MULTIPLICITY, REGULARITY AND BLOW-SPHERICAL
EQUIVALENCE OF COMPLEX ANALYTIC SETS

J. EDSON SAMPAIO

ABSTRACT. This paper is devoted to study multiplicity and regularity of com-
plex analytic sets. We present an equivalence for complex analytical sets,
named blow-spherical equivalence and we obtain several applications with this
new approach. For example, we reduce to homogeneous complex algebraic
sets a version of Zariski’s multiplicity conjecture in the case of blow-spherical
homeomorphism, we give some partial answers to the Zariski’s multiplicity con-
jecture, we show that a blow-spherical regular complex analytic set is smooth

and we give a complete classification of the complex analytic curves.

1. INTRODUCTION

Recently, L. Birbrair, A. Fernandes and V. Grandjean in [7] (see also [6]) defined
a new equivalence, named blow-spherical equivalence, to study some properties of
subanalytic sets such as, for example, to generalize thick-thin decomposition of
normal complex surface singularity germs introduced in [14]. With the aim to
study multiplicity and regularity as well as to present some classifications of com-
plex analytic sets, we define a weaker variation of the equivalence presented in [7],
namely also blow-spherical equivalence. Roughly speaking, two subset germs of
Euclidean spaces are called blow-spherical equivalent, if their spherical modifica-
tions are homeomorphic and, in particular, this homeomorphism induces a homeo-
morphism between their tangent links. This equivalence, essentially, lives between
topological equivalence and subanalytic bi-Lipschitz equivalence. We obtain several
applications with this new approach, for example, we get a reduction for a version
of Zariski’s multiplicity conjecture in the case of blow-spherical homeomorphism,
we have that blow-spherical regular complex analytic sets are smooth and we obtain
a complete classification to complex analytic curves.

The main motivation to study about multiplicity comes from the following prob-
lem proposed, in 1971, by O. Zariski (see [69)]):
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Question A Let f,g : (C",0) — (C,0) be two reduced complex analytic
functions. If there is a homeomorphism ¢ : (C™, V(f),0) — (C™,V(g),0), then

More than 45 years later, the question above is still an open problem. However,
there exist some partial results about it, for example, R. Ephraim in [2I] and
D. Trotman in [63] showed that the multiplicity is a C! invariant. O. Saeki in
[57] and Stephen Yau in [65] showed that the multiplicity is an invariant of the
embedded topology in the case of isolated quasi-homogeneous surfaces, Greuel in
[33] and O’Shea in [53] showed that Question A has a positive answer in the case of
quasi-homogeneous hypersurface families with isolated singularities. Several other
authors showed partial results about versions of the Zariski’s multiplicity conjecture,
more recently, we can cite [I], [24], [26] [27], [51], [54], [58], [60], [61], [62], [64] and
[66]. In order to know more about this conjecture see the survey [23].

More recently, the author joint with A. Fernandes, in the paper [29], proved that
the multiplicity of a complex analytic surface in C? is a bi-Lipschitz invariant and
W. Neumann and A. Pichon in [52] showed that the multiplicity is a bi-Lipschitz
invariant in the case of normal complex analytic surfaces. The bi-Lipschitz invari-
ance of the multiplicity is an advance about a problem that has been extensively
studied in recent years, the complex analytic surface classification. The work of L.
Birbrair, W. Neumann and A. Pichon in [I4] is the most recent significant result
on the Lipschitz geometry of singularities about classification of complex analytic
surfaces, more specifically: they presented a classification for surfaces with the in-
trinsic metric module bi-Lipschitz homeomorphisms. More about classification of
complex analytic surfaces can be found in [5], [12], [TI], [10], [6] and [7]. We have
also recent studies about classification of complex analytic curves, see for example
18], [34], [35] and [34].

Another subject of interest for many mathematicians is to know how simple is
the topology of complex analytic sets. For example, if topological regularity implies
analytic regularity. In general this does not occur, but Mumford in [50] showed a
result in this direction, it was stated as follows: a normal complex algebraic surface
with a simply connected link at a point x is smooth in x. This was a pioneer work in
topology of singular algebraic surfaces. From a modern viewpoint this result can be
seen as follows: a topologically regular normal complex algebraic surface is smooth.
Since, in C3, a surface is normal if and only if it has isolated singularities, the
result can be formulated as follows: a topologically reqular complex surface in C3,
with an isolated singularity, is smooth. The condition of singularity to be isolated
is important, since {(z,y,z) € C3;y? = 23} is a topologically regular surface, but
it is non-smooth. There are also examples of non smooth hypersurfaces in C*
with topologically regular isolated singularity, for example, E. V. Brieskorn in [15]

showed that {(z0,21,22,23) € C%25 = 2} + 25 + 23} is a topologically regular
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hypersurface, but it is non-smooth, as well. However, N. A’Campo in [2] and Lé D.
T. in [43] showed that if X is a complex analytic hypersurface in C™ such that X is
a topological submanifold, then X is smooth. Recently, the author in [59] (see also
[9]), proved a version of the Mumford’s Theorem, showing that Lipschitz regularity
in complex analytic sets implies smoothness.

In this paper, we deal with blow-spherical aspects related to the above Zariski’s

question. More precisely, we consider the questions below:

Question Al. Let X,Y C C” be two complex analytic sets. If X and Y are
blow-spherical homeomorphic, then is it m(X,0) = m(Y,0)?

Question A2. Let X,Y C C" be two homogeneous complex algebraic sets. If
X and Y are blow-spherical homeomorphic, then is it m(X,0) = m(Y,0)?

In Section [3| we define blow-spherical equivalence and we present some properties
of this equivalence. In Subsection [3.1] we present some examples of blow-spherical
equivalences and in the Subsection [3.2|we show, for example, that the blow-spherical
equivalence is different of the topological, intrinsic bi-Lipschitz and bi-Lipschitz
equivalences. The others sections are devoted for applications of the results of the
Section

In Section [, we prove a version of the Mumford’s Theorem. Namely, we show
that if a complex analytic set X is blow-spherical regular, then X is smooth. No
restriction on the dimension or co-dimension is needed. No restriction of singularity
to be isolated is needed. As an application, we obtain the main result of [9], about
Lipschitz regularity of complex analytic sets.

The Section [p|is dedicated for studies about the invariance of the multiplicity. In
the Subsection[5.1]} we prove Theorem [5.1]that says: The Question A1 has a positive
answer if and only if the Question A2 has a positive answer and as a consequence we
answer the Questions Al and A2. In the other subsections, we study those questions
in some specific cases. In Subsection [5.2] Theorem [5.5] shows that Question A2
has positive answer for hypersurface singularities whose irreducible components
have singular sets with dimension < 1. In particular, in Corollary we prove
the blow-spherical invariance of the multiplicity of complex analytic surface (not
necessarily isolated) singularities in C®. Moreover, in Subsection we prove that
the Question A2 has a positive answer in the case of aligned singularities and in the
Subsection we prove that the Question A2 has a positive answer in the case of
families of hypersurfaces.

Finally, in Section [6] we present a complete classification for complex analytic

curves in C".
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2. PRELIMINARIES

Let f: (C™,0) — (C,0) be the germ of a reduced analytic function at the origin
with f #£ 0. Let (V(f),0) be the germ of the zero set of f at the origin. We
recall the multiplicity of V(f) at the origin, denoted by m(V (f),0), is defined as
following: we write

I A S
where each fi is a homogeneous polynomial of degree k and f,, # 0 and, thus,
we denote f,, as in(f). We define m(V(f),0) := m (see, for example, [I8] for a

definition of multiplicity in high co-dimension).

Definition 2.1. Let A C R" be a subanalytic set such that xo € A. We say
that v € R™ is a tangent vector of A at xo € R™ if there is a sequence of points
{z;} € A\ {zo} tending to xy € R™ and there is a sequence of positive numbers
{t;} C R* such that

zlir(r)lo E(ml —x0) =v.
Let C(A, zg) denote the set of all tangent vectors of A at xg € R™. We call C(A, xq)

the tangent cone of A at xg.
Notice that C(A, x¢) is the cone C3(A, z¢) as defined by Whitney (see [68]).

Remark 2.2. Follows from the curve selection lemma for subanalytic sets that, if

A C R" is a subanalytic set and o € A is a non-isolated point, then
C(A,z9) ={v; Ja: [0,e) = R" s.t. a(0) =z, a((0,¢)) C A and
aft) —zg = tv+ o(t)}.

Remark 2.3. If A C C" is a complex analytic set such that xg € A then C(A, xo)
is the zero set of a set of homogeneous polynomials (See [68], Chapter 7, Theorem

4D). In particular, C(A, xq) is a union of complex line passing through at the origin.

Another way to present the tangent cone of a subset X C R™ at the origin 0 € R"
is via the spherical blow-up of R™ at the point 0. Let us consider the spherical
blowing-up (at the origin) of R™

pn: S"TEx[0,40) — R7
(z,7) — T

Note that p,: S*~! x (0,4+00) — R™\ {0} is a homeomorphism with inverse
mapping p;': R\ {0} - §71 x (0, +00) given by p;'(z) = (27, [z]). For a
subset X C R", we define the strict transform of X (under the spherical blowing-
up p,) tobe X' := p 1 (X \ {0})UOX’, where X' := p, "(X \ {0})N(S"~! x {0}).
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Remark 2.4. 90X’ = SoX x {0}, where SpX = C(X,0)nS"~1.

Definition 2.5. Let X C R™ be a subanalytic set such that 0 € X. We say that
x € 0X' is simple point of 0X’, if there is an open U C R"*T! with x € U such
that:
a) the connected components of (X' NU)\ 0X’, say Xy, ..., X,., are topological
manifolds with dim X; = dim X, for allt=1,...,7;
b) (X; UdX')NU is a topological manifold with boundary, for alli =1,...,7;.
Let Smp(0X') be the set of all simple points of 0X'.

Since for each connected component C; of Smp(0X’) the number of connected
components of the germ (p~!(X \ {0}), z) does not depend on = € C}, the following

definition is well posed.

Definition 2.6. Let X C R" be a subanalytic set such that 0 € X. For each con-
nected component C; of Smp(0X'), we define kx(C;) to be the number of compo-
nents of the germ (p~*(X \{0}),z), for some x € C;NSmp(0X'). Moreover, when
X is a complex analytic set, there is a complex analytic set o with dimo < dim X,
such that X;\ o intersect only one connected component C; (see [18], pp. 182-133),
for each irreducible component X; of tangent cone C(X,0), then we define also
kx(X;) = kx(C;).

For more about subanalytic sets, see, for example, [4].

Remark 2.7. The number kx (C;) equals the n; defined by Kurdyka e Raby [42],
pp. 762 and also equals the k; defined by Chirka in [I8], pp. 132-133, in the case

that X is a complex analytic set.

We remind also a very useful result proved by Y.-N. Gau and J. Lipman in the

paper [32].

Lemma 2.8 ([32], p. 172, Lemma). Let ¢ : A — B be a homeomorphism between
two complex analytic sets. If X is an irreducible component of A, then p(X) is an

irreducible component of B.

Remark 2.9. All the sets considered in the paper are supposed to be equipped

with the Euclidean metric.

3. BLOW-SPHERICAL EQUIVALENCE

Definition 3.1. Let (X,0) and (Y,0) be subsets germs, respectively at the origin
of R™ and RP.
o A continuous mapping ¢ : (X,0) — (Y,0), with 0 € (X \ {0}), is a blow-
spherical morphism (shortened as blow-morphism), if the mapping

pglogpopn:X'\@X'%Y’\aY'

extends as a continuous mapping ¢’ : X' — Y.
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e A blow-spherical homeomorphism (shortened as blow-isomorphism )
is a blow-morphism ¢ : (X,0) — (Y,0) such that the extension ¢’ is a
homeomorphism. In this case, we say that the germs (X,0) and (Y,0)
are blow-spherical equivalent or blow-spherical homeomorphic (or

blow-isomorphic).

The authors in [7] (see also [0]) defined blow-spherical homeomorphism with
the additional hypotheses that the blow-spherical homeomorphism needs also to be

subanalytic.

Remark 3.2. If ¢: (R™,0) — (R™,0) is a blow-spherical homeomorphism then
vlx: (X,0) = (¢(X),0) is also a blow-spherical homeomorphism for any subset
X CR" with0 e X.

When we say that ¢: (R™, X,0) — (R",Y,0) is a blow-spherical homeomor-
phism, it means that ¢: (R®,0) — (R",0) is a blow-spherical homeomorphism
such that ¢(X) =Y and, thus, ¢|x: (X,0) = (¥,0) is also a blow-spherical home-

omorphism.

Proposition 3.3. If X and Y are blow-spherical homeomorphic, then C(X,0) and

C(Y,0) are also blow-spherical homeomorphic.

Proof. Let ¢ : X — Y be a blow-isomorphism. Then ¢'|gx/ : X' — 9Y' is a
homeomorphism. We define dop : C(X,0) — C(Y,0) by

el - vo(gZp), @ #0
0, z =0,

where ¢'(x,0) = (v,(2),0). We have that dyy is a blow-spherical homeomorphism,

since p_l © d0</7 o p(.l?,t) = (V¢($)7t).
O

Theorem 3.4. Let ¢ : (X,0) — (Y,0) be a blow-spherical homeomorphism. If
C(X,0) = U§:1 X, and C(Y,0) = U;Zle are, respectively, the decomposition
in irreducible components of C(X,0) and C(Y,0), then there exists a bijection
o: {1, ...,r} = {1,...,s} such that kx(X;) = ky (Yy(;)) forj=1,...,7.

Proof. By Proposition we have a homeomorphism dpy : C(X,0) — C(Y,0).
Thus, by Lemma there exists a bijection o: {1,...,7} — {1,...,s} such that
dop(Xj) = Y, for j =1,...,7.

Fixed j € {1,...,r},let p € SoX; x {0} C 90X’ be a generic point. Since ¢’ : X' —
Y’ is a homeomorphism, we obtain also a homeomorphism ¢’|,-1(x\{0}): (X' \
0X',p) — (Y'\ 9Y',¢'(p)), showing that kx(X;) = ky(Y,(;), since ¢'(p) €
SoY,(;) x {0} C oY, O
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Remark 3.5. Let X C C™ be a complex analytic set and X1, ..., X, the irreducible
components of C(X,0). Then, m(X,0) = >7_, kx(X;)m(X;,0) (see [18], p. 133,

proposition).
3.1. Examples of blow-spherical equivalences.

Proposition 3.6. Let X, Y C R™ be two subsets. If p: (R™,0) — (R™,0) is a

1

homeomorphism such that ¢ and ¢~ are differentiable at the origin and p(X) =Y,

then ¢ and p|x: X =Y are blow-spherical homeomorphism.

Proof. Observe that v, : S™~! — S™~! given by

Do (x)
Vp(X) = ————
’ [Deo(x)]]
is a homeomorphism with inverse
- Dy ' (x)
(rp) M (x) = o
1Dey ()l
Using that ¢(tx) = tDyo(x) + o(t), we obtain
p(tx) Do (x)
im = = v,(x).
-0+ [lo(tx)[|  [[Dpo(x)] 7

Then the mapping ¢’ : R™ — R™' given by

sy | (EEle@l). 0
, (vy(x),0), t=0,
is a homeomorphism. Therefore, ¢ is a blow-spherical homeomorphism and by

Remark ¢|lx: X — Y is also a blow-spherical homeomorphism. U

We do a slight digression to remind the notion of inner distance on a path
connected Euclidean subset.

Let Z C R™ be a path connected subset. Given two points ¢,§ € Z, we define
the inner distance in Z between ¢ and ¢ by the number dz(q, ) below:

dz(q,q) := inf{length(y) | v is an arc on Z connecting ¢ to ¢}.

Definition 3.7. Let X C R® and Y C R™. A mapping f: X — Y is called
Lipschitz (resp. intrinsic Lipschitz) if there exists A > 0 such that is || f(z1) —
f@2)|| < A||zy — a2 (resp. dy (f(z1), f(z2)) < Adx(x1,22)) for all z1,25 € X.
A Lipschitz (resp. intrinsic Lipschitz) mapping f: X — Y is called bi-Lipschitz
(resp. intrinsic bi-Lipschitz) if its inverse mapping exists and is Lipschitz (resp.
intrinsic Lipschitz) and, in this case, we say that X andY are bi-Lipschitz equiv-

alent (resp. intrinsic bi-Lipschitz equivalent ).

If X CR"® and Y C R™, we remind that a mapping f: X — Y is a subanalytic
mapping, when its graph is a subanalytic subset of R™ x R™ (see definition of
a subanalytic subset in [4]). So, a subanalytic bi-Lipschitz homeomorphism is a

bi-Lipschitz homeomorphism such that its graph is a subanalytic subset.



8 J. EDSON SAMPAIO

The next proposition shows another example of blow-spherical homeomorphism
and it was already proved in [0, Proposition 4.1] and it is a direct consequence of

[41] Theorem 2.25], but we also present a proof here.

Proposition 3.8. Let X, Y C R™ be two subanalytic sets. If ¢ : (X,0) = (Y,0)
is a subanalytic bi-Lipschitz homeomorphism (with respect to the metric induced).

Then, ¢ is a blow-spherical homeomorphism.

Proof. Observe that v, : C(X,0)NS™™1 — C(Y,0)NS™~! given by

Dop(x)
Vy(X) = ————
#0) = [Dyeol
is a homeomorphism with inverse
Doy~ (x)
1 o 0P
el ) = D TGl

where Doy : C(X,0) — C(Y,0) (resp. Dot : C(Y,0) — C(X,0)) is the Lipschitz
derivative of ¢ (resp. ¢~ ') at the origin, as defined by A. Bernig and A. Lytichak
n [3]. We know that Dy is given by
t
Dop(v) = lim plalt))

)
t—0+ t

where « : [0,£) — X is a subanalytic curve such that a(t) = tv+o(t). By McShane-
Whitney-Kirszbraun’s Theorem (see [48], [67] and [40]), there exists ® : R™ — R a
Lipschitz mapping such that ®|x = ¢. Moreover, if v € C(X,0), we have Dop(v) =
lim q)(tv) = Do®(v), since ®(a(t)) — ®(tv) = o(t) whenever a(t) = tv + o(t). In

t—0+
partlcular Vy(v) = %. For a sequence {xy, }nen C X \ {0} such that z,, — 0

and e — X € C(X,0)NS™" 1 we have

" D (s
Vo(x) = lim ——= = lim ————,
P(x,) _  DoP(x) . . ) o
since nh—>n<;lo @) — TDo®&)" Then the mapping ¢’ : X' Y given b‘y
) tx ) t£0
o(x,1) = (ll«o w7 e @)l £

(I/@(X),O), t=0,

is a continuous mapping. Using above ¢~ instead of ¢, we obtain that ¢ is a

blow-spherical homeomorphism. O

3.2. Blow-spherical equivalence and other equivalences. Now we give some

examples that separate blow-spherical equivalence of others equivalences.

Example 3.9. X = {(z, 71,22, 73) € C% 2% = 22423 +22} and Y = {(z, 71,22, 73) €
C*; z = 0} are topological equivalent (see [15]). However, by Theorem they are

not blow-spherical equivalent.
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Example 3.10. X = {(z,y) € C% y*> = 23} and Y = {(z,y) € C?; y*> = 25} are
blow-spherical equivalent (see Theorem , but they are not bi-Lipschitz equivalent
(see [28, Example 2.1]).

Example 3.11. X = {(z,y) € C%* y?> = 23} and Y = {(z,y) € C%}y = 0}
are intrinsic bi-Lipschitz equivalent, however by Theorem [{.3, they are not blow-

spherical equivalent.
In [41], the authors presented the following definition.

Definition 3.12. We say that a homeomorphism h : (R",0) — (R™,0) satisfies

condition semiline-(SSP), if h(£) has a unique direction for all semilines €.
Here, we say that a such & is a semiline homeomorphism.

Remark 3.13. We have some considerations between the definitions of blow-spherical

homeomorphism and semiline homeomorphism.:

(i) A semiline homeomorphism have to be defined in some open neighborhood
of 0, but we do not ask that in deﬁm’tion (the definition of blow-spherical
homeomorphism is intrinsic);

(ii) By Theorem [6.1, X = {(z,y) € C*y? = 23} and Y = {(z,y) € C*y? =
x5} are blow-spherical homeomorphic, however there is no semiline home-
omorphism h: (C2,0) — (C2,0) such that h(X) =Y

(iii) Because the before items, in order to compare these two notions, we need to
consider only those blow-spherical homeomorphism h: (R™,0) — (R™,0);

(i) If h: (R™,0) — (R™,0) is a bi-Lipschitz homeomorphism and a semiline
homeomorphism (as in Proposition 2.20 in [41] ), then similarly as Propo-
sition |3.8, we obtain that h is a blow-spherical homeomorphism;

(v) If h: (R™,0) — (R™,0) is a blow-spherical homeomorphism, then h is a
semiline homeomorphism;

(vi) The converse of Item (v) is not true. Consider h: (R? 0) — (R?,0) given
by h(x,y) = (z,y 4+ x3). For each semiline { C R? there exists (z,y) €
R2\ {(0,0)} such that ¢ = {(tx,ty);t > 0}. Therefore,

h(tz, ty) { 0,1) , ifz#0

lim ————— =
08 Thte )l ~ | (0,) . fa=0.

This implies that h(£) has a unique direction and thus h is a semiline home-
omorphism. Howewver, it is clear that h is not a blow-spherical homeomor-

phism.

Thus, we see that these two notions share important similarities, but they are dif-

ferent and, moreover, this paper and paper [41] approach different problems.
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4. REGULARITY OF COMPLEX ANALYTIC SETS

Definition 4.1. A subset X C R™ is called blow-spherical regular ot 0 € X if
there is an open neighborhood U of 0 in X which is blow-spherical homeomorphic

to an Euclidean ball.
We remember Prill’s Theorem proved in [55].

Lemma 4.2 ([55], Theorem). Let C' € C" be a complex cone which is a topological
manifold. Then C is a plane in C™.

Theorem 4.3. Let X C C" be a complex analytic set. If X is blow-spherical
reqular at 0 € X, then (X,0) is smooth.

Proof. By Proposition C(X,0) is blow-spherical homeomorphic to C*, where
k = dim X, then C(X,0) is irreducible, since C* is irreducible. In particular,
C(X,0) is a topological manifold. By Prill’s Theorem, C(X,0) is a plane. Hence,
m(C(X,0),0) = 1 and by Theorem kx(C(X,0)) = 1 and using the Remark
m(X,0) = kx(C(X,0))-m(C(X,0),0) = 1. Then, (X,0) is smooth. O

Definition 4.4. A subset X C R™ is called Lipschitz regular (respectively sub-
analytically Lipschitz regular) at o € X if there is an open neighborhood U of
xo in X which is bi-Lipschitz homeomorphic (respectively subanalytic bi-Lipschitz

homeomorphic) to an Euclidean ball.

In the paper [9], the authors defined the notion of Lipschitz regular complex
analytic sets as the sets being subanalytically Lipschitz regular as in the definition
above.

Now, we give another proof of the main theorem of [9].

Corollary 4.5 ([9]). If X C C" is a complex analytic set and subanalytically
Lipschitz regular at 0, then (X,0) is smooth.

Proof. By Proposition[3.8 X is blow-spherical regular, then by Theorem 4.3 (X, 0)

is smooth.

5. INVARIANCE OF THE MULTIPLICITY

In this Section, we give some partial answers to versions of the Zariski’s multi-

plicity conjecture.
5.1. Answers to Questions A1l and A2.

Theorem 5.1 (Reduction for homogeneous sets). The Question A1 has a positive

answer if, and only if, the Question A2 has a positive answer.

Proof. Obviously, we just need to prove that a positive answer to the Question A2

implies a positive answer to the Question Al. Let X,Y C C™ be two complex
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analytic set and ¢ : (X,0) — (Y,0) be a blow-spherical homeomorphism. Let
us denote by Xi,...,X, and Y7,...,Ys the irreducible components of the tangent
cones C(X,0) and C(Y,0) respectively. It comes from Proposition and Theorem
[-4that r = s and the blow-spherical homeomorphism doy : C(X,0) — C(Y,0), up
to re-ordering of indexes, sends X; onto Y; and kx (X;) = ky (V) V 4.

We know that X; and Y; are irreducible homogeneous algebraic sets. Since the
Question A2 has a positive answer, we get m(X;,0) = m(Y;,0) V i. Finally, using
the Remark we obtain m(X,0) = m(Y,0). O

Corollary 5.2. Question A1 has a positive answer in general if and only if dim X <
2.

Proof. Let us prove that Question Al has a positive answer when dim X < 2.
By Theorem it is enough to show Corollary when X and Y are two irre-
ducible homogeneous complex algebraic sets. Thus, we suppose that X and Y are
two irreducible homogeneous complex algebraic sets and they are blow-spherical
homeomorphic. The cases dim X = 0 and dim X = 1 are obvious, since in both
cases m(X,0) = m(Y,0) = 1. Thus, we can suppose that dim X = dimY = 2.
However, since (X,0) and (Y,0) are blow-spherical homeomorphic, then they are,
in particular, homeomorphic and, therefore, by Proposition 3.5 in [30], we obtain
m(X,0) = m(Y,0), since degree and multiplicity are equal for homogeneous com-
plex algebraic sets.

Now, let us prove that Question Al has a negative answer when dim X > 2. In
fact, we are going to prove that for each n > 3, there exists a family of n-dimensional
homogeneous complex algebraic sets {Y;}icz such that for each pair i # j, (Y;,0)
and (Y},0) are blow-spherical homeomorphic and m(Y;,0) # m(Y;,0). In order to
do that, let {p; };cz be the family of odd prime numbers and let n > 3. In the proof
of Theorem in [I3] was shown that there exists a family {X;};ez of 2-dimensional
projective varieties, such that each X; C CP™: is obtained by the embedding of a
very ample bundle L; on X = CP! x CP! of bi-degree (2,p;). For each i € Z we
denote by C(X;) C C™*! to be the affine cone of the projective variety X;. Thus,
it is also shown in [I3] that for each pair i # j the links S; ;= C(X;) N S*™i*1 and
S; == C(X;) N $?™i ! are diffeomorphic to S? x S* and, in particular, S; and S;
are bi-Lipschitz homeomorphic. Moreover, m(C(X;),0) = 4p;, for all ¢ € Z. Let
¢: S; = S; be a bi-Lipschitz homeomorphism. Then, the mapping ®: C(X;) —
C(X;) given by

wor{ s 1

is a blow-spherical homeomorphism. Moreover, for each k € Z we define Y; =
C(Xy) x C"=3. Then the mapping ¥: Y; — Y; given by ¥(x,y) = (®(z),y) for all

(z,y) € C(X;) x C"=3 is also a blow-spherical homeomorphism.
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Thus, for each pair ¢ # j, (Y;,0) and (Y},0) are blow-spherical and this finishes
the proof, since m(Y;,0) = m(C(X;),0) = 4p;, for all i € Z. O

5.2. Multiplicity of analytic sets with 1-dimensional singular set. Let f :
C™ — C be a homogeneous polynomial with deg f = d. We recall the map ¢ :
S2n=1\ f710) — S! given by ¢(z) = % is a locally trivial fibration (see [49],
§4). Notice that, ¢ : C*\ f~1(0) — C\ {0} defined by v(z) = f(2) is a locally
trivial fibration such that its fibers are diffeomorphic the fibers of ¢. Moreover, we
can choose as geometric monodromy the homeomorphism hy : Fy — Fy given by
hi(z) = @ - 2, where Ff := f~1(1) is the (global) Milnor fiber of f (see [49], §9).
In the proof of Theorem 2.2 in [29] was proved the following result.

Proposition 5.3. Let f,g: C"t! — C be two reduced homogeneous complex poly-
nomials. If ¢ : (C™,V(f),0) — (C™,V(g),0) is a homeomorphism and x(Fy) # 0,
then. m(V(f),0) = m(V(g),0).

Definition 5.4. Let f : C*"t! — C be a complex polynomial with

dim Sing(V(f)) =1 and Sing(V(f)) = C1 U...UC,.
Then b;(f) denotes the i-th Betti number of the Milnor fiber of f at the origin,
Wi (f) is the Milnor number of a generic hyperplane slice of f at x; € Cj\ {0}
sufficiently close to the origin we write p'(f) = ZT: wi(f).

Theorem 5.5. Let f,g: (C**1,0) — (C,0) be two reduced homogeneous complex

0)

polynomials such that dim Sing(V'(f;),0) < 1, where f = f1 -+ f is the decomposi-
(CLV(f),0) = (C*T1,V(9),0) is a
),0).

Proof. By Proposition we can suppose X(Fy) = x(F,) = 0 and by additivity of

the multiplicity, we can suppose that f and g are irreducible homogeneous polyno-

tion of f in irreducible polynomials. If o :
homeomorphism, then m(V (f),0) = m(V (g

mials with degree d and k, respectively. By A’Campo-Lé&’s Theorem, we have that
»(Sing(V(f))) = Sing(V(g)) and, in particular, dim Sing(V'(f)) = dim Sing(V(g)).
Thus, we can suppose that d, k > 1.

If dim Sing(V'(f)) = 1, then by Theorem 5.11 in [56], we have

(d=1)"—p'(d=1)+ (-1)"" = p'(f) =0
and
(k=1)" = p/'(k = 1)+ (=1)"" = 1/ (g) = 0.
Thus, we define the polynomial P : R — R by
P(t)=t" = p/(t+ ()" = p/(f), VEER

Since p/(f) = 1/ (g) (see [44], Proposition and Théréme 2.3), then d — 1 and k — 1
are zeros of the polynomial P(t). By Descartes’ Rule, the polynomial P(t) has at
most one positive zero, since p/(f) = p'(g) > 1. Thus, d = k.
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If dim Sing(V(f)) = 0, let f,5:C" x C — C given by f(zgznﬂ) = f(z) and
G(2,2n41) = g(2). Tt is easy to see that m(V(f),0) = m(V(f),0) and m(V(3),0) =

m(V(g),0). Moreover, V(f) = V(f) x C and V(g) = V(g) x C, then we define
¢ (C"x C,V(f),0) = (C" x C,V(9),0) by 4(2, znt1) = (¢(2), 2n+1). We have
that @ is a homeomorphism. Therefore, by first part of this prove, m(V(f),0) =

m(V(g),0) and this finish the proof. O

Corollary 5.6. Let f,g : (C?,0) — (C,0) be two reduced homogeneous com-
plex polynomials. If o : (C3,V(f),0) — (C3,V(g),0) is a homeomorphism, then

Theorems [5.1] and [5.5 give also the following consequences.

Corollary 5.7. Let f,g: (C"*1,0) — (C,0) be two reduced complex analytic func-
tions such that dim Sing(V'(f;),0) < 1, where in(f) = f1 - - - f, is the decomposition
of in(f) in irreducible polynomials. If ¢ : (C"*1 V(f),0) — (C"*1,V(g),0) is a
blow-spherical homeomorphism, then m(V(f),0) =
m(V(g),0).

Corollary 5.8. Let f,g : (C3,0) — (C,0) be two reduced complex analytic func-
tions. If o : (C3,V(f),0) — (C3,V(g),0) is a blow-spherical homeomorphism, then
m(V(f),0) =m(V(g),0).

5.3. Multiplicity of aligned singularities.

Definition 5.9. If h: U — C is an analytic function, a good stratification for h at
a point p € V(h) is an analytic stratification, S = {S4}, of the hypersurface V (h) in
a neighborhood, U, of p such that the smooth part of V(h) is a stratum and so that
the stratification satisfies Thom’s ay, condition with respect to U\ V (k). That is, if
¢i s a sequence of points in U \ V(h) such that ¢; — q € So and T,V (h — h(g;))
converges to some hyperplane T, then T,S, C T.

Definition 5.10. If h : (U,0) — (C,0) is an analytic function, then an aligned
good stratification for h at the origin is a good stratification for h at the origin in
which the closure of each stratum of the singular set is smooth at the origin. If such
an aligned good stratification exists, we say that h has an aligned singularity at the

origin.

Theorem 5.11. Let f,g : (C",0) — (C,0) be two reduced homogeneous complex
polynomials. Suppose that f and g have an aligned singularity at the origin. If p :
(C™, V(f),0) = (C™,V(g),0) is a homeomorphism, then m(V (f),0) = m(V(g),0).

Proof. We can suppose that d = m(V(f),0) > 1 and &k = m(V(g),0) > 1. By
Corollary 4.7 in [46], we have

(=17 =Xy (0)d ~ 1)
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and
(k=1)" =3 X (0)(k = 1)",

where s = dim Sing(V(f)) = dim Sing(V (g)) and A} _(0),--- , A% (0) (vesp. AJ ,(0),---,
A5 .(0)) are the Lé’s numbers of f (resp. g) at the origin (see the definition and
some properties of the Lé’s numbers in [46]). By Corollary 7.8 in [46], we obtain
)\}72(0) =X (0), for i = 0,...,5. Then d —1 and k — 1 are zeros of the following

equation
(1) t"— > Nt =0,
i=1

where \! = },Z(O), for i = 0,...,s. By Descartes’ Rule, the equation (1) has
only one positive zero, since A\! > 0, for i = 0,...,s. Then d —1 = k — 1, i.e,

m(V(f),0) =m(V(g),0). U

Corollary 5.12. Let f,g: (C™,0) — (C,0) be two reduced complex analytic func-
tion. Suppose that f1, ..., fs, 91, ..., gs have an aligned singularity at the origin, where
in(f)=f1--fs (resp. in(g) = g1 - - - gs) is the decomposition of in(f) (resp. in(g))
in irreducible polynomials. If ¢ : (C™,V(f),0) — (C™,V(g),0) is a blow-spherical
homeomorphism, then m(V (f),0) = m(V(g),0).

Remark 5.13. We finish this Section remarking that the Corollaries and
hold true as well when we consider a bi-Lipschitz homeomorphism instead of a
blow-spherical homeomorphism, using Theorem 2.1 in [29] instead of Theorem

5.4. The Question A2 in the case of families of hypersurfaces.

Definition 5.14. The family of complex analytic functions {fi}iejo,1) (resp. the
family of complex analytic hypersurfaces {V (ft)}iejo,1)) is said topologically R-
equisingular (resp. topologically V-equisingular) if there are an open U C C"
and a continuous map ¢ : U x [0,1] = C™ such that o1 := o(-,t) : U = o(U x {t})
is @ homeomorphism, p(0,t) =0 and f; = foow: (resp. p:(V(fi)) =V (fo)) for all
te€0,1].

Remark 5.15. Changing ¢; by <p61 o ¢, we can suppose that g =id.

Definition 5.16. We say that an analytic family {fi}ico,) (resp.
{V(ft)}ieqo,1)) is equimultiple if ordg(fo) = ordo(f;) (resp. m(V(f;),0) = m(V(fo),0))
for allt € ]0,1].

Lemma 5.17 ([21], Theorem 2.6). If the germ of V. = V(f) at the origin is
irreducible, then there exists € > 0 such that for any 0 <r < e, Hi (B, \V;Z) = Z.

Lemma 5.18 ([2I], Theorem 2.7). Let V be a hypersurface, and suppose that the
germ of V' at the origin is irreducible. Let f be an analytic function on B. which
generates the ideal of V' at all points of B.. Then f. : Hi(B.\V;Z) — H1(C\{0};Z)

is a isomorphism for all r, 0 < r < e.
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In the next result, U; and Us are open of C”, V; and V5 are hypersurfaces of C™.

Lemma 5.19 (|2I], Theorem 2.8). Suppose € is chosen as above to serve for both
Vi and Vy. Assume

2 (U17V170) - (U27‘/2a0)

is a homeomorphism. Choose 0 <1 < e and 0 < s < ¢ such that B, C ¢(B.) and
¢(Bs) C By. Then, s : Hi(Bs \ V1;2) — Hy (B, \ Va;Z) is an isomorphism.

Theorem 5.20. Let F' : C" x [0,1] — C be a (not necessarily continuous) sub-
analytic function. Suppose that for each t € [0,1], fi := F(-,t) : C* — C is a
(not necessarily reduced) complex homogeneous polynomial. If {V(fi)}iepo,1] is a

topologically V -equisingular family, then it is equimultiple.

Proof. Let ¢ : U x [0,1] = C™ be a continuous map such that ¢; := ¢(-,t) : U —
o(U x {t}) is a homeomorphism, ¢(0,t) = 0 and ¢:(V(f:)) = V(fo) for all ¢t € [0,1].

Note that there is v € C*\ |J V(f;). In fact, we denote V = F~1(0) C
te[0,1]
C™ x [0,1] and V; = V(f;) x {t}, then V = |J V;. Moreover, V' \ Sing(V) is a
tel0,1]
smooth submanifold of C™ x [0,1] = R®" x [0, 1], then for each z € V \ Sing(V),

there are a neighborhood U, and a diffeomorphism ¢, : B3(0) C R™ — U,, where

m is the dimension of V'\ Sing(V'). Using the co-area formula, we obtain that

2n+1 . T r = ! 2n —1 —
HHL(V) = /V IVp()]d / H2(V (p (6)de = 0,

where p : C" x [0,1] — [0, 1] is the canonical projection (here, H*(X) denote the
Hausdorff measure k-dimensional of the set X). The last equality is why V(f;) is
a complex algebraic set with dimension n — 1 and, in particular, H?"~Y(V(f;)) =
H2(V(f)) = 0. Therefore, m < 2n + 1.

Suppose that m = 2n. Using the co-area formula once more, we obtain that

/ |Vh(z)||dx = / HE Y (WT(t))dt = 0,
B1(0) h(B1(0))

where h = po ¢, : B1(0) — [0,1]. However, |[Vh(z)|| # 0, then H>"(B1(0)) = 0,
but this is a contradiction. Then, m < 2n — 1 and, therefore, H?"(V') = 0.

Thus, H**( |J V(f:)) =0, since the canonical projection 7 : C* x [0,1] — C"

te(0,1]
is a Lipschitz map and #(V) = |J V(fi). In particular, |J V(f;) € C".
te[0,1] tel0,1]
Let L C C™ be a complex line given by L = {Av; A € C}. Then LN( Y V(fi)) =

t€(0,1]
{0}. Moreover, by Lemma[2.8] we can suppose that f; is an irreducible polynomial,

for all ¢ € [0,1].
Fixed t¢ € [0,1], choose 0 < r,s < £ as in Lemma and let v be a gener-
ator of Hy(Dy;Z), where Dy, := {2z € L; 0 < ||z]]| £ §} € B, N Bs and B, C U.
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Then, (fiolp,)+(v) = £m(V(f1),0) and (folp, )«(v) = £m(V(f0),0). In particu-
lar, i.(y) = £m(V (ft,),0), where i : Dy, — B, \ V(f4,) is the inclusion map, since
(fto)s : H1(Bs \ V(ft,); Z) — H1(C\ {0}; Z) is an isomorphism.

However, (¢¢,)« : H1(Bs\V (ft,); Z) — H1(B:\V(fo); Z) is also an isomorphism,
then (¢r,)«(ix (7)) = £m(V(ft,),0). Therefore,

(2) (fO °© 90?‘/0|DL)*(7) = im(v(fto)vo)a
since (fo)« : H1(B: \ V(f0);Z) — H,1(C\ {0});Z) is an isomorphism, as well.

Claim. fjo ¢y, |p, is homotopy equivalent to fy|p, -

In fact, LNV (f;) = {0} for all ¢ € [0,1] and, in particular, for each ¢ € [0, 1],
fi(w) # 0 for all w € Dy. Thus, the function H : Dy, x [0,1] — C\ {0} given by
H(z,\) = foop(z, M) is a homotopy between fy|p, and fy o ¢|p, , since ¢g = id.
In particular, (fo o ¢|p, )« = (folp,, )«. Then

m(V (£10),0) 2 (fo 0 prolne ) (1) = (folby )« () = £m(V(fo),0).
Therefore, m(V (fi,)) = m(V(fo))- O

Remark 5.21. After this paper have been finished the author knew that it had
already been proved in ([25], Chapter 1, Corollary 5.3) that if there exists a complex

lines L such that LN ( J V(ft)) = {0} then {f:} is equimultiple.
te[0,1]

6. CLASSIFICATION OF COMPLEX ANALYTIC CURVES IN THE SPACE

In this Section, we prove that the blow-spherical geometry and the multiplicity
are essentially the same object, in the case of complex analytic curves. Moreover,
we present a classification of the germs of complex analytic curves modulo blow-

spherical equivalence.

Theorem 6.1. Two germs of irreducible complex analytic curves are blow-spherical

homeomorphic if, and only if, they have the same multiplicity.

Proof. Let X, X C C" be two irreducible analytic curves. In this case, C(X,0) and
C(X,0) are complex lines and, thus, m(C(X,0)) = m(C(X,0)) = 1. Therefore,
m(X,0) = kx(C(X,0)) and m(X,0) = kg (C(X,0)).

Thus, if X and X are blow-spherical homeomorphic, then by Theorem |3.4] we
obtain that they have the same multiplicity.

Reciprocally, suppose that & = m(X,0) = m()? ,0). After changes of linear
coordinates, if necessary, we can suppose that the tangent cone of X and of X
is {(£,0) € C; ¢ € C}. Let ¢ : D. — X and ¢ : D. — X be the Puiseux’s

parametrizations of X and X , resp., given by

P(t) = (t*, (1) = (t*, p2(t), ..., o (t))
and

V() = (1%, 6(8) = (1", G (1), vy G (1)),
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where ordy¢; > k and ordo% > k, for i = 2,...,n. Define p : X — X given by
p=1oypl.
Claim. ¢ is a blow-isomorphism such that ¢'|sx: = idgx.

In fact, it is enough to show that for each (x,0) € X' and for any sequence
{Zm}men C X'\ 0X’ such that mlgnoo zZm = (x,0), then we have mlgnoo O (zm) =
(x,0).

Thus, let (x,0) € 0X’ and {zm men C X'\ 0X’ such that n}gnoo Zm = (%,0).
For each m, we write 2z, = (Xm,tm) and s, = ¥~ (t;nXm). Then, we have

em) = (TEE L ottnn] )

||‘P( mXm H

R CAC) e .
<|<sa,$<sm>>||"'( el m)”)

But t,, X = (s, ¢(s,,)) and, hence,

o (sE o(sm) .
Z’"‘(n( ol 1 (’”””)

Therefore, lim ¢'(zp) = lim 2, = (x,0), since ordop > k and ordod > k. O

m—o0 m—o0
Let X,Y C C" be two complex analytic curves. Let Xi,...,X, C€ C™ be the
irreducible components of X and let Y7, ..., Yy C C™ be the irreducible components

of Y. Then, we have the following

Corollary 6.2. X and Y are blow-spherical equivalent if and only if there is a
bijection o : {1,....,r} = {1,..., s} such that

1) m(X;,0) = m(Y,4),0), for alli=1,.

2) there is a homeomorphism h : (C(X, O), O) (C(Y,0),0) satisfying

h(C(X;,0)) = C(Ye(),0), foralli=1,..,r

In Proposition 3.14 in [41] was showed that the number of tangent lines at a
point of a complex analytic curve is a bi-Lipschitz invariant.

Let p1: Zso X P(Z2o) = Zso and pa: Zso X P(Z%,) — P(Z2%,) be the canonical
projections, where P(Zio) denotes the power set of Z>0 and Zso ={n € Z;n > 0};
Let A the subset of Zso x P(Z%,) formed by finite and non-empty subsets A
satisfying the following:

i) p1(A) ={1,...,N} for some N € Z~o;
ii) pa(py ' (€) = {(ker,mer), oo, (Kerys mer,)} C Z2o and kej < ky(j41 for all
je{l,..,r¢—1} and for all £ € {1,..., N}.
iii) rg <rpyq forall £ e {1,..,N —1}.
For a set A € A as above, we define the realization of A to be the curve

Ty MMej

XA—U{xy ) € C% HH y — Lx)k — m(y + Lx)F ) = 0.

j=1m=1
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Thus, by Corollary and definition of A, it is not hard to verify the following

classification:

Theorem 6.3. For each complex analytic curve X C C™ such that 0 € X there

exists a unique set A € A such that (X4,0) is blow-spherical homeomorphic to
(X,0).
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