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Abstract. Let π1 : X → ∆ be a flat family of smooth, projective curves of genus g ≥ 2,
degenerating to an irreducible nodal curve X0 with exactly one node. Fix an invertible sheaf
L on X of relative odd degree. Let π2 : G(2,L) → ∆ be the relative Gieseker moduli space
of rank 2 semi-stable vector bundles with determinant L over X . Since π2 is smooth over
∆∗, there exists a canonical family ρ̃i : Ji

G(2,L)∆∗
→ ∆∗ of i-th intermediate Jacobians i.e.,

for all t ∈ ∆∗, (ρ̃i)
−1(t) is the i-th intermediate Jacobian of π−1

2 (t). There exist different

Néron models ρi : J
i
G(2,L) → ∆ extending ρ̃i to the entire disc ∆, constructed by Clemens [11],

Saito [39], Schnell [42], Zucker [49] and Green-Griffiths-Kerr [19]. In this article, we prove that
in our setup, the Néron model ρi is canonical in the sense that the different Néron models
coincide and is an analytic fiber space which graphs admissible normal functions. We also show
that for 1 ≤ i ≤ max{2, g − 1}, the central fiber of ρi is a fibration over product of copies

of Jk(Jac(X̃0)) for certain values of k, where X̃0 is the normalization of X0. In particular, for
g ≥ 5 and i = 2, 3, 4, the central fiber of ρi is a semi-abelian variety. Furthermore, we prove that
the i-th generalized intermediate Jacobian of the (singular) central fibre of π2 is a fibration over

the central fibre of the Néron model J
i
G(2,L). In fact, for i = 2 the fibration is an isomorphism.

1. Introduction

Throughout this article the underlying field will be C. Given a smooth, projective variety Y ,
the k-th intermediate Jacobian of Y , denoted Jk(Y ) is defined as:

Jk(Y ) :=
H2k−1(Y,C)

F kH2k−1(Y,C) +H2k−1(Y,Z)
, (1.1)

where F • denotes the Hodge filtration. The intermediate Jacobian of a smooth, projective variety
has been studied for decades and been used to investigate the geometric and arithmetic properties
of the variety (see for example [10, 11, 26]). Using variation of Hodge structures [20–22], one
can further study families of intermediate Jacobians associated to smooth families of projective
varieties (see for example [4, 23, 24, 27]). In this article, we study the degeneration of certain
families of intermediate Jacobians.

Classically, degeneration of families of Jacobians of smooth, projective curves was studied
using Néron models (see [7]). This has been generalized to study degeneration of families
of intermediate Jacobians of higher dimensional smooth, projective varieties by Zucker [49],
Clemens [11], Saito [39] and more recently by Green-Griffiths-Kerr [19] and Schnell [42]. Unfor-
tunately, not all the Néron models mentioned in the literature are the same and in most cases are
not Hausdorff. However, in the unipotent monodromy case, the Néron model of Green-Griffiths-
Kerr (GGK) is more natural and arises as an (Hausdorff) analytic fiber space (see [19, 40]).
The GGK-Néron model has been generalized by Brosnan, Pearlstein and Saito in [8]. However,
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space, limit mixed Hodge structures.

1



2 A. DAN AND I. KAUR

none of the existing literature describes the central fiber of any of the Néron models mentioned
above. In this article we prove that the different Néron models of families of intermediate Jaco-
bians coincide in the case of families of moduli spaces of rank 2 semi-stable sheaves with fixed
determinant. Note that Theorem 1.1 below is a vast generalization of [5, Theorem 1.2]. In
particular, [5, Theorem 1.2] is the special case of Theorem 1.1 when restricted to the second
intermediate Jacobian (see Corollary 4.4). Although this article as well as [5] uses common
tools from limit mixed Hodge structures, the main results of both articles are independent from
one another. The main purpose of this article is to give a complete description of the central
fiber of the Néron model for all families of intermediate Jacobians associated to the relative
moduli space and compare it with the generalized intermediate Jacobian of the central fiber of
the relative moduli space.

We fix notations. Let π1 : X → ∆ be a flat family of projective curves of genus g ≥ 2, smooth
over the punctured disc ∆∗ such that the central fiber is an irreducible nodal curve X0 with
exactly one node. Fix an invertible sheaf L on X of odd degree and let L0 := L|X0 . Denote by
π2 : G(2,L) → ∆ the relative Gieseker moduli space of rank 2 semi-stable sheaves on X with
determinant L with central fiber, say GX0(2,L0) (see §3.1). Recall, for every t ∈ ∆∗, the fiber
π−1

2 (t) is isomorphic to the non-singular moduli space MXt(2,Lt) of rank 2 semi-stable sheaves
with determinant Lt on Xt, where Lt := L|Xt (see for example [28] for preliminaries on moduli
spaces of sheaves with fixed determinant). Using the variation of Hodge structures, we obtain a
family

ρ̃ : JiG(2,L)∆∗
→ ∆∗

of i-th intermediate Jacobians such that for all t ∈ ∆∗, we have ρ̃−1(t) = J i(MXt(2,Lt)). By
Theorem 2.5 below, there exists a GGK-Néron model associated to ρ̃:

ρ : J
i
G(2,L) → ∆.

Note that ρ is an analytic fiber space and every holomorphic section of ρ̃ extends to a holomorphic

section of ρ. We also show that the Néron model J
i
G(2,L) coincides with the Néron models of

Clemens [11] and Saito [39] (see Corollary 3.4). We then prove:

Theorem 1.1. For any 1 ≤ i ≤ max{2, g − 1}, the central fiber
(
J
i
G(2,L)

)
0

of the Néron model

is a fibration over
[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k with every fiber isomorphic to

H2i−4(M
X̃0

(2, L̃0),C)

F i−1H2i−4(M
X̃0

(2, L̃0),C) +H2i−4(M
X̃0

(2, L̃0),Z)

where X̃0 is the normalization of X0, L̃0 is the pull-back of L0 to X̃0 and di,k is the coefficient

of ti−3k+1 of the polynomial (1 + t3)(1 + t+ t2 + ...+ tg−1−2k)(1 + t2 + t4 + ...+ t2(g−1)−4k).

See Theorem 4.2 for a more general statement and proof. Theorem 1.1 implies that the central
fiber of the Néron model is never an abelian variety. However, we observe that for i = 2, 3 and
4, the central fiber of the Néron model is a semi-abelian variety (Corollary 4.4). Recall, the i-th
generalized intermediate Jacobian of GX0(2,L0), denoted J i(GX0(2,L0)), is defined analogously
to (1.1), with the relevant cohomology groups equipped with a mixed Hodge structure. We
prove:

Theorem 1.2. The ith-intermediate Jacobian J i(GX0(2,L0)) is a fibration over
(
J
i
G(2,L)

)
0

with

every fiber isomorphic to J i−1(M
X̃0

(2, L̃0))× J i−2(M
X̃0

(2, L̃0))× J i−3(M
X̃0

(2, L̃0)).
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See Theorem 5.4 for a proof. This answers a question posed by Green, Griffiths and Kerr
in [19, p. 293] for G(2,L). As a consequence, we observe that J2(GX0(2,L0)) is isomorphic to

the central fiber
(
J

2
G(2,L)

)
0

of the Néron model. In particular, J2(GX0(2,L0)) is a semi-abelian

variety (see Corollary 5.5). Theorems 1.1 and 1.2 generalize the classical result that Jac(X0) is

a C∗-fibration over Jac(X̃0). We now discuss the strategy of the proofs.

Denote by G(2,L)∞ (resp. X∞) the base change of G(2,L) (resp. X ) under the composed

morphism h
e−→ ∆∗ ↪→ ∆, where h is the universal cover of ∆∗. The cohomology groups

H i(G(2,L)∞,Z) and H i(X∞,Z) are equipped with a (limit) mixed Hodge structure (see Theo-
rem 2.2). Moreover, one has a natural monodromy action on H i(G(2,L)∞,Z). Denote by Ni,C
(resp. Ni,Z) the monodromy invariant subspace of H i(G(2,L)∞,C) (resp. H i(G(2,L)∞,Z)).
Note that the mixed Hodge structure on H i(G(2,L)∞,Z) induces a mixed Hodge structure on

Ni,Z (see [37, Chapter 11]). Let J ′i := N2i−1,C/(F
iN2i−1,C+N2i−1,Z). The central fiber

(
J
i
G(2,L)

)
0

of the GGK-Néron model sits in the short exact sequence:

0→ J ′i →
(
J
i
G(2,L)

)
0
→ G2i−1 → 0,

where G2i−1 is a finite group encoding the monodromy action on H2i−1(G(2,L)∞,Z) (Theorem
2.5). We prove that in our setup, the group G2i−1 vanishes (Theorem 3.3). As a consequence,(
J
i
G(2,L)

)
0

is connected.

Recall, the i-th intermediate Jacobian of a smooth, projective variety Y is a quotient of

H2i−1(Y,C), which is a pure Hodge structure of weight 2i−1. Now that we have J ′i
∼=
(
J
i
G(2,L)

)
0

and J ′i is a quotient of N2i−1,C (which is a mixed Hodge structure), it is natural to ask if the

image of GrW2i−1N2i−1,C in
(
J
i
G(2,L)

)
0

(see Definition 2.6), which we denote by pure
(
J
i
G(2,L)

)
0
,

is an abelian variety. We prove that (see Theorem 4.2 and Corollary 4.4):

Theorem 1.3. For 1 ≤ i ≤ max{2, g − 1}, pure
(
J
i
G(2,L)

)
0

∼=
[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k , where di,k is

as in Theorem 1.1. In particular, for g ≥ 5 and i = 2, 3, 4, pure
(
J
i
G(2,L)

)
0

is an abelian variety.

One of the key steps to prove this theorem is to show that there exists an isomorphism of mixed
Hodge structures from H1(X∞,Z) to H3(G(2,L)∞,Z) (Theorem 3.2). This is a generalization
to the relative setup of a classical result [33, Proposition 1] of Mumford and Newstead. Finally,

we compute the kernel of the natural morphism from
(
J
i
G(2,L)

)
0

to pure
(
J
i
G(2,L)

)
0
. This will

give us a complete description of the central fiber of the Néron model as given in Theorem 1.1.

We remark that Theorems 1.1 and 1.3 still hold if we replace G(2,L) by the (relative) Simpson’s
moduli space of rank 2 semi-stable sheaves with determinant L as defined in [45]. This is
because both (relative) moduli spaces coincide over ∆∗, hence have the same Néron models of
the associated family of intermediate Jacobians. We use (relative) Gieseker moduli space simply
because the central fiber of this moduli space is a simple normal crossings divisor, which makes
computations using Steenbrink spectral sequence possible.

Applications and further questions: Using Theorems 3.2 and 3.3, one can prove the higher
rank Torelli theorem for GX0(2,L0) (see [5]). This is a generalization to the nodal curve case of a
classical result of Mumford and Newstead [33]. Since the above Néron models graph admissible
normal functions (i.e., holomorphic sections of ρ̃ extend holomorphically to that of ρ), another
application is to study the limit Abel-Jacobi map as described by Green, Griffiths and Kerr
in [19].
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Compactification of Jacobians of curves and moduli spaces is an active topic of research in
algebraic geometry (see for example [2, 9, 16]). Analogously one can ask, what is the compact-
ification of the i-th intermediate Jacobian J i(GX0(2,L0))? By Theorem 1.2, the fibers to the

natural morphism from J i(GX0(2,L0)) to
(
J
i
G(2,L)

)
0

are abelian varieties. Therefore, by Theo-

rem 1.1, to compactify J i(GX0(2,L0)) we simply need to obtain a suitable compactification of

H2i−4(M
X̃0

(2, L̃0),C)/(F i−1H2i−4(M
X̃0

(2, L̃0),C)+H2i−4(M
X̃0

(2, L̃0),Z)) which deforms “uni-

formly” along
[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k . We pursue this question in future work.

Outline: In §2 we review preliminaries on Néron models and limit mixed Hodge structure.
In §3 we study the monodromy action on the relative Gieseker moduli space and show that the
different Néron models coincide. In §4 we give a geometric description of the central fiber of the
GGK-Néron model. In §5, we introduce the i-th intermediate Jacobian of GX0(2,L0) and relate
it to the central fiber of the Néron model.
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numerous discussions. The first author is currently supported by ERCEA Consolidator Grant
615655-NMST and also by the Basque Government through the BERC 2014 − 2017 program
and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa
excellence accreditation SEV-2013 − 0323. The second author is funded by CAPES-PNPD
scholarship.

List of Notations

X0, x0 irreducible nodal curve X0 with node at x0

π : X̃0 → X0 normalization of X0

∆,∆∗ open, unit disc ∆ and ∆∗ := ∆\{0}
ρ : Y → ∆ family of projective varieties, smooth over ∆∗

Yt the fiber ρ−1(t) for any t ∈ ∆
Y∞ the base change of the family ρ under the natural morphism

h→ ∆∗ ↪→ ∆, where h is the universal covering of ∆∗

Y∆∗ restriction of Y to ∆∗

HiY∆∗
, F pHiY∆∗

Hodge bundles associated to the family Y∆∗

HiY∆∗
, F pHiY∆∗

canonical extensions of HiY∆∗
, F pHiY∆∗

, respectively

ρ̃ : JiY∆∗
→ ∆∗ family of i-th intermediate Jacobians associated to Y∆∗

ρ : J
i
Y → ∆ Néron model associated to ρ̃

Ts,i, T
Q
s,i local monodromy transformation associated to ρ

Ti : H i(Y∞,Q)→ H i(Y∞,Q) limit monodromy transformation
Ni log(Ti)
spi : H i(Y0,Z)→ H i(Y∞,Z) specialization morphism
MY (2,L′) moduli space of rank 2, semi-stable sheaves with determi-

nant L′ over Y
π1 : X → ∆ family of projective curves with central fiber X0, smooth

over ∆∗

L,L0, L̃0 odd degree invertible sheaf L on X , L0 := L|X0 , L̃0 := π∗L0

π̃1 : X̃ → X π−→ ∆ blow-up of X at x0

π2 : G(2,L)→ ∆ relative Gieseker moduli space associated to π1

GX0(2,L0) central fiber of the moduli space G(2,L)
G0,G1 the two irreducible components of GX0(2,L0)
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2. Preliminaries: Néron models of families of intermediate Jacobians

In this section, we recall preliminaries on the Néron model of families of intermediate Ja-
cobians. We assume basic familiarity with limit mixed Hodge structures. See [37, §11] for a
detailed study.

Notation 2.1. Let ρ : Y → ∆ be a flat family of projective varieties, smooth over ∆∗. Let
ρ′ : Y∆∗ → ∆∗ be the restriction of ρ to ∆∗.

2.1. Families of intermediate Jacobians. Denote by Hi
Y∆∗

:= Riρ′∗Z. By Ehresmann’s

theorem (see [47, Theorem 9.3]), we have for all i ≥ 0, H i(Yt,Z) is constant as t varies over all
t ∈ ∆∗. This implies that Hi

Y∆∗
is a local system. The associated vector bundle

HiY∆∗
:= Hi

Y∆∗
⊗Z O∆∗

is called the Hodge bundle. There exist sub-bundles F pHiY∆∗
⊂ HiY∆∗

defined by the condition:

for any t ∈ ∆∗, the fibers (
F pHiY∆∗

)
t
⊂
(
HiY∆∗

)
t

can be identified respectively with F pH i(Yt,C) ⊂ H i(Yt,C), where F p denotes the Hodge
filtration (see [47, §10.2.1]). Using the Hodge bundle H2i−1

Y∆∗
and the sub-bundle F iH2i−1

Y∆∗
one

can show that there exists a holomorphic family of principally polarized abelian varieties

ρ̃ : Ji∆∗ → ∆∗ (2.1)

such that ρ̃−1(s) = J i(Ys) for every s ∈ ∆∗.

2.2. Limit mixed Hodge structures. Consider the universal cover h→ ∆∗ of the punctured

unit disc. Denote by e : h → ∆∗
j−→ ∆ the composed morphism and Y∞ := Y ×∆ h the base

change of the family Y over ∆ to h, by the morphism e. There exists an unique canonical

extension HiY , extending HiY∆∗
to the entire disc ∆ (see [37, Definition 11.4] for the precise

definition of canonical extension). One can observe that HiY is locally-free over ∆. There is

an explicit identification of the central fiber of the canonical extension HiY and the cohomology

group H i(Y∞,C), depending on the choice of the parameter t on ∆ (see [37, XI-8]):

gi
t

: H i(Y∞,C)
∼−→
(
HiY
)

0
. (2.2)

Denote by j : ∆∗ → ∆ the inclusion morphism. Note that F pHiY := j∗

(
F pHiY∆∗

)
∩ HiY is the

unique largest locally-free sub-sheaf of HiY which extends F pHiY∆∗
. Denote by

F pH i(Y∞,C) := (gi
t
)−1

(
F pHiY

)
0
.

Note that F • does not always induce a pure Hodge structure on H i(Y∞,C). However, we will
observe that there is a mixed Hodge structure on H i(Y∞,C) with good specialization properties.
For this purpose, we first recall the monodromy transformation.

For the rest of the section we assume that the central fiber of the family ρ is a reduced simple
normal crossings divisor. For any s ∈ ∆∗ and i ≥ 0, denote by

Ts,i : H i(Ys,Z)→ H i(Ys,Z) and TQ
s,i : H i(Ys,Q)→ H i(Ys,Q)

the local monodromy transformations associated to the local system Hi
Y∆∗

defined by parallel

transport along a counterclockwise loop about 0 ∈ ∆ (see [37, §11.1.1] or [48, §3.1.1]). By
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[15, Theorem II.1.17] (see also [32, Proposition I.7.8.1]) the automorphism extends to a Q-
automorphism

Ti : H i(Y∞,Q)→ H i(Y∞,Q). (2.3)

Denote by Ti,C the induced automorphism on H i(Y∞,C). Denote by Ni,C := log(Ti,C). We now
recall the following useful result in limit mixed Hodge structures:

Theorem 2.2. There exists an unique increasing monodromy weight filtration W• on H i(Y∞,Q)
such that

(1) for i ≥ 2, Ni(WjH
i(Y∞,Q)) ⊂Wj−2H

i(Y∞,Q), where Ni := log(Ti) for Ti as in (2.3),

(2) the map N l
i : GrWi+lH

i(Y∞,Q)→ GrWi−lH
i(Y∞,Q) is an isomorphism for all l ≥ 0.

The triple (H i(Y∞,Z),W•, F
•) then defines a mixed Hodge structure on H i(Y∞,Z), called the

limit mixed Hodge structure.

Proof. See [37, Lemma-Definition 11.9] and [41, Theorem 6.16]. �

Recall, for any s ∈ ∆∗, there is a natural specialization morphism from Ys to the central
fiber Y0 of Y. This induces a natural morphism from H i(Y0,Z) to H i(Ys,Z), which is not
a morphism of Hodge structures. However, after identifying H i(Ys,Z) with H i(Y∞,Z), the
resulting specialization morphism

spi : H i(Y0,Z)→ H i(Y∞,Z)

is a morphism of mixed Hodge structures, with the limit mixed Hodge structure on H i(Y∞,Z)
and the mixed Hodge structure on H i(Y0,Z) as defined in [44, Example 3.5]. By the local
invariant cycle theorem [37, Theorem 11.43], we have the following exact sequence of mixed
Hodge structure:

H i(Y0,Q)
spi−−→ H i(Y∞,Q)

Ni/(2π
√
−1)−−−−−−−−→ H i(Y∞,Q)(−1). (2.4)

We now recall the following useful computation of limit mixed Hodge structures:

Proposition 2.3. Suppose that the central fiber Y0 is a reduced, simple normal crossings divisor
consisting of two smooth, irreducible components, say Y1, Y2. Then, we have the following exact
sequence of mixed Hodge structures:

H i−2(Y1 ∩ Y2,Q)(−1)
fi−→ H i(Y0,Q)

spi−−→ H i(Y∞,Q)
gi−→ GrWi+1H

i(Y∞,Q)→ 0, (2.5)

where fi comes from the natural Gysin morphism, spi is the specialization morphism and gi is
the natural projection.

Proof. See [12, Corollary 2.4] for a proof. �

One of the important applications of Proposition 2.3 is the following limit mixed Hodge
structure computation associated to a degenerating family of curves.

Theorem 2.4. Let g ≥ 2 be an integer, ρ : X̃ → ∆ be a flat family of projective curves with

X̃ regular, X̃t is smooth of genus g for all t ∈ ∆∗ and central fiber X̃0 = Y1 ∪ Y2 with Y1
∼= P1,

Y2 smooth, irreducible and intersecting Y1 transversally at two points, say y1, y2. Then, there

exists a basis e1, e2, ..., e2g of H1(X̃∞,Z) such that

(1) eg (resp. e2g) generates GrW0 H1(X̃∞,Q) (resp. GrW2 H1(X̃∞,Q)),

(2) e1, e2, ..., eg−1, eg+1, eg+2, ..., e2g−1 form a basis of GrW1 H1(X̃∞,Q),
(3) ei ∪ ej 6= 0 if and only if |j − i| = g.

Proof. See [12, Theorem 2.5] for a proof. �
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2.3. Existence of Néron models. Note that kerNi,C is a sub-Hodge structure of H i(Y∞,Q).
Suppose that H i(Ys,Z) is torsion-free. Denote by

Fn kerNi,C := kerNi,C ∩ Fn(H i(Y∞,C)) and Gs,i :=
((TQ

s,i − Id)H i(Ys,Q)) ∩H i(Ys,Z)

(Ts,i − Id)H i(Ys,Z)
. (2.6)

Note that as a group, Gs,i does not depend on the choice of s ∈ ∆∗, so we will denote this by
Gi. Using the explicit description of gi

t
as in [37, XI-6], one can check that

ker(Ti − Id) ∩H i(Y∞,Z)
gi
t−→
∼

(
Hi
Y

)
0

where Hi
Y := j∗Hi

Y∆∗
and

(
Hi
Y

)
0

:= Hi
Y ⊗ k(o).

Since ker(Ni) = ker(Ti − Id), this implies
(
Hi
Y

)
0
⊂ ker(Ni,C). Denote by

J ′m :=
kerN2m−1,C

Fm kerN2m−1 +
(
H2m−1
Y

)
0

=
kerN2m−1,C

Fm kerN2m−1 + (ker(T2m−1 − Id) ∩H2m−1(Y∞,Z))
.

(2.7)
There exists a Néron model associated to the family of intermediate Jacobians Ji∆∗ in the
following sense:

Theorem 2.5. There exists a canonical analytic fiber space, called the Néron model of ρ̃,

ρ : J
i
Y → ∆

extending ρ̃ such that every holomorphic section of ρ̃ extends to a holomorphic section of ρ. In
particular, for all s ∈ ∆∗, the fiber ρ−1(s) = ρ̃−1(s) = J i(Ys) and the central fiber of ρ sits in
the following short exact sequence:

0→ J ′i →
(
J
i
Y

)
0
→ G2i−1 → 0. (2.8)

Proof. See [19, Theorem II.B.9] for proof of the statement. �

As mentioned in the introduction, it is natural to study the geometry of the “pure weight
part” of the central fiber of the Néron model. We define this below:

Definition 2.6. Since Ni,C is a morphism of mixed Hodge structures, kerNi,C is equipped with

a natural mixed Hodge structure. The pure weight part of
(
J
i
Y

)
0

will be defined as

pure
((

J
i
Y

)
0

)
:= coker

(
W2i−2 kerN2i−1,C ↪→ kerN2i−1,C � J ′i →

(
J
i
Y

)
0

)
.

The reason for this terminology is that one can observe that pure
((

J
i
Y

)
0

)
is isomorphic to the

image GrW2i−1 kerN2i−1,C under the composition,

GrW2i−1 kerN2i−1,C ↪→ kerN2i−1,C � J ′i →
(
J
i
Y

)
0
.

3. Monodromy action on local systems associated to moduli spaces

In this section we study the monodromy action on the local systems associated to families of
moduli spaces of semi-stable sheaves on projective curves. In the next section, we use this to
describe the Néron model of the associated family of intermediate Jacobians (of moduli spaces).
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Notation 3.1. Denote by π1 : X → ∆ a family of projective curves of genus g ≥ 2 over the unit
disc ∆, smooth over the punctured disc ∆∗ and central fiber isomorphic to an irreducible nodal

curve X0 with exactly one node, say at x0. Assume further that X is regular. Let π : X̃0 → X0

be the normalization map. Fix an invertible sheaf L on X of relative odd degree, say d. Set

L0 := L|X0 , the restriction of L to the central fiber. Denote by L̃0 := π∗L0.

Denote by X̃ := Blx0X and by

π̃1 : X̃ → X π1−→ ∆. (3.1)

Note that the central fiber of π̃1 is the union of two irreducible components, the normalization

X̃0 of X0 and the exceptional divisor F ∼= P1
x0

intersecting X̃0 at the two points over x0.

3.1. Relative Gieseker moduli space. Recall, for any smooth, projective curve Y of genus g
at least 2 and an invertible sheaf L′ on Y of odd degree, there exists a non-singular (fine) moduli
space, denoted MY (2,L′), parameterizing rank 2 semi-stable sheaves on Y with determinant L′
(see [28], [29] for basic definitions and results on moduli spaces of sheaves with fixed determinant).
There exists a relative Gieseker moduli space, denoted G(2,L), parameterizing families of rank 2,
semi-stable sheaves defined over families of curves, semi-stably equivalent to X , with determinant
L. See [45, §3] or [46, §6] for the precise definition. We omit the precise definition in this article
as it is very technical. Instead, we recall the necessary properties of the moduli space.

Note that G(2,L) is regular and there exists a flat, projective morphism

π2 : G(2,L)→ ∆

such that:

(1) for all s ∈ ∆∗, G(2,L)s := π−1
2 (s) = MXs(2,Ls), where Ls := L|Xs ,

(2) the central fiber, denoted GX0(2,L0) := π−1
2 (0), is a reduced simple normal crossings

divisor of G(2,L), consisting of two smooth, irreducible components, say G0 and G1

with G1 (resp. G0 ∩ G1) is isomorphic to a P3 (resp. P1 × P1)-bundle over M
X̃0

(2, L̃0).

Moreover, there exists an SL2-bundle P0 over M
X̃0

(2, L̃0) and closed subvarieties Z ⊂ P0

and Z ′ ⊂ G0 such that

Z ′ ∩ (G0 ∩ G1) = ∅ and G0\Z ′ ∼= P0\Z,
where SL2 is the wonderful compactification of SL2 defined as

SL2 := {[M,λ] ∈ P(End(C2)⊕ C)|det(M) = λ2}.

See [46, §6] for a proof of the above statement (see also [1, §5, 6]) and [38, Definition 3.3.1] for
the general definition of wonderful compactification. Also note that by [30] the moduli space
G(2,L)s is non-empty for any s ∈ ∆.

3.2. Relative Mumford-Newstead isomorphism. Let us consider the relative version of
the construction in [33]. Denote by

W := X∆∗ ×∆∗ G(2,L)∆∗ and π3 :W → ∆∗

the natural morphism. Recall, Wt := π−1
3 (t) = Xt × G(2,L)t ∼= Xt ×MXt(2,Lt), for all t ∈ ∆∗.

Using [36, Theorem 9.1.1], one can check that there exists a (relative) universal bundle U over
W associated to the (relative) moduli space G(2,L)∆∗ . In particular, for each t ∈ ∆∗, U|Wt

is the universal bundle over Xt × MXt(2,Lt) associated to the fine moduli space MXt(2,Lt)
(see [25, Corollary 4.6.6]). Denote by H4

W := R4π3∗ZW the local system associated to W. Using
the Künneth decomposition, we have (see §2 for notations)

H4
W =

⊕
i

(
Hi
X∆∗
⊗H4−i

G(2,L)∆∗

)
. (3.2)
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By the Poincaré duality applied to the local system H1
X∆∗

(see [32, §I.2.6]), we have

H1
X∆∗
⊗H3

G(2,L)∆∗

PD∼=
(
H1
X∆∗

)∨ ⊗H3
G(2,L)∆∗

∼= Hom
(
H1
X∆∗

,H3
G(2,L)∆∗

)
. (3.3)

Denote by c2(U)1,3 ∈ Γ
(
H1
X∆∗
⊗H3

G(2,L)∆∗

)
the image of the second Chern class c2(U) ∈ Γ(H4

W)

under the natural projection H4
W → H1

X∆∗
⊗H3

G(2,L)∆∗
. Then, c2(U)1,3 induces a homomorphism

Φ∆∗ : H1
X∆∗
→ H3

G(2,L)∆∗
.

Denote by

Φ̃s : H1(X̃s,Z)
∼−→ H3(G(2,L)s,Z) (3.4)

the restriction of Φ∆∗ to the point s ∈ ∆∗. Since c2(U)1,3 is a (single-valued) global section of
H1
X̃∆∗
⊗H3

G(2,L)∆∗
(see [17, Proposition 10.1]), we have

Φ̃s ∈ Hom(H1(X̃s,Z), H3(G(2,L)s,Z)) ∼= H1(X̃s,Z)∨ ⊗H3(G(2,L)s,Z)
P.D.∼= H1(X̃s,Z)⊗H3(G(2,L)s,Z)

is monodromy invariant i.e., for all s ∈ ∆∗, the following diagram is commutative:

H1(X̃s,Z)
Φ̃s

∼
- H3(G(2,L)s,Z)

	

H1(X̃s,Z)

TX̃s

∼=
?

Φ̃s

∼
- H3(G(2,L)s,Z)

∼= TG(2,L)s

?

(3.5)

where TX̃s
and TG(2,L)s are the monodromy transformations on H1(X̃s,Z) and H3(G(2,L)s,Z),

respectively. By [33, Lemma 1 and Proposition 1], we conclude that the homomorphism Φ∆∗ is
an isomorphism such that the induced isomorphism on the associated vector bundles:

Φ∆∗ : H1
X∆∗

∼−→ H3
G(2,L)∆∗

satisfies Φ∆∗(F
pH1
X∆∗

) = F p+1H3
G(2,L)∆∗

for all p ≥ 0.

Therefore, the morphism Φ∆∗ induces an isomorphism:

Φ′ : J1
X∆∗

∼−→ J2
G(2,L)∆∗

(3.6)

3.3. Limit Mumford-Newstead isomorphism. The isomorphism Φ∆∗ can be extended to
the entire disc ∆ such that the induced morphism on the central fibers is an isomorphism of

limit mixed Hodge structures. Let H1
X∆∗

and H3
G(2,L)∆∗

be the canonical extensions of H1
X∆∗

and H3
G(2,L)∆∗

, respectively. By the uniqueness of the canonical extension, the morphism Φ∆∗

extends to the entire disc:

Φ̃ : H1
X̃
∼−→ H3

G(2,L).

Using the identification (2.2) and restricting Φ̃ to the central fiber, we have an isomorphism:

Φ̃0 : H1(X̃∞,Q)
∼−→ H3(G(2,L)∞,Q). (3.7)

Recall that Φ̃0 is an isomorphism of mixed Hodge structures:

Theorem 3.2. For the extended morphism Φ̃, we have Φ̃(F pH1
X̃ ) = F p+1H3

G(2,L) for p = 0, 1

and Φ̃(H1
X̃ ) = H3

G(2,L). Moreover, Φ̃0(WiH
1(X̃∞,Q)) = Wi+2H

3(G(2,L)∞,Q) for all i ≥ 0.

Proof. See [5, Proposition 4.1] for a proof of the statement. �
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3.4. Vanishing of the finite group Gi. Denote by

Hi
X̃∆∗

:= Ri(π̃′1)∗Z and Hi
G(2,L)∆∗

:= Ri(π′2)∗Z,

the local systems associated to the families π̃′1 : X̃∆∗ → ∆∗ and π′2 : G(2,L)∆∗ → ∆∗ which are
the restrictions of π̃1 and π2 to ∆∗, respectively. For any s ∈ ∆∗, denote by

T iG(2,L)s
: H i(G(2,L)s,Z)→ H i(G(2,L)s,Z) and TQ,i

G(2,L)s
: H i(G(2,L)s,Q)→ H i(G(2,L)s,Q)

the local monodromy transformation associated to the local system Hi
G(2,L)∆∗

. Recall, by [3, p.

10] that H i(G(2,L)s,Z) is torsion-free, for all i ≥ 0. As in (2.6), denote by

Gi :=
(TQ,i
G(2,L)s

− Id)H i(G(2,L)s,Q) ∩H i(G(2,L)s,Z)

(T iG(2,L)s
− Id)H i(G(2,L)s,Z)

.

We show below that Gi vanishes for all i ≥ 0 (Theorem 3.3). The idea of the proof is to use the

isomorphism Φ̃0 as in (3.7) and combine it with Newstead’s classical result (see [35, Theorem
1]) on generators of the cohomology ring of G(2,L)s for s ∈ ∆∗, to reduce the problem to the
Picard-Lefschetz formula associated to the family of curves π̃′1.

Theorem 3.3. The group Gi = 0 for all i ≥ 0.

Proof. Since G(2,L)s is rationally connected for all s ∈ ∆∗, we have H1(G(2,L)s,Q) = 0. This
implies

H1
G(2,L)∆∗

= 0 and G0 = 0 = G1.

Let W := X∆∗ ×∆∗ G(2,L)∆∗ and π3 :W → ∆∗ the natural morphism. Let Hi
W := Riπ3∗ZW be

the associated local system. By the Künneth decomposition, we then have

H2
W
∼= H2

G(2,L)∆∗
⊕H2

X̃∆∗
and H4

W
∼= H4

G(2,L)∆∗
⊕H3

G(2,L)∆∗
⊗H1

X̃∆∗
⊕H2

G(2,L)∆∗
⊗H2

X̃∆∗
.

Now, the space of global sections of H2
X̃∆∗

is generated by the (relative) dual fundamental class

f∆∗ of X̃∆∗ i.e., for all s ∈ ∆∗, the restriction of f∆∗ to the fiber X̃s is the dual fundamental

class fs of X̃s. As mentioned in the previous section, there exists a (relative) universal bundle U
over W associated to the (relative) moduli space G(2,L)∆∗ . Now, c1(U) and c2(U) define global
sections of H2

W and H4
W , respectively (see [17, Proposition 10.1]). By [34, Theorem 1, Corollary

2] (see also [35, p.338]), we have

c1(U) = φ∆∗ + f∆∗ and c2(U) = τ∆∗ + c2(U)1,3 + ω∆∗ ⊗ f∆∗

for some φ∆∗ , ω∆∗ ∈ Γ(H2
G(2,L)∆∗

), c2(U)1,3 ∈ Γ(H1
X̃∆∗
⊗ H3

G(2,L)∆∗
) and τ∆∗ ∈ Γ(H4

G(2,L)∆∗
).

Denote by

α∆∗ := 2ω∆∗ − φ∆∗ and β∆∗ := φ2
∆∗ − 4τ∆∗ .

Since α∆∗ and β∆∗ are global sections of H2
G(2,L)∆∗

and H4
G(2,L)∆∗

, respectively, we have

T 2
G(2,L)s

(αs) = αs and T 4
G(2,L)s

(βs) = βs,

where αs ∈ H2(G(2,L)s,Z) and βs ∈ H4(G(2,L)s,Z) are the restrictions of α∆∗ and β∆∗ ,

respectively, to the fiber X̃s. Denote by ψi ∈ H3(G(2,L)s,Z) the image of ei (as in Theorem
2.4) under the morphism

H1(X̃∞,Z)
∼−→ H1(X̃s,Z)

Φ̃s−→ H3(G(2,L)s,Z) for i = 1, ..., 2g,

where Φ̃s is the morphism in (3.5). Note that ψ1, ...., ψ2g generate H3(G(2,L)s,Z). By [35,
Theorem 1], the cohomology ring H∗(G(2,L)s,Q) is generated by αs, βs, ψ1, ψ2, ...., ψ2g.
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As H2(G(2,L)s,Z) is generated by αs, which is monodromy invariant, we have G2 = 0. Since
monodromy operator commutes with cup-product (as pullback under continuous morphisms
commute with cup-product), we have T 2

G(2,L)s
(αs ∪ αs) = αs ∪ αs. Since H4(G(2,L)s,Q) is

generated by αs ∪ αs and βs, we can similarly conclude that G4 = 0.

Denote by δ ∈ H1(Xs,Z) the vanishing cycle associated to the degeneration of curves defined
by π1 (see [48, §3.2.1]). Note that δ is the generator of the kernel of the natural morphism

H1(Xs,Z)
is∗−−→ H1(X ,Z)

r0−→
∼

H1(X0,Z),

where is : Xs → X is the natural inclusion of fiber and r0 : X → X0 is the retraction to the
central fiber (see [48, Corollary 2.17]). SinceX0 is an irreducible nodal curve, the homology group
H1(X0,Z) is torsion-free. Therefore, δ is non-divisible i.e., there does not exist δ′ ∈ H1(Xs,Z)
such that nδ′ = δ for some integer n 6= ±1. Denote by (−,−) the intersection form on H1(Xs,Z),
defined using cup-product (see [47, §7.1.2]). Since the intersection form (−,−) induces a perfect
pairing on H1(Xs,Z), the non-divisibility of δ implies that there exists γ ∈ H1(Xs,Z) such that
(γ, δ) = 1. Recall the Picard-Lefschetz formula,

TXs(η) = η + (δ, η)δ for any η ∈ H1(Xs,Z).

This implies, (TXs − Id)H1(Xs,Q) ∩ H1(Xs,Z) = Zδc = (TXs − Id)H1(Xs,Z), where δc is the

Poincaré dual to the vanishing cycle δ. Note that TXs = TX̃s
(as Xs = X̃s for all s ∈ ∆∗). Since

Φ̃s is an isomorphism, the diagram (3.5) implies that

(T 3
G(2,L)s

− Id)H3(G(2,L)s,Z) = Φ̃s ◦ (TX̃s
− Id)H1(X̃s,Z) = ZΦ̃s(δ

c).

Similarly, we have

(TQ,3
G(2,L)s

− Id)H3(G(2,L)s,Q) ∩H3(G(2,L)s,Z) = Φ̃s ◦ (TX̃s
− Id)H1(X̃s,Q) ∩ Φ̃s(H

1(X̃s,Z)) =

= Φ̃s ◦ ((TX̃s
− Id)H1(X̃s,Q) ∩H1(X̃s,Z)) = ZΦ̃s(δ

c).

This implies G3 = 0.

(TQ,i
G(2,L)s

− Id)H i(G(2,L)s,Q) ∩ Vi = Φ̃s(δ
c) ∪H i−3(G(2,L)s,Z) = (T iG(2,L)s

− Id)Vi, where

Vi := H i(G(2,L)s,Z). This implies Gi = 0 for all i ≥ 5. This proves the theorem. �

Expanding N2i−1 = log(T 2i−1
G(2,L)s

), one observes that N2i−1 = N ′2i−1 ◦ (T 2i−1
G(2,L)s

− Id), where

N ′2i−1 is of the form Id + A for a nilpotent operator A. This implies that N ′2i−1 induces an

automorphism of H2i−1(G(2,L)s,Q). It is then easy to check that (T 2i−1
G(2,L)s

− Id)2 = 0 if and

only if N2
2i−1 = 0. Under the natural identification H2i−1(G(2,L)s,Q) ∼= H2i−1(G(2,L)∞,Q),

Proposition 2.3 along with (2.4) implies that

ker(N2i−1) ∼= Im(sp2i−1) ∼= W2i−1H
2i−1(G(2,L)∞,Q)

which contains W2i−2H
2i−1(G(2,L)∞,Q) = N2i−1(H2i−1(G(2,L)∞,Q)) (Theorem 2.2). Hence

N2
2i−1 = 0, thereby (T 2i−1

G(2,L)s
− Id)2 = 0. By Proposition 2.3, the limit mixed Hodge structure

on H2i−1(G(2,L)∞,Q) has weight filtration W2i−2 ⊂ W2i−1 ⊂ W2i. It was shown by Clemens
in [11, Corollary 3.24] and Saito in [39, Theorem 2.8] that in this case there exists a Hausdorff
topological space

ρ′ : Jie → ∆

extending ρ̃ : JiG(2,L)∆∗
→ ∆∗, which they called the Néron model of ρ̃. The central fiber

(ρ′)−1(0) is isomorphic as a complex Lie group to J ′i as in (2.7), after replacing Y by G(2,L)
(see [19, Proposition II.A.8]). We can then prove:



12 A. DAN AND I. KAUR

Corollary 3.4. The central fiber of ρ′ above is isomorphic as a complex Lie group to the central

fiber
(
J
i
G(2,L)

)
0

of the GGK-Néron model J
i
G(2,L).

Proof. This follows immediately from Theorems 2.5 and 3.3. �

4. Néron model of intermediate Jacobian associated to moduli spaces

Notations as in Notation 3.1 and §3.1. In this section, we study the Néron model of families
of intermediate Jacobians associated to the family of moduli spaces given by π2.

4.1. Comparing GrW2i−1H2i−1(G(2,L)∞,Q) and H2i−1(M
X̃0

(2, L̃0),Q). We first consider the

case i = 2. Using [33, Proposition 1], there exists an isomorphism of pure Hodge structures:

Φ′0 : H1(X̃0,Z)
∼−→ H3(M

X̃0
(2, L̃0),Z).

The Mayer-Vietoris sequence associated to the central fiber X̃0 (notation as in Notation 3.1) is

0→ H0(X̃0,Z)→ H0(F,Z)⊕H0(X̃0,Z)→ H0(F ∩ X̃0,Z)→ H1(X̃0,Z)→ H1(F,Z)⊕H1(X̃0,Z)→ 0.

Since H1(F,Z) = 0, this gives us the short exact sequence:

0→ Z p−→ H1(X̃0,Z)
q−→ H1(X̃0,Z)→ 0, (4.1)

inducing isomorphisms Q
p∼= GrW0 H1(X̃0,Q) and GrW1 H1(X̃0,Q)

q∼= H1(X̃0,Q). Using the short
exact sequence (4.1) and Theorem 3.2, we have the composed morphism

Φ1 : GrW3 H3(G(2,L)∞,Q)→ H3(M
X̃0

(2, L̃0),Q) defined by

GrW3 H3(G(2,L)∞,Q)
Φ̃0←−−
∼

GrW1 H1(X̃∞,Q)
sp1←−−
∼

GrW1 H1(X̃0,Q)
q−→
∼
H1(X̃0,Q)

Φ′0−−→
∼

H3(MX̃0
(2, L̃0),Q),

where the first isomorphism is given by (3.7) and the second isomorphism follows directly from

Proposition 2.3. By Theorem 3.2, Φ̃0 is an isomorphism of pure Hodge structures. Also, note
that the last three morphisms in the composed morphism Φ1 are morphisms of pure Hodge
structures. Therefore, Φ1 is an isomorphism of pure Hodge structures. In general,

Proposition 4.1. There exists a morphism (induced by Φ1)

Φ
(i)
1 :

GrW2i−1H
2i−1(G(2,L)∞,C)

F iGrW2i−1H
2i−1(G(2,L)∞,C) + GrW2i−1H

2i−1(G(2,L)∞,Z)
→ J i−3(MX̃0

(2, L̃0))× J i(MX̃0
(2, L̃0)),

where GrW2i−1H
2i−1(G(2,L)∞,Z) = GrW2i−1H

2i−1(G(2,L)∞,Q) ∩H2i−1(G(2,L)∞,Z). Moreover,
the morphism is an isomorphism for 1 ≤ i ≤ max{2, g − 1}.

Proof. Denote by ψ∞i := Φ̃0(ei), where ei ∈ H1(X̃∞,Z) as in Theorem 2.4, 1 ≤ i ≤ 2g and

Φ̃0 as in (3.7). Fix s ∈ ∆∗. Let ψi ∈ H3(G(2,L)s,Z) be the image of ψ∞i under the natural
isomorphism

Hj(G(2,L)∞,Z)
∼−→ Hj(G(2,L)s,Z), for all j ≥ 0. (4.2)

Using [35, Theorem 1], one can observe that for any s ∈ ∆∗, there exist elements

αs ∈ H1,1(G(2,L)s,Z) and βs ∈ H2,2(G(2,L)s,Z)

such that the cohomology ring H∗(G(2,L)s,Q) is generated by αs, βs, ψ1, ψ2, ..., ψ2g. Denote by

α∞ ∈ H2(G(2,L)∞,Z) and β∞ ∈ H4(G(2,L)∞,Z)

the preimage of αs and βs, respectively, under the natural isomorphism (4.2). It is immedi-
ate that the cohomology ring H∗(G(2,L)∞,Q) is generated by α∞, β∞, ψ

∞
1 , ψ

∞
2 , ..., ψ

∞
2g . Since
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H2(G(2,L)∞,Z) (resp. H4(G(2,L)∞,Z)) is one (resp. two) dimensional, generated by α∞ (resp.
α2
∞ and β∞), we conclude that (use cup-product is a morphism of MHS)

α∞ ∈ H1,1(G(2,L)∞,Z) and β∞ ∈ H2,2(G(2,L)∞,Z).

Since cup-product morphism is a morphism of mixed Hodge structures, Theorem 3.2 along with
[31, Remark 5.3] imply that a Q-basis of GrWi H

i(G(2,L)∞,Q) consists of monomials of the form

ψ∞g .ψ
∞
2g(α

i1
∞β

j1
∞ψ∞k1

ψ∞k2
...ψ∞km) and α

i′1∞β
j′1∞ψ∞k′1

ψ∞k′2
...ψ∞k′r such that for any 1 ≤ t ≤ r, k′t 6∈ {g, 2g},

m+i1 +2 < g, m+j1 +2 < g, i′1 +r < g, j′1 +r < g, 2i1 +4j1 +3(m+2) = i and 2i′1 +4j′1 +3r = i.

By [35, Theorem 1], there exists α0 ∈ H2(M
X̃0

(2, L̃0),Z) and β0 ∈ H4(M
X̃0

(2, L̃0),Z) such that

α0 (resp. α2
0, β0) generates H2(M

X̃0
(2, L̃0),Q) (resp. H4(M

X̃0
(2, L̃0),Q)). We can then define:

τi : GrWi H
i(G(2,L)∞,Q)→ H i−6(M

X̃0
(2, L̃0),Q)⊕H i(M

X̃0
(2, L̃0),Q) by

τi(ψ
∞
g .ψ

∞
2g(α

i1
∞β

j1
∞ψ
∞
k1
ψ∞k2

...ψ∞km)) = (αi10 β
j1
0 Φ1(ψ∞k1

)Φ1(ψ∞k2
)...Φ1(ψ∞km))⊕ 0 and

τi(α
i′1∞β

j′1∞ψ
∞
k′1
ψ∞k′2

...ψ∞k′r ) = 0⊕ (α
i′1
0 β

j′1
0 Φ1(ψ∞k′1

)Φ1(ψ∞k′2
)...Φ1(ψ∞k′r )), if k′t 6∈ {g, 2g}.

As cup-product is a morphism of Hodge structures and ψ∞g ψ
∞
2g is of Hodge type (3, 3), one

can check that τi is a morphism of pure Hodge structures in the sense that τi maps Hodge type
(p, i−p) to (p−3, i−p−3)⊕(p, i−p) for all i ≥ 0. Note that for 1 ≤ i ≤ max{3, 2g−3}, the above
inequalities imply that m+ i1 < g−1,m+j1 < g−1, i′1 +r < g−1 and j′1 +r < g−1. Using [31,
Remark 5.3] once again, we conclude that τi is an isomorphism for 1 ≤ i ≤ max{3, 2g−3}. This
induces an isomorphism

GrW2i−1H
2i−1(G(2,L)∞,C)

F iGrW2i−1H
2i−1(G(2,L)∞,C) + GrW2i−1H

2i−1(G(2,L)∞,Z)

τ2i−1−−−→ J i−3(MX̃0
(2, L̃0))× J i(MX̃0

(2, L̃0))

for 1 ≤ i ≤ max{2, g − 1}. This proves the proposition. �

4.2. Central fiber of the Néron model. Using (2.1), we have a flat family ρ̃ : JiG(2,L)∆∗
→ ∆∗

such that (ρ̃)−1(s) = J i(G(2,L)s) for each s ∈ ∆∗. By Theorem 2.5, there exists a Néron model

ρ : J
i
G(2,L) → ∆

holomorphically extending the family ρ̃. We now describe the central fiber of the Néron model

in terms of the intermediate Jacobian of the Jacobian Jac(X̃0) of X̃0.

We briefly discuss the idea of the proof of Theorem 4.2 below. The first step is to apply

Theorem 3.3 to Theorem 2.5, to express the central fiber of J
i
G(2,L) as a quotient of

W2i−1H
2i−1(G(2,L)∞,Q).

This quotient of W2i−1H
2i−1(G(2,L)∞,Q) naturally induces a quotient of

GrW2i−1H
2i−1(G(2,L)∞,Q),

which we show is isomorphic to a product of intermediate Jacobians of Jac(X̃0) as given in
the statement of Theorem 4.2. Here we use Proposition 4.1. As a result, we can view the
central fiber of the Néron model as a fibration over this product of intermediate Jacobians

of Jac(X̃0). The fiber of the resulting morphism arises as a natural subquotient of a quo-
tient of W2i−1H

2i−1(G(2,L)∞,Q) induced by the natural inclusion W2i−2H
2i−1(G(2,L)∞,Q) ↪→

W2i−1H
2i−1(G(2,L)∞,Q). In order to give a more explicit description of the fiber, we prove that

W2i−2H
2i−1(G(2,L)∞,Q) can be identified with H2i−4(M

X̃0
(2, L̃0),Q), as pure Hodge struc-

tures, thereby proving Theorem 4.2 below.
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Theorem 4.2. There exists a morphism η(i) :
(
J
i
G(2,L)

)
0
→

[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k such that

for 1 ≤ i ≤ max{2, g − 1}, η(i) is surjective and pure
((

J
i
G(2,L)

)
0

) η(i)

∼=
[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k ,

where di,k is the coefficient of ti−3k+1 of the polynomial

(1 + t3)(1 + t+ t2 + ...+ tg−1−2k)(1 + t2 + t4 + ...+ t2(g−1)−4k).

Moreover, for 1 ≤ i ≤ max{2, g − 1}, we have

ker η(i) ∼= (H2i−4(M
X̃0

(2, L̃0),C))/(F i−1H2i−4(M
X̃0

(2, L̃0),C) +H2i−4(M
X̃0

(2, L̃0),Z)).

Proof. Recall, [13, Corollary 2.10] states that J i(M
X̃0

(2, L̃0)) ∼=
[ g
2

]∏
k=1

Jk(Jac(X̃0))ci,k , where ci,k

is the coefficient of ti−3k+1 of the polynomial

g(t) := (1 + t+ t2 + ...+ tg−1−2k)(1 + t2 + t4 + ...+ t2g−2−4k).

This implies,

J i−3(M
X̃0

(2, L̃0))× J i(M
X̃0

(2, L̃0)) ∼=
[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k ,

where di,k is the coefficient of ti−3k+1 of the polynomial (1 + t3)g(t). Let Ti be the monodromy
automorphism as in (2.3), after replacing Y by G(2,L). Let Ti,C be the induced automorphism
on H i(G(2,L)∞,C) and Ni,C := log(Ti,C). By (2.4), we have

ker(Ti − Id) ∩H i(G(2,L)∞,Z) = spi(H
i(GX0(2,L0),Z)),

where spi is the specialization morphism as in Proposition 2.3. Using (2.7) combined with
Theorems 2.5 and 3.3, we then have(

J
i
G(2,L)

)
0

∼=
kerN2i−1,C

F i kerN2i−1,C +
(
H2i−1
G(2,L)

)
0

∼=
S2i−1

F iS2i−1 + sp2i−1(H2i−1(GX0(2,L0),Z))
,

where S2i−1 := sp2i−1(H2i−1(GX0(2,L0),C)) and the last isomorphism follows from the invariant

cycle theorem. By Proposition 2.3, sp2i−1(H2i−1(GX0(2,L0),Q)) = W2i−1H
2i−1(G(2,L)∞,Q).

Hence, sp2i−1(H2i−1(GX0(2,L0),Z)) coincides with

W2i−1H
2i−1(G(2,L)∞,Z) := W2i−1H

2i−1(G(2,L)∞,Q) ∩H2i−1(G(2,L)∞,Z).

Therefore, (
J
i
G(2,L)

)
0

∼=
W2i−1H

2i−1(G(2,L)∞,C)

F iW2i−1H2i−1(G(2,L)∞,C) +W2i−1H2i−1(G(2,L)∞,Z)
.

Proposition 4.1 implies that the natural projection morphism from W2i−1H
2i−1(G(2,L)∞,C) to

GrW2i−1H
2i−1(G(2,L)∞,C) induces a morphism η(i) :

(
J
i
G(2,L)

)
0
→

[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k such that

for 1 ≤ i ≤ max{2, g − 1}, η(i) is surjective and pure
((

J
i
G(2,L)

)
0

) η(i)

∼=
[ g
2

]∏
k=1

Jk(Jac(X̃0))di,k .
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For 1 ≤ i ≤ max{2, g − 1}, the kernel of the morphism η(i) is isomorphic to

W2i−2H
2i−1(G(2,L)∞,C)

F iW2i−2H2i−1(G(2,L)∞,C) +W2i−2H2i−1(G(2,L)∞,Z)
.

Let α∞ ∈ H2(G(2,L)∞), β∞ ∈ H4(G(2,L)∞), α0 ∈ H2(M
X̃0

(2, L̃0)), β0 ∈ H4(M
X̃0

(2, L̃0)) and

ψ∞1 , ψ
∞
2 , ..., ψ

∞
2g ∈ H3(G(2,L)∞) as defined in the proof of Proposition 4.1. Using Theorem 3.2,

ψ∞g generates W2H
3(G(2,L)∞,Q). As cup-product is a morphism of mixed Hodge structures,

it is then easy to check that W2i−2H
2i−1(G(2,L)∞,Q) is Q-generated by monomials of the form

αi1∞β
i2
∞ψ
∞
g ψ
∞
j1
ψ∞j2 ...ψ

∞
jk

with jt 6= 2g for all 1 ≤ t ≤ k (use [31, Remark 5.3]). Define the morphism

τ ′ : W2i−2H
2i−1(G(2,L)∞,Q)→ H2i−4(M

X̃0
(2, L̃0),Q) as

τ ′(αi1∞β
i2
∞ψ
∞
g ψ
∞
j1 ψ
∞
j2 ...ψ

∞
jk

) = αi10 β
i2
0 Φ1(ψ∞j1 )Φ1(ψ∞j2 )...Φ1(ψ∞jk )

and extend linearly. Since ψ∞g is of Hodge type (1, 1) and Φ1 is an isomorphism of Hodge struc-
tures, it is easy to check that τ ′ is an isomorphism of pure Hodge structures which sends Hodge
type (p, 2i−2−p) to (p−1, 2i−3−p) (use W2i−2H

2i−1(G(2,L)∞,Q) = GrW2i−2H
2i−1(G(2,L)∞,Q)

by Proposition 2.3, hence pure). Therefore,

W2i−2H
2i−1(G(2,L)∞,C)

F iW2i−2H2i−1(G(2,L),C) +W2i−2H2i−1(G(2,L)∞,Z)

τ ′∼=
H2i−4

F i−1H2i−4 +H2i−4(M
X̃0

(2, L̃0),Z)
,

where H2i−4 := H2i−4(M
X̃0

(2, L̃0),C). This proves the theorem. �

Remark 4.3. Note that
(
J

1
G(2,L)

)
0

= 0. The theorem immediately tells us that the central

fiber of the Néron model is never an abelian variety. However, we can show that:

Corollary 4.4. For i = 2, the central fiber
(
J
i
G(2,L)

)
0

is a semi-abelian variety. Moreover, for

g ≥ 5 and i = 2, 3, 4, pure
(
J
i
G(2,L)

)
0

is an abelian variety and
(
J
i
G(2,L)

)
0

is a semi-abelian

variety.

Proof. Recall, H0(MX̃0
(2, L̃0),C) ∼= C ∼= H2(MX̃0

(2, L̃0),C) and H4(M
X̃0

(2, L̃0),C) ∼= C⊕2 is con-

centrated in the (2, 2)-Hodge type (see [35, Theorem 1]). Denote by

Ki :=
H2i−4(M

X̃0
(2, L̃0),C)

F i−1H2i−4(M
X̃0

(2, L̃0),C) +H2i−4(M
X̃0

(2, L̃0),Z)

It is then easy to check that Ki
∼= C∗ for i = 2, 3 and K4

∼= (C∗)⊕2. Notations as in Theorem
4.2. Note that for i = 2, 3, we have di,1 = 1 and di,j = 0 for j 6= 1. For i = 4, we have di,1 = 2
and di,j = 0 for j 6= 1. Using [6, §1.1, §1.4] observe that

J1(Jac(X̃0)) =
H1(Jac(X̃0),C)

F 1H1(Jac(X̃0),C)⊕H1(Jac(X̃0),Z)
=

H1(X̃0,C)

F 1H1(X̃0,C)⊕H1(X̃0,Z)
= Jac(X̃0).

Hence, J1(Jac(X̃0)) is an abelian variety. As product of abelian varieties is again an abelian

variety, Theorem 4.2 implies that pure
(
J
i
G(2,L)

)
0

is an abelian variety and
(
J
i
G(2,L)

)
0

is an

extension of an abelian variety by finitely many copies of C∗, hence is a semi-abelian variety for
i = 2 for any g ≥ 2 and i = 2, 3, 4 for g ≥ 5. This proves the corollary. �



16 A. DAN AND I. KAUR

5. Intermediate Jacobians of moduli spaces over nodal curves

It is well-known that moduli spaces of semi-stable sheaves with coprime rank and degree over
smooth, projective curves are projective and non-singular. So, the intermediate Jacobian of such
a moduli space is well-defined and is in fact an abelian variety. In this section, we introduce
(generalized) intermediate Jacobian of the moduli space GX0(2,L0) defined in §3.1. We describe
the intermediate Jacobian and prove that in some cases it is a semi-abelian variety. In this
section, we follow Notation 3.1 and notations in §3.1.

Notation 5.1. Denote by i1 : G0∩G1 ↪→ P0, i2 : G0∩G1 ↪→ G1 and i3 : G0∩G1 ↪→ G0 the natural
inclusions. Recall, the kernel of the Gysin morphism from G0 ∩ G1 to G1 and P0:

Proposition 5.2. The kernel of the Gysin morphism (i1,∗, i2,∗) is given by

ker((i1,∗, i2,∗) : H i−2(G0 ∩ G1,Q)→ H i(P0,Q)⊕H i(G1,Q)) ∼= H i−4(M
X̃0

(2, L̃0)).

Proof. See [12, Proposition 4.1] for a proof. �

Using the definition of intermediate Jacobian in the smooth, projective case, we define gen-
eralized intermediate Jacobian of the singular variety GX0(2,L0).

Definition 5.3. Define the i-th generalized intermediate Jacobian of GX0(2,L0) as

J i(GX0(2,L0)) :=
H2i−1(GX0(2,L0),C)

F iH2i−1(GX0(2,L0),C) +H2i−1(GX0(2,L0),Z)
.

We show that the generalized intermediate Jacobian is a fibration by a product of abelian
varieties over the central fiber of the associated Néron model.

Theorem 5.4. The specialization morphism sp2i−1 (as in Proposition 2.3) fromH2i−1(GX0(2,L0))

to H2i−1(G(2,L)∞) induces a surjective morphism

τ : J i(GX0(2,L0))→
(
J
i
G(2,L)

)
0

with kernel isomorphic to J i−1(M
X̃0

(2, L̃0))× J i−2(M
X̃0

(2, L̃0))× J i−3(M
X̃0

(2, L̃0)).

Proof. The surjectivity of τ follows from definition (see (2.4)). We now prove the statement on
the kernel of τ . There exist closed subschemes Z ⊂ P0 and Z ′ ⊂ G0 such that P0\Z ∼= G0\Z ′
(see §3.1). Using [18] (see also [46, P. 27] or [43, Remark 6.5(c), Theorem 6.2]), one can observe
that Z ∩ Im(i1) = ∅ = Z ′ ∩ Im(i3) and there exists a smooth, projective variety W along with
proper, birational morphisms τ1 : W → P0 and τ2 : W → G0 such that

W\τ−1
1 (Z) ∼= P0\Z ∼= G0\Z ′ ∼= W\τ−1

2 (Z ′).

Therefore, there exists a natural closed immersion l : G0 ∩ G1 → W such that i1 = τ1 ◦ l and
i3 = τ2◦l. We claim that given any ξ ∈ Hk−2(G0∩G1,Q), we have τ∗1 ◦i1,∗(ξ) = l∗(ξ) = τ∗2 ◦i3,∗(ξ).
Indeed, since Im(i1) (resp. Im(i3)) does not intersect Z (resp. Z ′), the pullback of l∗(ξ) to τ−1

1 (Z)

and τ−1
2 (Z ′) vanish. Using the (relative) cohomology exact sequence ( [37, Proposition 5.54]),

we conclude that there exists β1 ∈ Hk(P0) and β2 ∈ Hk(G0) such that τ∗1 (β1) = l∗(ξ) = τ∗2 (β2).
Applying τ1,∗ and τ2,∗ to the two equalities respectively and using [37, Proposition B.27], we get

β1 = τ1,∗τ
∗
1 (β1) = τ1,∗l∗(ξ) = i1,∗(ξ) and β2 = τ2,∗τ

∗
2 (β2) = τ2,∗l∗(ξ) = i3,∗(ξ).

In other words, τ∗1 ◦ i1,∗(ξ) = l∗(ξ) = τ∗2 ◦ i3,∗(ξ). This proves the claim. Since Gysin morphisms

are morphisms of mixed Hodge structures and Hk−2(G0 ∩ G1,Q) is a pure Hodge structure,
we have i1,∗(ξ) ∈ GrWk H

k(P0,Q) and i3,∗(ξ) ∈ GrWk H
k(G0,Q). Using [37, Theorem 5.41], we
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then conclude that i1,∗(ξ) = 0 (resp. i3,∗(ξ) = 0) if and only if l∗(ξ) = 0. In other words,
ker(i1,∗) ∼= ker(i3,∗). Using Proposition 5.2, (2.5) becomes the following exact sequence of MHS:

0→ H2i−5(M
X̃0

(2, L̃0),Q)(−2)→ H2i−3(G0 ∩ G1,Q)(−1)
f2i−1−−−→ H2i−1(GX0(2,L0),Q)

sp2i−1−−−−→
sp2i−1−−−−→ H2i−1(G(2,L)∞,Q).

Recall, G0 ∩ G1 is a P1 × P1-bundle over M
X̃0

(2, L̃0). Denote by

ρ1 : G0 ∩ G1 →M
X̃0

(2, L̃0)

the natural projection. By the Deligne-Blanchard theorem [14] (the Leray spectral sequence
degenerates at E2 for smooth families), we have Hk(G0 ∩ G1,Q) ∼= ⊕jH

k−j(Rjρ1,∗Q) for all

k ≥ 0. Since M
X̃0

(2, L̃0) is smooth and simply connected, the local system Rjρ1,∗Q is trivial.

Therefore, for any y ∈M
X̃0

(2, L̃0), the natural morphism

Hk(G0 ∩ G1,Q) � H0(Rkρ1,∗Q)→ Hk((G0 ∩ G1)y,Q)

is surjective for all k ≥ 0. Then, by the Leray-Hirsch theorem, we have

H2i−3(G0 ∩ G1,Q) ∼=
⊕
j

H2i−3−j(M
X̃0

(2, L̃0),Q)⊗Hj(P1 × P1,Q).

Recall, H0(P1 × P1,Q) ∼= Q ∼= H4(P1 × P1,Q) and H2(P1 × P1,Q) ∼= Q ⊕ Q. Furthermore,
H i(P1 × P1,Q) = 0 for i odd and i > 4. It is then easy to check that ker(sp2i−1) is isomorphic
as a pure Hodge structure to

H2i−3(M
X̃0

(2, L̃0),Q)(−1)⊕H2i−5(M
X̃0

(2, L̃0),Q)(−2)⊕H2i−7(M
X̃0

(2, L̃0),Q)(−3).

This implies ker(τ) ∼= J i−1(M
X̃0

(2, L̃0)) × J i−2(M
X̃0

(2, L̃0)) × J i−3(M
X̃0

(2, L̃0)). This proves

the theorem. �

Corollary 5.5. The generalized intermediate Jacobian J2(GX0(2,L0)) is isomorphic to the

central fiber
(
J

2
G(2,L)

)
0

of the Néron model. In particular, J2(GX0(2,L0)) is a semi-abelian

variety.

Proof. Notations as in Theorem 5.4. In this case, ker(τ) = 0. The corollary then follows
immediately from Theorem 5.4 and Corollary 4.4. �
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