)))
=

√
1− a2 sin2

(
π
M

)
1 + b2 tan2

(
π
M

) = cos
( π
M

)
.

2.1.1 Spatial symmetries and the Hasimoto transformation

The symmetries of the initial data for the zero-torsion case (see [8, (29)]) are
also valid here, and as a result X(s, t) and T(s, t) are invariant under a ro-
tation of angle 2πk/M around the z-axis, with the only exception that the
third component X3 has now a translation symmetry, i.e., X3(s+ 2πk/M, t) =
X3(s, t) + 2πk b/M , for all k ∈ Z, t ≥ 0. Moreover, T(s, t) and T(−s, t) are
symmetric about the XZ-plane, and, consequently, X(s, t) and X(−s, t) are sym-
metric about the y-axis, for all t. An important fact that will be useful later is
that X(s+ 2πk, t)−X(s, t) = 2πb k(0, 0, 1), for all k ∈ Z.

We denote the filament function (5) by ψθ, for θ0 6= 0, and use ψ, when
θ0 = 0. To avoid issues related to vanishing curvatures, we work with a more
general form of the Frenet-Serret formulas, where T, e1, e2 are the orthonormal
basis vectors [5] (see [8, Section 2], for more details). However, in order to obtain
T, e1 and e2 at any rational time, we have to transform ψθ, by multiplying it
by a certain constant.

2.2 Problem formulation

Let us write the initial data of the NLS equation corresponding to the planar
M -polygon problem as

ψ(s, 0) = c0

∞∑
k=−∞

δ(s− 2πk/M), s ∈ [0, 2π],

and, when θ0 6= 0, as

ψθ(s, 0) = cθ,0 e
iγs

∞∑
k=−∞

δ(s− 2πk/M), s ∈ [0, 2π],
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where γ = Mθ0/2π satisfies limM→∞ γ = b; and c0 and cθ,0 > 0 are constants
depending on the initial configuration of the respective curve. In particular,
taking

cθ,0 =

√
− 2

π
ln
(

cos
(ρ0

2

))
, (14)

we have
ψθ(s, 0) =

cθ,0
c0

eiγsψ(s, 0). (15)

At this point, we recall one important symmetry of the NLS equation called
the Galilean invariance, which states that, if ψ is a solution of (6), then, for
the initial datum ψn(s, 0) = ein sψ(s, 0), the corresponding solution is given by

ψn(s, t) = ein s−in
2tψ(s − 2n t, t), with n, t ∈ R, and satisfies (6), too. Bearing

in mind this fact, the solution corresponding to (15) is given by

ψθ(s, t) =
cθ,0
c0

eiγs−iγ
2tψ(s− 2γ t, t). (16)

Hence, using [8, (33)], we get

ψθ(s, t) =
cθ,0
c0

ψ̂(0, t)eiγs−iγ
2t

∞∑
k=−∞

e−i(Mk)2t+iMk(s−2γt), (17)

where ψ̂(0, t) is a constant depending on time, which, as mentioned in [8], can be
assumed to be real, for all t. Note that, in (16), ψ is 2π/M -space-periodic and
2π/M2-time-periodic; but, when γ ∈ (0, 1), ψθ(s, t) is not periodic. However,
by taking γ rational, space periodicity can be recovered at large times; and if
γ = 1, ψθ(s, t) is both space and time periodic. During the evolution of an
M -polygon, this will give rise to a phase shift and a Galilean shift, as explained
later on in this paper.

2.3 Computation of ψθ(s, t) for rational multiples of t =
2π/M2

When t = tpq = (2π/M2)(p/q), with p ∈ Z, q ∈ N, and gcd(p, q) = 1, we
compute ψθ(s, tpq) by substituting tpq and γ in (17). Then, similarly as in [8]
for ψ(s, tpq), we have

ψθ(s, tpq) =
2π

Mq

cθ,0
c0

ψ̂(0, tpq)e
i(θ20/(2π))(p/q)

∞∑
k=−∞

q−1∑
m=0

G(−p,m, q)ei(kθ0+mθ0/q)δ
(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)
,

where G(−p,m, q) =
∑q−1
c=0 e

(−2πic2p+2πicm)/q is a generalized quadratic Gauß
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sum. Using the properties of these sums (see [8, Appendix]), we get

ψθ(s, tpq) =



2π
M
√
q
cθ,0
c0
ψ̂(0, tpq)e

i(θ20/(2π))(p/q)
∞∑

k=−∞

q−1∑
m=0

ei(ξm+kθ0+mθ0/q)δ
(
s− 2θ0p

Mq −
2πk
M − 2πm

Mq

)
, if q odd,

2π

M
√
q/2

cθ,0
c0
ψ̂(0, tpq)e

i(θ20/(2π))(p/(q/2))
∞∑

k=−∞

q/2−1∑
m=0

ei(ξ2m+kθ0+2mθ0/q)δ
(
s− 2θ0p

Mq −
2πk
M − 4πm

Mq

)
, if q

2 even,

2π

M
√
q/2

cθ,0
c0
ψ̂(0, tpq)e

i(θ20/(2π))(p/(q/2))
∞∑

k=−∞

q/2−1∑
m=0

ei(ξ2m+1+kθ0+(2m+1)θ0/q)δ
(
s− 2θ0p

Mq −
2πk
M − 2π(2m+1)

Mq

)
, if q

2 odd,

(18)

for a certain angle ξm depending on m, p and q. Hence, at any rational time
tpq, the initial M Dirac deltas in s ∈ [0, 2π) turn into Mq Dirac deltas (if q
odd), or Mq/2 Dirac deltas (if q even). Moreover, at those times, the absolute
value of their coefficients is constant, and since the Dirac deltas are equally
spaced, the sides of the resulting polygon are equally-lengthed. On the other
hand, as a result of the Galilean transformation, a corner initially located at
2πk/M , k ∈ Z, is translated by spq = 2θ0p/Mq at time tpq; we call this extra
movement the Galilean shift. Although, strictly speaking, ψθ (and X and T)
are not time-periodic now, their structure repeats whenever t is increased by
2π/M2; along this paper, we denote this important quantity Tf ≡ 2π/M2, and
refer to it, with some abuse of language, as the time period.

2.3.1 Computation of ψ̂(0, tpq)

In [13], the following expression was given for the one-corner problem:

cos(ρ0/2) = e−πc
2
0/2, (19)

where ρ0 is the angle formed by the tangent vectors at the corner, when the
singularity happens, and c0 is the curvature or coefficient of the Dirac delta in
the initial solution of the NLS equation. Later on, in [9], it was shown that,
for small times, (19) holds true for planar M -polygons as well; in particular, at
t = 0,

c0 =

√
− 2

π
ln
(

cos
( π
M

))
⇐⇒ ρ0 =

2π

M
.

On the other hand, in [8], ψ̂(0, tpq) was guessed from the numerical results,
for planar M -polygons. This was corroborated in [9, Section 7], where it was

also suggested that ψ̂(0, tpq) might be obtained from a conservation law. In
[2, Section 4], it has been recently observed that this conservation law is a
consequence of the one established for non-closed polygonal lines in [1, Th. 14].
The argument is as follows.

Let ψ(s, 0) =
∑
k αk(0)δ(s−2πk/M). Then, in [1], assuming some decay con-

ditions of αk(0), the existence of a unique solution ψ(s, t) =
∑
k αk(t)eit∂

2
s δ(s−

2πk/M) of (6) is proved, with t A(t) =
∑
k |αk(0)|2. Moreover,

∑
k |αk(t)|2 =

9



∑
k |αk(0)|2. Assume now that αk+M = αk, for all k. Then, if the solution ex-

ists and is unique, αk+M (t) = αk(t), and
∑M−1
j=0 |αj |2 = Q2 =

∑M−1
j=0 |αj(t)|2.

In our case, at t = 0,

|αk| = cθ,0 =⇒ Q2 =

M−1∑
k=0

|cθ,0|2 = Mc2θ,0 = −2M

π
ln cos

(ρ0
2

)
.

Furthermore, at any rational time tpq (taking q odd for now), there are from
(18) Mq Dirac deltas with coefficients of equal modulus, which we call cθ,q.
Therefore,

Mc2θ,0 = Q2 =

Mq−1∑
k=0

|cθ,q|2 = Mq

∣∣∣∣ 2πcθ,0
M
√
qc0

ψ̂(0, tpq)

∣∣∣∣2 ,
which yields ψ̂(0, tpq) = Mc0/2π and cθ,q = cθ,0/

√
q. Moreover, limM→∞ ψ̂(0, tpq) =

1/2
√
π. Note that (19) holds true whenever there is a singularity formation; e.g.,

in our case, at rational times tpq. The expression for cθ,q shows that the angle
ρq between any two tangent vectors remains equal and can be computed by
writing√
− 2

π
ln
(

cos
(ρq

2

))
=

1
√
q

√
− 2

π
ln
(

cos
(ρ0

2

))
=⇒ cos

(ρ0
2

)
= cosq

(ρq
2

)
.

After proceeding in the same way for q even, we conclude that

cos(ρq/2) =

{
cos1/q(ρ0/2), if q odd,

cos2/q(ρ0/2), if q even,
(20)

which is the same expression as in [8, (25)], with ρ0 = 2π/M .

2.4 Algebraic solution

By using the same technique as in [8], X and T can be computed algebraically,
up to a vertical movement and a rotation. Their algebraic counterparts, denoted
respectively by Xalg and Talg, are obtained as follows. Let us define, for any
rational time tpq with q odd (the case with q even is similar):

Ψθ(s, tpq) =
ρq
cθ,q

e−i(θ
2
0/(2π))(p/q)ψθ(s, tpq); (21)

and, since limq→∞ ρqe
−i(θ20/(2π))(p/q)/cθ,q <∞, Ψθ is well-defined. After writing

Ψθ(s, tpq) = (α + iβ)(s, tpq), we integrate the Frenet-Serret frame and obtain

the Mq basis vectors T̃(s), ẽ1(s), ẽ2(s), at s = (2π(k + 1)/Mq + spq)
−, by the

action of Mq rotation matrices denoted as Rk, k = 0, 1, . . . ,Mq − 1 (see [8,
Section 3.4] for the details). Moreover, it is important to mention that

RMq−1 ·RMq−2 . . .R1 ·R0 = Rx
Mθ0 =

1 0 0
0 cos(Mθ0) − sin(Mθ0)
0 sin(Mθ0) cos(Mθ0)

 , (22)
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which holds true for any q and M , and implies that the following quantity is
preserved:∫ 2π

0

τ(s′, tpq)ds
′ =

∫ 2π

0

τ(s′, 0)ds′ =
M

2π
θ0

∫ 2π

0

ds′ = Mθ0. (23)

On the other hand, X̃, i.e., X up to a rigid movement, can be obtained by
X̃(spq) = X̃(0) + spqT̃(s−pq),

X̃( 2π(k+1)
Mq + spq) = X̃( 2πk

Mq + spq) + 2π
Mq T̃([ 2π(k+1)

Mq + spq]
−), k = 0, 1, . . . ,Mq − 2,

X̃(2π) = X̃( 2π(k)
Mq + spq) + ( 2π

Mq − spq)T̃([ 2π(k+1)
Mq + spq]

−), k = Mq − 1,

with X̃(0) = (0, 0, 0), and spq = (2θ0p/Mq) mod (2π/Mq). Note that X̃(0) and

X̃(2π) do not correspond to a corner, but we compute them to define the correct
rotation L1, which allows the polygonal curve to be aligned in such a way that
the third component of X̃ is parallel to the z-axis. The matrix L1 performs
a rotation of angle equal to the one between v = X̃(2π) − X̃(0) and (0, 0, 1),
about an axis orthogonal to a plane spanned by these two vectors. As a result,
T = L1 · T̃, X = L1 · X̃, and we obtain X and T, up to a rotation and a vertical
movement. The vertical movement can be computed at any time tpq from the
speed of the center of mass cM ; but the rotation appears to be more involved,
and, in fact, it turns out to be a multifractal. We will discuss this further in the
next section.

3 Numerical experiments

0

1

1

2

0.5 1

3

0.50

4

0
-0.5

-0.5

-1 -1

Galilean shift

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Phase-shift

Figure 2: X(s, t), for M = 3, θ0 = π/2, b = 0.5774 . . ., at t = 0 (blue), and at
t = Tf (red). The left-hand side shows the Galilean shift, and the right-hand
side, the phase shift.

We solve numerically VFE and the Schrödinger map with the same numerical
method as in [8] (see Section 4 and the references therein), to approximate (3)-
(4) for the initial data X(s, 0) and T(s, 0), as given in (10) and (11), respectively.
More precisely, the space interval [0, 2π) is discretized into N equally spaced
nodes, i.e. sk = 2πk/N , k = 0, 1, . . . , N − 1, and the time period [0, Tf ],
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with Tf = 2π/M2, into Nt + 1 equally spaced time instants, taking ∆t =
Tf/Nt. Again, using the symmetries of T, we can reduce all the discrete Fourier
transforms of N elements, to N/M elements, reducing the computation cost
quite effectively. With respect to the stability constraints on N and ∆t, they
are also the same as in [8]; hence, N/M and Nt, once fixed for one value of M ,
can be used for all M . On the other hand, since ∆t = O(1/M2), we can expect
more accurate results for larger M . In our numerical simulations, we have taken
N/M = 480 · 2r, Nt = 136080 · 4r, r = 0, 1, . . ., and different values of b (or θ0).

Recall that the initial curve is characterized by two parameters, M and b.
When b ∈ (0, 1), as M is increased, the resulting initial curve tends to a helix.
On the other hand, for a fixed M , as b tends to 1, the curve approaches a
straight line. In our numerical simulations, we have analyzed both limits and
computed the relevant quantities in each case. Apart from the fact that, at
any rational time tpq, there are Mq or Mq/2 corners in s ∈ [0, 2π) (depending
on whether q is odd or even), we observe that the evolution is not periodic in
time. As mentioned above, due to the Galilean shift, a corner initially located
at s = 0 moves to s = 2θ0/M at the end of one time-period; and the new helical
M -polygon is rotated counterclockwise with respect to the z-axis by a certain
amount, which we refer to as the phase shift. Figure 2 shows both shifts, for
M = 3 and θ = π/2.

It is also important to compare the numerical value of ρq with the one given
by the algebraic expression in (20), so for a given q, we compute the following
errors: 

∆ρabsq,N/M,M = max
p∈{0,1,...,q−1}
gcd(p,q)=1

max
j=0,1,...,Mq−1

∣∣ρq − ρnum,jpq

∣∣ ,
∆ρrelq,N/M,M = max

p∈{0,1,...,q−1}
gcd(p,q)=1

max
j=0,1,...,Mq−1

∣∣∣∣∣ρq − ρnum,jpq

ρq

∣∣∣∣∣ ,
(24)

where ρnum,jpq = arccos(Tj ·Tj+1), j = 0, 1, . . . ,Mq−1. The value of the tangent
vectors Tj , which are piecewise constant at every time tpq, has been calculated
using the mean of the inner points; for example, for T(s), with s ∈ [0, 2π/Mq),
we take the mean of the values corresponding to s ∈ [π/2Mq, 3π/2Mq), etc.
Using (24), we compute the absolute and relative errors, for different values
of b, q and M . The results for b = 0.4, q = 5, M = 3, 4, . . . , 20, N/M =
480, 960, . . . , 7680, are plotted in Figure 3. Note that each color corresponds
to a different discretization in the numerical scheme, which clearly shows the
convergence of the errors, and hence, the agreement between the numerical and
the algebraic values.

Besides the formation of new corners, it is evident from the numerical sim-
ulations that the evolution of a helical M -polygon involves a vertical upward
movement as well. In order to determine the height of the polygonal curve at any
time t > 0, we compute its center of mass by taking the mean of all the values of
X(sj , t), i.e., hN,k(t) = 1

N

∑N−1
j=0 Xk(sj , t), k = 1, 2, 3. hN,1(t) and hN,2(t) are

equal to zero, whereas hN,3(t) grows linearly with t. Thanks to the symmetries
mentioned in (2.1.1), we can obtain hN,3(t) by using only N/M values, which
gives hN,3(t) = hN/M,3(t) + πb(M − 1)/M . Then, after removing the subscripts
and denoting the height hN,3(t) as h(t), the speed of the center of mass cnumM

can be approximated numerically as cnumM = (h(2π/M2)− h(0))/(2π/M2). On
the other hand, by taking advantage of the spatial periodicity of T, and using

12
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Figure 3: Absolute error (left) and relative error (right) as in (24), in semilog-
arithmic scale, for the angle ρq, taking b = 0.4, q = 5, M = 3, 4, . . . , 20, and
different values of N/M . The error clearly decreases, as N/M increases, showing
the convergence between the numerical and theoretical values.

the approach described in [9, Section 4], the exact value of cM can be deduced
algebraically:

cM =
−2 ln cos(ρ0/2)

(π/M) tan(π/M)
=

ln(1 + tan2(ρ0/2))

(π/M) tan(π/M)
. (25)

Remark that limM→∞ cM = 1 − b2. Figure 4 shows the value |cM − cnumM |, for
M = 3, 4, . . . , 20, b = 0.4, N/M = 480 ·2r, Nt = 136080 ·4r, with r = 0, 1, 2, 3, 4.
We note that, for a given value of M , when N/M is approximately doubled,
the errors are divided by a factor slightly smaller than two, which implies that
the errors behave as O((N/M)−1), and shows the convergence of cnumM to cM .
Moreover, as M increases, the errors reduce, which can be explained from the
fact that ∆t = O(1/M2). Finally, let us mention that cnumM converges to 1−b2 =
0.84, as M →∞.

In the following section, we will do a detailed study of X(0, t), which con-
stitutes the main difference between the zero-torsion and the nonzero-torsion
cases.

4 Trajectory of X(0, t)

In the zero-torsion case, due to the symmetries of the closed M -polygons, the
trajectory of one corner, i.e., X(0, t), which at the numerical level was claimed
to be a multifractal, lies in a plane [8]. However, for θ0 > 0, X(0, t) is no longer
planar, and taking t ∈ [0, Tf ] is not enough to understand its structure, so we
consider larger times multiple of Tf . Figure 5 corresponds to an M -polygon
with M = 6, θ0 = π/5, i.e., b = 0.5628 . . ., t ∈ [0, 10π/3]. Observe that X(0, t)
has a helical shape, and exhibits a conspicuous fractal structure that repeats
periodically, with some rotation and a vertical movement. In order to further
understand this curve, we analyze each component of X(0, t), by using a Fourier
series. In what follows, we consider two different cases, depending on the choice
of the parameter b.
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Figure 4: Left: |cM−cnumM |, computed for b = 0.4, and different values of M and
N/M . The error clearly decreases, as N/M increases, showing the convergence
between the numerical and the theoretical values. Right: cM , computed using
(25), for different values of M . We have also plotted in dash-dotted line the
limiting value 1− b2 = 0.84, to which we conjecture cM to tend, as M →∞.

4.1 Case with b ∈ (0, 1)

0
1
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1

10

0.50

15

0
-0.5
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Figure 5: Initial polygon X(s, 0) (blue), for M = 6, θ0 = π/5, i.e., b = 0.5628 . . .,
and its evolution at time t = 10π/3 (red), together with the curve described by
X(0, t), for t ∈ [0, 10π/3] (black). X(0, t) has a conspicuous fractal structure
which repeats periodically, with some rotation and a vertical movement.

In the case of a planar M -polygon, the curve X(0, t) has a corner at those
values of t, at which the polygonal curve X(s, t) has a corner at s = 0, i.e.,
at t = tpq, with q 6≡ 2 mod 4. However, when θ0 > 0, X(0, t) having corners
depends mainly on the Galilean shift, or in other words, in order for the curve
X(0, t) to have corners in finite time, b should be chosen in such a way that, at
t = Tf , the Galilean shift is a rational multiple of the side length 2π/M of the
corresponding polygonal curve. This can be enforced by taking θ0 = πc/d, with
gcd(c, d) = 1, c, d ∈ N. Then, defining the following multiples of Tf :

T c,df ≡

{
(d/2)Tf ≡ πd/M2, if c · d odd,

d Tf ≡ 2πd/M2, if c · d even,
(26)

the numerical experiments reveal that, at times that are integer multiples of
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T c,df , X(0, t) has a corner, and the three-dimensional fractal structure of X(0, t)

repeats with period T c,df (see Figure 5)). On the other hand, at rational multi-

ples of T c,df , X(0, t) has corners of different (smaller) scales. In order to better

understand X(0, t), we define, in t ∈ [0, T c,df ]:{
z1,2(t) = X1(0, t) + iX2(0, t) = R(t)eiν(t),

X̃3(t) = X3(0, t)− cM t,

where R(t) =
√
X2

1 (0, t) +X2
2 (0, t) and ν(t) = arctan(X2(0, t)/X1(0, t)) give

the polar representation of z1,2(t), and X̃3(t) is X3(0, t) without its vertical

height. Since R(t) and X̃3(t) are periodic, we can consider their Fourier expan-
sion:

R(t) =

∞∑
n=−∞

an,Me
2πi n t/T c,df , X̃3(t) =

∞∑
n=−∞

bn,Me
2πi n t/T c,df , t ∈ [0, T c,df ].

We have approximated the Fourier coefficients an,M and bn,M using the MAT-
LAB command fft, for M = 6, θ0 = π/5, t ∈ [0, 5π/18]. In the left-hand side
of Figure 6, we have plotted R(t); and, in the center, the real part of the approx-
imations of nan,M , for n = 1, 2, . . . , 2000. This last plot can be referred to as
the fingerprint of R(t), and it is a tool to understand the multifractal structure
of R(t) (see also [9, Figure 11]). Finally, on the right-hand side, we have plotted
ν(t), which describes the angular movement of X(0, t) in the XY-plane and can
be associated with the phase shift corresponding to the angular movement of
a corner initially located at s = 0. From its definition, one can suspect that
ν(t) has a multifractal structure, too; hence, computing the phase shift at any
rational time appears to be involved and deserves further research. We make
some more comments on this in the next section.
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Figure 6: Left: R(t), for t ∈ [0, T c,df ], M = 6, θ0 = π/5, c = 1, d = 5,
b = 0.5628 . . .. Center: Approximation of n<(an,M ), for n = 1, 2, . . . , 2000,
where an,M are the Fourier coefficients of R(t). The dominating points (red
starred) are given by (27). Right: ν(t), which seems to have a multifractal
structure as well.

We have carried out a careful study of the fingerprints of R(t) and X̃3(t),

with t ∈ [0, T c,df ], for many different values of M , c and d, and have found
strong evidence that, when θ0 = cπ/d, gcd(c, d) = 1, the dominating points of
the fingerprints belong to the following set:

Ac,d =

{
{n(nd+ c)/2 |n ∈ Z} ∩ N, if c · d odd,

{n(nd+ c) |n ∈ Z} ∩ N, if c · d even.
(27)
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On the other hand, the relation between X(0, t) for planar M -polygons and
Riemann’s non-differentiable function suggests comparing X̃3(t) in the helical
M -polygon case and the imaginary part of

φc,d(t) =
∑

k∈Ac,d

e2πikt

k
, t ∈

{
[0, 1/2], if c · d odd,

[0, 1], if c · d even.
(28)

where Ac,d is given by (27).
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Figure 7: Left: X̃3(t), for t ∈ [0, T c,df ], M = 6, θ0 = π/5, c = 1, d = 5, b =
0.5628 . . .. Center: Approximation of −n=(bn,M ), for n = 1, 2, . . . , 2000, where

bn,M are the Fourier coefficients of X̃3(t) multiplied by −1. The dominating
points (red starred) are given by (27). Right: Imaginary part of φc,d(t) in (28),
where the sum is taken over 211 values.

Figure 7 is the continuation of Figure 6, and hence, all the parameters are
identical. On the left-hand side, we have plotted X̃3(t); in the center, minus the
imaginary part of the approximations of n bn,M , for n = 1, 2, . . . , 2000, i.e., the

fingerprint of X̃3(t); in general, the dominating points appear to be distributed
around 1/4 (when c · d is odd) or 1/2 (when c · d is even). Finally, on the
right-hand side, we have plotted the imaginary part of φc,d(t) which, except for

a scaling, is visually indistinguishable from the T c,df -periodic curve X̃3(t) on the
left-hand side.
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Figure 8: Initial polygon X(s, 0) (blue), for M = 20, θ0 = π/12, i.e., b =
0.8312 . . ., and its evolution at time t = 2π (red), together with the curve
described by X(0, t), for t ∈ [0, 2π] (black). X(0, t) has a conspicuous fractal
helical structure, as shown in the zoomed part.
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4.1.1 Computation of limM→∞X(0, t)

As we have seen, when b ∈ (0, 1), the curve X(0, t) is not periodic, but studying
its structure componentwise sheds light on its behavior. We have also considered
its time evolution for M � 1 and sufficiently large values of T c,df . Figure 8
shows X(0, t), for M = 20, θ0 = π/12, b = 0.8312 . . . , t ∈ [0, 12π/5], along
with the initial and final helical polygonal curve. The fingerprint of X̃3(t) has
been plotted on the left-hand side of Figure 9, and it is quite clear that the
dominating points converge to 1/2; indeed, the convergence is stronger than
that in the center of Figure 7, since we have take 104 points on the x-axis. This
and other numerical experiments enable us to conjecture that

lim
M→∞

|n bn,M | =


1/4, if n ∈ Ac,d and c · d odd,

1/2, if n ∈ Ac,d and c · d even,

0, otherwise.
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Figure 9: Left: fingerprint of X̃3(t), taking M = 20, θ0 = π/12, c = 1, d = 12,

b = 0.8312 . . ., t ∈ [0, T c,df ]. The convergence of the dominating points to 0.5
is clearly visible. Right: ν(t), together with its best fitting line; the slope is
−0.8304 . . ., and its modulus is close to the value of b.

On the other hand, the curve ν(t) shown on the right-hand side of Figure 9
appears to converge to a straight line. In this regard, we have performed a
basic linear fitting ν(t) = mt + c (red), with c = 1.4133 . . ., m = −0.8304 . . ..
Note that the modulus of m can be compared with the value of b, which can
also be regarded as the angular velocity of the helical curve X, as it evolves
in time. Continuing the discussion from the previous section, we compute the
phase shift at time Tf , for a given M and b, by calculating the angle between
the tangent vector T at times t = 0 and t = Tf . Note that the phase shift
decreases as M increases, and as M → ∞, it converges to 2πb/M2. In Figure
10, we have compared the corresponding phase shift with the quantity 2πb/M2,
taking b = 0.4, M = 3, 4, . . . , 20, N/M = 7680. The left-hand side shows the
phase shift values for different M values, whereas, on the right-hand side, we
have computed the relative and absolute errors. The results also suggest that, as
M grows larger, the amount of both the Galilean and the phase shifts decreases
at the end of one time-period.

17



3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10-4

10-3

10-2

10-1

100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10-4

10-3

10-2

10-1

100

Figure 10: Left: Phase shift, for M = 3, 4, . . . , 20, b = 0.4, N/M = 7680. Right:
absolute errors (circled points) and relative errors (starred points) computed by
comparing the phase shift with 2πb/M2, for each M . For a given value of b > 0,
the phase shift at the end of one time-period decreases, as M increases.

4.2 Case with b→ 1−

From (13), it follows that, as θ0 → 2π/M , b → 1−, but, in Section 2.1, we
mentioned that we can have both space and time periodicity only when γ = 1
(or θ0 = 2π/M). Since, numerically, θ0 cannot be exactly 2π/M (or b = 1), we
have taken b = 1− 10−5, and observed the evolution for M2 time periods, i.e.,
until t = 2π. On the other hand, as b approaches 1, the speed of the center
of mass cM tends to 0, and this implies that the vertical movement (or the
third component X3(0, t), which, after removing the vertical height, is 2π/M -
periodic), is very small compared to the other two components. Hence, in order
to understand the behavior of X(0, t) in the XY-plane, we consider the following
stereographic projection in C:

z(t) =
X1(0, t)

1 + X̃3(t)
+ i

X2(0, t)

1 + X̃3(t)
, t ∈ [0, 2π], (29)

which is almost 2π-periodic. As done for b ∈ (0, 1), we approximate the Fourier
expansion of z(t), and note that the dominating points in the fingerprint corre-
spond to the squares of those integers belong to the set

AM = {1} ∪ {nM ± 1 |n ∈ N}. (30)

This motivates us to compare z(t) and

φM (t) =
∑
k∈AM

e2πik
2t

k2
, t ∈ [0, 1]. (31)

In order to determine the correct orientation of the almost closed curve z(t),
we rotate it clockwise by an angle of π/2− π/M radians, and call the resulting
curve zM (t). Figure 11 shows zM (t) (blue) and φM (t) (red), for M = 3. Except
for a scaling, both curves are visually the same.

In order to strengthen our claim, we take different values of M , M =
3, 4, . . . , 15, and compare them with the corresponding φM (t). In particular,
we compute φM (t) − λMzM (t) − µM , for some λM ∈ R and µM ∈ C obtained
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Figure 11: Left: Trajectory of a single point zM (t), for M = 3, N/M = 210.
Right: φM (t) in (31), where dim(AM ) = 210. Both curves have been computed
at Nt + 1 points in their respective domain intervals.

using a least-square fitting, as in [8, (73)]. Figure 12 shows the absolute error
(maxt |(φM−λMzM−µM )|) and relative error (maxt |(φM−λMzM−µM )/φM |)
between zM and φM . Note that, for different values of M , the time period
t ∈ [0, 2π] is the same, so the length of the vector zM (t) would be M2Nt + 1,
and would vary with M . Therefore, in order to keep a fair comparison among
all the M values, we have kept N/M constant, i.e., N/M = 210. As M in-
creases, the length of zM (t) increases, so we restrict ourselves to the case with
M = 15, where the length of zM (t) is 1.3608 ·108 +1. Moreover, the plot clearly
shows that the convergence is quite strong in the sense that, as M increases,
the discrepancy between zM and φM decreases.
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Figure 12: Left: Plot of n<(cn) against n, for M = 3, N/M = 210, b = 1−10−5,
t ∈ [0, 2π]. The dominating points (red starred) are of the form k2ck2 , where k
is such that mod(k± 1,M) = 0; we have taken k ∈ {1, 2, 4, 5, 7, . . . , 34}. Right:
errors maxt |(φM − λMzM −µM )| (circled) and maxt |(φM − λMzM −µM )/φM |
(starred), where λM and µM are computed from (73) in [8].

Finally, in Figure 12, we plot the fingerprint of the scaled zM (t), for M = 3,
b = 1 − 10−5, t ∈ [0, 2π]. Observe that, as b tends to 1, the dominating points
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in the fingerprint approach 1; or in other words, we conjecture that

lim
b→1−

|n cn| =

{
1, if n ∈ AM ,
0, otherwise,

where cn are the Fourier coefficients of zM (t), which implies that the curve
zM (t) converges to φM (t), as b→ 1−.

5 T(s, tpq), for q � 1

In the one-corner problem with fixed boundary conditions [7], and in the pla-
nar M -polygon case with periodic boundary conditions [8], a fractal-like phe-
nomenon was observed in the tangent vectors, too. This suggests looking for
a similar behavior in the case of helical M -polygons. We use the algebraically
constructed Talg, which is correct except for a rotation about the z-axis, does
not exhibit the Gibbs phenomenon, and can be obtained without numerical
simulations.

As in [8], we take rational times tpq, such that q is very large, and there is no
pair (p̃, q̃) where both q̃ and |p/q− p̃/q̃| are small. In particular, we take M = 3,
tpq = 2π

9 ( 1
4 + 1

41 + 1
401 ) = 2π

9 ·
18209
65764 , and note that, as b moves from 0 to 1, the

Mq/2 = 98646 values of T tend to concentrate on the upper half of the sphere,
whereas, when b ≈ 1, they lie very close to its north pole (see the left-hand side
of Figure 13). On the other hand, the stereographic projection seems to be even
more interesting: for b = 0, the fractal spiral-like structures appear to be at
three or four different scales (see [8, Fig. 8]), but, as b approaches 1, the equally
complex structures form a shape resembling a triskelion (see the right-hand side
of Figure 13).

Figure 13: Left: Talg, for M = 3, b = 1 − 10−5, at tpq = 2π
9 ( 1

4 + 1
41 + 1

401 ) =
2π
9 ·

18209
65764 . As b tends to 1, the values of the tangent vector concentrate around

the north pole of S2. Right: The corresponding stereographic projection, which
converges to a triskelion with the same scale spirals.
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6 Numerical relationship between the M-corner
problem with nonzero torsion and the one-
corner problem

Following the steps in [9], we claim that the M -corner problem with nonzero
torsion can be explained as a superposition of M one-corner problems for in-
finitesimal times. Thus, in order to compare both cases when θ0 > 0, we obtain
the orthonormal basis vectors, denoted as Tcθ , ncθ , bcθ , and the curve Xcθ ,
at t = t1,q, q � 1, by integrating [9, (6)-(7)]. We take cθ,0 as defined in
(14), so the inner angle between the asymptotes of the tangent vectors, i.e.,
lims→−∞Tcθ (s) = A−, lims→∞Tcθ (s) = A+ (where A± = (A1,±A2,±A3)
[13]), is equal to the angle between any two adjacent sides of the helical M -
polygon.

At this point, we have to rotate Xcθ , Tcθ , ncθ and bcθ , in such a way that
the rotated vectors Xrot and Trot match the M -corner problem, where Xrot ≡
M ·X and Trot ≡M ·T, for a certain rotation matrix M, which is determined
by imposing that T−rot = lims→−∞Trot(s) = (a cos(2π/M),−a sin(2π/M), b)T ,
T+
rot = lims→+∞Trot(s) = (a, 0, b)T , with a2 + b2 = 1. One way of obtaining

M is by writing M = M2 ·M1, where M1 performs a rotation of an angle
arccos(A+ · T+

rot) about an axis orthogonal to these two vectors. Denoting
Ã− = M1 ·A−, T̃−rot = M1 ·T−rot, M2 is a rotation about the axis T+

rot of an
angle between Ã− and T̃−rot. Bearing in mind this, Xrot = X0 +M ·Xcθ , where
X0 = (−aπ/M,−aπ/(M tan(π/M), 0)T is the corner of the helical M -polygon
corresponding to s = 0, at t = 0.
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Figure 14: Left: T for the M -polygon problem (blue) and Trot (red), for M = 6,
θ0 = π/5, at t = t1,502. Center: Comparison between X(0, t) (black) and
Xrot(0, t) (red). Right: Third component X3(0, t) (black) and Xrot,3(0, t) (red),
for t ∈ [0, t1,20].

In our numerical simulations, we take ∆s = π/M2q, and integrate [9, (6)-
(7)] at t = t1,q, with a fourth-order Runge-Kutta method. Then, using the
same ∆s, we compute the T(s, t1,q) corresponding to the M -polygon problem,
for M = 6, θ0 = π/5, q = 502. On the other hand, we compare the evolutions
of Xrot(0, t) and X(0, t), for t ∈ [0, t1,20], and note that, when projected on the
complex plane, X(0, t) can be very well approximated by Xrot(0, t), for small
values of t. Moreover, there is also a similarity between the third components
of both curves; these observations are shown in Figure 14.
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6.1 Approximation of the curvature at the origin

From [13], the curvature at s = 0 and t > 0 is given by c0(t) =
√
t|Ts(0, t)|.

Hence, in the case of regularM -polygons, it can be written as cθ,0 =
√
tpq|Ts(0, tpq)|

at rational times tpq. We approximate the first derivative using finite differences,
as in [9]. Without loss of generality, we assume that p = 1 and q ≡ 2 mod 4, so
the tangent vectors are continuous at s = 0 and s = ±∆s, with ∆s = 4π/Mq.
Moreover, since θ0 < 2π/M , the Galilean shift satisfies s1q < 2π/Mq, which im-
plies that Talg(s1q) = Talg(0) and Talg(4π/Mq + s1q) = Talg(4π/Mq). There-
fore, we approximate cθ,0 as

cθ,0 = lim
q→∞

q≡2 mod 4

√
t1q
|Talg(

4π
Mq , t1q)−Talg(− 4π

Mq , t1q)|
2 · 4π

Mq

, (32)

and, after making q → ∞, we recover (14) (see [9, Section 4] for the inter-
mediate steps). Then, after computing cθ,0 analytically from (32), we have
also approximated its value numerically, taking M = 6, θ0 = π/5, and q =
1002, 2002, . . . , 128002. Table 1 shows the discrepancies between the algebraic
and numerical values. The results show clearly that, when roughly doubling q,
the errors are approximately halved, suggesting a convergence order of O(1/q) =
O(t1,q).

q |cθ,0 − approx(cθ,0)| q |cθ,0 − approx(cθ,0)|
1002 6.8511 · 10−5 16002 4.2878 · 10−6

2002 3.4280 · 10−5 32002 2.1443 · 10−6

4002 1.7146 · 10−5 64002 1.0720 · 10−6

8002 8.5747 · 10−6 128002 5.3681 · 10−7

Table 1: |cθ,0 − |Talg(∆s, t1q) − Talg(−∆s, t1q)|/(2∆s)|, for M = 6, θ0 = π/5.
The errors decrease as O(1/q) = O(t1,q).
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