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Abstract

According to ecological niche theory, species response curves are unimodal with
respect to environmental gradients. A variety of statistical methods have been de-
veloped for species distribution modelling. A general problem with most of these
habitat modelling approaches is that the estimated response curves can display biolog-
ically implausible shapes which do not respect ecological niche theory. This work pro-
poses using shape-constrained generalized additive models (SC-GAMs) to build species
distribution models under the ecological niche theory framework, imposing concavity
constraints in the linear predictor scale. Based on a simulation study and a real data
application, we compared performance with respect to other regression models without
shape-constraints (such as standard GLMs and GAMs with varying degrees of freedom)
and also to models based on so-called “Plateau” climate-envelopes. The imposition of
concavity for response curves resulted in a good balance between the goodness of fit
(GOF) and agreement with ecological niche theory. The approach has been applied to
fit distribution models for three fish species given several environmental variables.
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Highlights

e Shape-constrained GAMs are proposed for niche-based species distribution modelling.
e Methods are tested and compared via Monte Carlo simulation and using real data.

e Results show good balance between GOF and agreement with ecological niche theory.
e Shape-restricted and non-restricted explanatory variables can be combined.

e Spawning habitats of 3 pelagic species are modelled as a multivariate case study.

1 Introduction

Species distribution models (SDM) relate species occurrence or abundance with information
on environmental conditions and spatial characteristics of locations where the species was
found (Elith and Leathwick, 2009). These models can be used to predict or to have a better
understanding of the species distribution (Halvorsen, 2012; Petitpierre et al.,[2017). They are
widely used in several fields, such as ecology, evolutionary biology and conservation (Guisan
et al., 2013; Peterson et al., 2011; |Zimmermann et al., [2009). In recent years there has
been an increased interest in understanding how future environmental changes may impact
species distribution; the most highly cited papers have focused on developing novel methods
to better predict environmental suitability for species and to improve model performance
(Barbosa and Schneck, 2015).

A variety of statistical methods have been applied to species distribution modelling (e.g.
Guisan and Zimmermann), 2000; Merow et al., 2014) such as regression-based models (Guisan
et al.,[2002; [Hastie and Tibshirani,[1990)), environmental envelopes (BIOCLIM, Busby| (1991)),
Cerdeira et al. (2018)), mechanistic approaches (CLIMEX, Kriticos et al. (2015)), neural
networks (Pearson et al., 2002) and maximum entropy models (MAXENT, |Phillips et al.|
(2006))). However, most of these methods can result in species responses along environmen-
tal gradients that are convex or multimodal, and consequently not ecologically meaningful
or otherwise difficult to interpret (see below for further discussion).

It has been often claimed that species distribution models need a stronger theoretical back-
ground (see |Austin, 2002} Elith and Leathwick, 2009; [Jiménez-Valverde et al. 2008, for
a detailed review). Recently, several authors have attempted to clarify the relationship
between species distribution models and the concept of ecological niche (Kearney, 2006} Pe-|
terson et al., 2011; Pulliam| 2000; Soberon and Nakamura, [2009). Although the debate is
still open (Halvorsen, 2012)), it is agreed that the resulting statistical model should be eco-
logically plausible (Elith and Leathwick, [2009). According to ecological niche theory, species
distributions should provide unimodal relationships with respect to environmental gradients
(Hutchinson|, [1957). When environmental conditions become less favourable, various stages
of the life cycle (feeding, growth and reproduction) are affected, resulting in lower presence
of the species (Austin, [1987; Helaouet and Beaugrand, [2009)). [Hutchinson| (1957)) defined the
niche as an “n-dimensional hypervolume”, where the dimensions are environmental states
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within which a species is able to survive. Hutchinson (1957) also distinguished “fundamen-
tal” from “realized” niches, to define the conditions under which species could survive and
those where they actually live, respectively: (1) the fundamental niche is determined by
the physiological range of tolerance of the species to environmental factors in the absence
of biotic interactions (e.g. competition, predation or parasitism), and (2) the realized niche
is the part of the fundamental niche actually occupied by the species, given factors such
as the presence of competitors/predators and dispersal limitations of the species (Soberén
and Arroyo-Penaj, |2017). As a result, the realized niche tends to be smaller than the fun-
damental niche (Soberén and Arroyo-Penaj, 2017). Although the fundamental niche should
be unimodal, the realized niche can be bimodal when the centre of the niche gradient is
affected by interspecific competition or when the species is not occupying the most suitable
habitat due to dispersal limitation (Austin, [2002)). However, scarce species data and the
heterogeneous distribution of species occurrence along gradients are the most problematic
situation leading to multimodal and ecologically non-meaningful relationships with environ-
mental variables. For instance, data on occurrence of a fish species which spawns in two
river mouths, separated by a latitudinal distance, can easily lead to a bimodal distribution
along a temperature gradient.

The concept of niche has evolved after the 80s and incorporates the impacts of the organ-
ism on environmental factors (Chase and Leibold|, 2003) to better explain competition and
species coexistence (Pochevillel |2015). To the pragmatic purpose of modelling species distri-
bution, this can include several types of variables, as well as those defining the niche namely,
direct variables, resource variables, and indirect variables (Austin and Smithl 1990; Guisan
and Zimmermann|, 2000; Huston, |1994). Direct variables are those environmental factors
having a direct physiological impact on the species but are not consumed, typical examples
being pH affecting plant growth or temperature affecting fish growth. Indirect variables
do not have a direct physiological impact, but might be highly correlated with the species
through the combination of related factors effects. For example, elevation can affect species
presence through the combined effect of atmospheric pressure, temperature and UV radi-
ation, and have ecophysiological implications. Resource variables refer to limiting factors
(i.e. essential resources consumed by the species, such as food and oxygen) and biotic inter-
actions (competition, predation or mutualism). The first two types (direct and indirect) of
variables are within the group of variables that do not interact dynamically with the species
and hence are not affected by species abundance. These were termed “scenopoetic” vari-
ables by [Hutchinson| (1978]). In contrast, resource variables interact with the species and are
affected by species presence and abundance. In the context of species distribution models,
several authors (Austin, 1980} [2007; Austin and Smith, [1990) have discussed the shape of
response curves and how this depends on the variable type. While there is no theoretical
expectation regarding the shape with respect to indirect variables, they advocated that the
fundamental niche as a function of direct variables should be unimodal (symmetric or not),
and for limiting factors should be logistic or Michaelis-Menten saturation curves. SDMs
based on non-scenopoetic variables might require more elaborate mathematical methods to
include species interaction (Peterson et al |2011]). Thus, species distribution models need to
combine environmental variables that are expected to meet the ecological niche theory with
other explanatory variables having no shape restrictions.



Commonly used methods to build species distribution models in the ecological niche theory
framework include regression-based methods, such as Generalized Linear Models (GLMs)
and Generalized Additive Models (GAMs). They have been well-documented, both theo-
retically and empirically (Coudun and Gegout|, 2006; Guisan et al., 2002; |Lehmann et al.|
2002; [Scott et al., 2002)). Generalized Linear Models (Guisan et al., 2002; McCullagh and
Nelder, [1989) are widely used in statistical ecology as a simple parametric technique that
may allow symmetric bell-shaped ecological response curves (Coudun and Gegout) 2006}
Jamil and Ter Braak, 2013). However, this can be too restrictive as often non-symmetric
responses have been observed (Austin) [2007; [Huisman et al. |1993)). Generalized Additive
Models are also very popular as semi-parametric and more flexible regression-like approaches
(Austin), 2002; Heikkinen and Makipaa, 2010). [Pedersen et al. (2019) proposed an extension
of GAMS called hierarchical GAMs (HGAMs) to model intergroup variability in ecology;
these models allow smooth functions to vary between groups and can be used to test if the
smooth functions are common across groups. In general, GAMs and related extensions allow
flexible non-symmetric shapes, but they can result in implausible response curves, contrary
to the ecological niche theory framework. Current practice tends to use low degree smooth-
ing functions, such as splines with a low number of knots, in order to obtain response curves
in agreement with niche theory (Chust et al. [2014)). However, restrictions on the number
of knots and/or the degrees of freedom (by altering the smoothing parameter within GAMs,
say) do not guarantee this aim, and a visual evaluation of resulting fitted curves is still re-
quired.

Other attempts to build species distribution models under ecological niche theory include
Beta functions (Minchin, |1987) and Huisman-Olff-Fresco (HOF) curves (Huisman et al.|
1993), fitting unimodal and monotonic response curves with or without symmetry. A sim-
ulation study by |Oksanen and Minchin| (2002)) concluded that HOF curves obtained better
results than Beta functions and Gaussian response models which provided biased or inap-
propriate models. However, they are only allowed for single-variable analysis. Alternatively,
the “Plateau” method proposed by Brewer et al.| (2016)) is an environmental envelope model
based on a concave piece-wise polynomial function. While providing an ecologically mean-
ingful method (unimodal even if not symmetric), this approach can be easily extended to
multiple environmental variables accounting for potential interactions between the climatic
variables.

Shape-constrained generalized additive models (or simply SC-GAMs, |[Pya and Wood, 2014)
are based on the same statistical framework as GLMs and GAMs regression methods, but
they allow us to incorporate monotonicity and concavity shape-constraints in the component
functions of the linear predictor of the GAMs. Imposing concavity constraints should be an
effective alternative to fitting non-symmetric parametric response curves, while retaining the
unimodality constraint, required by ecological niche theory, for direct variables and limiting
factors. Recently, several successful applications of shape-constrained models to incorporate
prior knowledge about the shape of the response curve along variables of interest have been
found related to animal activity, pollution mortality, tree height-diameter relationships or
petroleum engineering (Guevara et al., 2018; Hofner et al., 2016; |Schmidt et al., [2018]).
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The objective of this work is to assess the performance of SC-GAMs in fitting species distri-
bution models under the ecological niche theory in comparison with other approaches. We
considered two different implementations of SC-GAMs: the maximum likelihood implemen-
tation from the scam R R Core Team| (2018) package (Pya, 2018); and the component-wise
boosting approach from the mboost R package (Hothorn et al., 2018). First, we conducted
a simulation study to assess performance in terms of goodness-of-fit and agreement with
ecological niche theory—comparisons with respect to GLMs, GAMs with different degrees
of smoothness, and the “Plateau” method. All methods were evaluated within a real case
study, modelling the probability of presence of sardine eggs in the Bay of Biscay as a function
of sea surface temperature. Secondly, SC-GAMs were used to model egg distribution at the
spawning of three pelagic species as a function of several environmental gradients, combining
direct and indirect variables, and accounting for model selection and validation.

2 Methods

2.1 Regression models for presence-absence data

We considered six different approaches for fitting species distribution models. In all of them
species presence-absence data were modelled as a function of an environmental variable x.
Let Y be the response variable coming from a Binomial distribution with probability of
presence p(z). The logit transformation of p(z) is a function of the environmental variable
x (presented here using a single explanatory variable for simplicity):

o (12505) = gto). )

1 —p(
The simplest model is a binary logistic generalized linear model (GLM, McCullagh and
Nelder [1989]Oaksenen et al.||2001; |Ter Braak and Looman |1986) where the linear predictor
is a second order polynomial of the environmental variable:

g(z) = Bo + Bz + Baz®. (2)

For 8, < 0, this results in a unimodal and symmetric relationship between the species re-
sponse and the environmental variable.

Generalized Additive Models (GAMs, Hastie and Tibshirani|1990; Wood|2017) are a general-
ization of GLMs, where the linear predictor is a smooth function of the explanatory variable.
In a binary regression model with logit link, we have the form:

9(x) = Po + f (), (3)

where f(x) is a smooth function. There are several ways to represent f(z), from kernel
smoothing or local linear methods to splines-based regression methods. We describe the
latter approaches, where f(x) is given by a sum of some basis functions. Hence for a single



covariate x, we have:
K
f(z) = Z 01 By (), (4)
k=1

where 0, are the regression coefficients and By(x) a basis function of x. There are several
choices for the basis functions (e.g. polynomials of a certain order, natural splines, cubic
splines or B-splines). Splines are flexible tools for smoothing in general. A spline of degree d
is a function formed by connecting polynomial segments of degree d so that the function is
continuous, the function has d — 1 continuous derivatives, and the dth derivative is constant
between knots. B-splines (de Boor, 1972)) are a popular choice given that they are easy to
compute and they have good numerical properties. In regression splines, estimated regression
coefficients, éj, are obtained by least squares (i.e. by minimizing the residual sum of squares)
and hence the shape of a spline can be controlled by carefully choosing the number of knots
and their exact locations in order to allow flexibility (e.g. fix the locations of k knots at
quantiles of z), and avoid overfitting where the trend changes little. However, in many
situations, choosing the number of knots and their locations is a very difficult problem to
solve.

Alternatively, smoothing splines find the solution of f which minimizes:

S (i — () + A / 1) dz,

i=1

where the minimizer f(z) is a natural cubic spline, with knots at each sample point 1, ..., T,
and A [ f”(z)2dx is the roughness penalty. The parameter A, controls the amount of smooth-
ness and takes values 0 < A < oo, for A — oo; large values of A result in strong penalisation
(a straight line in the limit) and for values \ close to 0 the resulting fit is a wiggly function.
The selection of A can be performed by (generalized) cross-validation or information criteria
such as Akaike or Bayesian information criteria (Akaike, 1974} Schwarz et al., [1978)). How-
ever, the main drawback of smoothing splines is the dimensionality for large n (Green and
Silverman, 1993)).

In contrast to smoothing splines, low-rank approximations have been proposed in the litera-
ture (see Ruppert et al., 2003, for a complete overview), which are called penalized regression
splines. For instance, thin plate regression splines (Wood, 2003) are constructed by a simple
transformation and truncation of the basis that arises from the solution of the thin plate
spline smoothing problem. P-splines (Eilers and Marx, 1996)) are also a low-rank approxima-
tion and a simpler alternative to smoothing splines. They consider moderately large B-spline
basis functions of a size smaller than the observations and modify the penalty term by a
discrete order difference penalty on adjacent coefficients, i.e. the difference operator acts on
the regression coefficients, A0; = 0, —0;_1, A*0; = A(Af;) = 0; —20;_1+60;_5 and in general
A%; = A(AY10;) (see [Eilers et al., 2015, for further details).

The R package mgcv (Wood, |2019) is the most popular R package to fit GAMs. The use of
GAMs has already been proposed in the literature on habitat modelling and ecological niche
theory (Chust et al) 2014). Generally, the species response curve is not constrained to a



particular shape, but instead is controlled by limiting the flexibility of the model by selecting
the number of knots. GCV (Generalized Cross Validation) criterion is used for smoothing
parameters estimation as default method in the used mgcv package.

The methods proposed in this paper, SC-GAMs, are based on generalized additive models,
allowing us to impose shape-constraints on the linear predictor function. In [Bollaerts et al.
(2006)) or |[Eilers| (2017) an algorithm based on asymmetric penalties in an iterative proce-
dure is proposed. A similar approach is considered in [Pya and Wood| (2014) using shape
constraints (monotonicity, concavity/convexity or mixed-typed constraints) with B-splines
on the first or second derivates of the smooth terms. The latter methods are implemented
in the R package scam in a more general framework, e.g. including bivariate tensor product
smooths (Pyal 2018).

For fitting species distribution models in agreement with ecological niche theory, we im-
posed concavity constraints in the linear predictor scale (f”(x) < 0) for which the condition
6; < 6;_1 suffices (see Pya and Wood, 2014, for further details). As proved in Annex C, this
implies unimodal probability response curves. The implementation of the method allows for
an automatic selection of the smoothing parameters by calling the gam function in the R
package mgcv. However, we found the algorithm fails to converge in some situations. This
issue is discussed in the next section.

Another method we considered is the so-called model-based boosting. Boosting is a gradient
descent algorithm for optimizing general risk functions using component-wise penalized least
squares for fitting GAMs (see Buhlmann and Hothorn) 2007, [Hothorn et al.| 2010}, for further
details). Boosting is a popular ensemble method in machine learning, where multiple learn-
ers (usually known as base learners) are trained to solve the same problem. In the particular
case of modelling species distributions, shape constraints are implemented in the package
mboost through the base-learner bmono, based on P-spline base-learners with an additional
symmetric penalty in second order differences on the linear predictor scale, as in |[Bollaerts
et al.|(2006). The optimal number of boosting iterations can be achieved via cross-validated
estimation of the empirical risk for hyper-parameter selection. For more technical details
about theoretical aspects and software implementation, see Hothorn et al.| (2018) or [Hofner
et al.| (2014).

Finally, the “Plateau” method, proposed by Brewer et al. (2016), performs climate envelope
fitting via an explicitly defined concave shape on the linear predictor scale. This shape
consists of an increasing slope, a possible plateau, and a decreasing slope. In the univariate
case, the envelope function is defined as a piece-wise function:

o+ fir z < —an /B
g(x) = < Bo —a1/f1 <z < ag/f (5)
s + foxr T > a/fo

where 81 > 0, 8 < 0 are increasing and decreasing slopes, a1, a; are intercepts and [ is
the plateau value.



2.2 Simulation

In order to evaluate and compare the performance of the proposed approaches for fitting
species distribution models we carried out a simulation study.

First, four different theoretical response curves depending on a single environmental vari-
able were generated within the simulation model, which are considered as the true curves
for performance statistics computation. Afterwards sampling and observation errors were
introduced and presence-absence data sets were generated based on the underlying theoret-
ical probability curves. The simulated data sets were then fitted according to the proposed
models. Finally, the goodness-of-fit and the concordance of the fitted model with ecological
niche theory were measured by means of several performance statistics, described in section
2.2.6 below.

2.2.1 Environmental gradient

The real environmental variable used for data simulation was the sea surface temperature
(SST) in the Atlantic Ocean in 1999 (Edwards et al., [2012). These data are arranged on a
grid with a spatial resolution of 1x1 degrees (1489 data points) covering the region between
40° and 63° in latitude and —70° and 2° in longitude. The average SST in the selected data
is 9.92°C with a standard deviation of 5.35°C and minimum and maximum values of -2°C
and 20.6°C respectively.

2.2.2 Species responses

Theoretical species response curves along the environmental gradient of SST (z) followed
the generalized Beta function proposed by Minchin! (1987):

Bo(z=m o )" (1—(=2+b)" m-rb<z<m+r(l-0)
b(x) = (6)

0 otherwise

where m is the location of the optimum, Fy is the maximum probability of occurrence at the
mode, 7 is the range of occurrence along the gradient and « and v are shape parameters.
The additional parameters b and d depend only on o and v and are introduced to reduce the
complexity of the formula (b = a/(a + ) and d = b*(1 — b)?). Combining different values
for the shape parameters, we generated 4 distinct curves representing different plausible
scenarios: a symmetric curve (denoted as curvel, with a = 4, v = 4), a platykurtic curve
(denoted as curve2, with a = 0.1, v = 0.4), a left skewed curve (denoted as curve3, with
a = 1.5,y = 0.5) and a right-skewed curve (denoted as curve/, with o = 1, v = 4) (Figure|l)).
All scenarios were generated with the same maximum probability of occurrence (Fy = 1),
location of optima (m = 6.95 °C) and range of occurrence (r = 10 °C).
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Figure 1: Columns are the true curves (curvel-curve) and rows are the generated presence-
absence data (grey dots) by sampling scenarios (smpIl—-smp4) for a single replicate.

2.2.3 Sampling

For each type of curve we generated a sample of 1000 observations according to four different
sampling schemes. As a first sampling option (smp1) samples were generated randomly along
the whole range of the environmental gradient with the same probability at all locations. In
the second sampling scheme (smp2), the sampling probability is proportional to b(x), so that
the probability of sampling locations is higher around the theoretical response curve mode
than in the tails. The last two options (smp3 and smp/) account for the cases where the
whole range of the environmental gradient is not observed, having a sampling probability of
zero above (or below) a specific value of the gradient (see the rows of Figure [1)).

2.2.4 Presence-absence data

The presence-absence data y was generated via a Bernoulli distribution with probability of
occurrence p(x), which is a noisy version of b(z) in Eq (6). In order to mimic the effect
of (unobserved or unmodelled) environmental variables other than x, p(x) was draw from a
beta inflated distribution (BEINF, allowing for zero and one inflation) implemented in the
R package gamlss.dist (Righy and Stasinopoulos, 2005; [Stasinopoulos et al., [2019):

p(z) = BEINF(b(z),0,v,T), (7)

where the theoretical occurrence probability b(z) is the mean of the distribution, o = 0.1
is the scale parameter and ¥ = 7 = 0.1 are parameters modelling the probabilities of zero



Method Functional form Constraints Basis Penalty R package R function

GLM Bo + Brz + Box? B2 <0 2nd order polynomial No stats glm
GAMIk Bo + Zle fi(x) K=3 tprs Yes mgcv gam
GAMhk Bo + Z]K=1 fi(x) K =10 tprs Yes mgcv gam

SCAMfixSP Bo + Ele fi(z) f(xz) <0 B-splines with concavity No scam scam
boost Bo + Z;il fi(x) f(xz) <0 concavity constraint Yes mboost gamboost
Plateau See Eq. £1>0,82 <0 piece-wise parametric No plateau fit.glm.env

Table 1: Summary of the six approaches considered.

and one respectively (v = po/p2, 7 = p1/p2 , where p2 = 1 — py — p; and py and p; are
probabilities of zero and one respectively). for further details on BEINF parametrization
see Stasinopoulos et al. (2019) .

2.2.5 Model fit

For each type of curve and each sampling scheme, 100 replicated data sets were generated
(a total of 1600 data sets). Each generated data set, with 1000 observations each, was fitted
using the proposed methods. Table [I| summarizes the six approaches considered (namely
“‘GLM”, “GAMWE”, “GAMIk”, “SCAMfizSP”, “boost” and “Plateau”) and includes: the
functional form of the model; constraints (if any); type of basis function (or base learner in
the case of boost); penalty (yes or no); and finally the corresponding R packages and specific
functions.

It is important to state some options we fixed in performing the simulations: i) for GAM
methods we consider a low number of knots (K = 3, in GAMIk) and a higher number of
knots (K = 10, in GAMhk), following Chust et al.| (2014) for illustrative purposes; ii) for
the SC-GAM’s implementation in the R package scam, we found several convergence prob-
lems in the current implementation (scam version 1.2-4), and hence we decided to remove
the penalty from the model by fixing the smoothing parameter (with the argument sp) to
10~* and controlling the smoothness with a fixed number of knots in the construction of the
model bases; iii) boosting is a computationally more expensive method but overcomes the
convergence problems in scam (See Annex B for implementation details and code).

For each sampling scenario, fitted values were obtained along the corresponding sampled
environmental gradient interval while predictions were computed for the whole gradient in-
terval. Analyses were performed using the computing environment R (R Core Team), 2018]).

2.2.6 Performance statistics

The goodness-of-fit of each method was evaluated in terms of the Root Mean Squared Error
(RMSE):

RMSE = | =P =P (8)



where p is the real, theoretical probability, p is the estimated probability and n is the sample
size (n = 1000 in this case).

The level of agreement with ecological niche theory was evaluated in terms of the concav-
ity constraint. Second derivatives along the environmental gradient were approximated via
finite differentiation. Negative second derivatives for the predicted curves along the whole
environmental gradient indicate that the concavity restriction is respected on the linear pre-
dictor scale, while positive values at some point would indicate that a non-concave shape has
been estimated. When concavity is held, we looked at the first derivatives, computing the
number of changes of sign of the fitted curve, to evaluate whether the method was capable
of estimating a global maximum, as defined in the theoretical curve, or not.

Uncertainty around estimated curves was compared by means of estimated variances of
predicted values along the whole range of each curve. Coverage probabilities were computed
as the percentage of theoretical values along the whole gradient that fell inside the estimated
90% confidence intervals in each replicate (Morris et al., 2019).

3 Results

The six modelling approaches were applied to each replicated data set for each type of
curve and sampling scheme. The proposed shape-constrained GAM methods (“SCAMfixSP”
“boost”) as well as the “Plateau” method do satisfy the concavity restriction, resulting in
unimodal response curves, and show closer estimated probabilities to the true theoretical
response curve compared to the rest of the methods, as illustrated in Figure [2| for a single
replicate and single scenario. In contrast, the “GAMhk” method, the most flexible option,
does not fulfill the concavity restriction and neither of the “GLM” and “GAMIk” methods
are capable of detecting the maximum. Estimated probabilities with these last two meth-
ods are far from the theoretical curve, mainly for unsampled environmental gradient values

(Figure [2)).
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Figure 2: Predicted response curves by method for curve2 and smp/ for a single replicate.
Dashed black lines represent the true theoretical response curves and solid lines represent
obtained fitted curves with their corresponding 90% confidence intervals in gray. Vertical
gray dashed lines represent the sampling range. Each panel corresponds to a particular
method.

In order to summarize the performance statistics for all scenarios and methods, median
and 0.1, 0.25, 0.75 and 0.9 percentile values across the 100 replicates were computed. The
SC-GAM methods (“SCAM{ixSP”, “boost”) and the “Plateau” method all satisfy concavity
restrictions in all cases, assuring unimodal response curves are estimated in every scenario.
They are able to detect a single global maxima in more than 80% of the replicates in most of
the scenarios, with the “boost” method having the highest success percentages on detecting
global maxima for all scenarios (Table . Furthermore, SC-GAMs result in better perfor-
mance in terms of RMSE, giving lower values than the rest of the methods, except for the
most flexible “GAMhk” method, which gives the lowest RMSE values (Figure . However,
when using “GAMhk” | estimated curves almost never satisfy the concavity restriction (only
40 fitted curves out of 1600 simulations are concave). The “GLM” and “GAMIk” methods
are able to fit concave curves only for sampling options smpl and smp2 and result in worse
RMSE values than the shape-constrained methods. For the rest of sampling options (smp3
and smp4), these methods are not able to always fit concave curves, and when concavity
does hold, global maxima are not detected in most cases (Table [2)).
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curvel curvel curvel curvel curve2 curve2 curve2 curve2 curved curved curved curved curved curved curved curved

smpl smp2 smp3 smp4d smpl smp2 smp3 smpd smpl smp2 smp3 smpd smpl smp2 smp3 smp4d
GLM

concave % 100 100 85 0 100 100 15 100 100 100 100 0 100 100 19 0

max detected % 100 100 47 0 100 100 8 100 100 100 100 0 100 100 6 0
GAM 1k

concave % 100 100 88 0 100 100 15 100 100 100 100 0 100 100 18 1

max detected % 100 100 2 0 100 57 0 12 100 100 2 0 100 74 0 0
GAM hk

concave % 0 2 0 0 0 31 0 2 0 6 0 0 0 0 0 0

max detected % 0 2 0 0 0 20 0 1 0 6 0 0 0 0 0 0
SCAM fix SP

concave % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

max detected % 100 100 100 70 100 100 94 69 100 100 100 35 100 100 100 100
Boost

concave % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

max detected % 100 100 100 99 100 98 93 82 100 100 100 87 100 100 100 100
Plateau

concave % 100 100 100 100 100 100 98 100 100 100 100 100 100 100 100 100

max detected % 100 100 98 92 97 44 18 68 100 93 74 78 100 89 63 87

Table 2: Percentage of replicates for each scenario and method for which estimated response
curves are concave in the linear predictor scale and percentage of fitted curves that detect a

single global maximum.
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Concerning uncertainty indicators, standard deviations were computed for each data-point
and were used to compute 90% confidence intervals around the estimated curves. Among the
methods that are able to estimate concave shapes, SC-GAM methods have higher coverage
percentages (percentage of true theoretical values that fall inside these confidence intervals,
see Figure [4)) in comparison to “GLM” and “GAMIk” methods. The most flexible method,
“GAMhkK” | shows the highest coverage percentages. However, we have noted that the un-
derlying fitted curves are often not concave. Although in most scenarios, the “Plateau”
method and proposed shape-constrained GAM methods show similar results (overlapping
intervals), the “Plateau” method presents higher variability in results, while the “boost”
method shows more stable interquantile ranges across replicates (see Figures |3[ and . Note
that obtained coverage percentages are low in all cases due to the introduced zero and one
inflated error, making the estimated maximum probability lower than the theoretically fixed
value (P = 1), and estimated curve tails greater than 0 (see Figurd2).
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4 Case studies

The proposed methods were also used to model the spawning habitat of some fish species
in two different case studies. In the first case study, the six modelling approaches were
tested and compared in an univariable analysis, modelling the occurrence of sardine (Sardine
pilchardus) eggs in the Bay of Biscay as a function of Sea Surface Temperature (SST). In
the second case study, the use of the proposed shape constrained methods was extended to
more than one variable. An illustration of the use of concavity restrictions for some variables
in a more complex and realistic case study is provided.

4.1 Thermal niche for sardine eggs

The European sardine (Sardine pilchardus) is a small pelagic fish distributed along the
Northeast Atlantic and the Mediterranean Sea (Parrish et al., [1989). Several studies have
attempted to identify the main environmental variables and timing that determine sardine
spawning and found that temperature was an important factor (e.g. (Bernal et al., 2007}
Planque et al., 2007)).

We analysed the presence of sardine eggs as a function of sea surface temperature (SST) using
data collected in the BIOMAN survey (Santos et al.; 2018). This survey is conducted yearly
in May in order to estimate the spawning stock biomass of anchovy in the Bay of Biscay by
the Daily Egg Production Method (DEPM, |Lasker|/1985; |Parker| 1980)). In addition, in some
years the DEPM is also used to estimate the spawning stock biomass of sardine (see ICES|
2017, technical report). We compiled data from years 1999, 2002, 2008, 2014 and 2017, for
which the full DEPM was applied for sardine. At each sampling location, presence-absence
data of sardine eggs, geographical position (longitude and latitude), and environmental vari-
ables such as SST, were recorded. In total, 3472 data points were used for the model fitting.
The presence-absence data distribution along the environmental gradient for this case study
is similar to smp2 scenarios in the simulation study, with overlapping distributions of pres-
ences and absences (see Figures A.1 and A.2 in Annex A for presence-absence data densities).

From the six proposed methods, “GLM” and “GAMhk” result in a convex and a multimodal
response curve respectively, that are incompatible with the niche theory. Shape-constrained
methods give concave unimodal curves which do agree with the niche theory (see Figure
B). The GAM method with fewer degrees of freedom (“GAMIk”) results in a monotone
decreasing function. When predicting for temperatures lower than observed the predicted
probabilities of presence continue to increase, being far from the expected bell-shaped re-
sponse curve.
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Figure 5: Sardine egg real presence-absence data (grey points), fitted response curves (in
black), and predicted curves (dashed curves) along the SST environmental gradient. Ver-
tical lines represent the optimum and dashed vertical lines tolerance limits. Each panel
corresponds to a specific method.

For each method we computed the optimum temperature and the range of tolerance temper-
atures. The optimum was the value of the gradient with the highest estimated probability
of presence and the tolerance was determined by the range of gradient where the predicted
probability of species occurrence was higher than half of the maximum value for predicted
probability (Schroder et al., [2005). For “GLM” and “GAMIk” the lower limit of the tol-
erance range could not be computed, or can be considered —oo given that the estimated
curve is monotonically increasing for decreasing values of the gradient. The optimum SST is
estimated around 12.5°C for these two methods while for the rest of the methods it located
around 13.5°C. The obtained tolerances with shape-constrained methods and “GAMhk”
methods are very similar giving a range from around 12 to 18°C.
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4.2 Spawning habitat of three pelagic species

Often when fitting species distribution models, the spatio-temporal coverage of the data
is limited and does not cover the range of the environmental gradient that determines the
biogeographic species area (Austin|, 2007)). In those cases, the species response is truncated
and cannot be modelled adequately. The ample coverage of the ICES triennial mackerel
egg survey makes it an exception. Since 1977, the survey has been conducted every three
years between January and July and covers a large area from southern Spain to the north of
Scotland, with the aim of estimating the total annual egg production of the western Atlantic
mackerel stock ICES| (2018)); Lockwood et al. (1981]). The egg presence-absence and abun-
dance data collected during the survey have been used to characterize the spawning habitat
of mackerel: see Borchers et al.| (1997); Bruge et al. (2016); Brunel et al.| (2018). Within the
framework of an EU programme (INDICES, EU Study 97/017), the samples collected during
the 1998 triennial survey were reanalyzed and eggs and larvae of other fish species were quan-
tified Ibaibarriaga et al. (2007). We applied SC-GAMs to model the egg distribution of three
of these species: European anchovy (Engraulis encrasicolus); sardine (Sardine pilchardus);
and Atlantic mackerel (Scomber scombrus). Their performance was compared with respect
to the other methods considered. For each sampling location of presence-absence of eggs,
we compiled environmental and depth data. Environmental data were extracted from the
NCEP Global Ocean Data Assimilation System, GODAS (Derber and Rosati, |1989)), which
provides gridded 4D data with a monthly temporal resolution and a vertical resolution of
10m on 0.333°x1° latitude-longitude grid points of: sea surface temperature (SST), salinity
(SSS), temperature at 205 m (temp205), difference between surface temperature and tem-
perature at 205 m (temp dif), oceanic mixed layer (dbss obml). Depth data were obtained
from the bathymetric database ETOPO1 from NOAA using the package marmap (Pante
and Simon-Bouhet| [2013) in R (R Core Team|, 2018) and introduced in log scale (logbathy).

We applied the “SCAM{fixSP’ method, which allows constructing models as a combination of
shape constrained variables and non-restricted variables. Among the variables available for
these case study, all of them were treated as direct variables (Austin, 2007), and therefore
introduced with shape constraints, except for bathymetry, which was considered to be an
indirect variable, and so introduced without shape restriction. Variable selection was based
on AlCc, as defined in Barton (2009)), selecting for each species the model with the lowest
AlICc, after removing the variables that were not significant in univariable analysis. Depth
was selected for all species models. Additionally, salinity, surface temperature and temp_dif
were also selected for anchovy, obtaining a model fit with 61.1% of explained deviance. In
the sardine model salinity and temperature at 205m were included obtaining 33.7% of ex-
plained deviance, while for mackerel salinity and temp_dif were selected for the final model
with 29.97% of explained deviance. All selected variables and AICc values for each species
are shown in Table Bl

All used variables except for depth were introduced in the models with the concavity re-
striction on the linear prediction scale, assuring this way that the ecological niche theory
was met. These variables’ response curves of the selected direct variables (sea surface tem-
perature (SST), salinity (SSS), temperature at 205 m (temp205), difference between surface
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temperature and temperature at 205 m (temp_dif) and the oceanic mixed layer (dbss obml))
are monotonic or unimodal, presenting a single optimum at most. The optimum salinity
value was estimated at 35.3 psu for anchovy and 35.5 psu for mackerel, while for sardine
the whole range could not be captured, resulting in a monotonic decreasing response curve
(Figure @ The optimum along the Temp205 variable was estimated at 12.2°C for sardine.
All marginal response curves for these variables and each species can be found in the sup-
plementary material (Annex A, Figures A.3, A.4, A.5).

This proposed SC-GAM approach was also compared with other unrestricted methods for
this multivariate case study. Presence-absence data for these three species with the same se-
lected explanatory variables were also fitted using more common GAM approaches (“GAMIk”
and “GAMhk”), showing that marginal response curves are not in agreement with ecologi-
cal niche theory—some estimated response curves do not satisfy the unimodality condition

(Figure [6]).
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Figure 6: Predicted marginal response curves along salinity variable (SSS) for anchovy,
sardine and mackerel fitted with three different methods; a proposed SC-GAM method
(“SCAMfixSP’) and no restricted GAM approaches with k=3 (“GAMIk’) and k=10
(“GAMhK’).

Validation for these models was conducted via k-fold cross-validation (with & = 5). The data
set was divided into k equally sized groups (Hijmans, 2012), using 80% of randomly selected
observations to run the model and the remaining 20% for validation, iteratively for each fold.
Accuracy indicators, such as AUC (Area Under the Receiver Operating Characteristic—
ROC——curve) (Fielding and Bell, |1997; Raes and ter Steegel 2007)), sensitivity (true pre-
dicted presences) and specificity (true predicted absences) were computed for each k& random
subsets and then averaged. The threshold for presence-absence classification for each species
was obtained as the values maximizing sensitivity plus specificity. Obtained AUC, sensitiv-
ity, and specificity indicators are above 70% for the three species (Table |3) and are similar
to the values obtained when using all data without a cross-validation process, showing good
out-of-sample performance of the models.
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All data (%) CV (%)
Species  Selected variables AICc expldev (%) AUC spec sens spec sens

Anchovy  SSS,SST, temp_dif,logbathy 375.75 61.10 0.92 90 93 90 93
Sardine SSS,temp205,logbathy 899.35 33.70 0.80 79 82 79 82
Mackerel SSS,temp_dif,logbathy 1322.62 29.90 0.77 73 81 73 81

Table 3: For each species, selected variables in the final model (using method “SCAMfixSP”),
AlICc, explained deviance (%), AUC, specificity and sensitivity (%) derived from the whole
data set (All data), and specificity and sensitivity (%) derived from the cross-validation
process (CV).

Predicted occurrence probabilities for each species have been mapped, using for prediction
environmental variables from GODAS for June 1998. Apart from optimum detection for
each explanatory environmental variable, extrapolated maps allow us to identify the spawn-
ing distribution of each species (Figure [7)). For mackerel, the north-west part of the map
shows a high probability area, although presences were not collected in this area during 1998.
However, it has been reported that these species do lay in this area in recent years (Bruge
et al., 2016)), which confirms the reliability of the model in this area. For anchovy, areas close
to the coast in the Bay of Biscay are detected as locations with high probability of presence,
while for sardine, this area is wider, extending it along the Portuguese coast and up to the
Celtic Sea (Figure [7)).

This case study data set was also analyzed using the “boost” method, which is also capable

of dealing with restricted and unrestricted variables. Results were similar to those described
and can be found in the supplementary material (Annex A, Figure A.6).
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Figure 7: Predicted occurrence probabilities (p) in each map cell along with presences (cir-
cles) and absences (small dots) for each species in the north-east Atlantic.

5 Discussion

This study proposes SC-GAMs for species distribution models under the ecological niche
theory framework. This emerges as a new approach in the centre ground between pure
statistical fitting and process-based (or mechanistic) models that apply physiological thresh-
olds (Martinez et al.,2015)) or take into account factors affecting spatial population dynamics
such as species interactions, reproduction, mortality and migration rate; see the compari-
son in Melle et al. (2014)); Robinson et al| (2011). Our proposed model has been tested
by simulation for various types of theoretical curves and sampling schemes and have been
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applied successfully to real case studies. The performance has been compared to other regres-
sion models without shape-constraints (GLMs and GAMs with different degrees of freedom
(Guisan et al., 2002; Hastie and Tibshirani, [1990; McCullagh and Nelder, |1989)) and to
models based on climate envelopes such as “Plateau” (Brewer et al., 2016)).

SC-GAMs are based on the same statistical framework as GLMs and GAMs that are com-
monly used to fit species distribution models (Guisan et al., 2002). According to the sim-
ulation results, in several scenarios, mainly when the range of the environmental gradient
was not fully covered, “GLM” and “GAMIk” methods were not able to approximate cor-
rectly the underlying theoretical niche model. Increasing the degrees of freedom of the GAM
(“GAMhK”) helped to estimate curves that were closer to the true theoretical curve; how-
ever, due to random noise, fitted curves were mostly multimodal and not concave which
renders them implausible under the ecological niche theory framework. An essential chal-
lenge when modelling the relationship between species occurrence and environmental drivers
is to capture the signal and to differentiate it from sampling and environmental noise (Burn-
ham and Anderson, 2003). Therefore, for all models in general, and for GAMs in particular,
determining the appropriate model complexity is critical both for robust inference and for
accurate prediction. Excessive flexibility can lead to overfitted models where resulting pat-
terns can be spurious and affected by noise, and predictions based on such models can be
biased and unreliable (Burnham and Anderson, |2003)). Many authors have favoured simpler
versus more complex models (Merow et al. |2014, and references therein), suggesting that
researchers should constrain the complexity of their models based on the study objective,
attributes of the data, and an understanding of how these interact with the underlying bio-
logical processes. |Austin| (2002) suggested that complex functions produced by GAMs could
be replaced by an equivalent parametric function, simpler and ecologically easier to interpret.
In practice, other authors have manually changed the degrees of freedom of the smoothing
functions to achieve simpler curves (e.g., |[Bruge et al. (2016); |[Brunel et al.| (2018)) or even
unimodal or monotonic shapes following the ecological niche theory (Chust et al., 2014)). In
that context, SC-GAMs automatically provide response curves in agreement with the niche
theory. In the simulations, obtained fits were closer to the underlying theoretical curves
in comparison to “GLM” and “GAMIk” approaches, and in scenarios where the sampling

did not cover the whole environmental range, results were similar or even better than those
obtained with the most flexible GAM.

SC-GAMs were also compared to “Plateau” (Brewer et al.| [2016) which is a regression model
based on climatic envelopes. “Plateau” can provide the correct shape with variance estimates
from the hessian in a fast way. The extension to the multivariable functions is straightfor-
ward and more variables and their potential interactions can be readily incorporated. The
simulations indicated that there were no differences regarding the performance in terms of
agreement with the ecological niche theory. Both the “Plateau” and the SC-GAMs satisfied
the concavity restrictions and estimated the maximum correctly. However, the simulation
results showed that shape-constrained models were more robust across replicates, with less
uncertainty in point estimation and coverage probabilities.

The two SC-GAMs implementations tested in this study present statistically sound methods
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that allow for robust estimation, model comparison, and prediction. However, they exhib-
ited some differences in terms of uncertainty estimation, computing time and ease of use.
The “boost” approach seemed to be more robust to the generated uncertainties and showed
more stable and narrower intervals for RMSE values and for coverage probabilities. Vari-
ance estimation in this approach is performed through bootstrapping which implies a high
computational cost. Alternatively, the “SCAM” approach builds on the framework of un-
constrained generalized additive models (Wood, 2006)), being computationally efficient (Pya
and Wood, 2014). In addition, it uses almost the same syntax as in mgcv R package which
facilitates its use.

SC-GAMs provide a unified framework to deal with different types of variables in species dis-
tribution models. Direct variables and limiting factors are expected to have unimodal shape
(symmetric or not), whereas there is no theorectical expectation regarding direct variables.
However, sometimes, there might be exceptions in which the realized niche is not unimodal
with respect to environmental gradients (Austin, 2002)). In those cases, comparison between
shape-constrained and unconstrained methods could help to better disentangle the factors
defining the ecological niche of the species. When modelling species distribution based only
on niche theory, results are limited by the strong assumptions such as unlimited dispersal of
species, and not consideration of competition processes between species, population dynam-
ics and adaptation of the species (sensu population fitness).

The extent and resolution of the data are crucial to obtain an adequate characterization of
the niche of a species (Peterson et al., |2011). If the range of the environmental gradient
does not cover the limits of the species, the species response is truncated and determining
the actual shape of the response will be difficult (Austin, 2007)). Thuiller et al. (2004) found
that this could be especially problematic on the tails of the species response curves, yielding
spurious projections. In our simulations, the performance of the shape-unconstrained meth-
ods was worse when the range of the environmental gradient was not fully observed. In most
of the cases they were not able to fit concave curves, the single maximum was not found
and presented high RMSE values. However, shape-constrained methods performed similarly
regardless the type of sampling. Therefore, adding the shape constraints warranted that
the species distribution model was ecologically meaningful within the observed range of the
environmental variable, and facilitating its subsequent use for extrapolation and prediction.

Methods have been also tested in two different real case studies. The first case study shows
that shape-constrained methods can solve issues arising with the other methods, as con-
cluded with the simulation study. Optimum SST values and tolerance ranges obtained by
SC-GAMs in the presented real case study are very similar to those reported in Bernal et al.
(2007). They compiled data from all the available ichthyoplankton surveys in the Northeast
Atlantic and found that spawning is restricted mainly to the shelf area and in a range of
temperatures between 12°C and 17°C. Stratoudakis et al. (2007) detected that spawning
seasonality vary with latitude following temperature gradients. The preferred temperatures
for spawning were identified between 14 and 15°C, while temperatures below 12°C and above
16°C were avoided. In the Bay of Biscay, thermal preference at surface was found between
12°C and 15°C (Planque et al., 2007)). The second case study involves the incorporation of
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several variables in order to find species probabilities of occurrence combining different types
of variables. Results are similar to those reported in other studies that needed manual selec-
tion of smoother parameters such as the probability of presence of anchovy eggs along salinity
or sea surface temperature reported in [Erauskin-Extramiana et al. (2019)) or the estimated
optima for mackerel spawning along the salinity gradient in Brunel et al. (2018). It is shown
that the framework of SC-GAMSs enables us to fit both unconstrained and shape-constrained
shapes for each of the included variables depending on the type and prior knowledge. It also
allows us to test the shape of each predictor consistently with the expected ecological theory
as suggested in |Austin| (2007)).

We consider that proposed SC-GAMs can be readily applied for fitting distribution models
and are useful tools for modelling communities of large number of species, as they result in
a good balance between goodness of fit and agreement with ecological niche theory. They
can incorporate multiple explanatory variables with or without interaction, both shape-
constrained and unconstrained, depending on the nature of the variables involved. Thus,
SC-GAMs offer the possibility of investigating, for example, the effect of climate change
on multiple species without requiring sophisticated and time-consuming mechanistic models
that depend on detailed knowledge of vital rates and life traits for each species. Future
applications of SC-GAMs in the context of ecological models could go beyond the examples
shown in this work. Bivariable smooths with concavity restrictions would allow better un-
derstanding of the interactions between environmental variables, as in |Brewer et al. (2016]).
SC-GAMs could also be extended to include response shapes varying per grouping level as
in HGAMs (Pedersen et al., 2019)). In this case several species could be modeled together in-
cluding interactions between the explanatory variables and the species as a factor obtaining
a common effect and different response curves for each species. Multivariate adaptive regres-
sion splines (MARS, (Friedman et al., |1991))) are also claimed to have strong performance
for multiresponse species distribution models (Leathwick et al., 2006)). Shape constraints
could be also introduced, for unimodality condition in the response curve, to obtain compa-
rable results with SC-GAMs. SDMs can be also fitted in a Bayesian framework, allowing to
incorporate prior knowledge of species ecology (Golding and Purse, [2016) or prior informa-
tion on response curve shapes ((Fraaije et al 2015) - Appendix3) using INLA as a tool to
perform full Bayesian analysis of latent Gaussian models using Integrated Nested Laplace
Approximation (Rue et al., 2014).
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