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Abstract

Bayesian Optimization has been widely used along with Gaussian Pro-
cesses for solving expensive-to-evaluate black-box optimization problems.
Overall, this approach has shown good results, and particularly for pa-
rameter tuning of machine learning algorithms. Nonetheless, Bayesian
Optimization has to be also configured to achieve the best possible perfor-
mance, being the selection of the kernel function a crucial choice. This pa-
per investigates the convenience of adaptively changing the kernel function
during the optimization process, instead of fixing it a priori. Six adaptive
kernel selection strategies are introduced and tested in well-known syn-
thetic and real-world optimization problems. In order to provide a more
complete evaluation of the proposed kernel selection variants, two major
kernel parameter setting approaches have been tested. According to our
results, apart from having the advantage of removing the selection of the
kernel out of the equation, adaptive kernel selection criteria show a better
performance than fixed-kernel approaches.

1 Introduction

IN many machine learning algorithms, parameters need to be fine-tuned in
order to guarantee good performance. Each parameter, discrete or continuous,
influences the overall behavior of the algorithm. Thus, some domain knowledge
is needed to choose a good parameter set. However, when there is no human
expertise, a trial and error strategy may not be the most efficient method to find
a suitable set of parameters. Moreover, some machine learning processes can
take a long time to complete, and manual optimization might be intractable.
Finding the best parameter set by executing the machine learning algorithm
and observing the result can be seen as a nonlinear function optimization prob-
lem. It can be considered that each parameter set is a point or solution (x) in
the search space, and the error of the learning process is the outcome of the ob-
jective function (f(x)). The best parameter set (x*) is the one that minimizes



the error, and can be mathematically expressed as follows:

x* = argmingeacrra f(X) (1)

where x is a vector of ng variables whose components can take values in R or
Z. Note that parameters are bounded, and so is the search space (A).

This optimization problem has some key properties. First, the objective
function is a black-box function as its analytic form is unknown [1]. This prop-
erty reduces the number of algorithms that can be used to solve this problem.
Second, the objective function is frequently very expensive to evaluate. In con-
sequence, it is desirable to achieve the optimum value with as few function
evaluations as possible.

Bayesian Optimization (BO) [2] is a state-of-the-art global optimization tech-
nique suitable for this kind of optimization problems [3,4]. BO is a sequential
optimization algorithm, where the sampling strategy is based on a probability
distribution over all the possible objective functions. This probability distri-
bution acts as a surrogate model, and it is updated every time a solution is
evaluated using the objective function.

Gaussian Processes (GPs) are a popular choice as surrogate models in BO
[5-12]. A GP is a collection of random variables of which any finite set will have
a joint Gaussian distribution [13]. Note that, if we reduce this joint distribution
to one dimension, it will represent a Gaussian distribution over the outcome of
the objective function for a particular solution in the search space.

A GP is completely defined by a mean function and a covariance function.
This covariance function establishes the relation between the objective function
values of each pair of solutions by means of a kernel. These kernels usually
depend on some parameters which also influence the covariance function. Hence,
the election of the kernel and its parameters is crucial for BO performance
when using the GPs as the surrogate model. Since manual election of these
configurations is not an efficient option, it seems reasonable to automatically
select them to avoid another parameter optimization problem.

Although kernel parameter tuning has attracted much attention, kernel se-
lection has not been extensively studied in the BO research field. In most
applications, they are selected in advance by an expert [14-16] or a search al-
gorithm [17], according to the optimization problem.

In this paper we present a general framework for adaptive kernel selection
in BO. We evaluate different approaches that adaptively combine and select
information from multiple kernels to guide the search. For this purpose, these
methods will require managing several GPs in parallel through the whole search
process, each one with a different kernel, which increases the computation cost.
However, we assume this extra computation time will be negligible compared
to the time needed to compute an expensive-to-evaluate objective function.

Previous approaches have investigated ways to eliminate the kernel selection
from the initial BO configuration. For example, [18] also used several GPs in
parallel with different kernels. Instead of choosing one of them at each step, a
mixture of kernels was used in order to find the next point to sample.



Similar strategies have been proposed in portfolio allocation approaches [19,
20] to solve the acquisition function selection problem. In this work we deal
with the kernel selection problems instead.

Other approaches have also tried to manage several surrogate models apart
from the GPs in parallel. [21] carried out an optimization process with multiple
surrogate models, such as radial basis neural networks, linear Shepard, and
several support vector regression methods. All the solutions proposed by these
surrogate models were evaluated in parallel. In this work, a variant of this
method will be proposed, using GPs with different kernel functions as surrogate
models.

The objective of this work is threefold: First, to demonstrate the influence
of the kernel in the performance of the BO algorithm. Also, to introduce new
additional proposals for adaptive kernel selection. And finally, to validate all
the adaptive methods, comparing them against fixed-kernel approaches.

The remainder of the paper is structured as follows: In Section 2, a back-
ground on BO and GPs is provided. Section 3 describes the kernel selection
criteria. In Section 4, the experimental setup is presented, and the results are
discussed in Section 5. Finally, in Section 6, the conclusions and the future work
are presented.

2 Background

2.1 Bayesian Optimization

Bayesian Optimization (BO) [2] is a sequential optimization algorithm suitable
for black-box functions. BO uses a probability distribution over all the possible
objective functions to determine the sampling strategy. As the analytic form of
the objective function is generally unknown, BO treats it like a random function,
and places a prior belief about the space of possible objective functions. Every
time the objective function is evaluated, this prior belief is updated with the
likelihood of having those observations, generating a posterior distribution over
functions. This updating process is based on the Bayes theorem, where the
posterior probability of a model given some evidence is proportional to the
prior probability of the model multiplied by the likelihood of the evidence given
the model. This can be expressed as:

P (f|D1:t) o< P (Dy|f) P (f) (2)

where Dy.; is the data set of solutions and their respective objective function
evaluations {(x;, f(x;))}H_;.

The sampling strategy will use a utility function (u(+)), often called acqui-
sition function, that provides a measure of the utility of each solution. In order
to provide this measure, the acquisition function relies on the probability dis-
tribution over all the possible objective functions. This probability distribution
acts as a surrogate model (SM).

Algorithm 1 illustrates the whole process of the BO algorithm [22].



Algorithm 1 BO algorithm

1. procedure BAYESIAN-OPTIMIZATION(X1)

2 y1 = f(x1) > Sample a random point
3 Dyq ={(x1,11)} > Initialize the data set
4 SM < D4 > Initialize the surrogate model
5: t=2

6 repeat

7 X; = argmaxxed u(x|SM) > Select the next point to evaluate
8 yr = f(xe) > Evaluate the objective function
9: D1t = Dyp—1 U{(xt,41)} > Update the data set
10: SM < D14 > Update the surrogate model
11: t=1t+1

12: until the stopping criterion is met

13: end procedure

The optimization process begins with the sampling of a random solution and
the initialization of the SM. Then, the point that maximizes the expected utility
is selected for sampling. Finally, the data set is augmented with the result of
this evaluation and the SM is updated accordingly. This process is repeated
until the stopping criterion is met.

In the following sections we will show how this acquisition function is gen-
erated from the posterior distribution, when using GPs as SM in BO.

2.2 Gaussian Processes

SMs are a key element in Algorithm 1, as the acquisition function will rely on
them to select the next point. One of the most popular choices in BO is to
use a Gaussian Process (GP) as SM. A GP is a stochastic process, defined by
a collection of random variables, any finite number of which has a multivariate
Gaussian distribution [13]. The key property that makes GPs convenient to
BO, is that, a GP is conjugate to itself with respect to a Gaussian likelihood
function. Thus, after the sampling of several points of the objective function,
the a posteriori distribution over functions remains a GP.

As previously mentioned, GPs can be completely defined by a mean function
(m(x)) and a covariance function, which depends on a kernel (k(x,x’)). Given
that, the GP can be expressed as follows:

f(x) ~ GP(m(x), k(x,x")) (3)

Usually, a non-informative mean function is used, such as m(x) = 0. How-
ever, in more sophisticated approaches, this function may depend on x.

The kernel establishes the covariance between the objective function values
of two different points. In most common kernels used in BO, this covariance
depends on the distance between the points, given by the following translation



invariant distance measure:

k(x,x') = k(r) where r = nz (md_””&f (4)

d=1

where 6;, is the length-scale parameter for each dimension d and it expresses
the relevance of each dimension in the output.

Many kernels have been proposed in the literature, being probably the square
exponential kernel the most popular one. This kernel is expressed as follows:

1
ksp(r) = 0% exp (27“2) +0, (5)

where 6y and 6,, are the amplitude and noise parameters respectively. The am-
plitude is a length-scale parameter for all dimensions, while the noise parameter
allows the GP to adapt the random function when the observations of the ob-
jective function are noisy [23]. Similar to the square exponential, most kernels
depend on certain parameters that will be denoted as ©. In the previous case
© = (6y,6,,0,).

2.3 Acquisition function

Once we have a way to approximate the value of the objective function through
the SM, the acquisition function is placed to select the next point. It assigns a
measure of utility for each point in the search space given the SM. This measure
of utility balances the exploration versus exploitation trade-off.

There are several acquisition functions, such as probability of improvement
[24], expected improvement [25] or GP-UCB [26]. From these, we have chosen
expected improvement (ugy), as it has a competitive performance in BO [27] and
it does not need parameters to configure. This acquisition function measures
the expectation of improving the best result:

0 ifo(x)=0
where (6)
xT)—p(x .
7 % if o(x) >0
0 ifo(x) =0

where xT is the best point so far. ® denotes the cumulative distribution function
(CDF) and ¢ the probability density function (PDF) of the standard normal
distribution (with 0 mean and a variance of 1).

In the previous equation p(x) and o(x) represent the expected value for the
objective function at point x and its variance. At step t + 1, these values are



given by the following equation:

p(x) = m(x) + k(X1 x) kX1, X1:0) 7 f (X1:)
02(x) = k(%,%) — k(X 1., X)k(X1.p, X126) " (%, X12)

(7)

where k(Xj.,x) and k(x, X;.;) are vectors with the value of the kernel function
between x and all the previously evaluated solutions. k(X;.¢, X1.¢) is the matrix
of the kernel values between all the pairs of the previously evaluated solutions.

3 Adaptive Kernel Selection Criteria

As discussed in Section 1, kernel parameter tuning has been already addressed
in the literature and efficient methods have been proposed for it [28,29]. How-
ever, even when kernels do play a main role in the performance of BO, kernel
selection has not attracted too much interest. We propose to carry out an opti-
mization process with several GPs in parallel (each one with a different kernel)
and adaptively choosing one of them. By adaptively choosing the kernel dur-
ing the optimization process, there is no need to select a kernel in advance.
Moreover, this strategy is expected to improve the search results of fixed-kernel
approaches, as the application of many diverse models may mitigate over-fitting.
In this section, seven different methods for adaptive kernel selection will be pro-
posed and discussed.

Our algorithm resembles Algorithm 1 with two changes. First (see Algorithm
2), there will be several independent GPs working in parallel, one per kernel
function. At each step ¢, each GP k will suggest one solution (x; ) by optimizing
the corresponding acquisition function. Second, a choose function is defined in
order to select the next point to evaluate (x; ;+) between all the points proposed
by the GPs. Different criteria can be implemented in the choose function,
leading to different BO behaviors. Finally, the data set, Dy.¢, will be augmented
with the selected solution, and all the GPs will be updated accordingly. Note
that all the GPs keep the same data set. As there is one kernel per GP, from
now on, we will refer to these surrogates as either kernels or GPs. Algorithm 2
describes these modifications, where ng refers to the number of GPs. The whole
process is also illustrated in Figure 1.

The computational cost of Algorithm 2 is linked to the update of the GPs,
since the hyperparameters of each kernel must be adapted every time a solution
is added to the data. Thus, the number of GPs indicates the complexity added to
Algorithm 1. Nevertheless, in those cases where the evaluation of the objective
function is very expensive, the relative cost of both algorithms is negligible.

In this work, we propose six new strategies to implement the choose function,
namely Random Uniform, Best Likelihood, Best Utility, Weighted Best, Parallel
Test and Utility Mean. Additionally, we include the approach proposed by [18],
which we will refer as Weighted Mizture.



Algorithm 2 Adaptive Kernel Selection algorithm
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20:
21:

procedure ADAPTIVE-KERNEL-SELECTION(X1)

y1 = f(x1)

Dl:l = {(Xlayl)}

for k =1 to n, do
GP, ) < D1

end for

t=2

repeat
for k =1 to n, do

Xy, = argmaxxea u(x|GP.y)

end for

kT = choose(1 : ny)
Xt = Xt,k+

ye = f(xt)

Dyt = Dig—1 U {(xe,44)}
for k =1 to n, do

GPi i < Dy
end for
t =t+1

until the stopping criterion is met
end procedure

> Sample a random point

> Initialize the data set

> Initialize the G Ps

> Each GP suggests a sol.

> Choose a solution

> Evaluate the objective function

> Update the data set
> Update the GPs

GPy =

update D] r=targmaz(u(-))

GP,

M

Fargmaz(u(-))
o D][6,] K3 targmaz(u(-))

M choose(-)

Xty Yt

P10 F

GPy

(D]es]K

Hargmaz(u(-))

Figure 1: Adaptive kernel selection diagram. Although the main loop of the
algorithm remains the same, several acquisition functions are optimized simul-
taneously, each one related to a different kernel. Then, according to the choose
function, the best point is selected, evaluated and added to the data set.



3.1 Random Uniform

Random Uniform is the simplest strategy. At each step t, a GP is randomly
selected. The next point to evaluate (x; ;+) will be proposed by the acquisition
function using the selected GP:

kT ~U{1,ns} (8)

In this algorithm, important performance gains can be achieved if the GP
that suggests the next solution to sample is selected beforehand, since it is only
necessary to update that GP.

3.2 Best Likelihood

This approach relies on the Gaussian likelihood function (£). After the adap-
tation of the kernel parameters, each GP will have a different likelihood value
given the data. The next point to evaluate will be selected according to the GP
with the highest likelihood value:

kT = arg max L(GP,y) (9)

3.3 Best Utility

Based on the acquisition function, the expectation of improvement of each GP
is compared. All the acquisition functions are optimized, one per GP, and each
one proposes a new point to evaluate (x¢ ). The point with the highest utility
(x¢ x+) is selected for the next evaluation:

kT = argm}gxu(xt7k|GPt,k) (10)

3.4 'Weighted Best

The Best Utility criterion selects the most optimistic GP. However, it may hap-
pen that some GPs promise good utility values and, when evaluated, the im-
provement is not as good as expected. When this behavior is repeated, it may
lead to poor results. Thus, a weighting system is introduced to reduce the
influence of optimistic kernels:

Et = argmgxwt,ku(xt’k\GPt,k) (11)

where wy, ; is the weight assigned to GP;j, at evaluation ¢.

Initially, all weights are set to 0.5. Every evaluation, the weight of the GP
that proposed the evaluated point is updated, considering the relative improve-
ment produced with respect to the best result so far as shown in Equation (12).
The CDF of the standard normal distribution (®) is used to limit the update



rate of the weights between [0.5,1.5]. Thus, the kernels that are penalized are
still able to improve their weights if they provide good predictions.

f(x+)7f(xt,k)) ) : _ .t
S (o (LFdsesd) +05) itk =k .
, Wi k otherwise

where x* is the best point so far.

3.5 Parallel Test

This method is based on the approach proposed by [21], using GPs with different
kernel functions as surrogate models. Instead of selecting only one solution that
is expected produce the highest improvement, in this approach all the solutions
are selected for evaluation. Then, all the GPs are updated with the results of
those evaluations.

If the objective function is expensive to sample but it can be evaluated in
parallel with no additional cost, this algorithm produces major savings in terms
of computational cost.

3.6 Utility Mean

In this method a mixture of acquisition functions is used to choose the next
point to sample. We implement this approach assigning the same weight (1/ns)
to each acquisition function, i.e. computing a mean utility. Note that, in this
case, the loop in line 9 of Algorithm 2 is no longer needed, as the acquisition
functions are all maximized together. The next point to evaluate will be the
one that maximizes the following function:

1 N
Xtk = arglnax (n ZU(X|GPt,k)> (13)

€A
8 k=1

3.7 Weighted Mixture

Similar to the previous approach, a mixture of kernels is used to choose the next
point to sample. However, as suggested by [18], in this approach the acquisition
functions are weighted by their likelihood ratios:

ns
= P
Xt,k+ = AlgLaax (Z wy pu(x|G t,k))

k=1
where (14)
Wy = L(GP, )
’ St L(GPyy)



4 Experimental setup

The objective of the experimentation is to validate the adaptive kernel selection
criteria shown in the previous section. They will be compared against fixed-
kernel approaches in six synthetic and real-world optimization problems.

The optimization strategies are divided into two groups, the adaptive strate-
gies and the fixed-kernel strategies. Each adaptive optimization strategy will
follow Algorithm 2, with one of the choose functions explained in Section 3.
Fixed-kernel optimization strategies will not change the kernel function during
the optimization process. They will follow Algorithm 1, each with a different
kernel. In addition, a fixed-kernel optimization strategy is introduced, called
FizedAtRandom, which simulates a random kernel selection at the beginning of
the BO run.

Table 1 shows the six well-known kernels [13] used in the experiments.

Kernel function expressions

Exponential kp(r) =02 exp(—r) + 0,

~-exponential kpy(r) =63 exp (—r7) + 0,

Squared Exp. ksp(r) =03 exp (—51%) + 6,

Matern 32 knrsa(r) = 02 (1 + \/gr) exp (—\/?:r) 40,
Matern 52 kars2(r) = 63 (1 + Vo1 + %7“2) exrp (—\/57") +0,
Rat. Quadratic | kpo(r) =63 (1 + 512) " + 0,

Table 1: Well-known kernel functions. 6y and 6,, are the kernel hyperparameters
called amplitude and noise respectively. In the y-exponential kernel v = 1.5 was
set and in the Rational Quadratic kernel oo = 2.

Experiments have been conducted on six optimization problems included in
the HPOIib [30] parameter optimization library. These optimization problems,
shown in Table 2, have been optimized using all the previously described adap-
tive and fixed-kernel strategies. Each optimization process was carried out until
the maximum number of function evaluations (Maz. Fwval.) was reached. At
every function evaluation, the best result so far (f(x*)) is recorded. Due to
the random choice of the first solution and the stochastic nature of the kernel
parameter setting methods, each experiment was repeated 30 times.

The proposed choose functions were implemented as part of a software
framework, called BOIib', specifically developed for this work. Similar to Hy-
peropt [31], DiceKriging R package [32], Spearmint [33], BayesOpt [34] and
PyBO [35], it implements the most common BO variants. Moreover, it includes
the choose functions introduced in Section 3.

To validate our framework, in a first step BOlib was compared to Spearmint
[33], a reference software for BO-GP. The same BO configuration proposed by
the authors of Spearmint was used in a preliminary experimentation, and the

Lhttps://pypi.org/project/bolib/
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Benchmarks Params Dataset Max. Eval.
Branin-Hoo 2 continuous - (synthetic) 200
Hartmann 6D 6 continuous - (synthetic) 200
LDA on grid 3 discrete wikipedia articles 50
SVM on grid 3 discrete UniPROBE 100
Log. Reg. (no cv) 4 continuous MNIST 100
Log. Reg. (cv) 4 continuous MNIST 100

Table 2: Optimization problems used as benchmarks.

results showed no statistically significant differences between both implementa-
tions.

The experimentation shown in this work, uses the following BO configura-
tion. First of all, the expected improvement is used as the acquisition function.
Regarding GPs, a constant mean function is used m(x) = 6, where 6, is
selected along with the kernel parameters ®. For this kernel parameter selec-
tion, the most common approaches are the optimization of the likelihood func-
tion (OPT), and the Markov Chain Monte Carlo approach (MCMC) described
by [29]. We run our experiments using both techniques OPT and MCMC. Fi-
nally, to maximize the acquisition function, candidate points are sampled from
a low discrepancy Sobol sequence [36].

5 Results

The experimentation was performed in two steps according to the objectives
of this paper. First, an initial set of experiments was performed with fixed-
kernel strategies to confirm the influence of the kernel in the performance of
the BO algorithm. Second, adaptive kernel selection strategies were added and
compared to the former ones.

5.1 Kernel influence

As previously mentioned, and pointed out in the literature, kernel selection
is a key aspect in BO [13]. Hence, before we start introducing the adaptive
selection strategies, fixed-kernel strategies were tested. In this first experiment
only the OPT kernel parameter optimization method was used. Recall that
these fixed-kernel strategies have the same BO configuration, except for the
particular parameters of each kernel. They were tested in all the optimization
problems introduced in Section 4. The best result so far was recorded for every
function evaluation.

Figure 2 shows the results of this first experiment. As each optimization
process with the same BO configuration was repeated 30 times, median values
are shown for each one.

11
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Figure 2: At each evaluation step, the best objective function value found is
shown. Each colored line illustrates the median value of all runs for each Kernel.

According to this figure, there is no kernel that outperforms the rest in all
the problems. Apart from the differences in the final result, the results also differ
in their evolution throughout the process. The kernels that show an exploratory
behavior in some problems, tend to be more oriented to exploitation in others.
For example, the Exzponential kernel achieves good results in Logistic Regression
problems from early stages of the optimization, while in Branin-Hoo and LDA
on grid problems shows the worst behavior among all the kernels in any stage
of the search. In summary, it can be said that the kernel highly influences the
BO dynamic, and that there is no rule-of-thumb to choose the most appropriate
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kernel for each problem.

5.2 Adaptive/Fixed comparison

As choosing the best performing kernel for a particular problem is not an easy
task, the adaptive kernel selection strategies described in Section 3 are intro-
duced and compared to the fixed-kernel approaches. The best result per run
was recorded as performance metric for each strategy.

First, an OPT/MCMC comparison was made. Both kernel parameter se-
lection approaches were tested for each optimization strategy, one against the
other, using Wilcoxon test [37] (o = 0.05). For the sake of clarity, we per-
formed the following tests with OPT approaches only, taking into account that
the results obtained with these methods were better than those achieved with
methods using MCMC. Then, in order to analyze if there are significant dif-
ferences between the strategies, a Kruskal-Wallis test (K-W) [38] was carried
out (« = 0.05). Finally, in problems where significant differences were achieved,
post-hoc tests were performed. Particularly, SCMAMP R package [39] was used
to apply the Wilcoxon signed rank test as in [37], while p-values were corrected
using Shaffer’s (static) procedure, as in [40].

In Table 3 all the optimization strategies are shown, ordered by the average
results achieved in each optimization problem. Overall, adaptive strategies show
a better performance than fixed-kernel approaches. Particularly, they occupy
the highest (best) positions in the ranking for 5 out of 6 problems (although in
SVM on grid no statistical differences were found). In general terms, Parallel
Test seems to be the best performing technique, as it outperforms the rest in
Branin-Hoo and Log. Regression (cv) problems and it is the second best in
Hartmann 6D and SVM on grid. We found that the variance in the results of
the proposed approaches is similar to the fixed-kernel methods. Therefore, the
sensitivity of the initial conditions for the proposed algorithm is comparable to
the traditional BO.

Regarding the kernel parameter selection strategies, in most cases, there are
no significant differences. However, in the synthetic approaches some of the
optimization strategies perform better using the MCMC approach, while in the
real-world problems, better results were achieved using OPT.

6 Conclusions and Future Work

While BO along with GPs is acknowledged to be an efficient approach to deal
with optimization problems with a limited budget of function evaluations, the
question of kernel selection remains one of its main limitations. This question
is particularly critical for machine learning parameter selection problems, for
which the manual selection of parameters is not an affordable option in many
real-world applications. In this paper we have proposed and analyzed different
strategies for adaptive kernel selection, showing, based on an extensive exper-
imentation and a statistical analysis of the results, that automatic selection

13



Branin-Hoo* Hartmann 6D* Log. Regression (no cv)*
Score| Strategy Comp. | Score| Strategy Comp. | Score| Strategy Comp.
10 ParallelTest - 10 RandomUniform MCMC 1 Exponential OPT
10 Matern32 - 9 ParallelTest MCMC 0 BestUtility OPT
10 RandomUniform MCMC 7 ‘WeightedMixture MCMC 0 ‘WeightedMixture OPT
8 ‘WeightedBest - 5 UtilityMean - 0 ‘WeightedBest OPT
7 Matern52 MCMC| 3 BestUtility - 0 ParallelTest OPT
6 SquaredExponential - 3 ‘WeightedBest MCMC 0 RandomUniform -
6 RationalQuadratic2 - 3 RationalQuadratic2 - 0 UtilityMean OPT
5 FixedAtRandom - 2 GammaExponentiallb | - 0 GammaExponentiall5 | -
3 GammaExponentiall5 | - 1 Matern32 MCMC| 0 RationalQuadratic2 -
3 UtilityMean MCMC 1 Matern52 MCMC| 0 FixedAtRandom -
0 Exponential - 0 FixedAtRandom MCMC| 0 Matern52 -
0 ‘WeightedMixture - 0 Exponential - 0 SquaredExponential -
0 BestUtility MCMC 0 SquaredExponential MCMC| 0 Matern32 -
0 BestLikelihood - 0 BestLikelihood - 0 BestLikelihood -

Log. Regression (cv)* LDA on grid* SVM on grid

Score| Strategy Comp. | Score| Strategy Comp. | Score| Strategy Comp.
3 ParallelTest OPT |0 UtilityMean OPT | O ‘WeightedBest OPT
1 BestUtility OPT |0 ‘WeightedMixture OPT |0 ParallelTest -
1 ‘WeightedBest OPT |0 Matern32 - 0 BestUtility -
0 Exponential OPT 0 FixedAtRandom - 0 Exponential OPT
0 RandomUniform OPT |0 RandomUniform - 0 RandomUniform -
0 RationalQuadratic2 - 0 ParallelTest OPT |0 Matern52 OPT
0 Matern52 - 0 RationalQuadratic2 - 0 BestLikelihood OPT
0 FixedAtRandom - 0 Matern52 - 0 Matern32 -
0 UtilityMean OPT |0 SquaredExponential - 0 ‘WeightedMixture -
0 BestLikelihood - 0 GammaExponentiall5 | - 0 GammaExponentiall5 | OPT
0 Matern32 - 0 BestUtility - 0 UtilityMean -
0 ‘WeightedMixture - 0 ‘WeightedBest - 0 FixedAtRandom -
0 SquaredExponential - 0 BestLikelihood - 0 SquaredExponential -
0 GammaExponentiall5 | - 0 Exponential - 0 RationalQuadratic2 -

Table 3: Results of the statistical tests. The

asterisk next to the problem ti-

tle indicates that statistical differences where found in the K-W test. The left
column shows the score for the OPT configurations per optimization problem.
This score denotes the number of times that the indicated configuration is sig-
nificantly better than other configurations. In the middle, the names of the
strategies are shown, where the adaptive ones are represented in bold. The
results of the OPT/MCMC comparison are shown in the right most column.

of kernels is indeed a more efficient approach when considering optimization

problems with different characteristics.

This work has made the following contributions:

e We have introduced six new adaptive kernel selection criteria (presented
in Section 3) that implement different ways of using the information about
the kernels for selecting the points to be sampled.

e An extensive evaluation of the introduced algorithms has been made, in-
cluding a comparison with BO that uses fixed kernels on six commonly
used benchmark problems, and the analysis of the results has been sup-

ported by rigorous statistical tests.

e Our research has provided insights about the difference between BO meth-
ods when using the optimization of the likelihood function (OPT) and the
MCMC approach for kernel parameter selection. Our results show that in
most real-world scenarios OPT is still the best choice for BO.
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e A modular software framework, called BOIlib, has been implemented. This
software incorporates some of the best features of similar implementations
(e.g. HPOIlib) and implements the adaptive methods investigated in the
paper. BOIib can be easily extended to include other optimization prob-
lems and functionalities.

Our main message is that the use of adaptive techniques can be incorporated
to BO in a straightforward way to obtain a more robust behavior than BO with
fixed kernels along diverse problems. When considering the application of BO in
the context of machine learning methods that can be applied to problems with
different characteristics, the inclusion of adaptive methods may be essential.
Regarding the particular choice of the adaptive strategy, we have shown that
Parallel Test produces good results.

In spite of the achievements, some further research is also suggested. First,
only stationary kernels have been studied. According to previous studies in
non-stationary kernels [41], they can also produce good results in several opti-
mization problems. Second, some aspects of the proposed adaptive kernels can
be analyzed more in depth. For example, other weight functions can be applied
in Weighted Best and Weighted Mixture, comparing the actual improvement to
the previously suggested utility. Finally, the proposed method can be general-
ized to other stochastic processes other than GPs.
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