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Introduction

We have developed both a homology theory and a homotopy theory in the context
of metric subanalytic germs (see Definition EZ1). The former is called MD homology.
It is covered in Chapter B, which contains a paper that is joined work with my PhD
advisors Javier Fernandez de Bobadilla and Maria Pe Pereira and with Edson Sam-
paio. The latter is called MD homotopy and is covered in Chapter B. Both theories
are functors from a category of germs of metric subanalytic spaces (resp. germs of
metric subanalytic spaces that are punctured in a way that will be defined) to a cat-
egory of commutative diagrams of groups. For the concrete definition of the domain
categories see Definition 10 and Definition B4 respectively; for the target categories
see Definition Z22 and Definition B52 respectively. Similarly to classical homology
and homotopy theories, the groups appearing in the target category are abelian in
the homology theory for any degree and in the homotopy theory for degree n > 1.
Both theories serve as a bi-Lipschitz subanalytic invariant. Therefore, in the context
of real or complex analytic germs equipped with the inner or the outer metric, they
are analytic invariants.

The MD homology shares several properties with the singular homology: it is in-
variant by suitable metric homotopies (see Definition 278 and Theorem PZ78 as well
as Definition 2279 and Theorem EZR0); it allows a relative and absolute Mayer-Vietoris
long exact sequences (see Theorem PZUT) for a suitable cover of the metric subana-
lytic germ (see Definition 2Z88); and as a consequence we have a certain theorem of
excision (see Corollary EZ92) and a Cech spectral sequence (see Theorem PZ93). The
MD homotopy has several of the properties of the ordinary homotopy theory of punc-
tured topological spaces: it admits a Hurewicz homomorphism from the MD homotopy
to the MD homology (see Proposition B20); in degree one, the Hurewicz homomor-
phism is an isomorphism when abelianizing the domain (see Theorem B53); and when
the metric subanalytic germ fulfils a certain condition that softens the one of path-
connectedness (see Definifion B23), it is independent from the choice of base point (see
Proposition B28).

In our theories the role of simplices (resp. loops and homotopies) is taken by 1-
parameter families of simplices (resp. loops and homotopies) with the following prop-
erty that we call linearly vertex approaching (l.v.a., for short). Measuring in the outer
distance, when the family parameter approaches zero, the simplex (resp. loop or ho-
motopy) approaches the vertex of the germ at a rate of order one.

The abbreviation MD stands for moderately discontinuous. The motivation behind
that name in the context of the MD homology is the following. In singular homology



an n-chain is a cycle, if its boundary can be written as a sum ), a;0;, where a; are
elements of the ring of coefficients and o; are (n— 1)-simplices, whose summands cancel
in pairs. In the MD-homology an n-chain is a cycle, if its boundary can be written as a
sum ) . a;o;, where a; are elements of the ring of coefficients and o; are 1.v.a. families
of (n — 1)-simplices, whose summands can be ordered into pairs as follows. For a pair
of summands a;o; and a; 0, we have a; = a; and the two l.v.a. families of simplices
o; and oy approach each other faster than at rate t°, where t is the family parameter
and b is a fixed parameter in (0,00]. A simple cycle in MD homology is illustrated in
Example 2234. That is how we gain a homology group for any parameter b € (0, co].

In the context of the MD homotopy, we integrate the concept of moderate discon-
tinuities in lv.a. families of loops from [0,1]” into the metric subanalytic germ as
follows. Broadly speaking, we partition [0, 1] into a finite number of closed sets and
define a l.v.a. family of continuous maps on one of those sets for each set. Then fixing
two sets with non-empty intersection, the associated l.v.a. families of continuous maps
fulfil the following: restricting to the boundary between the two sets yields two l.v.a.
families of continuous functions that approach each other faster than at rate ¢t°, where
t is the family parameter and b € (0, 00]. Again, we gain a homotopy group for every
parameter b € (0, o0].

Until here, for any b € (0, 00] we have constructed functors that take values in the
category of groups. We call them b-MD homology and b-MD homotopy, respectively.
But both our invariants are further enriched by group homomorphisms from the b;-MD
homology /homotopy group to the bo-MD homology /homotopy group for any by > bs.
We call those homomorphisms connecting homomorphisms. That is why the target
categories of the MD homology functor and the MD homotopy functor do not only
consist of a family of groups, but also of homomorphisms between those groups; and
that is how the morphisms in the target categories become commutative diagrams of
groups. Furthermore, the functoriality of the b-MD homology and the b-MD homotopy
for a fixed b € (0, 0] can be improved by augmenting the domain category by allowing
uncommon morphisms that are moderately discontinuous in a way similar to the one
described above for l.v.a. families of loops. Those morphisms are called b-maps (see
Definition 2Z59).

There are already two different homology theories in the context of Lipschitz geom-
etry (see [42] 2], and [#0]). Those two homology theories are of different nature than
the MD homology theory. In those two theories the groups in the underlying chain
complex get restricted. That has as a consequence that for a chain it is harder to be a
boundary, since the boundary is the image under the boundary operator of a smaller
group. Furthermore there are chains that get discarded before taking the homology.
In the MD homology the groups of the chain complex get quotient by a certain equiv-
alence relation that we call b-equivalence relation for any parameter b € (0, 00]. That
has as a consequence that for a chain it is easier to be a cycle, since the kernel of the
boundary operator increases by quotienting the target. Furthermore there are chains
that get identified already in the chain complex before taking the homology.

What we particularly like about the MD homology theory, is that it provides those
computational tools mentioned above similarly to the tools in singular homology that
make it relatively well computable. We have given examples of computations of both



the MD homology and the MD homotopy. In particular, we have given a concrete
formula for the MD homology of complex plane algebraic curve germs equipped with
the outer metric (see Proposition ZZI04). That formula reveals how the MD homology
recovers both, all Puiseux pairs of the branches of the curve, and the set of all contact
numbers between two branches (see Corollary PZI08). In [38] (see also [29] and [I35]),
it is shown that the geometric type of a complex plane algebraic curve germ equipped
with the outer metric coincides with its embedded topological type. Therefore, the MD
homology is a complete invariant of irreducible complex plane algebraic curve germs
equipped with the outer metric.

Throughout the thesis, we have chosen to work in the setting of subanalytic germs,
but oberve the following remark that is explained in Appendix @ in more detail:

Remark AZR. One could define MD homology and MD homotopy in the context of
any O-minimal structure over the reals copying this thesis word by word and replacing
subanalytic (or globally subanalytic) by the definable sets and definable maps of that
O-minimal structure.

Observe that this work has laid the ground for possible future work in different
directions. For example, it is interesting to explore how strong our invariants are in
obstructing Lipschitz equisingularity (see [26]). Its relation with Zariski equisingularity
is also worth exploring because of the work done in [28] and [31]. In [22], [30] and [39]
subanalytic spaces are decomposed into pieces which are simple from the outer Lips-
chitz viewpoint. It would be interesting to study the relation of such decompositions
for subanalytic germs with our invariants.

1.1. Summary of Chapter 2

In Section P70, we define the domain category of the MD homology functor. The
objects are pairs of subanalytic germs (X, Y, xg) equipped with a metric d. We write
(X,Y,x0,d). The morphisms from (X,Y,x0,d) to (X',Y’,z(,d’) are subanalytic map
germs of pairs from (X,Y) to (X', Y”) that are Lipschitz with respect to d and d’ and
that are furthermore l.v.a. as mentioned above:

Definition 2. A map germ f : (X,xz9) — (Y,yo) is said to be linearly vertex ap-
proaching (l.v.a. for brevity) if there exists K > 1 such that

1
1@ = oll < [If(2) = ol| < K|z — 2ol

for every = in some representative of (X, xo). The constant K is called the l.v.a con-
stant for f.

Our n-simplices are also defined as continuous subanalytic map germs that are L.v.a
from the germ of

~

An = ({(t$,t) S Rn+1 XR:xz € Anat € [07 1)}7



where A,, denotes the standard n-simplex, into the metric subanalytic germ (X, zo, dx).
But they are not defined to be Lipschitz. We call them l.v.a. n-simplices. Our n-chains
are finite formal sums of n-simplices. We call the abelian groups of n-chains the pre-
chain complex and denote it by MDCY (X, xg,dx). It is associated to the pair
(X,0).

In the sequel, we develop two different equivalence relations on the pre-chain complex
(see Subsection 222 to Subsection EZZ4): one by homological subdivisions and one
by b-equivalences. The one by homological subdivisions are simply meant to be a
technical tool. They simplify constructions for which in the singular homology theory
barycentric subdivisions would be used. The relevant identification of n-chains is the
one by the b-equivalence relation:

Definition E228. Let b € (0,00). Let 01,09 be n-simplices in M DCY (X, zg,dx).
We say that o1 and oy are b-equivalent (we write o1 ~y, 02), if

lim max{d(o1(tz,t),oo(tz,t));x € Ay} _

0.
t—0+ tb

We extend the relation to MDCEL ™™ (X; A) by linearity.

For b = co we do not impose any b-equivalence relation. The quotient of the pre-chain
complex by a combination of both equivalence relations leads to one chain complex for
every b € (0, 00] whose homology we call the --MD homology.

In Subsection 2223 we explain how for a pair (X,Y,zg,dx) of metric germs, the
b-MD homology of Y can be considered a subcomplex of the --MD homology of X
and define the relative chain complex and its homology accordingly. That immediately
leads to a long exact relative b-MD homology sequence.

Notice that until here everything has been done for a fixed b € (0,00] and that
the b1-MD chain complex is richer than the bs-MD chain complex for by > by since
the bi-equivalence relation is more restrictive than the bs-equivalence relation. That
leads to a natural projection from the former to the latter, which induces a homo-
morphism in homology. Those homomorphisms are the connecting homomorphisms
of the MD-homology that carry an important amount of information of the invariant.
Accordingly, in Subsection 228, the MD homology is defined as a functor from the
category of metric subanalytic germs into a category that can be described as follows
(see Definition E42): the objects are families of abelian groups with family parameter
b € (0, 0] together with families of group homomorphisms with pairs (b1, b2) € (0, cc]?,
such that b; > b, as family parameters; the morphisms are families of commutative
diagrams of abelian groups and group homomorphisms with the same pairs as param-
eters.

In Subsection 232 we introduce the notion of a point in our category of metric
subanalytic germs (see Definition Z250). Concretely, we mark an object in our category
as the object that takes the role of the one-point space in the topological category.
Later we introduce a concept that mimics the notion of points in a fixed topological
space (see Definition 2Z01). That notion is in line with our definition of the object that
mimics the one-point set. But be aware: we get a different notion of point for any



parameter b € (0,00]. The b-MD homology of the point for any parameter b € (0, 0]
coincides with the singular homology of the one-point space (see Proposition PZ21).

In Subsection EZ34 it becomes clear why we have chosen to work with subanalytic
simplices. We introduce the notion of small chains with respect to a finite closed sub-
analytic cover of the germ: they are chains for which the image of each simplex is
contained in one of the elements of the cover. The two equivalence relations on the
chain complex of small chains are defined in the same way as on the chain complex
MDCY*™(X,0, z9,dx). Thanks to the subanalytic Hauptvermutung we get an iso-
morphism from the chain complex of small chains onto our usual chain complex for
any b € (0,00]. That isomorphism turns out to be an important computational tool.
Observe also that if we did not include the homological subdivision equivalence relation
in our definition of the chain complex, then we would not get that isomorphism. In
that case, one could only hope for a quasi-isomorphism and would expect a far harder
proof.

We show that the functoriality of the --MD homology can be improved by augment-
ing the class of morphisms in the category of metric subanalytic germs by including
b-maps as described above. By allowing moderate discontinuities, b-maps and sections
for b-maps are easy to find and therefore provide an important computational tool.

In the sequel, we provide the main computational tools in singular homology theory
adapted to the MD homology theory. The invariance by homotopies is given for two
different notions of homotopy, one of them being the following:

Definition 2278 (Metric homotopy). Let (X, xo,dx) and (Y, yo,dy) be metric subana-
lytic germs. Let f,g: (X, xo,dx) — (Y,y0,dy) be Lipschitz l.v.a. subanalytic maps. A
continuous subanalytic map H : X xI — Y 1is called a metric homotopy between f and
g, if there is a uniform constant K > 0 such that for any s the mapping Hs := H(—,s)
1s Lipschitz l.v.a. subanalytic with Lipschitz l.v.a. constant K and Hy = f and Hy = g.

In Theorem PN we construct a Mayer-Vietoris long exact sequence for the b-MD
homology groups with respect to a cover of the germ, if the cover fulfils a certain
metric condition with respect to b € (0, 00| (see Definition ZZ88). To obtain a relative
Mayer-Vietoris long exact sequence, we have to adapt the notion of the chain complex
relative to a subgerm (see Definition EZ83). That is why we only get an adapted version
of the excision theorem (see Corollary 2Z92). The Cech spectral sequence comes along
easily (see Theorem EZ93). Still, it provides a powerful tool as can be seen for example
in the proof, in which we show that the co-MD homology coincides with the simplicial
homology of the link (see Theorem 2T0T).

Finally in Section P9, we compute the MD homology of complex plane algebraic
curve germs. We fully describe it via the Eggers-Wall tree of the curve. Thereby we
show that it fully recovers the set of all Puiseux pairs of all branches. The example
of complex plane algebraic curve germs is a striking example of how important the
connecting homomorphisms are since the MD homology groups do not give any infor-
mation about the Puiseux pairs. In fact, for an irreducible complex plane algebraic
curve germ, the MD homology group for any parameter b of degree zero or one coin-
cides with the ring of coefficients and for greater degree is trivial. The MD homology
also recovers the set of all contact numbers between two branches. But it does not



tell us which branch a Puiseux pair belongs to and which pair of branches a contact
number corresponds to. That becomes clear in Example 2-109.

1.2. Summary of Chapter

Analogously to the cone over the standard n-simplex A,, as defined above, we define
the cone over the n-cube I to be the germ of

O™ == {(yt,t) e " xR:y € I",t € [0,1)}.

But the moderate discontinuities in MD homotopy are constructed in a different way
than the ones in MD homology. Our loops and homotopies gain the possibility of
being moderately discontinuous by defining them to be weak b-maps. Weak b-maps are
very similar to b-maps dropping the Lipschitz condition. By not having the Lipschitz
condition weak b-maps cannot be composed such as b-maps. But still, they can be
concatenated and therefore serve their purpose of providing moderate discontinuous
loops and homotopies. Both the definition of b-maps and weak b-maps rely on our
notion of points, which we define to be subanalytic l.v.a. arcs:

Definition B. Let q : [0,¢) — C(I™) be a continuous path germ. We write q(s) =
(a(s),t(s)) € C(I™). We call q a point in (C(I™),0), if there is a representative [0, €')
of the germ [0,€) and a K > 1 such that

1
TS5 <7(s) < Ks

for all s < €.

Points in any metric subanalytic germ are defined analogously. Two points p; and
po are called b-equivalent in a space with distance d, if we have

lim d(p1(t), p2(?))

= 0.
t—0 th

The definition of weak b-maps is the following:

Definition BZ. Let (X, zg,dx) be a metric subanalytic germ and let (Z,0) be a sub-
analytic subgerm of C(I™). Let b € (0,00). A weak b-moderately discontinuous sub-
analytic map (weak b-map, for abbreviation) from (Z,0) to (X, zo,dx) is a finite
collection {(Cj, fj)}jes, where {C}}jcy is a finite closed subanalytic cover of (Z,0)
and fj : C; — X are continuous l.v.a. subanalytic maps for which for any ji,j2 € J
and any point q in Cj; N C},, the points fj oq and f;,oq are b-equivalent.

Two weak b-maps {(Cj, fj)}jes and {(C}, fi)}kex are called equivalent, if for any
Jj € J and k € K and any point q contained in the intersection C; N C}., the points
fjoq and fjoq are b-equivalent in X.

The b-MD homotopy groups are defined analogously to the ordinary homotopy
groups of punctured topological spaces with the following difference: we use weak



b-maps with their b-equivalence relation instead of continuous maps; and we use our
notion of points with their b-equivalence relation. Points are of relevance for example
in the definition of homotopies relative to a subspace (see Definition B14).

Thanks to the definition we have found, the properties mentioned above, that the b-
MD homotopy theory shares with the ordinary homotopy theory, come along easily: the
existence of the Hurewicz homomorphism; the fact that the Hurewicz homomorphism
is an isomorphism in degree one when abelianizing the domain; the independence of the
base point, when the germ is b-path connected (see Definition B23); and the fact that
the higher degree b-MD homotopy groups are abelian. Those properties are proven in
Subsection and Subsection BT4 and in Section B2

Until now we have focused on the &-MD homotopy groups for a fixed b € (0, oc]. But
the MD homotopy also provides the connecting homomorphisms the MD homology
provides. That is, we have a homomorphism from the n-th 5;-MD homotopy group
to the n-th bo-MD homotopy group for any b; > by. Therefore observe that a weak
bi-map is also a weak bo-map for by > bs. Consequently the target category of the
MD homotopy is defined analogously to the one of the MD homology. The difference
is that for degree one any group is allowed as opposed to restricting to abelian groups.
Functoriality is shown in Subsection BT34. The domain category is the category of
punctured metric subanalytic germs. A punctured metric subanalytic germ is a metric
subanalytic germ together with a fixed point defined as above. In the same way as for
the b-MD homology, we improve functoriality for a fixed b € (0, oo] by allowing b-maps
as morphisms.

Among others, in Section B3, we show that the oco-homotopy coincides with the
ordinary homotopy of the link, just as in the case of the MD homology. In Section B2 we
conjecture that the MD homotopy detects the existence of fast loops as an obstruction
to metrical conicalness.






Moderately Discontinuous
Metric Homology

The homology theory we have developed in this chapter shares several properties with
the singular homology: it is invariant by suitable metric homotopies (see Definition 2273
and Theorem EZ78 as well as Definition 2279 and Theorem 2ZX0); it allows a relative
and absolute Mayer-Vietoris long exact sequences (see Theorem PZUT) for a suitable
cover of the metric subanalytic germ (see Definition 2Z88); and as a consequence we
have a certain theorem of excision (see Corollary ZZ92) and a Cech spectral sequence
(see Theorem Z793). In Subsection 232 we compute the homology we have developed
for the object in its domain category that corresponds to the one-point space in the
topological category.

2.1. Pairs of metric subanalytic germs

As usual in algebraic topology, our invariant will be a functor from a category of
geometric nature to a category of an algebraic nature. We start defining precisely the
geometric category.

Definition 2.1. A subanalytic germ (X, xq) is a germ (X, xo) of a subanalytic set
X C R™ such that xop € X (where X denotes the closure of X in R™). We say that zg
is the vertex of (X, xg).

A metric subanalytic set (X,dx) is a subanalytic set X in some R™, together with
a subanalytic metric dx that induces the same topology on X as the restriction of the
standard topology on R™.

A metric subanalytic germ (X, zg,dx) is a subanalytic germ (X, zg) where (X, dx)
s a metric subanalytic set. We omit xg and dx in the notation when it is clear from
the contert.

A metric subanalytic subgerm of a metric subanalytic germ (X, xg,dx) is a metric
subanalytic germ (Y, xo,dy) with Y C X and dy equal to the restriction dx|y of the
metric dx to Y, that is, the restriction to Y XY ofdx : X x X — R.

A pair of metric subanalytic germs (X,Y,xo,dx) is the metric subanalytic germ
(X, zg,dx) together with the subgerm (Y, xg,dxl|y).

Given two germs (X, zo) and (Y,yo), a subanalytic map germ f : (X, z0) = (Y, y0)
s a subanalytic continuous map f : X — Y that admits a continuous and subanalytic
extension to a map germ f: (X U{zo},z0) = (Y U{vo}, y0)-



Remark 2.2. Notice that in our definition, for a subanalytic germ (X, xq) it is possible
that xg ¢ X. These sets play an important role (see for example Definition [2-04 or

Example 2.3. A subanalytic germ (X,zo) C (R™,z¢) with the outer metric (the
metric induced by restriction of the euclidean metric in R™) is a metric subanalytic
germ. We denote the associated metric subanalytic germ by (X, xo, dout)-

We denote by (X, zo,din) the metric subanalytic germ with the inner metric (defined
to be the infimum of the lengths of the rectifiable paths between two points). This dis-
tance is not known to be subanalytic. However, according to [Z3] there is a subanalytic
distance d' on X such that the identity Id : (X, xo,din) — (X, x0,d') is bi-Lipschitz.
This allows us to apply the theory to the germ (X, xo, diny) in the following way: our
homology can be calculated for (X, xzq,d’). Moreover if d" is a different choice of sub-
analytic metric with the same property than d', then the identity map is a subanalytic
bi-Lipschitz homeomorhism between (X, xg,d') and (X, xo,d"). Hence the invariant
calculated to each of the two subanaytic metric germs is the same. See Remark Z11)
for an extension of this idea.

Some basic examples are the following:

Definition 2.4 (Standard b-cones and straight cones). Let L C R be a subanalytic
set and b € QN (0,400). Consider the subanalytic set

Ch = {(t’z,t) e R* xR; z € L and t € [0,400)}.

The outer (respectively inner) standard b-cone over L is the triple (C%,(0,0), dot)
(respectively (Cz, (0,0),din) ), where doyt denotes the outer metric and d;, denotes the
mner metric.

When b =1, we say C} is a straight cone over L and we denote it by (C(L), dout) =
(C%,’ (Qv 0)’ dout) and (C(L)’ dm) = (Clln (Qv O)a dm)

By C% or C(L) we always mean the germ (C%,(0,0)) or (C(L), (0,0)).

Remark 2.5. We can assume that we are always working with bounded representatives
of germs, and in particular with globally subanalytic sets (see Remark [A—@). Recall
that the collection of all globally subanalytic sets forms an O-minimal structure (see
Remark [A8). Therefore, references for O-minimal structures such as [Q] can also be
applied to our category.

Remark 2.6. We recall that the link of a subanalytic germ is well defined as a topolog-
ical space as the intersection of X with a small enough sphere centered at xq; we denote
it by Link(X,xzg) or simply Lx. Moreover, the conical structure theorem says, given
a subanalytic germ (X, xo) and a family of subanalytic subgerms (Z1,0),...,(Z,0) C
(X,0), that there exists a subanalytic homeomorphism h : C(Lx) — (X, zo) such that
l|zo — h(tz,t)|| =t and such that h(C(Lz,)) = Z; with Lz, in Lx (see Theorem 4.10,
5.22, 5.28 in [9]). We say that the conical structure h is compatible with the family
{Z;}. The conical structure is why we say that xq is the vertex of (X, x¢).

10



Let us add that in Proposition 1 of [IT], when X is semialgebraic it is proved that
the link is well defined up to semialgebraic homeomorphisms. However, this fact is not
used along this thesis.

Definition 2.7. A map germ f : (X,xz9) — (Y,yo) is said to be linearly vertex ap-
proaching (l.v.a. for brevity) if there exists K > 1 such that

1
|1z = 2oll < [If(2) = oll < Kllz — ol

for every x in some representative of (X, xo). The constant K is called the l.v.a con-
stant for f.

Remark 2.8. Let (X, xg) be a subanalytic germ with compact link. Consider any sub-
analytic map germ f: (X, xz9) — (Y, yo) that is a homeomorphism onto its image. Let
{Z;}jer be a finite collection of closed subanalytic subsets of X. There is a subanalytic
homeomorphism germ ¢ : (X, x0) = (X, x0) such that $(Z;) = Z; for all j € J and
such that || fop(x) — yo|| = ||x — zol|, which is stronger than l.v.a.

Proof. Let h : C(Lx) — (X,zp) be a subanalytic homemomorphism defining the
conical structure compatible with the Z; (which means that h(C(Lz,)) = Z;) and such
that ||h(tx,t) — xo|| =t (see Remark IH).

Consider the mapping g : C(Lx) — C(Lx) that sends (zt,t) — (z - ||f o h(xt,t) —
xoll, ||f o h(zt,t) — zo||). It is clearly subanalytic in the coordinates y = xt and ¢ for
t # 0 and therefore it extends continuously and subanalytically to the closure C(Lx).
Note that g is a homeomorphism.

To finish, it is clear that ¢ := h o g~ o h™! satisfies the statement. O

Remark P28 can also be shown adapting the following result of Shiota’s:

Corollary 2 of [36]. Let fi and fa be subanalytic functions on X with

N0 =£10), {fi<0}={f2<0}, {fi>0}={f>0}

Then there exists a subanalytic homeomorphism ¢ of X such that

fioo = fa
on a neighborhood of ffl(())

We assume x¢ = 0. If the family {Z;};c; is empty, we simply apply Corollary 2
of [86] to the functions ||z|| and ||f(z)||. The proof of Corollary 2 [36] only uses the
subanalytic triangulation Theorem (Theorem 1 of [36]) together with Lemmata 10 and
11 in the same paper, which are stated in the presence of the family {Z;};c;. Notice
that the subanalytic triangulation Theorem (Theorem 1 of [36]) is valid when the
family {Z;};cs is non-empty (this is Theorem II of Chapter II of [37]). So Remark 2R
is true without the assumption that f is a homeomorphism onto its image.

We have preferred to give a simple proof of the case that is used in this thesis for
the sake of completeness, i.e. including the assumption that f is a homeomorphism
onto its image.
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Definition 2.9. Let (X, xo,d1) and (Y, yo,d2) be two metric subanalytic germs. A Lip-
schitz linearly vertex approaching subanalytic map germ (Lipschitz l.v.a. subanalytic
map for short)

[+ (X, 2o,dx) = (Y, y0,dy)

is a l.v.a subanalytic map germ such that there exists K > 1 and a representative X of
the germ such that
dy (f(z), f(2)) < Kdx(x,%) Vz,T € X.

Any such K which also serves as a l.v.a. constant for f will be called a Lipschitz
L.v.a. constant for f.
A Lipschitz l.v.a. subanalytic map of pairs is a map germ of pairs

f : (Xa Y7andX) — (leyluxé]adX’)

such that f : (X, xo,dx) — (X', z(,dx’) is a Lipschitz l.v.a. subanalytic map.

Given a subanalytic subgerm (Y, zo,dx|y) C (X, zo,dx), the inclusion is an example
of a Lipschitz l.v.a. map.

Definition 2.10. The category of pairs of subanalytic metric subanalytic germs has
pairs of metric subanalytic germs as objects and Lipschitz l.v.a. subanalytic maps of
pairs as morphisms.

Remark 2.11. Equivalently, we can work with the bigger category of subanalytic germs
(X, zo,dx) which are endowed with a metric dx that induce the same topology as the
euclidean metric, and such that there exists a subanalytic metric d’ that is bi-Lipschitz
equivalent to dx , which means that the identity (X, xo,dx) — (X, xo,d’) is bi-Lipschitz.
Hence we are not asking dx to be a subanalytic metric. Then, a subanalytic germ
(X, o) with the inner metric belongs to this category, see Example 223.

2.2. Definition of the Moderately Discontinuous Metric
Homology

The Moderately Discontinuous Metric Homology (Moderately Discontinuous Homol-
ogy, or MD-Homology, for short) is a functor from the category of pairs of metric
subanalytic germs to an algebraic category whose objects are diagrams of groups. Its
definition needs a series of steps.

2.2.1. The pre-chain group M DCP">*((X,x¢); A).
Notation 2.12. For any n € Ny, we denote by A, C R"*! the standard n-simplex
Ap = A{(po, - pn) € R0)" > p =1}
i=0

oriented as follows: the standard orientation on R" ! orients the convex hull of A, U0,
where O denotes the origin, which in turn induces an orientation on A,. We denote by
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ik An_1 — A, the map sending po, ..., pn_1 t0 Po, ..o, Pk—1,0, Dy .o, Pu_1. The image
of i¥ is the k-th facet of A,,.
Consider the oriented germ of the cone over A, and denote it as

An = ({(tl',t) S Rn+1 XR:zx S An7t € [07 1)}7

and let j5 - A,_1 — A, be the map sending (tx,t) — (ti¥ (x),t). The k-th facet of A,
is the image of jk. More generally, a face of Ay, is the cone over a face of Ay.

We will usually use Ay, to denote the germ (A, (0,0)).
The following definition is coherent with Definition P2

Definition 2.13. A linearly vertex approaching (subanalytic) n-simplex is a continu-
ous subanalytic map germ o : A, — (X, x0) such that there is a K > 1 such that

1
?t < |lo(xt,t) — zo|| < Kt

for any x € A, and any small enough t. We will say simply a l.v.a. simplex.

Similarly, a map v : A, — A, expressed as v(zt,y) = (v (xt,t)vo(xt,t), vo(xt, 1))
in the coordinates (xt,t) of An, is linearly vertex approaching, if there is a K > 1 such
that %=t < vy(xt,t) < Kt.

Definition 2.14. Given a subanalytic germ (X, xo) and an abelian group A, a linearly
vertex approaching n-chain in (X, z¢) (l.v.a. n-chain, for brevity) is a finite formal
sum Y, a;0;, where a; € A and o; is a l.v.a subanalytic n-simplex in (X,xo). We
define MDCR™ ™ ((X,xq); A) to be the abelian group of n-chains. Given a subanalytic
germ (X, zg) and an abelian group A, a linearly vertex approaching n-chain in (X, z¢)
(l.v.a. n-chain, for brevity) is a finite formal sum ), a;o;, where a; € A and oy is
a Lv.a subanalytic n-simplex in (X,zg). We define MDCE ™ ((X,xz0); A) to be the
abelian group of n-chains.
We define the boundary of o to be the formal sum

n

00 =Y (~1)foojy.

k=0

The boundary extends linearly to n-chains and defines a complex M DCE™ ™ ((X, x¢); A)
whose components are the groups M DCR ™ ((X,x0); A) for n > 0.

Often, when it is clear from the context we will skip the coefficients group A and/or
the vertex in the notation.

2.2.2. The homological subdivision equivalence relation in
MDCP>®((X, xg); A)

As in Singular Homology Theory, in order to prove Excision and Mayer-Vietoris we
will need to subdivide simplices. In Singular Homology, the standard procedure is to
devide a simplex into a chain of smaller simplices by taking barycentric subdivisions.
The existence of a Lebesgue number in that context guarantees that iterating that
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procedure enough times yields a chain for which all of its simplices are contained in
one of the open sets of the cover. In our theory, the role of open subgerms are taken by
subgerms whose representatives are open and whose closure contains the vertex, but
that do not contain the vertex themselves. Observe that those are the complements
of subgerms whose representatives are closed and contain the vertex. Therefore an
open cover of germs does not cover the image of a l.v.a. simplex. As a result we
do not get a Lebesgue number. That is why we do not adapt the procedure used in
Singular Homology, but build a chain complex that incorporates the subdivisions from
the beginning.

Observe also that by incorporating subdivisions from the beginning and therefore
not depending on the Lebesgue number we achieve that Mayer-Vietoris, and therefore
also the Excision Theorem and the Cech Theorem, can be shown directly for closed
covers. In fact, that is what we do in Section 8. In Subsection EZ63 we then show
that the proofs for closed covers can be adapted to open covers.

Given a finite simplicial complex K we denote by |K| the geometric realization of
K. We call the subsets of |K]|, that correspond to a simplex in K, the faces of |K]|.
Let Z be a subanalytic set. A subanalytic triangulation is a finite simplicial complex
K of closed simplices and a subanalytic homeomorphism « : |K| — Z.

Remark 2.15. Given a finite family S of closed subanalytic subsets of Z, there exists
a subanalytic triangulation o : |K| — Z compatible with S, that is, such that every
subset of S is a union of images of simplices of |K|. See for example Theorem 4.4. in
[9] or Theorem II.2.1. in [37].

By a subanalytic triangulation of a subanalytic germ (X, z9) we mean a subanalytic
triangulation of a representative of it, which is compatible with the vertex.

Given two subanalytic triangulations « : |[K| — Z and ' : |[K'| — Z, we say that
o refines « if the image by a of any simplex of |K| is the union of images by o of
simplices of |K'|.

Given a subanalytic triangulation « : |K| — Z, a simplex of |K]| is called mazimal if
it is not strictly contained in another simplex. We consider the collection T := {T; }icr
of subsets of Z that are images of the maximal simplices of | K|. We call it the collection
of mazimal triangles.

Given two simplicial complexes K and K’, a continuous mapping f : |K| — |K'|
preserves the simplicial structure if it takes faces to faces.

In the next definition we will need a representative of the germ A,. By abuse of
notation we denote it also by A,,, and consider the representative

{(tz,t) eR"™ xR:z € A,,t €10,1/2]}.

Definition 2.16. A homological subdivision of A, is a finite family {pi}ier of in-
jective lv.a. subanalytic map germs p; : Ap — A, for which there is a subanalytic
triangulation o : |K| — A, with the following properties:

e the triangulation « is compatible with the collection of all faces of A,

e all maximal triangles of a meet the vertex of A,
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e the collection {T;} of maximal triangles of « is also indexed by I;

e for any i € I, the image of p; is T; and o~ Y|1,0p; is a homeomorphism that takes
faces of A, to faces of |K|.

For a homological subdivision {p;}icr, the sign of p; for any i € I is defined to be 1,
if p; is orientation preserving, and —1, if it is orientation reversing. We denote it by
sgn(pi).

Note that this implies that, whenever the sum ), ; sgn(p;)p; is a cycle in the sin-
gular homology H,11(A,,dA, UAZ¢7Z) for € = min{e;} where AZ¢ denotes the set
{(tz,t) € R"™ xR : z €,t € [¢,1)}, then },.; sgn(p;)p; represents the fundamen-
tal class. However, in general ), ; sgn(p;)p; does not have to represent a cycle in
H,1(A,,0A, UAZE 7).

Definition 2.17 (Immediate equivalences). Two chains

Z a;oj, Z b € MDCP™®>°(X; A)
jed keK

are called immediately equivalent (and we denote it by > .c;a;j0; =0 3 perc OkTh), if
for any j € J there are homological subdivisions {pj; }ic1; such that we have the equality

YO sgnlpjiajosops = Y biTk

jeJ iel; keK

in MDCR' ™ (X; A).

Remark 2.18. The immediate equivalences can be defined as well by imposing 0 —
Y icr sgn(pi)oop; for any lv.a n-simplex o and any subdivision {p;}icr, and extending
the immediate equivalences by linearity.

Remark 2.19. Any lLv.a. subanalytic homeomorphism 1 : (A,,0) — (A,,0) which
preserves the simplicial structure is a homological subdivision of A, for which the index
set I has just one element. As a consequence, for any n-simplex o, we have ¢ —~ oo,
if p 1s orientation preserving, and 0 —o —oopu, if s orientation reversing.

Definition 2.20 (The homological subdivision equivalence relation). The subdivision
equivalence relation in MDCR ™ (X; A) (denoted by ~g.) is the equivalence relation
generated by immediate equivalences. That is z ~g~ 7' if there exists a sequence
w1, ..., wg such that z = wy, 2 = wy and for any 1 < i < k we have either the

immediate equivalence w; —oo Wit1 OT Wit] —>oo Wi-

Lemma 2.21. Given any three chains wi,ws, w3 € MDCR ™ (X; A), and immediate
equivalences w3 —oo w1 and w3 —oo wo there exists an element wy € MDCR ™ (X; A)
and two immediate equivalences w1 —roo W4 and Wo —oo W4.

Proof. Since the immediate equivalences are compatible with linear combinations (see
Remark P7I8) we may assume that ws is equal to an n-simplex o. Then there exist
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two subdivisions {p; }ier and {p}, }icp of A,, such that we have the equalities

wy = Z sgn(pi)oop;, wo = Z sgn(pl)oopl. (2.1)
iel ier

Let o : |K| = A, and o : |K'| = A, be the subanalytic triangulations asso-
ciated with the homological subdivisions {p;}ic; and {p} }scp. By the subanalytic
Hauptvermutung (Chapter II, Theorem II in [37])) there is a subanalytic triangulation
B :|Ll = A, refining o and o/. Let {T;}jes be the collection of maximal trian-
gles of the triangulation 5. Let {v;};cs be a collection of orientation preserving l.v.a.
subanalytic homeomorphisms v; : A, — T} preserving the simplical structure.

Consider the splitting J = [[;.; Ji, where j € J; if and only if T} is included in the
image of p;.

Then the collection { pz._lol/j }jes,; is a homological subdivision of A,, and we have the
immediate equivalence

00 = Y 00piop; tovy =) ou;. (2.2)
Jj€J; JjeJ;

The splitting J = [ [,/ J}, is defined considering the analogous interaction between
the triangulations o’ and 3. By the same kind of arguments we have the immediate
equivalence

TP —voo Z oov;. (2.3)
je!

Defining wy := >, ; oov; and using Equations (20), (272) and (233) we complete
the proof. 0

Corollary 2.22. We have the equivalence w ~g « z if there exist sequences of imme-
diate equivalences z = 20 —oo 21 —Yoo -+ oo 2l ANA W = Wy —Foo W1 —Poo -+ —Yoo Wi =
2.

Proof. The sequence z = x1,...,rp = w predicted in Definition is monotonous at
the i-th position if we have either z;_ 1 — o i =00 Tit1 O Tit1 —Foo Ti oo Ti—1-
The sequence x1,...,xx has a roof at the i-th position if we have x; —o x;—1 and

Ti —co Tit1.- The sequence x1,...,xr has a valley at the i-th position if we have
Ti—1 oo &; and Tjy1 — o ;. Repeated applications of the previous lemma allow to
replace every roof by a valley. O

2.2.3. oco-Moderately discontinuous homology

Lemma 2.23. The homological subdivision equivalence relation is compatible with
the boundary operator & in MDCR>(X; A) in the following sense: given a sim-
plex 0 € MDCE™(X; A) and {p;}icr a homological subdivision of A,, then do and
Yicr O(sgn(pi)oop;) are ~g o -equivalent.

Proof. A homological subdivision {p;}ic; of A,, induces a homological subdivision
{pF}icr, of the k-th facet of A,. So 9(X,c;sgn(pi)o o p;) splits as the sum, with
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appropriate signs, of the facets of o (expressed after the corresponding homological
subdivision) and the sum of the interior facets of all o o p; which cancels in pairs.
O

Definition 2.24 (co-MD Homology). We define the oo-moderately discontinuous chain
complex of (X, xg,dx) with coefficients in A (co-MD complex for short) to be the quo-
tient of MDCY* (X, mo,dx); A) by the homological subdivision equivalence relation.
We denote it by MDCF((X,zo,dx); A). Its homology is called the co-moderately dis-
continuous homology with coefficients in A and is denoted by MDHZ((X, xo,dx); A).

Note that this homology does not depend on a metric. As we will see in Section 8,
the co-moderately discontinuous homology coincides with the homology of the link of
the germ (X, o).

2.2.4. b-Moderately discontinuous homology

Given a metric subanalytic germ (X,xzo,dx), for each b € (0,+00), we define the
following equivalence relation in the set of 1.v.a. subanalytic n-simplices:

Definition 2.25. Let b € (0,00). Let 01,09 be n-simplices in M DCY > (X, zo,dx).
We say that o1 and oo are b-equivalent (we write o1 ~y 03) if

lim max{dx (o1(tx,t),o2(tz,t));x € Ap} _

0.
t—0+ th

We extend the relation to MDCR > (X; A) by linearity.

Remark 2.26. The quotient of the free group M DCY ™ ((X,xg,dx); A) by the ~y-
equivalence relation is the free group generated by the ~p-equivalence classes of simplices
with coefficients in A. As a consequence we have the following: let w = ZjeJ bjTj and
w' = Y Vi) be chains in MDCI™((X,x0,dx); A). Split the index sets J =
Hicx Ir and J' = [1,cx Ji in the unique way that satisfies the following properties:

e any two ji,ja € J belong to the same Ji if and only if we have 7j, ~p Tj,,
e any two ji, jy € J belong to the same Jy if and only if we have 7}, ~y 7, ,

1 2
o forany k € K and j € J and j' € J} we have 7j ~y 7).

Then w ~y, w' if and only if for any k € K we have the equality

> b= by (2.4)

JEJk J'ed;,

The following arc interpretation of the b-equivalence relation will be useful later.

Lemma 2.27. Let 01,09 be n-simplices in MDCY ™ (X, xo,dx). Then we have that
the following statements are equivalent:

(1) o1 ~p 02;
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(i) for any subanalytic continuous arc ~ : [0,€) — A, such that v(0) is equal to the
vertex and (t) is different to the vertex for t # 0 we have the equality

lim d(o1(y(t)),02(7(1)))
t—0+ ’72(t)b

—0, (2.5)

where (t) = (v2(t)71(t),v2(t)) is the expression of the arc in the coordinates
(tz,t) of Ap;

(iii) for any subanalytic l.v.a. continuous arc v : [0,€) — A,, we have the equality

i A1) 02(0(1))
t—0t tb

= 0. (2.6)

Proof. If we have the equivalence g1 ~ 09 it is obvious that the limit vanishes for any
arc as in the statement of (ii). Let v(t) = (y2(¢)y1(t),2(t)) be any subanalytic l.v.a

72(t)
t

continuous arc. Then the limit lim is finite, and therefore condition (7i) implies

t—0+

condition (7i1).

So, to finish the proof, we only need to prove that (iii) = (i). Assume that the
condition on arcs in (iii) is satisfied. The function

t — max{d(o1(tx,t),oa(tx,t));x € Ay}
is subanalytic. Therefore it admits an expansion of the form
max{d(o1 (tz, 1), oa(tz,t));x € A} = Ct¥ + o(t?)
for a certain ¥’ € Q and C' > 0. Then the subset
Z = {(ta,t) € A, d(o(ta, 1), ootz 1) > (C/2)t"}

is subanalytic and contains sequences converging to the vertex of A,. Therefore,
by the subanalytic Curve Selection Lemma there exists a subanalytic continuous arc
v :[0,€) — Z such that v(0) is equal to zp and ~(t) is different to the vertex for ¢ # 0.
By Remark R we can assume that ||v(t) — x¢|| = t. Thus, we have the following
inequality

i A0 000 |y
t—0+ tb

The equivalence o1 ~p, o9 holds if and only if we have the strict inequality ¥’ > b. The
previous inequality implies that if ¥’ < b then the arc « contradicts the arc condition
in the statement of (iii). O

Lemma 2.28. Let 0,0’ be simplices in MDCR > (X; A) such that o ~y o’. If {pi}ticr
18 a homological subdivision of A, then we have

> " sgn(pi)aopi ~ > sgn(pi)a’op;.

el el
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Proof. Let v be any subanalytic l.v.a continuous arc in A,,. Since pi is L.v.a then p;oy
is also a subanalytic l.v.a continuous arc. Since we have the equivalence o ~y o,
Lemma 2727 implies the vanishing of the limit

d(o(pi(7(1)), o' (pi(7(1))))

lim 3 = 0.
t—0+ t
Again by Lemma P27 this implies the equivalence gop; ~y, o/op;. O

In order to define the complex of b-moderately discontinuous chains we introduce
the b-subdivision equivalence relation.

Definition 2.29 (The b-subdivision equivalence relation). Two chains

Z a;oj, Z b € MDCP™*>°(X; A)
jed keK

are called b-immediately equivalent (and we denote it by > .c;a;o; = D ek bkTh),
if for any j € J there is a homological subdivision {p;}icr; such that we have the
b-equivalence

DO sgnlpi)ajojopi ~p Y brti
jET i€l keK
in MDCR' ™ (X; A).

The b-subdivision equivalence relation in M DCEL > (X; A) is the equivalence rela-
tion generated by the b-immediate equivalences, and is denoted by ~gy. The equivalence
classes are called b-moderately discontinuous chains or b-chains.

We denote by MDCL(X; A) the quotient group of MDCER ™ (X; A) by the ~g-
equivalence relation. It is the group of b-moderately discontinuous chains.
Proposition 2.30. w ~gy, 2 if and only if there exist sequences of b-immediate equiv-
alences w = wy —>p W1 —p ... —p Wy and 2 = 29 —>p 21 —p oo b Zm = WJ.

Proof. The proof is an adaptation of the proofs of Lemma =20 and Corollary 222,
taking into account Lemma P2R. O

Remark 2.31. Often we will need to define homomorphisms
h: MDCE((Xa andX)ﬂA) - G:

where G is an abelian group. The usual procedure is to define first a homomorphism
h: MDCJ"*((X,z0,dx); A) = G, and check that it descends to a well defined h. It
s convenient to record that h descends if and only if the following two conditions hold:

o For any o,z € MDCY ™ ((X,x0,dx); A), where o is a simplex and z is a chain
such that we have the immediate equivalence o — o z, we have the equality h(o) =
h(z).
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e For any two simplices 0,0’ € MDCY ™ ((X,z0,dx); A) such that we have the
equivalence o ~y o', we have the equality h(c) = h(o’).

Lemma 2.32. The boundary operator @ in M DCY" > (X; A) descends to a well defined
boundary operator in MDCY(X; A).

Proof. We have to check the conditions of Remark PZX1. The first condition is exactly
Lemma 2723. The second condition is similar to the proof of Lemma PZ23. O

Definition 2.33 (b-Moderately discontinuous homology). We define the b-moderately
discontinuous chain complex of (X,xg,dx) with coefficients in A (the b-MD com-
plex for short) to be the complex MDCL((X,xo,dx); A) with the boundary operator
defined in the previous lemma. Its homology is called the b-moderately discontinu-
ous homology with coefficients in A (b-MD homology, for short) and is denoted by
MDH}((X, zo,dx); A).

For by > by the chain complex M DC ((X,xg,dx); A) is richer than the chain com-
plex MDC?((X, xg,dx); A). But for the b-MD homology the situation is more com-
plex:

Example 2.34. We take the straight cone over the circle and for every level (xtq,t1),
where t; € (0,€) is fized, we remove an open segment of length tlf from the circle as
tllustrated in Figure 2. We denote the result by X and we equip X with the outer
metric dx. We denote the boundary arcs of X by x1(t) and x2(t) respectively and
parametrize both such that ||zy(t)|| = t. For b < b, the Lv.a. simplez o : Ay — X
defined as follows is a cycle in the chain group MDCY ((X,0,dx); A). LetS; denote the
sphere in R of radius t. For a fizedt € (0, €], we define o(t(—),t) : Ay — XNS; to be a
continuous subanalytic function for which o(t(0,1),t) = xz1(t) and o(t(1,0),t) = z2(t)
and such that o is continuous.

ni(t) 2 (t)

Figure 2.1.: The subanalytic metric germ X.

The following consequence of Proposition 2230 will be used repeatedly:

Lemma 2.35. Given an element z € MDCY*((X,z0,dx);A), the class [z] in
MDCY((X,z0,dx); A) vanishes if and only if there exvists a sequence of immediate
equivalences z = 29 —>oo 21 —oo -+ —Foo 2r Such that z,. ~p 0. Notice that, by Re-
mark 224, the chain z, = Ziel a;0; s as follows: consider the subdivision of the index
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set I = [[;c;1; so that i,i" belong to the same I; if and only if o; ~y 0. Then for
any j € J we have the equality
Y a;i=0. (2.7)

iGI]'

Proof. If there exists a sequence z = 2p o0 21 —Yoo -+ —oo 2r ~p 0, then the class [z] €
MDC?((X,z9,dx); A) vanishes obviously. Let us prove the converse. Suppose that z €
MDCY™((X, xz9,dx); A) is such that its class [z] vanishes in M DC2((X, xo,dx); A).
By Proposition P23 there exists a sequence of b-immediate equivalences

Z =20 —ph 21 b .- b Rpr = 0, (28)

We proceed by induction over r. If r = 1, there is nothing to show.

For the induction step we prove the following: if 2{, 21 and zy are chains in the
complex M DCY™*>((X, zo,dx); A) such that z] ~p 21 and 21 — 22, then there is a
zh € MDCY ™ ((X, z0,dx); A) such that 2 — 2 and 2} ~} 2. To show that, write
21 = Y e aio; and let {p;;}ier, be homological subdivisions for which

2= aisgn(pii)oiopis.

i€l lel;

Let 2y = .cja;0;. Let I =[] cp Vi and J = [V be the splitting in accordance
with Remark applied to z; and z]. For any j € J, choose a fixed k; € V}/. Then

it is
! / / ~ / =
z] = g E a;o0;, +z1 = E E a;o0;, “+ z1

keK jeV/ keK i€V

where Z; ~ 0. Set

= Z Z Z sgn(pi1)aioo’, opiy + Z1.

keK icVy leL;

By Lemma P28, it is 2 ~y 22.
Now suppose r > 1. By what we have just shown and the induction hypothesis,
sequence (PZ8) can be transformed into

2 =20 oo z6 oo zi oo - —Poo z; ~p Zp ~p 0.
]

Remark 2.36. For the outer metric, in a joint paper with Javer Ferndndez de Bobadilla,
Maria Pe Pereira and Edson Sampaio (preprint), we proved that the MD Homology
for b =1 coincides with the singular homology of the tangent cone.

Moreover, considering X equipped with the inner metric, it would be interesting to
study the relation of our invariants for b = 1 with the topology of the Gromov tangent
cone of [i]. The obstruction of the Gromov Tangent Cone analyzed in Section 3 of [i]
resembles our equivalence relation for points at b = 1, since it involves identifying sub-
analytic arcs that approach each other at speed larger than 1. We thank A. Parusinski
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for pointing out a possible relation with that article.

2.2.5. Relative b-Moderately Discontinuous Homology

In our setting relative homology exists in two different levels of generality. Let us start
with the less general one, which is analogue to the classical Singular Homology Theory
(See Subsection E61 for the other one, which is essential for the formulation of the
relative Mayer-Vietoris Theorem in our theory).

Consider b € (0, +00]. Given a subanalytic subgerm (Y, z¢,dx,,) = (X, 20, dx), we
denote by K, the minimal subcomplex of M DC?(X, xq, dx) which contains the classes
[0], where o is a l.v.a. simplex in Y. An easy application of Lemma 2233 shows that
the obvious epimorphism of complexes M DC?(Y, g, dX‘y) — K, is an isomorphism.
Therefore we have an inclusion of complexes

MDCY(Y, x0,dx,, ) = MDCY(X, xo,dx). (2.9)

Definition 2.37. Consider b € (0, +00]. Given a subanalytic subgerm (Y, zo,dx, ) <
(X, z0,dx), we define the complex of relative b-moderately discontinuous chains with
coefficients in A, denoted by MDCY((X,Y, xo,dx); A) as the following quotient:

MDC((X, xg,dx); A) / MDC2((Y, xg,dx|y); A),

which makes sense by inclusion (Z29).

The b-moderately discontinuous homology M DH?((X,Y, xo,dx); A) with coefficients
in A is the homology of the complex MDCY((X,Y, xg,dx); A).

We abbreviate calling these complexes and graded abelian groups the b-MD complex
and b-MD homology of the pair (X,Y,xo,dx). When it is clear from the context we
will denote it simply by MDC(X,Y; A) and similarly for homology.

Notation 2.38. Denote by Kom(Ab)~ the category of complexes of abelian groups
bounded from the right. Denote by D(Ab)~ the bounded above derived category of
abelian groups. It is the localization at quasi-isomorphisms of the category whose objects
are complexes bounded from the right and whose morphisms are homotopy classes of
morphisms of complexes. Since we will deal with homology we will index the complexes
as ... —» Cyp — Cg_1 — .... There is a functor denoted by H, from Kom(Ab)~ to the
category GrAb of graded abelian groups, which consists in taking the homology of a
complez.

At this point we check functoriality for the first time:

Proposition 2.39. For every b € (0, +00], the assignments
(X,Y,mg,dx) = MDCL((X,Y,20,dx); A) and

(X,Y,z0,dx) = MDHY(X,Y,x0,dx); A)

are functors from the category of pairs of metric subanalytic germs to Kom(Ab)~ resp.

GrAb.
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Proof. A Lipschitz l.v.a. subanalytic map f : (X,z9,dx) — (X', z,dx’) induces
morphisms M DCY (X, xg.dy) — MDCY(X' xf,dx:) for every b € (0,+oc], by
taking ¢ — f o o for every l.v.a. simplex o and extending by linearity. One can
check that it descends to a well defined morphism from M DC?((X,xo,dx); A) to
MDCS((X', z}y,dx:); A) because it satisfies the two conditions of Remark E=31, which
are straightforward.

If f takes a subanalytic subgerm Y into a subanalytic subgerm Y, then the ho-
momorphism defined above transforms the subcomplex M DC2((Y, xo,dx|y); A) into
MDCS((Y',zfy,dx|y+); A), and hence descends to the relative homology groups. [

Notation 2.40. Given a Lipschitz l.v.a. subanalytic map
f : (X7Y>$07dX) — (leylvxIOadX’)

we denote by f. the induced map at the level of b-MD chains for every b € (0, +00].

2.2.6. The final definition of Moderately Discontinuous Homology

In this section we introduce the complete definition of Moderately Discontinuous Chain
Complexes/Homology as a functor from the category of pairs of metric subanalytic
germs, to a category of diagrams of complexes/groups.

The starting observation is the following: for by > by with b; € (0, +o0] there are
natural epimorphisms (see Section EZ33 for the associated long exact sequence):

RPY02  MDCY (XY, 0, dx); A) = MDC?((X,Y, z0,dx); A) (2.10)
which induces a map in homology:
RoVO2 . MDH (XY, 20,dx); A) = MDH?((X,Y, x0,dx); A). (2.11)

Notation 2.41. We define the category B, where the set of objects is (0, 00| and there
is a unique morphism from b to V' if and only if b > V.

Definition 2.42 (Categories of B-complexes and B-graded abelian groups). The cat-
egory B — Kom(Ab)~ of B-complexes is the category whose objects are functors from
B to Kom(Ab)~ and the morphisms are natural transformations of functors. The cat-
egory B — D(Ab)~ is the category whose objects are functors from B to D(Ab)~ and
the morphisms are natural transformations of functors. The category B — GrAb of
B-graded abelian groups is the category whose objects are functors from B to the cate-
gory GrAb and the morphisms are natural transformations of functors. Concatenation
of objects in B — Kom(Ab)~ with the homology functor H, yields a functor B — H, :
B — Kom(Ab)~ — B—GrAb which factorizes through B—D : B—D(Ab)~ — B—GrAb.

Proposition 2.43. The assignments (X,Y,xo,dx) — MDC;((X,Y,zo,dx); A) and
(X,Y,z0,dx) = MDH:((X,Y,x0,dx); A) are functors from the category of pairs of
metric subanalytic germs to B — Kom(Ab)~ and B — GrAb respectively.
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Proof. One only needs to check that the functoriality for Lipschitz l.v.a subanalytic
maps for each b € B commutes with the epimorphisms (2710), (211) which is clear. [

It is interesting to record that in the case of complex (resp. real) analytic germs our
homology theory gives complex (resp. real) analytic invariants.

Corollary 2.44. Given a complex (resp. real) analytic germ (X, xg), the B-moderately
discontinuous homology MDHY(X, xg, doyt) and MDHS(X, xo, dinn) for the outer and
inner metrics are complez (resp. real) analytic invariants.

Proof. A real or complex analytic diffeomorphism is well known to be bi-Lipschitz both

for the inner and outer metric and it is clearly l.v.a. O

2.2.7. Bi-Lipschitz invariance of »-MD homology with respect to the inner
distance

We check that a subanalytic homeomorphism between two germs (X, zg) and (Y, yo)
that is bi-Lipschitz for the inner metric is l.v.a.. Then we conclude that the MD
Homology for d;y, is a bi-Lispchitz invariant.

Proposition 2.45. Let (X, zo) and (Y, yo) be two germs of subanalytic sets. Let dx inn
(resp. dy.inn) be the inner distance of X (resp. Y ). Then we have the following:

(a) dx. inn (Tesp. dyinn) induces the same topology on X (resp. Y ) as the topology
induced by the standard topology on R™;

(b) If there exists an inner bi-Lipschitz homeomorphism h: (X,z0) — (Y,yo) then
there exists K > 0 satisfying the inequalities

1
7z = zoll < [[~(2) = woll < K|z — zol|.

In order to prove Proposition B3, we recall the following result.

Proposition 2.46 (Proposition 3 in [23|). Let X C R™ be a subanalytic set and ¢ > 0.
Then there exists a finite decomposition X = U§=1 I'; such that:

1. each I'j is a subanalytic connected analytic submanifold of R™,
2. each T; satisfies dr, inn(P:q) < (1 +€)|lp —ql| for any p,q € r;.

Proof of Proposition ZZ3. Let us consider X = U;?:l I'; as in Proposition 2248 and
€ = 1. Thus, if z € X, there exists a j such that = € I'; and, moreover, we get

1
§||~”U — z0l| < dx inn(z,70) < dr; inn (T, 20) < 2|7 — 20]|. (2.12)
Since ||z — y|| < dx,inn(z,y) for any z,y € X, to prove item (a) it is enough to prove

that for any # € X and any ball By, ,(z) with respect to the inner distance, we
can find a ball Bs(x) with respect to the outer distance such that Bs(z) C Bipny().
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But to do this, we just apply Proposition Z48 to (X, z) and € = 1, and we get that
By ja(2) C Binny().
Obviously we have the same result for Y and, in particular, we have

1
5”2/ = 9ol < dyinn(y, %0) < 2|ly — yol|- (2.13)
In order to get item (b), we just need to apply the Lipschitz properties of h and Eq.
(212) in Eq. (213). O
Thus, by considering Remark P71, the following is immediate.

Corollary 2.47. Let (X,z9) and (Y,yo) be two subanalytic germs. If there exists
a subanalytic bi-Lipschitz homeomorphism h: (X, zo,dx inn) — (Y, y0,dy,inn), then
(X, z0,dx inn) and (Y,y0,dy,inn) have the same MD homology. In particular, h in-
duces isomorphisms

hn: MDHY(X, 0, dx inn) — MDHL(Y,y0, dy.inn)

for all b € (0,400] and n € N.

2.3. Basic properties of MD-Homology

In this section we prove properties of MD-Homology in analogy with usual homology
theories (relative exact sequence, its value at a “point” and sufficiency of chains which
are small with respect to a cover). The analogues of homotopy invariance, Mayer-
Vietoris and Excision are more subtle and are treated later in the thesis. We introduce
also a long exact sequence measuring the relation of the b-MD homologies for different

b.
2.3.1. The relative MD-Homology sequence

The relative homology sequence comes quite easily from the definition.

Proposition 2.48. Let (X, xz,dx) be a metric subanalytic germ. Let Z CY C X be
subanalytic subgerms. For any b € B there is a long exact sequence

.. > MDHX(Y,Z;A) - MDH.(X, Z; A) - MDH.(X,Y; A)

2.14
— MDH? (Y, Z;A) - MDH" (X,Z;A) - MDH®? (X,Y;A) — ... (2.14)

This exact sequence is functorial in Z CY C X and in b € B.
Proof. The proof is obvious from the definitions. O

Similarly we obtain the spectral sequence of a filtration of pairs of metric subanalytic
germs:
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Proposition 2.49. Let Zy C Z1 C ... C Z, = X be a filtration by closed subanalytic
subgerms of (X, xg). Let'Y be another closed subanalytic subgerm of (X, xo,dx). For
each b, the induced filtration in MDCY(X,Y; A) yields a spectral sequence abutting to

MDHII;)JFq(X»Y;A) with E* page equal to
E[b]p q = MDH£+q(Zp U Y, Zp—l U Y7 A)

The spectral sequence is functorial in b € B.

2.3.2. The Moderately Discontinuous Homology of a “point”

Like in any homology theory the point plays a special role. In the next definition we
clarify the notion of point in our category.

Definition 2.50. A point in the category of metric subanalytic germs is a metric
subanalytic germ isomorphic to ([0,¢€),0,d), where d is the Euclidean metric.

Proposition 2.51. For any b € [1,00) the complex M DC?((0, €); A) is quasi-isomorphic
to the complex A[0], i.e. MDHS((0,¢); A) = A and MDHL((0,¢); A) = 0 for alln > 0.

Proof. We show that the augmented chain complex of C%([0,¢); A) by A in degree —1
has trivial homology by constructing a chain homotopy H from the identity to the
0-map: denote by oo the identity map on [0,€). On degree —1, we define H(a) =
acg. For n € Ny, given o : A, — [0,€) in MDCE**°((0,¢); A) define H(o) €
MDCY'57°((0,€); A) to be the suspension of o by og given by the formula

tso tsn,

H(o)(tso, ..., tsp+1,t) == (—1)"“(5’0(?, g

t) + sn+1(00(t)))
where (so, ..., Sp41) are barycentric coordinates in A, 1 and S := sg+...+s,. If S =0,
define H(o)(tso,...,tsn41,t) = (—=1)""Log(t). Observe that for an n-simplex o with
n>1itis Hoojk) = —H(c)o jk, | for k < n and H(o) o jt} = (—1)"*'o. This
defines the chain homotopy in the augmentation of M DCY*>((0,¢€); A).

In order to finish the proof, we use Remark P23 in order to show that the chain ho-
motopy descends to a chain homotopy defined in the augmentation of M DC?((0, €); A).

Let {pl}ze 7 be a homological subdivision of A,, associated with a triangulation « :
|K| — A,. Notice that A, is the cone over A,, with vertex p = (0, ...,0,1); this
allows us to see A, as the cone over A,. Let C(K) be the cone over the simplicial
complex K and let 8 : |C(K)| — An+1 be the triangulation obtained by taking the cone
over the triangulation «. Define pf : JANS An+1 to be the cone over the mapping
pi- Then the collection {p};cs is a homological subdivision of An+1 associated with
the triangulation 3, such that for any ¢ € I we have the equality

H(oop;) = H(o)op,.

This shows that the homotopy descends to M DC®((0,¢€); A).
In order to prove that it descends to M DCY((0,€); A) it only remains to show that it
preserves the b-equivalence relation. Let o; and oy be b-equivalent l.v.a. n-simplices.
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Then H(op) and H (o) are b-equivalent, since we have the inequality

tso tsy, tso tsy
’(501(?7 ey ?ﬂt) - (502(?7 ey ?7t)|

<Smax{|oy(upt, ... unt,t) — oa(upt, ... unt,t)| : (ug,...,un) € Ap}

for every (sg,...,s,) € A, and S < 1. O

2.3.3. Relative homology with respect to b € [0, +00)
In our theory we have also a notion of relative homology with respect to b € [0, +00).

Definition 2.52. Let (X,Y) be a pair of metric subanalytic germs, A an abelian
group and by > by € Obj(B). We define the chain complex MDCL"" (X, Y A) to be
the kernel of the epimorphism

RPL02 - MDCY (X, Y; A) — MDCP(X,Y; A)

The n-th (b1, by)-moderately discontinuous homology is defined to be the homology of
MDCI 2 (X,Y; A).

Proposition 2.53. The following long exact sequence is an immediate consequence of
the last definition:

.. > MDH"" (X Y;A) - MDH" (X,Y;A) - MDH”(X,Y;A) -

2.15
— MDH"""(X,Y;A) - MDH" [(X,Y;A) - MDH® (X,Y;A) — ... (2.15)

Its association to (X,Y) is functorial.

2.3.4. MD-chains which are small with respect to a subanalytic cover

We will need to use chains which are small with respect to covers as in the classical
development of singular homology (see for example |[I[7], Ch 15) as a technical tool.

Definition 2.54. Let (X, ) be a subanalytic germ. A finite closed subanalytic cover
of X is a finite collection of closed subanalytic subsets C := {C;}icr of X such that
X = Uz‘el Ci.

Let (X, zo,dx) be a metric subanalytic germ. Given a finite closed subanalytic cover
C, a chain ZjeJ ajo; € MDCY™ ™ (X, z0; A) is called small with respect to C, if for
any j the image of o; is contained in one of the subsets of the cover. We denote by
MDCPre’OO’C(X, x0; A) the subcomplex of MDCY (X, x9; A) formed by the chains
which are small with respect to the cover.

We define the complexes MDC’.OO’C(X, x0; A) and MDCE’C(X, xo,dx; A) by restrict-
ing the equivalence relations ~g o and ~gy to MDC’Pre’OO’C(X, x0; A).

Given a subanalytic subgerm'Y C X we define the complezes MDC.OO’C(X, Y:A) and
MDC’E’C(X, Y,dx; A) as the quotients ofMDC'fo’C(X, xo; A) and MDC’f’C(X7 xo,dx; A)
by MDC?O’C(Y, xo; A) and MDCE’C(Y, xo,dx|y; A) respectively (as in Definition 2=31,
we may assume that the complexes we quotient by are subcomplezes).
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Proposition 2.55. Let C be a finite closed subanalytic cover of X. The natural mor-
phism of complexes

g: MDCY(X,Y;A) - MDCY(X,Y; A)
18 an isomorphism.

Proof. By the 5-Lemma it is enough to prove the proposition for absolute homology,
that is to prove the isomorphism M DCE’C(X ;A) — MDC?!(X; A) for any metric sub-
analytic germ (X, zg,dx).

The surjectivity is proved as follows: let o : A, — (X xo) be an n-simplex. We
consider the collection D of closed subanalytic subsets of A, given by the preimages by
o of the subsets of C together with the collection of all the faces of A,,. Let a : |K| — A,
be a triangulation of a representative of A,, compatible with D (see Remark ECT3). Let
{T}}ier be the collection of maximal triangles of . By restricting the representative of
A, we may assume that each maximal triangle T; contains the vertex. For each 7 €
choose a subanalytic orientation preserving, homeomorphism p; : A, =T, sending the
vertex to the vertex, and which preserves the simplicial structure. By Remark =8 we
may assume p; to be Lv.a. Then the collection {p;}ics is a homological subdivision
of An, and we have the equivalence o ~gyp > ;- sgn(p;)oop;. Since the chain on the
right hand side is small with respect to C surjectivity is proven.

Injectivity is an immediate consequence of Lemma P=33. O

Proposition P53 allows us to improve Remark PZ3T in the following manner:

Remark 2.56. In order to define a homomorphism
MDC2((X,x9,dx); A) — G,

where G is an abelian group, we will often proceed as follows: We take a finite closed
subanalytic cover C of X, define a homomorphism h : M DCY™® OOC((Ci,xO, dx); A) —
G, check that the two conditions of Remark =21 hold and compose with g~ on the
right, where g is the isomorphism of Proposition ZZ44.

2.4. Moderately discontinuous functoriality

In this section we improve functoriality properties of the b-MD homology for a fixed
b by allowing a certain class of non-continuous maps. This makes our theory quite
flexible. The discontinuities that we allow are moderated in a Lipschitz sense. This
may be seen as a motivation for the name of our homology.

2.4.1. Definition and functoriality of b-maps

Definition 2.57. Let (X, z0,dx) be a metric subanalytic germ. In line with Defi-
nition 2240, we define a point in X to be a continuous l.v.a. subanalytic map germ
p : [0,¢) = X. For any subanalytic Y C X, we say that p is contained in Y, if
Im(p) CY. Observe that a point in X is the same as a Lv.a. 0-simplex of X .
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Two points p and q are called b-equivalent, for b € (0,400), and we write p ~y, q, if

lim 5
t—0 t

We can restate the equivalence of (i) and (7i7) of Lemma P27 as follows:.

Remark 2.58. Let 01,09 be n-simplices in MDCY ™ (X, xo,dx). It follows from
Lemma ZZZT that we have the equivalence o1 ~y oo if and only if for any point p in

A,, 01 0p and o9 0 p are b-equivalent.

Definition 2.59. Let (X,x0,dx) and (Y,yo,dy) be metric subanalytic germs, b €
(0,00). A b-moderately discontinuous subanalytic map (b-map, for abbreviation) from
(X, z0,dx) to (Y,y0,dy) is a finite collection {(Cy, fi)}icr, where {C;i}icr is a finite
closed subanalytic cover of X and f; : C; — Y is a Lipschitz l.v.a. subanalytic map
satisfying the following: for any b-equivalent pair of points p and q contained in C; and
C; respectively, the points f; op and f; o q are b-equivalent in Y.

Two b-maps {(Ci, fi)Yier and {(C, fI)}icrr are called b-equivalent if for any b-
equivalent pair of points p, q with Im(p) C C; and Im(q) C Cj,, the points f;op
and fl, o q are b-equivalent in'Y .

We make an abuse of language and we also say that a b-map from (X, zo,dx) to
(Y, yo,dy) is an equivalence class as above.

For b = 0o, a b-map from X toY is a Lipschitz l.v.a. subanalytic map from X to

Y.

Proposition 2.60 (Definition of composition of b-maps). Let {(C;, fi)}ier be a b-map
from X to'Y and let {(Dj, g;)}jes be a b-map from'Y to Z. Then the composition of

the two b-maps is well defined by {(f;*(D;) N Ci, gj 0 fi‘f;1(Dj)mCi)}(M)eIXJ.

Proof. Any pair of b-equivalent points p and ¢ that are contained in fizl(Djl) N Cy,
resp. figl(Djz) N C;, are sent by f;, resp. f;, to b-equivalent points in Y contained in
Dj, resp. Dj,. Those are sent by g;, resp. g;, to b-equivalent points in Z.

Let {(Ci, fi)};e and {(Dj,3;)} ;. j be b-equivalent to {(Ci, fi) Yier and {(Dj, g;)}je
respectively. Let p and g be b-equivalent points contained in f;l(Dj)ﬂCZ- and f{l (ﬁj)ﬂ
C’; respectively. By the exact same reasoning p and q are sent to b-equivalent points in
Z by gjo fi; and Qj o fg respectively. O

Corollary 2.61. The category of metric subanalytic germs with b-maps is well defined.

Definition 2.62. A b-map between pairs of metric subanalytic germs (X,Y,zo,dx)
and (X,Y,%o,dg) is a b-map from X to X admitting a representative {(C;, fi) }ier for
which the image of C; NY under f; is contained in'Y for any i.

Let ¢ := {(Ci, fi) }ic1 be a b-map between two pairs (X, Y, z¢, dx) and (f(, Y, %o, dg).
We are going to define a homomorphism

¢b : MDCY((X,x0,dx); A) = MDCL((X,d0,d5); A)
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depending on {(Cj, fi)}ier that clearly descends to a homomorphism on the relative
chain complexes. Following Remark 256, to define ¢%, we define a homomorphism

QY MDCPC (X, 29, dx); A) = MDCL((X, Zo,dg); A)

where C is a finite closed subanalytic refinement of {C;}; as follows: the image of any
o€ MDC?re’OO’C((X, x0,dx); A) is contained in some C;. We define the image of o
under qﬁgre’b to be f; o o and extend this definition linearly.

There are five things to be checked to guarantee that qbgre’b and ¢¥ are well-defined:

1. If the image of o is also contained in a different C;, f; o o is b-subdivision equiv-
alent to f; o o;

2. gb?e’b is compatible with the b-equivalence relation;
3. gb?e’b is compatible with co-immediately equivalences;
4. If C and C are different refinements of {Ci}s, (bgre’b and gzbgm’b define the same ¢;

5. It {(C;, fl)}ze 7 is b-equivalent to {(Cj, fi)}ier, consider a refinement C that refines
both {C;}icr and {é%}zef The image of any o € MDCE**€((X,Y, zo,dx); A)
is contained both in some C; and in some C;. The two simplices f;o0 and fjoo
are b-subdivision equivalent.

For (W), we are going to show that f; o o and f; o o are b-equivalent, where o is an
n-simplex whose image is contained both in C; and ;. Let p be a point in A,. By
definition of b-map, f; o 0 op and f; o o o p are b-equivalent. So the statement follows
from Remark PTB8. For (H), we can use the exact same argument to show that f; oo
and fj o o are b-equivalent. Statement (8) is obvious. For (), let o and o’ be Lv.a.
simplices that are b-equivalent whose images are contained in Cj;, resp. C;,. We have
to show that f; oo and f;,o0’ are b-equivalent. Suppose they were not. Then there
would be a point p in A,, for which fiy oo opand f;, oo’ op are not b-equivalent. So
o op and ¢’ o p would not be b-equivalent. To show (B), take a common refinement D
of C and C. Then, D defines the same ¢° as C and the same as C.

Then, we have proved the following;:

Proposition 2.63 (Functoriality for b-maps). For a fized b € (0,00], there are well
defined functors
(X,Y,z0,dx) — MDC((X,Y,x0,dx); A)

(X,Y,z0,dx) = MDHY((X,Y,x0,dx); A)

from the category of pairs of metric subanalytic germs with b-maps to Kom(Ab)~ and
GrAb respectively.

Corollary 2.64. The b-moderately discontinuous homology is invariant by isomor-
phisms in the category of b-maps.
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2.4.2. A sufficient geometric condition

Notation 2.65. Let (X, z0,dx) be a metric subanalytic germ. Denote by Lx ¢ the link
{z € X ||z — || = €}.

Definition 2.66. Let (X, x0,dx) be a metric subanalytic germ and' Y C X a subana-
lytic subgerm. Let b € (0,00). The b-horn neighborhood of amplitude 7 of Y in X is
the subset
My (Y X) = | Bly,mlly — o),
yey

where B(y,nlly — zo||®) == {zr € X : dx(z,y) < nlly — x0||’} denotes the ball in X
centered in y of radius ndx (y,z0)?. The oo-horn neighborhood Hon (Y X) is defined
to be Y.

The importance of b-horn neighbourhoods in our theory is due to the following:

Remark 2.67. Any l.v.a. simplex that is b-equivalent to a l.v.a. simplex whose image
1s contained in Y is contained in any b-horn neighborhood Y in X.

We have the following geometric condition that is sufficient for a collection {(C;, f;) bier
to define a b-map:

Lemma 2.68. Let (X, z0,dx) and (Y, yo,dy) be metric subanalytic germs, b € (0, 00).
Let {(C;, fi) }ier be a finite collection, where {C;}icr is a finite closed subanalytic cover
of X, the maps f; : C; — Y are Lipschitz l.v.a. subanalytic and admit an extension

fi: Hoy(Ci; X) = Y that are Lipschitz (non-necessarily subanalytic) l.v.a. maps for
some n € Rsq, and the following condition is satisfied for any pair of indices i,j € I:

s {dy (7). £5(2))i € Lo 1 iy (Ci3 X) 0 o (53 X))

e—0 eb

Then, {(Cj, fi) }ier is a b-map.

=0 (2.16)

Proof. We suppose xg = 0. Let p and ¢ be two b-equivalent points contained in C; and
C respectively. We have to show that f;op and f;oq are b-equivalent.

Since p and ¢ are b-equivalent, the image of ¢ is contained in H,,(Cj; X). By the
triangle inequality we have

dx(fiop(t), fioq(t)) _ dx(fiop(t),fioa(t)) N dx(fioq(t), f0a(t))
tb - tb tb '

Since f; is Lipschitz and p and ¢ are b-equivalent, the first summand of the right
hand side converges to 0 as t approaches 0. The second summand converges to 0 by
the equation (27I8).

O
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Lemma 2.69. Let {(Cj, fi)}icr and {(C}, f])}ier be two collections fulfilling the con-
ditions of Lemma ZB8. If for anyi € I and i’ € I', it is

. suwpddy (fi(@), i (2)); @ € Lxe N Hpy(Cis X) 0 Hyn (T3 X)}

1 = 2.1
61—>0 eb 07 ( 7)
the two b-maps defined by them are b-equivalent.

Proof. The proof is analogous to the one of Lemma PZGS. O

2.4.3. Applications using b-maps

Definition 2.70. A section of a b-map ¢ : X — Y (b-section for short) is a b-map
¥ Y — X such that poy = Idy in the category of b-maps.

Remark 2.71. Notice that admitting sections in the category of b-maps is much less
restrictive than in the category of continuous subanalytic maps, since b-maps are only
piecewise continuous, and piecewise univalued.

Theorem 2.72. Let ¢ : X — Y be a Lipschitz l.v.a. subanalytic map between two
metric subanalytic germs so that there exists a finite closed subanalytic cover {Y;}icr
of Y so that

Plo-1vy) 0 (Vi) 2 Y,
admits a b-section {(Y; j,vi;)}jes, for any i € 1. Suppose that for any two points p
and q in X for which ¢ op and poq are b-equivalent in 'Y, p and q are b-equivalent in
X. Then, ¢ induces an isomorphism

@.: MDC2(X; A) — MDCE(Y; A).
Consequently . induces an isomorphism in b-MD homology.

Proof. The b-sections glue to a global b-section (Y j, i ;)icr,je;: let p1 and pa be b-
equivalent points in Y;, ;, and Y, j, respectively. Then, ¢ oy, j, o p; is b-equivalent to
pr for [ = 1,2 and therefore ¢ o), j, o p1 and p o1y, j, o p2 are b-equivalent. Therefore,
by hypothesis so are 1;, j, o p1 and 1, j, o p1.

To show that the global b-section is in fact the inverse of (X, ¢), we have to show that
{7 1(Y5 ) ij o @) Yierje; is b-equivalent to (X,idx). Let p and ¢ be b-equivalent
points in ¢~ 1(Y; ;) and X respectively. Then ¢ o1); j o ¢ o p is b-equivalent to ¢ o p,
which is b-equivalent to ¢ o q as ¢ is Lipschitz. Therefore, 1; ; o ¢ o p is b-equivalent to
q. O

Corollary 2.73. Let ¢ : (X, x0,dx) — (Y, y0,dy) be a Lipschitz l.v.a. subanalytic map
between two metric subanalytic germs so that there exists a finite closed subanalytic
cover {Yi}tger of Y and open sets U; containing Y; for every i € I such that there is a
b-horn neighborhood Hy, (Y::Y') contained in U;, and

lo-10y) 1 @~ (Ui) = U
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admits a section ; in the category of Lipschitz l.v.a. subanalytic maps for any i € I.
Suppose that
oy Spldiom(e™ () 1y € Ly} _
im =
t—0+ tb

0,

Then, ¢ fulfils the hypothesis of Theorem 2212 and therefore induces an isomorphism
in Kom(Ab)™ and GrAb.

Proof. Let p1 and ps be points in X for which ¢ o p; and ¢ o ps are b-equivalent and
contained in Y; and Y; respectively. By Remark 264, ¢ opy is contained in Hy,, (Y5 Y).
As 1); is Lipschitz, ¥; o p o p1 and ; o ¢ o po are b-equivalent. Further, if K; is a l.v.a.
constant for ¢ opy, [ € {1,2}, we have

dx(pi(t), i opom(t) _ ppsupldiam(e™ () -y € Ly,jpop i}
t - lp o m(®)]°

and therefore p; and 1; o o p; are b-equivalent. Using the triangle inequality, we get
that p; and po are b-equivalent. ]

The following corollary is an example of how b-maps and Theorem 2272 can be used
concretely.

Corollary 2.74. Let X be a metric subanalytic germ such that

di L
i iam(Lx )

=0
t—0+ tb

Then X has the b-MD homology of a point in the category of metric subanalytic germs
(recall Definition 2250).

Proof. Map X to [0,1) by outer distance to the vertex of X and use the previous
corollary. Considering the trivial cover of X by the single open subset X, the required
section is the parametrization of an arc in X by its distance to the origin. O

2.5. Metric homotopy and H)-homotopy invariance

Now we prove the invariance of MD-Homology by different kinds of metric homotopies.
Here the theory differs if we consider actual (Lipschitz l.v.a. subanalytic) maps or b-
maps. For actual maps the notion of metric homotopy is simply a family of Lipschitz
l.v.a subanalytic maps with uniform Lipschitz and l.v.a. constant. For b-maps the
definition is slightly more elaborated.

In this section I denotes the unit interval [0, 1].

2.5.1. Metric homotopy

Definition 2.75 (Metric homotopy). Let (X, xo,dx) and (Y, yo,dy) be metric subana-
lytic germs. Let f,qg: (X, xo,dx) — (Y,y0,dy) be Lipschitz l.v.a. subanalytic maps. A
continuous subanalytic map H : X x I — Y is called a metric homotopy between f and
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g, if there is a uniform constant K > 0 such that for any s the mapping Hs := H(—,s)
1s Lipschitz l.v.a. subanalytic with Lipschitz l.v.a. constant K and Hy = f and H1 = g.

Theorem 2.76. Let (X, x0,dx) and (Y, yo,dy) be metric subanalytic germs. Let A be
an abelian group.

1. Let f,g : (X,z0) = (Y,y0) be Lv.a. subanalytic maps such that there exists a
continuous subanalytic mapping H : X x I =Y with Hy = f and Hy = g such
that there exists a uniform constant K > 0 such that for every s, the mapping Hs
is l.v.a. for the constant K. Then we have that both [, g : MDC®(X;A) —
MDCE(Y;A) are the same in D(Ab)~.

2. Let f,g: (X,x0,dx) — (Y,y0,dy) be Lipschitz l.v.a. subanalytic maps that are
metrically homotopic. Then

fo,9¢ : MDC(X; A) - MDC}(Y; A)

represent the same map in the category B — D(Ab)~. As a consequence they
induce the same homomorphism in MD homology.

Proof. Let us prove Assertion (2). The proof of Assertion (1) is completely similar,
disregarding metric considerations.

A common proof for the analogue statement in singular homology uses the inclusions
x — (x,0) and z — (z,1) from X to X x [ and constructs a chain homotopy between
the maps they induce on the singular chain complex; functoriality then yields the
desired result. To prove Assertion (2), we imitate the idea behind that chain homotopy,
but as X x [ is not an object of the category of metric subanalytic germs, we directly
construct a chain homotopy n° from f? to g2. Such a chain homotopy will be clearly
compatible with the homomorphisms connecting the complexes for different b’s.

Let H be a metric homotopy from f to g. In order to construct the chain homotopy
nt : MDCS(X;A) — MDC?. ((Y;A), by Remark P31, it is enough to construct a
homomorphism he : MDCY ™ (X; A) - MDC?, | (Y; A) fulfilling the two conditions
of the remark.

Define -

A, x T:={(t(z,s),t): (x,8) € A, x I,t €[0,1)} C R"2.

The parameter s is the “homotopy parameter”, and the parameter ¢ measures the
proximity to the vertex, as usually along this thesis. We have the notion of l.v.a.
maps from A/n_x\ I to a metric germ (X, zo,dx), in an analogous way with the case
of maps from A,,. Moreover/Dﬂnition P13 extends in an obvious way to a notion of
homological subdivision of A, x I.

Let o : A, — X beal.v.a. simplex. Define hy, (o) : A, x T — Y to be the continuous
subanalytic extension of the map given by (¢(x,s),t) — H(o(tz,t),s) for t # 0. The
map hy (o) is subanalytic and 1.v.a..

Let o : |K| — A, x I be triangulations of A, x I for j = 1,2, and let {pj.itier
be an orientation preserving homological subdivisions of ATX\ I associated with each
of the triangulations. For j = 1,2 the sum z; := Zz’elj ﬁn(a)opjvi is an element of
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MDCY**> (Y, A). By choosing a common refinement of the subanalytic triangulations
ay and ag and arguing like in the proof of Lemma P21, we show that there exists
an element z3 € MDCJ (Y, A) and immediate equivalences z1 —oo 23 and 22 —oo
z3. This shows that the assignment h,(0) := z; in MDC?(Y, A) gives, extending by
linearity, a well defined homomorphism

hyn : MDCE>(X; A) — MDC? (Y A).

Now we check that the conditions of Remark =31 are satisfied.

If we have two b-equivalent simplices o ~}, o', in order to prove the equivalence
hn(0) ~p hn(0’), using the arc characterization of Lemma 2721, it is enough to prove
that for any subanalytic L.v.a continuous arc «y : [0,€) — A, with coordinates y(t) =
(72(t)y1(t), v2(t)), and for any subanalytic function p : [0, €) — I, we have the vanishing

of the limit
i W (0(3(1)), p(5)), o' (3(1)), p(5)))

=0.
t—0+ tb

Since the numerator is bounded by Kd(o(v(t),o'(7(t)), and we have o ~;, ¢’ and 7 is
l.v.a. the limit vanishes as needed.

Let o be a n-simplex, and {p;}icr be a homological subdivision of A,, associated
with a subanalytic triangulation « : |K| — A,,. The triangulation « induces a de-
composition of ATX\ I that can be refined to a subanalytic triangulation § of A:x\ 1.
Let {ux}rer be a homological subdivision associated to 5. Then we have that h, (o),
previously defined, coincides with ), sgn (i) (0) 0 pus-

Thus, we have constructed for every n a well defined map

n’ : MDCY(X; A) — MDC:,,(Y; A).

In order to prove that it is a chain homotopy we have to check the equation dn’ +
nz_lc? = g4 — fb. For this we only need a cancelling of interior boundaries very similar
to the proof of Lemma PZ23.

O

2.5.2. b-Homotopies.

For the definition of b-homotopies we need a notion of product of a metric subanalytic
germ (X,0,dx) with the interval I, which lives in the category of metric subanalytic
germs. Moreover we need the hypothesis dx o+ < dx which in particular holds for the
inner and the outer metrics.

Definition 2.77. Let (X,0,dx) be a metric subanalytic germ. For x € X we denote
by ||z[| the usual euclidean norm of x, which may differ from dx (x,0). By X x, I, we
denote the following metric subanalytic germ (X, 0,d):

X :={(z,|z||ls):z€ X,s €I} C X xR
7 :=(0,0)

d((z1, [[e1]]s1), (@2, ||z2lls2)) = sup{dx (21, 22), dx,v((@1,|le1]ls1), (@2, ||z2ls2))}
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where dx v is defined as follows: let T' denote the straight cone over the unit interval:
T :={(d,ds) e R*:d €[0,1],5 € [0,1]}
Let dy denote the maximum metric on T'. We define
dxv (1, [z1lls1), (2, [22l[s2)) := do ((lza]l; [z1]ls1), (l22ll; l[22][s2))

For a visualization of dx v, see Figure B22.

0 . s 1
9 :

| [/ Y

22| + ([Jz2], |22 s2)
|z dxv((z1,[|z1]51), (2, [|22]|52)) = max{l1,l2}

(EA] ([l ], |z1][51)

{Alzll, lzl|s1) : 2 € X}
{Alzl, |z)ls2) : z € X}

0L

Figure 2.2.: The metric dx v.

Lemma 2.78. Let dx be a metric on a subanalytic germ (X, xo) such that dx o < dx.
The following inequality holds

dx,v (21, |21]]s), (2, [22]ls)) < MV2dx (21, 22) (2.18)

for any x1,29 € X, s € I, where M is the bi-Lipschitz constant between the mazximum
and the Fuclidean norm on T.
Moreover,

d((a1, lz1lls), (z2, [[22]|s)) < MV2dx (21, 22). (2.19)

Proof. We have the following easy chain of inequalities:
dx,v (21, [21]ls), (w2, [lw2lls)) < M1+ s[[|z1] — [[z2]l] <
< M1+ 82|z — xo|| < M1+ s2dx (21, 22).

Notice that s < 1. To prove (2Z19) we just use the previous inequality and the definition
to get that d < dy - maxM+/1+ s2, 1. O

Definition 2.79 (b-homotopy). Let (X, zo,dx) and (Y,yo,dy) be metric subanalytic
germs. A b-homotopy is a b-map from X x, I to Y.
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Theorem 2.80. If there is a b-homotopy H with Hy = f and Hy = g, then
forge : MDCY(X; A) = MDC2(Y; A)

represent the same map in the category D(Ab)~. As a consequence they induce the
same homomorphism in MD homology.

Proof. For this proof we can follow the classical proof for singular homotopy much
more closely: denote by is : X — X x,, I the inclusion given by is(z) = (z,||z||s)
(which is a Lipschitz l.v.a. subanalytic map by (Z19)). It is enough to prove that i
and i1 induce chain homotopic homomorphisms from M DC?(X) to MDC%(X x, I).

Given any Lv.a. simplex o : A,, = X we define (o) : Ay x I — X %, I to be the
map (t(z,s),t) — (o(tx,t),||o(tz,t)|]s).

In order to define the homomorphism 7, : MDC?(X) — MDC%(X x, I) we pro-
ceed as in the proof of Theorem ZZ7G: choose an orientation preserving homological
subdivision {pg}rerx of A, x I associated with a triangulation and define 7, (o) :=
> kek Mn(c)op;. Independence of the subdivision and compatibility with immediate
equivalences is checked in the same way. Compatibility with b-equivalences follows by
the inequality (219).

Checking that the collection of maps 7, for n varying is a chain homotopy between
the homomorphisms induced by ig and ¢; is like in Theorem PZ78.

O

Definition 2.81. Lett: X — Y be a Lipschitz l.v.a. map of metric subanalytic germs
which on the level of sets is an injection. A b-retraction is a b-map r :' Y — X such that
rot is the identity as a b-map. A b-deformation retraction is a b-retraction such that vor
18 b-homotopic to the identity. In those cases X is called a b-retract or b-deformation
retract of Y, respectively. A metric subanalytic germ is called b-contractible if it admits
[0,€) as a b-deformation retract.

The usual consequences of the existence of retracts and deformation retracts in
topology hold trivially in our theory

Corollary 2.82. If 1 : X — Y admits a b-retraction the connecting homomorphisms
i the long exact sequence of relative b-MD homology vanishes. If v : X — Y admits
a b-deformation retraction, ¢ induces a quasi-isomorphism of b-MD chain complezes.
If X is b-contractible then it has the b-MD homology of the metric subanalytic germ
[0, €).

Example 2.83. Let b € (1,00). Let (X,0) = ([0,€),0) be the point of our category as
defined in Definition Z220. Let (Y,0) = (Cé’l,O) be the b-cone over the unit cycle as
defined in Definition 4. Fiz x1 € Sy and define 1 : (X,0) — (Y,0) by o(t) := (t°x1,1).
Then the projection r : (Y,0) — (X,0) defined by r(tz,t) = t is a b -deformation
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retraction for any b < b. Indeed the b-map {(Ci, fi) }ic1,2y from Y x, I toY given by

C1 = {((t°z,t),5) €Y x, I : s € [0, %}, C1 = {((t°z,t),5) € Y x, [ : s € [0, %},
fl((tbx,t),s) = ((tbxl,t), s), fg(tbx,t), s) = (tbx,t)

is a b'-homotopy from or to the identity on'Y .

2.6. Mayer-Vietoris and Excision

2.6.1. An extension of relative homology

For the proof and statement of the relative Mayer-Vietoris exact sequence we need to
generalize the concept of relative homology.

Definition 2.84 (Category of pairs of metric subanalytic subgerms). A pair of metric
subanalytic subgerms (Y1, Y2, o, dx)rer x 1S given by two metric subanalytic subgerms
(Yi,z0) of a certain metric subanalytic germ (X, xo,dx). Recall that on each Y; we
consider the restriction metric dx|y; .

A Lipschitz 1.v.a. subanalytic map between the pairs of subgerms (Y1, Yo, 20, dx )rer x
and (Y{, Y5, x0,dx/)ret x7 s a Lipschitz Lv.a. subanalytic map

V1 UYs, 20, dxy, oy, ) = (VU Y2, 20, dxyy, )

that carries Y; into Y.

The category of pairs of metric subanalytic subgerms has, as objects, pairs of metric

subanalytic subgerms, and as morphisms, Lipschitz subanalytic l.v.a. maps between
them, as defined above.

Definition 2.85. Consider b € (0,+0o0]. Given a pair of subanalytic subgerms
(Y1,Ys,20,dx)rer x, we identify MDCf(Yi,a:o,dX|Yi) with the subgroup of
MDCY(X,xg,dx) generated by all l.v.a. simplices in X that are b-equivalent to a
representative fully contained in Y;. We define the complex of relative b-moderately

discontinuous chains of the pair (Y1, Ys, 2o, dx )re; x With coefficients in A, denoting it
by MDCY((Y1,Ys, xo,dx); A)rerx, as the quotient

MDC((Y1, 20, dxy, ); A) + MDCY(Ya, 20, dxy, ); A) / MDC((Ya, 20, dxly, ); A)-

The b-moderately discontinuous homology of the pair (Y1, Y2, o, dx)re x is denoted
by MDH?((Y1, Y, 20, dx); A)rer x and it is the homology of the complex defined above.

We abbreviate calling these complexes and graded abelian groups the b-MD complex
and b-MD homology of the pair (Y1,Y2, xo,dx)rel x -

It is straightforward that a Lipschitz subanalytic l.v.a. map f between pairs of
subanalytic subgerms of some (X, zo,dx), (X', z(, dx+) induces morphisms at the level
of b-MD chains for every b € (0,400] (we denote by f, the morphism at the level of
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b-MD chains similarly to Notation 2410). Moreover, morphisms (210) and (211) also
hold. So, the following proposition is obvious from the definitions:

Proposition 2.86. The assignments
(Y1,Y2,20,dx)rer x = MDCT((Y1, Y2, 20,dx); A)rel x

and
(Y1,Ys,20,dx )rer x — MDHZ((Y1,Y2,20,dx); A)rel x

are functors from the category of pairs of metric subanalytic subgerms to B—Kom(Ab)~
and B — GrAb respectively.

We have also the obvious generalizations of the definitions of small chain com-
plexes with respect to a finite closed subanalytic covering C. We denote them by
MDCE (Y1, Ya; A)yerx, MDCYC (Y1, Ya; A)yerx. We also have the analogue to
Proposition Z5A:

g: MDCYC (Y1, Ys,dx; A)pex — MDCE(Yy, Yo, dx, A)rerx (2.20)

is an isomorphism for every b € (0, oc].

Remark 2.87. Note that when Yo C Y7 then MDCE’C(Yl,YQ,dX;A)TelX coincides
with MDCYC (Y1, Ya, dx; A).

2.6.2. b-covers

Definition 2.88. Let (X, x0,dx) be a metric germ and Y1, Yo subanalytic subgerms,
consider b € (0,00]. A collection {U;}ier of subanalytic subgerms is called a closed
b-cover of (Y1,Y3), if it is a finite closed cover of Y1 and for any i there is a subanalytic
subset UZ C Y7 such that

e for any two b-equivalent points p,q : [0,€¢) — (Y1,20), if p has image in U; then
q has image in U;.

e For any finite J C I there is a subanalytic retraction ry : ﬂiEﬂAfi — M;egU; which
induces an inverse in homology of the associated morphism of complezes:

MDCE((NiesUs, Yo, w0, dx); A)erxx — MDCE(NicsUs, Yo, 20, dx ); A)reix -

We call the collection {ﬁi}ief a b-extension of {U,}icr.

Observe that for b = co any finite closed subanalytic cover of X is a closed b-cover.
The following remark is a consequence of the definition of b-horn neighborhood and
of Theorem P778.
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Remark 2.89. In the terminology of the previous definition, when Y1 = X and Yo =
(0, the following two conditions imply the two conditions of the previous definition
respectively:

o there is a b-horn neighborhood Hy,(Ui; X) contained in U; for any i € I (see
Definition [Z60).

e For any finite J C I, the intersection N;cyU; is a b-deformation retract of miejﬁi
(see Z2X1).

Lemma 2.90. Let (X,x0,dx) be a metric germ, b € (0,00 and U ¢ U C X be
subanalytic subsets such that for any two b-equivalent points p,q : [0,€) — (X, zg), if p
has image in U; then q has image in U;. Ifo; : A, = X are b-equivalent l.v.a simplices
fori=1,2 and o1 is a simplex in U then o9 is a simplex in U.

Proof. Assume the contrary. Then o (X \ U) is a subanalytic subset of A,, having
the vertex at its closure. By the subanalytic Curve Selection Lemma and Remark 28
there exists a 1.v.a subanalytic map 7 : [0,€) — A, such that y(t) is in o, }(X \ U) for
t > 0. The arcs p; := ;0 give a contradiction. O

2.6.3. The Mayer-Vietoris Exact Sequence

Theorem 2.91. Let (X, x0,dx) be a metric germ, Y1, Ys subanalytic subgerms and
{U,V'} a closed b-cover of (Y1,Y2). The single complex associated with the Mayer-
Vietoris double complex

MDCE(U N ‘/a YVQ)T@ZX — MDCf(Ua }/Q)TGZX 2] MDCE(‘/’ }/Q)TGZX

is quasi-isomorphic to MDCY(Y1,Y2)rex. As a consequence there is a Mayer-Vietoris
long exact sequence as follows:

. > MDHY(UNV,Y2)reix = MDH(U,Y2)rrx @ MDHE(V, Ya)rerx —

(2.21)
— MDH.(Y1,Y2)rex — MDH?_((UNV,Y2)perx — ...
Note that we have omitted the coefficient group A in the notation for brevity.
Proof. We omit the coefficient group A in the notation for brevity.
We have the following short exact sequence, where a(o,7) := o — 7 is extended

linearly:

0 — Ker(a) = MDCL(U, Ya)rax ® MDCL(V,Ya)rax < MDC2(Y1,Y2)rex — 0
(2.22)
Surjectivity follows from the fact that (E220) is an isomorphism. As a consequence,
the single complex associated with the double complex

d : Ker(a) = MDCE(U,Ys)reix ® MDCE(V, Y2)rerx

is quasi-isomorphic to M DC?(Y1, Y2)reix -
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Let {U,V} be a b-extension of {U,V}. In the analogue short exact sequence for
{U,V}, we denote the analogue of a by &. The inclusions U < U and V — V
together induce a morphism

WV MDCYU, Ya)rax @ MDCL(V, Ya)rax — MDCYU, Ya)rax @ MDCL(V, Ya)rerx

that restricts to a morphism Ker(a) — Ker(&). This restriction admits the following

factorization: o
Ker(a) 2 MDCY (U NV, Ya)rerx & Ker(a)

where ¢(6) := (6,0) is extended linearly and f is defined as follows:

Let ([>2;er aioil, [2° e bits]) be an element of MDCL(U, Y2)re1x ®MDCE(V, Ya)rerx
such that [Y;aioi] + > ¢y bith;] = 0 in MDC2(Y1,Y3),ax. After replacing the rep-
resentatives by the ones obtained by sequences of —,.-equivalences as in Lemma P33,
consider splittings I = [yUL1 U...,I., J = JyUJy U..., J,. as above, which satisfy that

1. [05] € Ker(MDCY(U)erx — MDCY(U,Ys),e1x) for any i € I,
2. [¢j] € Ker(MDCY(V)yerx — MDCY(V,Ys)rerx) for any j € Jo,
3. i ~ppjifi €I and j € Jj, for a given k > 1,

and that for any k£ > 1 we have

Zai—FZbk:O.

1€l JE€Jk

If I, and J;, are non-empty, there is a 7 € M DCS(V,Y3),e1x in the same b-equivalence
class as o; for any i € I;. Observe that any l.v.a. simplex b-equivalent to a l.v.a.
simplex in V is contained in V by Lemma B0, so o; € MDCY(U NV, Ys),ex. We

define
FO ailod], Y bil]) = > ailoil = Y bilwyl.

i€l jeJ 1€\ jeJ\Jo

By hypothesis, there are retractions ry : U—sUandry:V — V', whose induced
maps provide an inverse to UV in the derived category. We denote the inverse by ry v .
Then, in the derived category 7y og is a left-inverse for f. In the derived category,
f also has a right-inverse: let ¢ denote the inclusion U NV — UNV. Then in the
derived category the isomorphism ¢, : MDC*(UNV,Ys)pax — MDCb(U nv, Y2)reix
is the composition of the inclusion

h: MDCY(UNV,Ys)ax < Ker(a)

and f.

We conclude that f is an isomorphism in the derived category, and, using it and the
isomorphism ¢, we conclude that h is an isomorphism in the derived category. So in
the derived category, the single complex associated with the double complex

MDCYU NV, Y2)rax — MDCYU, Ya)rerx ® MDCE(V, Ya),e1x
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is isomorphic to the double complex associated with d which is isomorphic to the
complex M DC8(Y1,Ys)reix-
O

As a consequence we obtain the Excision Theorem.

Corollary 2.92. Let (X, x0,dx) be a metric germ. Let U C X \{zo} and K\{zo} C U
such that {U, X \ K} is a closed b-cover of (X,U). Then the inclusion induces a quasi-
isomorphism MDCY(X \ K,U; A)yerx — MDCY(X,U; A). As a consequence for each
n we have an isomorphism

MDH’II’)L(X \ K7U;A)relX E> MDH,I-)L(X,U7A)

Proof. Apply Theorem 2791 to the b-cover {U, X \ K}. O

2.6.4. The Cech homology complexes

Let U = {Ui}icq1,..ry be a finite closed subanalytic cover of X. Denote by U s,
the intersection U;; N...NU;,.. The Cech double complex of 5-MD homology of a pair
(X,Y) associated with U/ with coefficients in A is defined by

MDCY(U, X,Y; A)py = @ MDCE(U;,...

1<ip<...<ip<r

Y; A)relX7

Vip s

with vertical differential equal to the b-MD differential and horizontal differential the
usual Cech homology differential:

M‘DCS(Ui()v---vip ) Y’ A)TelX — @zZOMDC(ZI)(Uio,...,%k,...,ip’ Y’ A)TelX
P
DAl
k=0
where jfk is the b-MD chain map associated to the inclusion Uy, .5, CU; &

Theorem 2.93. Let Y1,Ys be subanalytic subgerms of a metric germ (X, xo,dX). If
for any two disjoint finite subsets I, J C {1,...,r} we have that {(Nee U;) NUiticr is a
b-cover of (UierUi N (Nwe s U; ) Ys) and U]_,U; = Y1, then the single complex associated
with the Cech complex M DC? o(U,Y1,Y2; A) is quasi-isomorphic to MDC2(Y1,Y2; A)perx -
Consequently there is a Cech spectral sequence abutting to MDH?(Y1,Ys; A)rax with
E' page

Eb,:= P  MDH)(Ui,. i, Y2 A)rax.

1<io<...<ip<r

Proof. The case of a cover of 2 closed subsets is exactly Theorem EZZII. The general
case runs by induction on the number of open subsets, applying Mayer-Vietoris for
the decomposition V U U, with V := U; U ... UU,_; and the induction step for the
decompositions Uy U ...UU,_1 and (U1 NU,) U ...U (U,—1 NU,):
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Let [1. and B. denote the single complexes associated with the Cech complexes
MDCL ,({thNU,,...,Up1NU Y, VNU,, Yo; A) and MDCE (({Uy, ..., Up—1},V, Ya; A),
respectively. By induction hypothesis, we get that A, and B, are quasi-isomorphic to

A¢ := MDCY(V N Uy, Ya; A)yerx and By := MDCE(V, Ya; A)rerx,

respectively.
We get the following diagram:

S.(A. — MDC.(UT, Yo; A)relX D B.) MDC.(Yl, Ys; A)relX

S.(A. — MDCO(UT7 Yo; A)relX D Bo)

where S e (D.,.) for a double complex D, o denotes the single complex assiciated with
that double complex. The vertical arrow represents the chain map resulting from the
quasi-isomorphisms fl. — Aq and B. — B, and is therefore a quasi-isomorphism. The
horizontal arrow is the result of applying the Mayer Vietoris Theorem (Theorem 279T)
to the cover {U,, V} and is therefore also a quasi-isomorphism.

Now the statement follows from the fact that the complex at the bottom of that
commutative diagram by definition is isomorphic to the single complex associated with
the Cech complex MDC? (U, Y1,Ys; A). O

Definition 2.94. The nerve of the cover U = {Ui}i€{17.,,m} s the simplicial complex
which assigns a p-simplex to each non-empty intersection Uy, . ;,, and identifies faces

according to the inclusions Uy, . i, C Uioy-..,ik,...,ip‘

Corollary 2.95. In the setting of the last theorem, if Y1 = X and Yo = () and for any
finite set of indexes Ui, .. i, is either empty or has the b-MD homology of a point, the
b-MD homology of X coincides with the ordinary homology of the nerve of the cover
with coefficients in A.

Proof. In the spectral sequence of Theorem PZU3 we have E [b]}w =0if ¢ > 0 and
Ebl,o = @icipw..<iy<r MDH{(Us,,...i,, A), where MDHG(Us,,. ,; A) = A if and
only if Uy, .. 4, is not empty. O

2.6.5. Mayer-Vietoris and Cech spectral sequence for open coverings

The purpose of this section is to prove the validity of the Mayer-Vietoris sequence and
the Cech spectral sequence for finite open subanalytic coverings.

Let (Y7,Y3) be subanalytic subgerms of a metric subanalytic germ (X, zo,dx). A
collection {U;}!_; of subanalytic subgerms is an open b-cover of (Y7,Y2) if it is a finite
open subanalytic cover, that is the U; are open subanalytic sets and U;U; = Y7 \ {xo}
and the conditions of Definition are satisfied.
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Theorem 2.96. All the results in Sections ZH3 and remain true replacing closed
b-covers by open b-covers.

Proof. Everything boils down to proving Theorem PZUI. In fact, Corollary ZU2 is
a direct consequence of Theorem PZII and the proof of Theorem PZU3 consists of a
repeated application of Theorem EZUI. In the proof of Theorem EZT, the only place in
which the hypothesis that the subsets of the b-cover are closed is used, is in showing
the surjectivity of the last mapping of Sequence (222).

In the case that the cover {U,V} is formed by closed subsets, surjectivity is direct
from the fact that (2220) is an isomorphism if the cover C is closed. In the case that the
cover {U, V'} is formed by open subsets, surjectivity follows from the fact that (2220) is
an isomorphism for a closed cover together with Proposition EZJ4. Indeed, in the case
that the cover is formed by open subsets, we have that

MDCE(Yla Yv?)relX = MDC?C(YVM YZ)TelXa

where C is a finite closed subanalytic cover refining the open cover. The existence of
such a refinement is shown in the following proposition. O

Proposition 2.97. Let U = {Uy,...,Ux} a finite open subanalytic covering of a sub-
analytic germ (X,0). Then there exists a subanalytic closed set C; contained in U; for
every i such that {Ci,..,Cy} is a closed covering.

The proof is obtained by repeatedly applying the following lemma:

Lemma 2.98. Let U = {Uy,...,Ux} be a finite open subanalytic covering of a subana-
lytic germ (X,0). There exists a closed set Cy contained in Uy such that {Us, .., Uy, C1}
is also an open covering of (X,0) where Cy is the interior of C1.

Proof. Let Lx be the link of X. By the conical Structure Theorem (see Remark 27A)
we can take a subanalytic homeomorphism h : C(Lx) — X for a small enough rep-
resentative for (X, 0) compatible with the covering &. That is, any U; coincides with
h(L;) for a certain subanalytic subset L; of Lx.

We prove that given a finite open subanalytic covering U = {Uy, ..., Ui} of Lx, there
exists a closed set D; contained in U; such that {Us, .., Uy, D1} is also an open covering
of Lx where ﬁl is the interior of D7.

To finish the proof we will consider the covering given by C; := h(C(D;)).

Let us prove the statement for a covering of Lx. We denote by 0xY the boundary
set Y\Y of Y in X,

Let K be 0xU; N (Ug U ...UUy). Note that in fact dxU; equals K.

Let 6 : K — R be the function 0(x) := dout(x,dx(Uz U ... U Ug). Choose another
subanalytic function 1 : K — R such that n(z) < 0(z) for every x € K.

Let {K;}ier be a stratification of K by C" subanalytic submanifolds.

For every i € I, consider the following subset in the normal bundle of K;

W; = {(z,v) € NK; : |]v|]| <n(z)}.
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Let V; be a neighbourhood of K; inside NK;, whose existence follows the Definable
Tubular Neighborhood Theorem (see Theorem 6.11 in [9]), such that 7|y, is a diffeomor-
phism and such that 7 (V;) is a subanalytic neighbourhood of K; where 7 : NK; — X
is defined by 7(z,v) = z +v.

Define U(K,n) := Ujerm(V; N W;). This is a globally subanalytic neighbourhood of
K. By the definition of 1, we have that the closure of U(K,n) N X is contained in
UsU...UU.

We define Oy as U \U(K, 7). This is a closed set since it coincides with Uy \U (K, 7).
Moreover {(03’1, Us,...,Uy} covers X. O

2.7. Moderately Discontinuous Homology in degree 0

Definition 2.99. Let (X, xg) be a metric subanalytic germ. Two connected components
X1 and X2 of X \ {20} are b-equivalent if there exist two lLv.a. 0-simplices o; :
Ay = (X, o) which are b-equivalent. The equivalence classes are called b-connected
components of X. The oco-connected components are the usual connected components

of X \ {zo}.

Proposition 2.100. The b-moderately discontinuous homology MDH(I)’(X;A) at de-
gree 0 is isomorphic to AT0X) phere r(b, X) is the number of b-connected components
of X. A basis is given by the choice of a 0-simplex in each b-connected component. For
b1,ba € (0,00], by > by, the homomorphism hgl’b2 is the projection that sends a base
element o of A"vX) onto the base element of A™02X) that represents the by-connected
component « lies in.

Proof. Let L := X NS, be the link of X (where € > 0 is small enough). Let 6 : C} — X
be a subanalytic homeomorphism preserving the distance to the origin (this exists by
Remark D). Let 7 : A, — L be a subanalytic map. The straight n-simplex with
respect to @ associated with 7 is defined to be the map germ o : A, > X given by
o(tz,t) :=0(7(2),1).

Let x1, 22 be two points in the same connected component of L. Then there exists a
subanalytic path v : [0,1] — L joining 1 and x3. The boundary operator “0” applied
to the straight simplex associated with ~ is the difference of the straight simplices
associated with x;. So, we conclude that two straight 0-simplices in the same connected
component of X \ {z¢} are b-homologous for any b.

Let o : Ag = [0,1) — (X, ) be any O-simplex. Up to reparametrization (see Re-
mark P78) we may assume that ||o(¢)|| = ¢. We can express the restriction 0~ oo|a, (0,1)
as a pair 0 oo | oy (0,1)(t) = (7(£),t), where v : (0,1) — L is the germ at 0 of a suban-
alytic path. We may choose the radius € defining the link L small enough so that € is
in the domain of definition of the germ o, and hence of 7v. The map 7 : A= (X, ),
where 7(ts,t) := 6(y(e + s(t — €)),t), defines a 1-simplex whose boundary shows that
o is b-homologous to a straight simplex.

We have proven that all 0-simplices lying in the same connected component of X \
{zo} are b-homologous for any b.

After this the proof is obvious. O
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2.8. The co-MD Homology: comparison with the homology
of the link

Let (X,Y, {x0}, dx) be a pair of closed metric subanalytic germs in R”. By Remark PCT5
there is a finite subanalytic triangulation « : |[K| — X N B, of a representative X N B,
which is compatible with Y and xy. By choosing € sufficiently small and intersecting
with S¢ we obtain a subanalytic triangulation 5 : |L| — X NS¢ compatible with Y NS,
such that (K, «) is the cone over (K, 3). In other words: there exists a pair of simplicial
complexes (Lj, Ly) and a subanalytic homeomorphism

h: (C(ILa]), C(|Lal)) = (X, Y, {zo}) N Be

from the cones of the geometric realizations to the representative (X,Y, {xo}) N B.. By
the reparametrization trick of Remark 28 we may assume that ||h(tz,t)|| = t.

Denote by C5 "™P([1,La; A) the simplicial homology complex for the pair (Li, Ls)
with coefficients in A. The homeomorphism A induces a morphism of complexes

c: CS™P(Ly Lo A) — MDCX(X,Y; A). (2.23)

Theorem 2.101. The morphism (ZZ3) is a quasi-isomorphism. As a consequence
we have an isomorphism between the singular homology H.(X \ {zo}, Y \ {z0}; A) and
MDH (X, Y, 10; A).

Proof. By using the relative homology sequence and the 5-lemma we reduce to the
absolute case Y = (). The singular homology H,.(X \ {zo}; A) is isomorphic to the
singular homology of the link, by homotopy invariance, and the later is isomorphic
with the simplicial homology of L.

A simplex of L is called mazimal if it is not strictly contained in another simplex.
The collection {Z;};c; of maximal simplices forms a closed cover of |L;| such that any
finite intersection is a simplex, and hence, contractible. Then the simplicial homology
of L1 coincides with the homology of the nerve of the cover.

The collection {h(C(Z;))}ier is a closed subanalytic cover. Any finite intersection
Niesh(C(Z;)) is of the form h(C(T')) where T is a simplex in L;. An immediate appli-
cation of Assertion (1) of Theorem P78 shows that h(C(T")) has the co-MD homology
of a point. Since any closed subanalytic cover is an oco-cover, by Corollary EZ93 the
homology MDHX(X \ {zo}; A) coincides with the homology with coefficients in A of
the nerve of the cover. This concludes the proof. O

2.9. MD Homology of plane curves with the outer metric.

Throughout this subsection, whenever we say curve germ, we refer to a complex alge-
braic plane curve germ in the origin equipped with the outer geometry. We are going
to recall the definition of the Eggers-Wall tree of a curve germ. It uses the following
correspondence between Puiseux pairs and Puiseux exponents: let (my, ki) ... (my, k)
denote all Puiseux pairs of a curve germ in order. Then the Puiseux exponents of that
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m;

H;‘:l k;j

responding to — e Recall the following definition of the contact number between
j=1Fj

two branches, which can be found for example on p. 68 of [A41.

curve germ are given by fori =1,...1. We call (m;, k;) the Puiseuzx pair cor-

Definition 2.102. Let C be a curve germ. Let f; = Z;’il ai,jx”%' be parametrizations
of the branches C; of C, where i € {1,...,n}. Leti # k € I. The contact number
c(Cy, Ck) between C; and Cy, is defined as

¢(Ci, Ck) == min{j : oy j # oy}

Definition 2.103. Let C be a curve germ. In this definition, we are defining the
Eggers-Wall tree Go of C. Depending on the context, Go can be interpreted either as
a graph or as a topological space with a finite number of special points; we call these
special points in the topological space vertices as they correspond to the vertices in the
graph.

If C is irreducible, we define the Eggers-Wall tree Go of C' to be the segment [0, 0o]
with a vertex at both ends and one vertex at each rational number in that segment that
1s a Puiseux exponent of C. FEwvery vertex is decorated by the corresponding value in
QU {oo}. For two adjacent vertices at q1 and qo respectively, with q1 < qa, the edge
between them is weighted by the product Hé:o ki, where ko = 1 and (mq, k1), ..., (my, k)
are all Puiseux pairs corresponding to Puiseux exponents less than or equal to q.

If C is reducible, the Eggers-Wall tree Go is defined as follows. Let C,, denote one
of its branches and let C,, denote the union of all the other branches. Let c be the
greatest contact number that C,, has with any of the other branches and let Cy be one
of the branches that C,, has that contact number with. If C' has only two branches, we
have Cj, = C,,. If G, does not have a vertex at c, add it in the following manner: let
q1 be the greatest vertexr in Gc, smaller than ¢ and g2 the smallest one greater than
c. We add ¢ as a vertex in Go, and give both edges {q1,c} and {c,q2} the weight the
edge {q1,q2} had before. Then, we do the same for the segment in Qén corresponding
to Ge,., if it does not contain c as a vertex already. Now, glue the segment from 0 to c
in Go,, to the segment from 0 to c in Go, by the identity on [0,c]. As Go, is naturally
embedded in gén, we have glued Qén and Gg, to one graph Ge.

There is a natural map r : Go — [0,00] defined as follows: For a point g € Go, let
Cy be one of the branches of C for which g is in the image of the natural inclusion
Gc, = Gc. We assign to g the point in the segment [0,00] that is sent to g by that
inclusion.

Example 2.104. Let C be the curve with the following four branches:

Cy={(z,y) €C2:y=a3 + 23},
Co={(z,y) €C?:y=a? + 27},
Cy={(z,y) €C2:iy=1? + 271 +g13},
Ci={(z,y) €C2:y=25 4271}
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We have visualized the Eggers-Wall tree Go together with the function r : Go — [0, 00]
i Figure 223.

A= Bl

|
I
[NISCENIS

0 =0

Figure 2.3.: The Eggers-Wall tree Go and r : Go — [0, o0].

Proposition 2.105. Let C be a curve germ. Let Go be the Eggers-Wall tree of C with
r: Go — [0,00] as defined above. Let A be an abelian group. The MD homology of C
with respect to A can be described as follows:
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1. For any b € [1,00], it is MDHE(C; A) =2 MDHY(C; A) = Al where I, is the

number of points in r=1(b+ €), where € is so small that r=1((b,b + €]) does not
contain a vertex. For the case b = oo, we consider co + € = oco.

. For any b € [1,00] and n > 1, it is MDH?(C; A) = {0}.

. For by, by € [1,00] with by > by, hgl’bQ(C’) and h?l’bQ(C) are the homomorphisms

given by multiplication with the following matrices My and My, respectively: let e
be so small that 7=((by, by +€]) and r—1((ba, by +€]) do not contain any vertices.
Let G1,..., Gi be the connected components of r—1([bs + €,b1 + €]), where | = Iy,.
For i € {1,...,1}, let p; be the unique point in r—'(by + €) N G;. Further, let
Dlis--->Dm,i be the points in r~1(by + €) N G;. Notice that Eézl m; = ly,. We
define

m1 times mo Jtimes my ﬁmes
1 1 0 . 0O ... 0
0o 1 . 1 0 0
My:=| O 0 0 ... 0
0 0 0 0 1 1
Now, forie {1,...,1} and j € {1,...,m;}, let kj; == %, where w;; and w; are



the weights assigned to the edges on which p;; respectively p; lie. We define

kig oo kmya O ... 0 0 ... 0
0 ... 0 kig ... kmyo 0o ... 0
M = 0 ... 0 0 ... 0 :
: : 0 ... 0
0 ... 0 0 ... 0 kig ooo kg

The data used in the statement of this proposition is visualized in Example P2Z1T0.

1
Proof. Let f; € Cl[z"]], i € {1,...,n}, be parametrizations of the branches of C.

For fi = 3772, ozmx'%i, b e [1,00), let f;ip be the truncation Z]Lb:Jl ai,jx"%‘, where |b]
denotes the greatest integer smaller than or equal to b. In the case of b = co, we set
fip == fi-

The proof consists in an application of the Mayer-Vietoris Theorem, which resembles
the computation of the singular homology of a circle in a certain way. The subsets
involved in the Mayer-Vietoris decomposition are of the following form: we write x €
C\ {0} as z = re?™=. Let ¢1, g2, ¢3, 04 € R with ¢1 < ¢o and ¢3 < ¢4 be fixed. For
b € [1,00], we define the subgerm (Vj,0) of (C2,0) by

Vi = ({(z,y) € C?:y = fip(x),(x =0o0r In,m € Z :¢1 < pp + 210 < 2
or ¢3 <y +2mm < Pa)}.

Recall Definition 2Z99. Because of Proposition EZI00, for b; > by > bs we have the
following:

e The map Hgl(%3,Z) — Hg2 (Vbs,Z) is an isomorphism, as for any b > b3 the
b-connected components of V;, are just its connected components.

e The map H83 (Vo3 Z2) — H83 (Vb,;Z) induced by the natural projection V4, — V4,
is an isomorphism, as there is a 1 : 1 correspondence between the bs-connected
components of V;, and the connected components of Vj, for any b > bs.

As a consequence, in the following commutative diagram we get the indicated isomor-
phisms:

MDHZ (Vy; Z) L4 MDH" (Vao; Z) MDHS (Voo Z)
MDH? (Vy,; Z) MDH (Vy,; Z) «~———— MDH® (Vi ; Z)
= Yy

MDH (Vi Z.) MDH (Vi Z) MDH (Vi,; Z)
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So wy is the same as 1y up to concatenation with isomorphisms. By Theorem P11,
up to isomorphisms the latter is the same as

iJV : HO(Vb1 \ {Q}7Z) - HO(‘/ID \ {Q},Z),

where Hy denotes the singular homology.

Now we introduce the specific b-cover that we use to apply the Mayer-Vietoris The-
orem. Let Uy = Voo with ¢y = 17 and ¢ = Im and ¢35 = ¢4; and let Uy = Vi with
¢1 = %77 and ¢g = %71’ and ¢3 = ¢4. We have that U; N Uy = V, with ¢ = %7[' and
P = %7‘1’ and ¢3 = %71’ and ¢4 = %7‘(‘. Note that {U1,Us} is a b-cover of C for any b > 1.
The n-th b-moderately discontinuous homology groups of Uy and Uy and U; N Uy are
trivial for any b > 1, if n > 1. So, by the Mayer-Vietoris Theorem (Theorem PZ9T),
for any n > 1, the n-th b-moderately discontinuous homology of C is trivial. This
completes the proof of statement (2).

Furthermore, by the Mayer-Vietoris Theorem for by > by this gives us the following
diagram with exact rows, in which we have omitted Z:

0— MDH!(C)~ MDH} (U, NUy) -~ MDHS (Uy) ® MDHY (Us) - MDHZ (C) -~ 0

bq,b:
|h11 2 |<PU1mU2

0~ MDH?(C)~ MDHY (U, NUy) > MDHR(Uy) ® MDHY (Us) ~ MDHE (C) - 0

by,b
pu, Spu, |ho1 2

We have shown above that we can replace MDHgi (V5 Z) by Ho(Ws,; Z) fori € {1,2} and
V € {U1NUy, Uy, Us,C}, and that we can replace @y by Yy for V e {U1NUy, Uy, Us}.
Comparing the result with the analogous Mayer-Vietoris sequence in singular homol-
ogy, we get that MDHY(C;Z) = Hy(Cy,;Z) for i € {1,2} and that for j € {0,1} the
homomorphism h?-l’bQ is the morphism induced on the j-th singular homology by the
projection p : Cy, — Cp, which is the following covering map: the base space Cp, is the
disjoint union of [y, circles. The covering space Cp, is the disjoint union of I, circles.
Let I :=1p,. Fori € {1,...,l} and j € {1,...,m;), let p;; be the k; ; : 1 covering map
from the circle to itself. For i € {1,...,1}, let p; : ]_[;”:11 S! — S! be the morphism that
all p; ; together induce on the coproduct H;":"lSl. Concretely, p; sends an element x in

the j-th copy of St to p; ;(z). Then,

I my l
p: H HSI — HSl
i=1j=1 i=1

is is given by Hi:l p;i. Concretely, p sends an element z in ]_[;”:11 S! by p; into the i-th

copy of S! in Hézl St. The proof of statement () is completed by the well-known
fact of how the 0-th and first singular homology groups of Cj look like. The proof of
statement (B) is completed by the well-known fact of how the morphism on the 0-th
and first singular homology groups induced by p looks like. O
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Example 2.106. We continue Fxample to visualize the data of the statement
of Proposition ZI04. Let by € [14—1, %) and by € [%, %) In Figure 2.4, we have pictured
G; and p; and pj; for that choice of by and by. There, Gi is the graph on the left hand

side and Go is the graph on the right hand side.

Figure 2.4.: The data of Propoistion PZ1TI3.

It is

o ly, =3 and =1, =2,

e my =2 and my =1,

o kii=1and ka1 =2 and k12 = 4.

Corollary 2.107. Let C be an irreducible curve germ. We use the same notation as
in Proposition ZI4. The MD homology of C with respect to A is as follows:

1. For any b € [1,00], it is MDHY(C; A) = MDHY(C; A) = A and
MDH!(C; A) = {0}, if n > 1.

2. For any b1, be € [1,00], by > ba, it is hgl’bz = idy.
3. For bl,bg € [1,00], by > bg, 1t 18
° h?l’bQ = ida, if (b2, b1] does not contain any Puiseuzr exponent,

. h?l’bQ (z) = kz, if (b2, b1] contains one Puiseuz exponent with corresponding
Puiseuzx pair (m, k) for some m € N.

If (ba, b1] contains more than one Puiseuzr exponent, hlf’bz can be determined by
concatenation.

Proof. This corollary follows directly from Proposition EZ103. O

By [38] (see also [29] and [T5]), the classification of curve germs by its outer bi-
Lipschitz geometry coincides with the classification of curve germs by its embedded
topology. Therefore, we get the following corollary:

Corollary 2.108. Let C' be an irreducible curve germ. The MD homology of C with
respect to 7 detects all Puiseux pairs of C' and therefore determines its outer geometry.
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Proof. We use the same notation as in Proposition ZI04. By Corollary P14, the set
P of all Puiseux exponents of C' can be described as follows:

b,b—9 .

P = {b e (1,00) : there is no § > 0 such that ;" ° is an isomorphism}.  (2.24)

O]

If C is reducible, equation (2224) yields the set of all Puiseux exponents of all branches
of C. Furthermore, b is a contact number between two branches of C' if and only if
MDHY(C;Z) is not isomorphic to M DH?~%(C;7Z) for any 6. But this method of local
analysis of the MD homology of the curve does not tell us which branch/branches
those Puiseux exponents and contact numbers correspond to. For a small number of
branches, such as two, this question can be answered by simple arithmetics, analysing
the morphisms h?l’bQ more globally. But in general, the MD homology might not be
able to answer this question:

Example 2.109. We use the same notation as in Proposition ZIU4. Let C and D be
the curves with the following five components respectively:

€C?:y=2a+a?,
€C?:y=ux+22%},

eC?: y:x—l—x2+x%}, Dy = {(z,y)
z,y)
z,y) € C? .y = 2z + 2%},
,y)
y)

€C?:y=uz+2:%}, Dy ={
y =2z + 2%}, D3 ={
€ C?:y=2x+ 227}, Dy =/
€C?:y =2z +32%}, D5 = {(=,

€C?:y =2z + 2%},
GCQ:y:2m+3x2+x%}

||
P T e e
TN TN N N /N

8
NN AEN AN N
S— N N N N

m

@

no

The embedded topological types of the two curves do mot coincide since their Eggers-
Wall trees are not isomorphic as trees. But their MD homology with respect to Z
are isomorphic: we denote the morphisms porb2 of the MD homology of C and D by
RoLb2 (C) and pbrb2 (D) respectively. Having a look at their Eqgers- Wall trees, it becomes
clear that the 0-th and first b-moderately discontinuous homology groups coincide for
any b and so do the morphisms hgl’bz(D) and hgl’bQ(D) for any by > by. As the

Eggers-Wall trees of C and D coincide on r=1([0,5)) and r=1((3, o)), h?l’bQ(C) and
h?l’bz (D) also coincide, if by,bs < g or by, by > g If by > g and by < g, h?l’bz (C) and
h?l’bz (D) are the same up to concatenation with isomorphisms on the right and on the
left. For example, if by > % and by € [1,2), hl{“bz(C’) and h?l’bQ (D) are given by matriz
multiplication with M;(C) and M;i(D), respectively, where

2 100 0 1100 0
Ml(c)‘:<00111>M1(D) (00112)

2.10. Finite generation, Bibrair’'s conjecture and rationality of
jumps

The following conjecture was stated orally by Lev Birbrair in Oaxaca in fall 2018.
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Conjecture 2.110 (Birbrair). Let (X, xo,dout) C (R™,x0) be a subanalytic germ
with the outer metric. Then for any b and n > 0 sufficiently small, we have that
MDH(X, 20, dyys) is isomorphic to the ordinary homology of the punctured cone

Hpn (X, R™)\ {zo}

Since Hyp,(X,R™) is subanalytic for b € Q, we know that its singular homology
groups are finitely generated. Therefore, a positive answer to Conjecture 2110, to-
gether with the fact (communicated to us by A. Parusinski) that any subanalytic
subset with the inner metric admits a bi-Lipschitz subanalytic LNE re-embedding (see
[8]) would imply immediately the following conjecture for b € Q:

Conjecture 2.111. Let (X, x0) C (R™,x9) be a subanalytic germ. Then for any b €
(0, 00] we have that MDHY (X, xo,doyt) and MDHS(X, xo,ds,) are finitely generated.

Conjecture EZIT1 can be shown for any b € (0,+00) by proving the following two
conjectures besides Birbrair’s conjecture:

Definition 2.112. Let (X, x0,dx) be a subanalytic germ. An exponent b € B is a
jumping exponent for X, if for any € > 0 the homomorphism MDH! (X, ¢, dx) —
MDH (X, xz9,dx) is not an isomorphism.

Conjecture 2.113 (Rationality). Let (X,zg) C (R™,z¢) be a subanalytic germ and
dx be either the inner or the outer metric. Then the jumping exponents are rational
numbers.

Conjecture 2.114 (Finiteness). Let (X,z9) C (R™,z0) be a subanalytic germ and
let dx be either the inner or the outer metric. Then X has only a finite number of
Jjumping exponents.
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Moderately Discontinuous
Metric Homotopy

The homotopy theory we develop in this chapter is in concordance with the homology
theory we developed in the previous chapter: it admits a Hurewicz morphism from the
homotopy group of degree n to the homology group of degree n (see Proposition B21)
that fulfils the Hurewicz Theorem in degree n = 1 (see Theorem B5H). Similarly to the
MD homology, it is a functor from a category of geometric nature (see Definition B=27)
to a category of an algebraic nature (see Definition B53).

Notation 3.1. In this chapter I := [0,1] denotes the unit interval.
Notation 3.2. For any n € N, we denote by 0 the origin of R™.

Notation 3.3. For readability, in this chapter we denote (yt,t) in C(I"™) by (y,t).
But be aware that this does not provide a system of coordinates of C(I"™). We also

denote (Y1, ...,yn) € I™ by y1.n or sometimes by (y1.n—1,Yn) and similarly. To recall
the definition of C(I™), see Definition [Z3.

We consider C(I") to be equipped with the norm induced by the norm on R"*1.
Therefore it makes sense to talk about l.v.a. maps from or into C(I™) (recall Defini-
tion E77). Recall the definition (Definition EZ50) of a point in the category of metric
subanalytic germs.

Definition 3.4. Let q : [0,¢) — C(I™) be a continuous path germ. We write q(s) =
(a(s),t(s)) € C(I™). We call g a point in (C(I™),0), if there is a representative [0, €')
of the germ [0,¢€) and a K > 1 such that

1
?s <t(s) < Ks
for all s < €.

If we even have the equality t(s) = s for all s < €, then we call ¢ a normal point in

(€(1),0),
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3.1. Definition of the moderately discontinuous metric
homotopy

3.1.1. Weak b-maps

We are going to weaken the concept of b-maps (recall Definition ZZ59). Recall that
b-maps were introduced to augment the class of morphisms in the category of metric
subanalytic germs. Weak b-maps are going to serve a different purpose. In fact, two
weak b-maps cannot be composed. Weak b-maps are a means of weakening the notion
of continuity in the concepts that provide the basis of classical homotopy theory: loops
and homotopies. Indeed both, the role of loops and the one of homotopies in the
classical homotopy theory will be taken by weak b-maps in our theory.

Before defining weak b-maps, we are going to prove a characterization theorem for
b-maps on a convex metric subanalytic germ, namely Proposition B8. This will reveal
the analogy between b-maps and weak b-maps.

Remark 3.5. Let ¢ be a b-map (later we are going to refer to this remark also for
weak b-maps) and let q be a point in its domain. When we write poq, we refer to the
following: let {(Cj, fj)}jes be a representative of ¢. The collection {g71(C;) : j € J}
s a closed subanalytic cover of q’s domain. We can deduce that there is a j € J for
which q as a germ 1is contained in Cj. Then, poq refers to fjoq. Notice that this is
well-defined up to b-equivalence of points (recall Definition 2-20).

We state the following proposition for any convex metric subanalytic germ (Z, zg) for
the sake of generality. What we have in mind is Z = C(I™) for some n € N. Observe
that, if a germ (Z, z9) has a convex representative, then there is an ¢ > 0 such that
the intersection of Z with any ball of radius smaller than € is convex.

Proposition 3.6. Let (Z,zy) and (X,xo) be metric subanalytic germs. Let (Z,zy)
have a convex representative. Let Z be equipped with the outer metric (that coincides
with the inner one).

a) Let (Z1,7Z3) be a finite subanalytic closed cover of Z. Let ¢ be a b-map from Zj
to X for k =1,2. For example, pir can be a subanalytic Lipschitz l.v.a. map from
Zy to Z. Then o1 and po glue to a global b-map if and only if for any point q in
Z1 N Za, the points w10q and p20q are b-equivalent.

b) Let p1r = {(Cy, fj)}jes and o2 = {(Dg, 9i) tker be two b-maps from Z to X. Then,
w1 and 2 are equivalent if and only if for any j € J and k € K and any point q in
the intersection C; N Dy, the points fjoq and groq are b-equivalent.

Proof. First we show statement m). By definition, if ¢; and @2 together form a b-
map on Z, p10q and po0q have to be b-equivalent for any ¢ in the intersection. To
show the reverse implication, let ¢; and ¢ be two different points contained in Z;
and Z, respectively that are b-equivalent. We define ; : [0,1] — Z by the formula
l1(s) := q2(t)s + (1 — s)q1(t). Then, I(s,t) := l¢(s) is subanalytic. As Z; N Im(l;)
and Zo N Im(l;) are compact, the intersection Z; N Zs N Im(l;) is non-empty for any
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t. So Im(l) N Z; N Zy is a non-empty subanalytic set with 2o in its closure. So by the
subanalytic Curve Selection Lemma, there is a continuous subanalytic germ

T [0, 1] — Im(l) NZ1NZy

with 7(0) = zo and r(t) # 2o for any ¢ > 0. By reparametrizing r, we can achieve that
r(t) € Im(l;), so in particular that r is l.v.a. Then, r is b-equivalent to g for k =1, 2.
Using the triangle inequality, the fact that ¢y are Lipschitz on Zj and the fact that
pror and @oor are b-equivalent, we get that ¢j0q; and @e0qs are b-equivalent.

For statement H), we can use the exact same line of argumentation. ]

Proposition B8 motivates the following definition:

Definition 3.7 (Weak b-map). Let (X, xzo,dx) be a metric subanalytic germ and let
(Z,0) be a subanalytic subgerm of C(I™). Let b € (0,00). A weak b-moderately dis-
continuous subanalytic map (weak b-map, for abbreviation) from (Z,0) to (X, zg, dx)
is a finite collection {(Cj, f;)}jes, where {C;}jcy is a finite closed subanalytic cover
of (Z,0) and f; : C; — X are continuous l.v.a. subanalytic maps for which for any
J1,J2 € J and any point q in Cj; NC,, the points fj oq and fj,oq are b-equivalent. We
call {Cj}jes the cover of the weak b-map {(Cy, f;)}je-

Two weak b-maps {(Cj, fj)}jes and {(C}, fi.)}rex are called equivalent, if for any
j € J and k € K and any point q contained in the intersection C; N C}, the points
fjoq and fjoq are b-equivalent in X.

We make an abuse of language and we also say that a weak b-map from (Z, zp) to
(X, z0,dx) is an equivalence class as above.

For b = 00, a weak b-map from Z to X is a continuous l.v.a. subanalytic map germ

fmm (Zv ZO) to (Xv o, dX)
Notice that the f; are not necessarily Lipschitz, unlike the case of b-maps.

Remark 3.8. Definition B=1 implies that statement m) of Proposition B@ also holds
for weak b-maps: two weak b-maps o1 and s defined on Zy and Zo respectively glue
to a global weak b-map if and only if for any point q in Z1 N Zy, the points pr0q and
po0oq are b-equivalent.

Remark 3.9. Let ¢ = {(C}, fj)}jes be a weak b-map (or b-map) and {Dy}rerx a
refinement of {Cj}jes. For k € K, let v(k) € J be such that Dy C Cy4y. Then
{(Dr, frt)| D) Yrek is equivalent to .

Remark 3.10. Any weak b-map from Z to X has a representative {(Cj, fj)}jes, for

which the interior of Cj N Cj, is empty for any ji,j2 € J. This follows from Re-
mark FQ.

Remark 3.11. Let b > . Then, any weak b-map from C(I"™) to (X, xq,dx) is also
a weak b'-map. Since C(I™) is convex, by Theorem EA this statement is also true for
b-maps.

Remark 3.12. Let ¢ = {(C}, fj)}jes be a weak b-map (or b-map). Suppose there are
j1,Je € J with Cj; C Cj,. Then, {(Cy, f)}jenqji) 18 equivalent to .
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The definition of b-map and weak b-map is similar. Indeed, by Theorem B, any
weak b-map {(C}, fj)}jes defined on a convex subgerm of C(I), for which all f; are
Lipschitz, is a b-map. But, as opposed to b-maps, two weak b-maps cannot be composed
with each other. Nevertheless, a weak b-map can be composed with continuous l.v.a.
subanalytic maps on its right and with b-maps on its left.as opposed to b-maps, two
weak b-maps cannot be composed with each other. Nevertheless, a weak b-map can be
composed with continuous l.v.a. subanalytic maps on its right and with b-maps on its
left. This definition is analogous to the composition of two b-maps:

Definition 3.13. Let Z and Z' be subanalytic convex subgerms of C(I™) and C'(I™),
respectively. Let ¢ = {(Cj, f;)}jes be a weak b-map from Z to X. For a contin-
wous l.v.a. subanalytic map ¢ from Z' to Z, we define pog to be the weak b-map
{(67H(C})), pj0d)}jes from Z' to X. For a b-map 1 = (Dk, gk)ker from X to X', we
define oy to be the weak b-map {(f;l(Dk) NCj, g, o fj\fj_l(Dk)ﬁCj)}(J}k‘)GJXK from
C(Im™) to X'.

3.1.2. Definition of the h-moderately discontinuous metric homotopy
groups

We are going to define the b-moderately discontinuous metric homotopy groups for
fixed b € (0,00]. For that we need to weaken the concept of b-homotopies (recall
Definition 2Z79) from C(I™) to X.

Definition 3.14 (Weak b-homotopy (relative to W)). Let (X, zo,dx) be a metric
subanalytic germ and let ¢y and ¢1 be weak b-maps from C(I") to X. A weak b-
homotopy from g to o1 is a weak b-map H from C(I"Y) to X for which Hou, = @
for k € 0,1, where 1, denotes the inclusion of C(I™) into C(I""1) given by (y,t) —
((y,k),t). We say that @9 and p1 are weakly b-homotopically equivalent.

Let (W,0) C (C(I™),0) be a subgerm. A weak b-homotopy relative to W from ¢ to
9 is a weak b-homotopy from @1 to wo for which for any point q in p~ (W), the points
Hogq and @p10poq, where p : C(I"*Y) — C(I™) denotes the projection (y1.ni1,t) +
(Y1..n,t), are b-equivalent.

Remark 3.15. Let g and p1 be weak b-maps from C(I"™) to X. Let (W,0) C
(C(I™),0) be a subgerm. There is a necessary condition for ¢i and w2 to admit a
weak b-homotopy relative to W between them: for any point q in W, the points pgoq
and p10q are b-equivalent.

The following definition describes the objects in the domain of the moderately dis-
continuous metric homotopy functor.

Definition 3.16. A pointed metric subanalytic germ ((X,xo,dx),p(t)) is a metric
subanalytic germ (X, xg,dx) together with a point p : [0,€) — X. We often suppress
xo and dx in the notation and simply write (X, p(t)) or (X,p).

Definition 3.17 (b-MD n-loop). Let ((X,xo,dx),p(t)) be a pointed metric subanalytic
germ and b € (0,00] andn € N. A b-moderately discontinuous n-loop (b-MD n-loop, for
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short) is a weak b-map ¢ from C(I"™) to X for which the following boundary condition
holds: for any normal point q in C(OI™), the point oq is b-equivalent to p.

We denote the set of all b-MD n-loops in (X,p) by MDI'%(X,p). Observe that we
suppress o and dx in the notation MDWZ(X, p), even though they influence the set
of b-MD n-loops in (X,p).

With respect to the boundary condition for --MD n-loops, observe that for a normal
point ¢ in C(I™), the point fjoq does not need to be a normal point in X. That
boundary condition has a simple sufficient condition:

Example 3.18. Let ¢ be a weak b-map from C(I™) to X that has a representative
{(Cy, fi)}jeq as follows: for any j € J, we have fij(y,t) = p(t) for any (y,t) €
C(0I™")NCj. Then ¢ is a b-MD n-loop.

Remark 3.19. Any two b-MD n-loops ¢1 and w2 in (X,p(t)) fulfil the necessary
condition of Remark @13 to admit a weak b-homotopy relative to W = C(0I™) between
them: for any point q in C(OI™), the points pgoq and p10q are b-equivalent.

Proof. Let q be a point in C(0I™). By Remark EZ8, there is a subanalytic homeomor-
phism h : [0,€) — [0,€), for which ¢ := goh is a normal point. Since both ¢ and ¢ are
l.v.a., the homeomorphism h is also l.v.a.. Therefore, the b-equivalence between p;0q
and @g0q implies the b-equivalence between ¢j0q and pq0q.

O

Therefore the following definition is well-defined.

Definition 3.20. The n-th b-moderately discontinuous homotopy set (n-th 5-MD ho-
motopy set, for short), denoted by M Drb (X, p) is the quotient of M DT (X, p) by weak
b-homotopies relative to C(OI™).

We call the equivalence class in M D7t (X, p) of an element ¢ € MDI'?(X,p) the
b-homotopy class of ¢ and denote it by [p].

In Definition we have used that the relation by weak b-homotopies relative to
01 is transitive by Remark BR and clearly reflexive and symmetric. In order to give
two simple but important examples of weak b-homotopies, we adapt the notion of l.v.a.
to homotopies in the topological sense:

Definition 3.21. Let (Z, z9) and (X, xg) be subanalytic germs and letn: Z x I — X
be a subanalytic continuous homotopy. We call n 1.v.a., if there is a K > 1 such that

1
w17 = 2ll < lln(z, s) = zo]| < K|z — 20

for any (z,s) € Z x I.

Example 3.22. Let ¢ = {(C}, f;)}jes be a weak b-map from C(I™) to (X, xg). Suppose
there is a subanalytic l.v.a. homotopy 1 : Cj, x I — X relative to

Bjo = Ujentioy Ci N Cio
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from fj, to some f;, : Cjy — X. Relative to Bj, means that H(x,s) = fj,(z) for
all x € Bj,. Then, ¢ is weakly b-homotopically equivalent to {(Cj,fj)}je], where
fj = f; for j # jo. Observe that implicitly we have used that for any s € I we have
n((*,0),s) = xg, where (x,0) is the vertex of C(I™). That is a consequence of n being
lv.a..

Example 3.23. Letn : C(I") x I — C(I™) be a subanalytic l.v.a. homotopy. We

write ns for the map C(I") — C(I™) sending (Y1..n,t) to n((y1.n,t),s). Assume that

no = ide(my. Since n is Lv.a., we can define i) : C(I") — C(I™) by the formula

N(Y1.m+1,t) .= 0((Y1..n,t), Ynt+1). Then pon defines a weak b-homotopy from ¢ to pon;.
We are going to equip M Dn% (X, p) with a group structure.

Notation 3.24. Letn € N and let 0 < a1 < ag <1 and 0 < 0/1 < a’2 < 1. Then,

bala? denotes the continuous subanalytic l.v.a. homeomorphism from C([a), ] x
I to C([a, ag] x I™7Y) that linearly transforms the former into the latter. This is
defined by the formula

Qo — (1

o — o (0/2 - y1)7y2..n)7t)
2 1

al,a2

0417042(y1 nvt) = ((OQ -

We suppress n in the notation. When oy =0 and ofy = 1, we simply write dq, as-

Remark 3.25. Letn € N, 0 < a1 < ag <1 and 0 < 1 < By < 1. Then we have
81 .8,°Par 00 = D1 y2s Where y1 = a1 (B2 — B1) + B1 and vy2 = aa (B2 — B1) + Bi.

Definition 3.26 (Concatenation of weak b-maps (-)). Let ¢1 and 2 be b-MD n-loops.
By the same argument as the one in Remark 12 and by Remark E3, golo¢511 and

apgo¢1 1 glue to a weak b-map on C(I™), which we call the concatenation of @1 and ¢s.
We denote it by o1 - V2.

If Hy, are weak b-homotopies from py to ¢y for k = 1,2, then by Remark B3 Hlogb_ll
and H20¢1 glue to a weak b-homotopy. So we can define the concatenation of [cpl]
and [p2] to be [p1 - @2].

Notation 3.27. Let ¢ be a b-MD n-loop and a € N. The notation ¢® stands for the

result of concatenating ¢ with itself a times.

Remark 3.28. In order to concatenate any two weak b-maps ¢1 and @y (in that
order) from C(I™) to X, it is enough to ask that for any subanalytic continuous path
p:[0,€) — I that the two points p10q1 and @e0qy are b-equivalent, where qy(t) :=
(k,pu(t),t) € C(I™). If n =1, we define qx(t) := (k,t).

The following remark gives an intuition of how to decompose b-maps defined on

o).

Remark 3.29. a) Let ¢ be a weak b-map from C(I™) to X. Let yo € (0,1). By
Example B23, (9o¢o,y,) - (pody,,1) is weakly b-homotopically equivalent to ¢. If
Yo = 3, then we have (oo y,) - (Pody,1) = .
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b) Let ¢ be a weak b-map from C(I) to X. Let q be a point in C(I) different from
qr(t) := (k,t) € C(I) for k =0,1. Let Ay and Ay be the regions of C(I) enclosed
by qo and q and by q and q1, respectively. Then there are l.v.a. homeomorphisms
1 and ¥y from C(I) to Ay, such that (poth1) - (poths) is weakly b-homotopically
equivalent to .

We are going to show that concatenation equips M Dz (X, p) with a well-defined
group structure. That can be done in the same way as for the ordinary homotopy
groups of a punctured topological space.

Notation 3.30. Let ((X,xo,dx),p(t)) be a pointed metric subanalytic germ andn € N.
We denote by c,,, the weak b-map from C(I™) to X defined by cpn(y,t) = p(t).

Lemma 3.31 (Existence of unit element). Let ¢ be a b-MD n-loop in (X,p). Then,
(] - [epnl = [epn] - 1] = [g]-

Proof. We have illustrated the homotopy used in the analogous proof for the ordinary
homotopy theory in Figure BId. There, ¢ lies on the top of I? and Cp,n ON the bottom.

Y3 Y3
/JQ %/2
u n
(a) Unit element. (b) Inverse element.

Figure 3.1.: Group axioms.

The same idea can be adapted to the MD homotopy. That can be formalized as
follows. Write ¢ = {(Cj, f;)}jes. Let r : I — I be defined by 7(yn+1) := 3 + 3Yn+1.
We define

CA’] = {(yl..n-l-lat) S C(In+1) : (ylnat) € ¢0,T’(yn+1)(cj)}7
fj : Cj - X? (yl‘.nJrl)t) = fjoqb(;’,}‘(yn_‘_l)(yl..nat)a

T :={(y1.ns1:t) € CUI™™) : (Y1, ) € Im(y(y,,101)}
g: T — X, (z,t) — p1(t).
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By Remark B8 and the same argument as the one of Remark B9, the weak b-maps
{(Cy, fj)}jes and (T, g) glue to a weak b-homotopy from ¢ - ¢, , to ¢. The weak
b-homotopy from c,, ,, - ¢ to ¢ is constructed analogously. O

Lemma 3.32 (Associativity). Let p1, w2 and @3 be b-MD n-loops. It is ([¢1] - [¢2]) -
[ps] = [p1] - ([p2] - [103])-

Proof. By Remark B3, (¢1-p2) - @3 is given by glueing together <plo¢)all, gpgoqbzll and
1

472
@30(]5111. In the same way ¢ - (2 - ¢3) is given by gluing together cplogtgll, @20¢>21§
27 12 274
and gpgoqbgll. There is a weak b-homotopy between them as a result of Example B7Z223
47

applied to the continuous homotopy illustrated in Figure B2.

Figure 3.2.: Associativity.

O]

Nota<t_ion 3.33. Let ¢ be a weaﬁb—map from C(I"™) to X. We denote the weak b-map
{(83’ i)} by %, where 83 and f; are the result of mirroring C; and f; respectively at
the y1-axis:

Gy o= {1 ) € I(C™) : (1 = y1,y0.m,1) € Gy},
}Tj(yl..n’t) = f](l - y1’y2..nat)

Lemma 3.34 (Existence of inverse elements). Let ¢ be a b-MD n-loop in (X, p).
Then we have [¢] - [¥] =[] - [¢] = [cpal-

Proof. We have illustrated the homotopy used in the analogous proof for the ordinary
homotopy theory in Figure BIH. Again, ¢ lies on the top of I? and Cp,n ON the bottom.
The intersection of any prism similar to the ones drawn in that figure with an affine
plane spanned by y; and y3 gives a triangle. The homotopy is constant on the two
sides of any such triangle that lie in the interior of I2. The same idea can be adapted
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to the MD homotopy. That can be formalized in a similar way as we formalized the
proof of Lemma BZ3. ]

Notation 3.35. Let ¢ be a b-MD n-loop and a € N. The notation ¢~ stands for the
result of concatenating Sp with itself a times.

The following small adaptation of the proof of Lemma B=34 will be used repeatedly:

Lemma 3.36. Let ¢ = {(C}, fj)}jes be a weak b-map from C(I) to X. Let qo(t) :=
(0,t) € C(I) be the left lateral point of C(I) and q1(t) = (1,t) € C(I) the right
lateral point. Let py := poqr. We define the constant weak b-maps | = (C(I), go) and
r=(C(I),g91) by gr(y,t) := px(t). Then there is a weak b-homotopy relative to C(91)
fromg0-$ tol andfr0m$-<p to r.

Proof. The proof is analogous to the one of Lemma B=34. O

Proposition 3.37. The concatenation defined in Definition defines a group struc-
ture on M D72 (X,p).

Proof. The statement was shown in Lemma B30, Lemma B32 and Lemma B34. [

Definition 3.38. From now on we call MDW?L(X, p) the n-th b-MD homotopy group
of (X,p). We also call MDnb(X,p) the b-MD fundamental group of (X, p).

3.1.3. The Hurewicz homomorphism

In the same way as in the topological homotopy and homology theories, for the b-MD
homology and homotopy theories there is a Hurewicz homomorphism relating those
theories .

Let ((X,x0,d),p) be a pointed metric subanalytic b-connected germ. We define an
auxiliary map

Cnp : {1 ¢ is a weak b-map from C(I") to X} — MDC:(X;Z) (3.1)

as follows: let ¢ = {(Cj, f;)}jes be a weak b-map from C(I") to X. Let {pi}rex be an
orientation preserving homological subdivision (recall Definition E18) of C'(I™) whose
associated triangulation is compatible with {C}};cs. For every k € K, let r(k) € J
such that the image of py is contained in C, ;). We define the map ¢ by the formula

Cn,b(‘p) = Z fr(k)opk- (32)

keK

We have defined ¢, on its general domain instead of defining it on the domain of
b-MD n-loops and make the following lemma for that general domain. The reason for
that is that we need that generality in the proof of the Hurewicz Theorem of degree
one (Theorem BHA) further ahead.

Lemma 3.39. Let ((X,xzg,d),p) be a pointed metric subanalytic b-connected germ. Let
Cnp be as defined above. Then (,yp has the following properties:
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1. The map (pnp is well-defined independent from the choice of the homological sub-
division.

2. It is Cup(01) + Cup(p2) = Cupl(er - w2)-
3. It is Cup(P) = —Cua(e).

Proof. All the stated properties follow from the homological subdivision equivalence
in MDC%((X,Im(p)); Z). In particular, for property (8) recall Remark 2I9. O

Proposition 3.40 (Hurewicz homomorphism). Let ((X,xz¢),p) be a pointed metric
subanalytic b-connected germ. Let b € (0,00] and n € N. Then the restriction of (.
to the space of b-MD n-loops induces a homomorphism

Cnp s MDm)(X,p) = MDH,(X;Z),
which we call the Hurewicz morphism.

Proof. By Lemma B=39, if CT,b is well-defined, then it is a homomorphism. We consider
MDC?(X,Im(p);Z) to be a subcomplex of M DC?(X;7Z) in the way we explained at
the beginning of Subsection EZ=Z3.

We show that (5 is well-defined. For that, first we show that the image of a b-MD
n-loop ¢ under CT’b is a cycle. Observe that the long exact relative --MD homol-
ogy sequence (recall Proposition ZZ4R) gives us an isomorphism v, : MDHS(X;Z) =
MDH?(X,Im(p); Z) as follows: we apply the long exact relative b-MD homology se-
quence to the subanalytic subgerms () C Im(p) C X and use Proposition P51 to fill
in the b-MD homology of the point. It is clear that 1,0(, () is trivial. Therefore
Cnp(¢p) is trivial.

Now we show that CT,b respects the equivalence by weak b-homotopies. Let ¢
and @9 be b-MD n-loops and let n be a weak b-homotopy between them. Choose an
orientation preserving homological subdivision of C'(I"*!) compatible with 7’s cover.
Via that subdivision we can construct an element z € MDC? (X, Z) for which §(z) =
Cub(91) = Cup(p1) + 7, where 7 is an element of M DC?(Im(p),Z). Then v,0(, 4(r) is
trivial and therefore ¢, ;(r) is trivial.

O]

In the Hurewicz Theorem for degree one (see Theorem BXHA in Section B2), we
show that the Hurewicz morphism defines an isomorphism from the abelianization of
MDn{(X,p) to MDH{((X,Im(p)); Z).

3.1.4. Other properties

Apart from the Hurewicz morphism whose existence we have shown above, the b-
MD homotopy groups share more of the classical properties of the ordinary homotopy
groups of a punctured topological space. We are going to show that the b-MD homo-
topy groups of degree n > 1 are abelian for any b € (0,00]; and that, if the metric
subanalytic germ is b-path connected (see Definition BZ3), the b--MD homotopy groups
are independent from the choice of base point. We have not written down the definition

64



of b-MD homotopy groups relative to a metric subanalytic subgerm yet. That definition
can be done analogously to the absolute one. We think that it will be straightforward
to prove the existence of the long exact sequence of relative b-MD homotopy groups.

Proposition 3.41. Forn > 1, MDn%(X,p) is abelian for any b € (0, co].

To prove the proposition, we can proceed exactly as in a proof for the ordinary higher
homotopy groups, in which the following argument from [I4] is used:

Lemma 3.42 (Eckmann-Hilton argument). Let X be a set and let o and ® be two
binary operations on X that are both unital. Further suppose that

(z10m9) @ (z3024) = (21 ® 3)0(T2 ® T4)
Then, o and ® coincide and are commutative.

Proof of Proposition 5-Z1. We have defined - by glueing two b-MD n-loops along the
y1-axis. One can easily check that the binary operation defined by glueing two 5-MD
n-loops the same way along the yo-axis fulfils the hypothesis of Lemma BZ2 together
with -. O

Just as the ordinary homotopy group is independent from the choice of base point,
if the topological space is path-connected, the b-MD homotopy group is independent
from the choice of base point, if the metric subanalytic germ is b-path connected (see
Definition B23). Notice that the first time the word point was used in the last sentence
it referred to the set-theoretical notion of point.

Definition 3.43. Let (X, xo,d) be a metric subanalytic germ. It is called b-path con-
nected, if for any two points pi(t) and pa(t) in X, there is a weak b-map n: C(I) = X
for which n(0,t) and n(1,t) are b-equivalent to pi(t) and pa2(t), respectively. We say
that n connects p; and po.

The concept of b-path connectedness is related to the concept of b-connected com-
ponents (recall Definition PZ99) as follows.

Definition 3.44. Let (X, xq,d) be a metric subanalytic germ. It is called b-connected,
if it only has one b-connected component.

Lemma 3.45. Let (X, zg,dx) be a metric b-connected subanalytic germ. Then (X, zo,dx)
18 b-path connected.

Proof. We recall the notion of straight points. Let h : (X,z0) — C(Lx) be a subana-
lytic isomorphism for which it is ||h(z) — 0|| = ||z — zo||. A point p is called a straight
point with respect to h, if p(t) = h=!(z,t) for some x in the link Lx.

Let p1(t) and pa(t) be two points in X. Since X is b-connected, we can assume
that p1((0,€)) and p2((0,€)) lie in the same connected component of X \ {z¢}. Then,
showing the statement is an easy adaptation of the proof of Proposition ZI00. First
we can show that there is a continuous subanalytic l.v.a. map connecting p; with a
straight point. Then we can show that for any two straight points there is a weak
b-map from C(I) to X connecting those two straight points. Concretely:
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We assume that p;((0,€)) and p2((0,¢)) lie in the same connected component of
X \{zo}. Let zy : [0,¢] — L and 7% : [0, €] — [0, €] be such that hopy(t) = (zx(t), 7% (t))
for k = 1,2. Observe that ¢ = 0 implies 7;(t) = 0. We define continuous subanalytic
l.v.a. maps 1, : C(I) — X for kK = 1,2 by the formula

n(y,t) == h™ (2t + (e — t)y), (1))

Then 7, connects the point p;, with the straight point py : ¢ — h™ (2 (e), 7 (t)) for
k =1,2. Since x1(e) and z1(e) are in the same conneted component of Lx ., there is
a subanalytic path v from one to the other. So we can define 13 connecting p; and po
by the formula

13y, 1) = h™ (v(y), 7a(t) + (r2(t) — 1a())).

The concatenation 71 - 13 - <77_2 yields n as stated.

If p1((0,¢€)) and pa((0, €)) lie in different connected components of X \ {z¢}, there are
Pi in the connected component of p; such that p; is b-equivalent to ps. Then the b-map
from p; to p; as obtained above and the one from ps to ps can be concatenated. [

Proposition 3.46 (Independence of base point). Let (X, zo,dx) be a metric suban-
alytic germ. Let p1(t) and pa(t) be points in X. Let n be any weak b-map from C(I)
to X connecting p1 and py as in Lemma BZd. Let 1) be the weak b-map from C(I)
to X defined by the formula 7 := nop, where p : C(I™) — C(I) is the projection
p(Y1.n,t) := (y1,t). Then the homomorphism

¢: MD%(X,p1) = MDrh(X,p2)

- -
defined by (@) := 7 -p-1) is an isomorphism. Moreover, its inverse is (~1(p) 1= f-p- 7 .

Proof. The statement is obvious. O

3.1.5. Functoriality
The MD homotopy functor is defined in the following domain:

Definition 3.47. The category of pointed metric subanalytic germs has pointed metric
subanalytic germs (recall Definition B18) as objects and subanalytic Lipschitz l.v.a.
maps f: ((X,zo,dx),p) = (X', z,dx),p") for which fop =p' as morphisms.

Similarly to the case of the MD homology, the domain of the b-MD homotopy can
also be augmented:

Definition 3.48. The category of pointed metric subanalytic germs with b-maps has
pointed metric subanalytic germs (recall Definition BTH) as objects and b-maps ¢ :
(X, z0,dx),p) = (X', xp,dx),p") for which 1pop is b-equivalent to p’ as morphisms.

The target category is defined analogously to the target category of the MD-homology
functor (recall Definition 2743)).

Notation 3.49. We denote the category of groups by G and the category of abelian
groups by AG.
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Proposition 3.50. Let n € N and b € (0,00]. There are functorial assignments
(X, z0,dx),p) = MD7b(X,p) (resp. ((X,z0,dx),p) — MDn’(X,p) forn > 1) from
the category of pointed metric subanalytic germs with b-maps to G (resp. AG ).

Proof. We assign to a b-map ¢ : ((X,,z0,dx),px) — (X',2(,dx’),px’) the group
homomorphisms v, : MD7l (X, qx) — MDn%(X', qx:) that sends ¢ to wop. It is
easy to see that v, is well-defined O

Proposition 3.51. Let n € N and b € (0,00]. There are functorial assignments
((X,20,dx),p) = MDn}(X,p) (resp. ((X,z0,dx),p) = MDz},(X,p) forn >1) from
the category of pointed metric subanalytic germs with b-maps to G (resp. AG ).

Proof. We assign to a b-map ¢ : ((X,,z0,dx),px) — (X', 2(,dx’),px’) the group
homomorphisms 9, : M D7l (X, qx) — MDn%(X', qx:) that sends ¢ to wop. It is
easy to see that 1, is well-defined. O

Definition 3.52. The category B — G (resp. B — AG) of B-groups (resp. B-abelian
groups) is the category whose objects are functors from B to G (resp. AG) and the
morphisms are natural transformations of functors.

Proposition 3.53. Let n € N. There are functorial assignments ((X,zo,dx),p) —
MDni(X,p) (resp. ((X,z0,dx),p) — MDn}(X,p) for n > 1) from the category of
pointed metric subanalytic germs to B — G (resp. B — AG ).

Proof. We assign to an object (X,p) the groups M D7l (X,p) for any b € (0, 0] to-
gether with the morphisms 7, : MDrb(X,p) — MDﬂ',l,)l/ (X,p) for any b > b that
we get from Remark BT, To a morphism ¢ : (X, ,zo,dx),px) = (X', z(,dx/), px7)
between pointed metric subanalytic germs we assign the group homomorphisms ¢° :
MD7b (X, qx) — MD=b(X', qx/) for any b € (0, 00] that sends ¢ to gop. It is easy to
see that ¢¥ is well-defined and that it commutes with the Mo,b - O

Notation 3.54. We denote the group homomorphisms M D7%(X, qx) — MDnl (X', qx/)
induced by g : (X,px) = (X', px/) by 9.

3.2. The Hurewicz Theorem in degree 1

In this chapter we adapt an important computational tool in the context of the ordinary
homotopy and homology theory of punctured topological spaces to our theory: the
Hurewicz Theorem in degree 1. For the statement in topology see for example Theorem
4.29 of [33]. We follow the line of proof given in [B2]. Recall the definition of ¢ in
equation (BI) and (B22).

Theorem 3.55 (Hurewicz Theorem). Let (X, x,d) be a b-path connected metric sub-
analytic germ and let p be any point in X. Letb € (0,00] andn € N and let V,, , denote
the Hurewicz morphism (recall Proposition[340). Let C := [M D7}(X,p), MD7%(X, p)]
denote the commutator of M Dr8(X,p). Then,

T, : MDrb(X,p)/C — MDH!(X,7Z)
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defined by the formula

s a group isomorphism.

Proof. We fix a l.v.a. homeomorphism x : A; — C(I). Via p we identify A; with
C(I) and subanalytic l.v.a. maps on the domain A with the corresponding maps on
C(I) and vice versa. Recall from Lemma BZ3 that we say that a b-map ¢ from C(I)
to X connects two points pg and p; in X, if the two lateral points ¢(0,¢) and ¢(1,t)
of ¢ are b-equivalent to py and p1, respectively.

We are going to construct the inverse of ¥ and denote it by I". For any b-equivalence
class [r(t)] of a point 7(¢) in X, we fix a weak b-map 7},) connecting r and p. This exists
due to Lemma BZ3H. For the equivalence class [p], we choose Tjp] to be the constant
map ¢pq : (y,t) — p(t). For a b-MD 1-simplex o and k € {0,1}, we denote by pj the
the two lateral points t — o(kt,t) of o. We define

[([o]) := [7[]00] -0 - T, C.

Since the target of I' is the quotient of M Dﬂll’(X ,p) by its commutator, we can extend
this deﬁnit(io_nlinearly by I'(ai101 + agoz) = [['(01)* - I'(02)?]C; in particular it is
I'(—0) :=[I'(0)]C.

We have defined a group homomorphism from M DCY" (X, Z) to M Dm4(X,p).
To show that it descends to a morphism on M DC?(X,Z), we have to check the two
conditions of Remark PZ311. Clearly, if o1 and o9 are b-equivalent 1.v.a. 1-simplices, they
are sent to the same weak b-map. If o is a L.v.a. 1-simplex and z a l.v.a. 1-chain with
01 —c %, then o and z are sent to weakly b-homotopically equivalent b-MD 1-loops.

To show that I" descends to a morphism on M DH?(X,Z), let v be a b-MD 2-simplex.
Let p; be the point ¢ — v043((0,1),t) (59 is defined in Notation E12). By Lemma BZ38,
we have

D(@0) = [Fp, - vos - vog] - voj3 - 7 C.

So there is a continuous weak b-homotopy from I'(Ov) to the constant weak b-map ¢, 1.
We show that T' is the inverse of ¥, ;. Since we have chosen 71, to be (y,t) = p(t), we

get [oW,, p, = idMDw‘f(X,p)/C‘ To show that U,, oI’ = idMDHf(X,Z)? let z =L, ao; €
MDHQ(X, Z). For every | € L, let p; o and p; 1 denote the two lateral points of o;. We
have

Uob(T(2) = U (Fpr o] - 01 T )™ oo - (Fpo] * O Tipa])™)-

[Pl,o n,0

By Lemma B=39, the right side is equal to

n

n
Z al(_T[pz,o] + o0+ T[pz,1]) = Zalal + X,
=1 =1

where Y is a sum that cancels in pairs as z is a cycle. O
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3.3. Basic computations

This section is divided into the computation of the co-MD homotopy group for any
degree n and some basic computations for the b-MD fundamental group

3.3.1. The co-MD homotopy groups

In this subsection we use the existence of subanalytic representatives in any topological
homotopy class.

Proposition 3.56. Let ((X,xo,dx),p) be a pointed metric subanalytic germ. Fixe > 0
small enough. There is a group isomorphism

C : MDﬂ'ZO(X,p) = Wn(LX,eap(E))v
where m,(Lx ¢, p(€)) denotes the standard n-th homotopy group of the link Lx . of X.

Proof. Let h : (X,Im(p),z0) — (C(Lx.e),p(€)) be a subanalytic homeomorphism. It
exists since the subanalytic conical structure theorem is compatible with subgerms.
We can assume that h(x) = (a(z), ||z — xo||) for some a(x) € L. Let a: Lx  — X and
7 : (0,¢] = X such that h(z) = (a(x),7(z)) for = # x9. We fix ¢ty € (0, €] and define
the image of a co-MD n-loop ¢ : C(I") — X under ( to be ¢y, defined by the formula
o1,(y) == alp(y,to)). It is clear that ¢y, and ¢; are homotopic in the topological
sense for any tg, %y € (0,¢). Furthermore, if H : C(I"*') = X is a weak oo-homotopy
between ¢ and ¢, then Hy, defined in the same way as ¢y, is a homotopy from ¢, to
Pto-

Now we define the inverse v of (. Let [y] € m,(Lx,) and let ¥ € [y] be a
subanalytic representative. We define the image of [y] under v to be the mapping
(y,t) = B~ (3(y), 1)

We call a b-MD n-loop {(C}, fj)};ecs straight, if for any j € J we have hof;(y,t) =
(a(y), t) for some subanalytic o : I"™ — L. Then v is the inverse of ¢ due to the existence
of straight representatives in the weak oo-homotopy class of any co-MD n-loop. O

Corollary 3.57. Let ((X,z0,dx),p(t)) be a pointed metric subanalytic germ whose
link (Lx ) is path-connected. Let b € (0,00]. If the ordinary fundamental group
m1(Lx.e,p(€)) is abelian and the group homomorphism M Dn$°(X,p) — MD7b(X,p)
is surjective, then M Dn8(X,p) = MDHY(X, 7).

Proof. Since M D7{°(X,p) — M D7%(X,p) is surjective and M Dn{°(X, p) is abelian,
so is MDm?(X,p). Now the statement follows from the Hurewicz Theorem (Theo-
rem BHH). O

3.3.2. Computations for the MD fundamental group

As expected, the MD fundamental group of the point is trivial.

Proposition 3.58. Let ([0,¢),d,0)) be the point of our category (recall Definition Z50).
Let p(t) be a l.v.a. subanalytic continuous path in [0,€). The MD-fundamental group
of ([0,€),p) is trivial.
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Proof. We are going to show that M Dr$°([0,€),p) — M D74([0, €), p) is surjective and
apply Corollary B52. Let ¢ = {(C}, fj)}jequ,..,y be a b-MD 1-loop. We can assume
that J = {1,...,7} and that every Cj is the straight cone over a closed interval [a;_1, a;]
and that ap < a1 < ... < a,. In particular we have that ¢ is weakly b-homotopically
equivalent to fi -...- fr. For j € {1,...,r — 1}, we define the constant weak b-map g;
on C(I) by g;(y,t) := fj(a;,t). Then ¢ is weakly b-homotopically equivalent to the
result of alternatingly concatenating f; and g; as follows:

fiogu-farogra- fr (3.3)

We replace every g; in (B=3) by

Gi - (. t) = filag,t) +y(fir1(aj, t) — fi(az,t)).

We can do that, because they define the same b-map since the points p1(t) := fj(a;,t)
and pa(t) := fj+1(aj,t) are b-equivalent. As a result we get a continuous b-MD 1-loop
that is weakly b-homotopically equivalent to . O

Proposition 3.59. Let L C R™ be a subanalytically path-connected subanalytic set.
Letb € QN [l,00) and let (CY%,0,d) be the b-cone over L as in Definition 4, where d
1s the outer metric. Let p be a point in Cg and let tg > 0 be small.

a) If b < b, then M D% (C?,p) is trivial.
b) Suppose that L is compact. If b’ > b, then the morphism
Moo : MD7{*(CY,p) — M D7 (C},p)
18 surjective.

Proof. Statement a) follows from the functoriality of the &'-MD homotopy with respect
to b'-maps as follows. We define ¢ : L% — [0, €) to be the b-map ¢ = (C?, f), where
f:C% —[0,¢) is defined by f(ztb,t) = t. We show that ¢ has an inverse as a b’-map.
For that, we choose a point p(t) in CZ that is a normal point in the following sense: if
we write p(t) = (ag(t)73(t)?, 73(t)), then it is 75(t) = t. The inverse of 1 is the b'-map
([0,€),9), where g : [0,€) — C? is defined by g(t) = p(t).

For Statement B), let ¢ = {(Cj, fj)}jes be a b-MD 1-loop. We can assume that
J ={1,...,r} and that every Cj is the straight cone over a closed interval [a;_1,a;]
and that ap < a1 < ... < a,. In particular we have that ¢ is weakly b-homotopically
equivalent to fi-...- f,. We write fr,(y,t) = (m (y, )T (y, 1), T (y, 1)) for m = 4,5 +1.
We write fo(y,t) = (am(y, )T (y, )%, Tm(y, 1)) for m = 4,7 + 1. Since f, is L.v.a.,
the development of 7,,,(y,t) as a fractional power series around 0 has to have a term
of degree one for m = j,j + 1. Let osy (7 (aj,t)) be the sum of all terms in 7,,(a;,t)
of degree greater than b’. We can assume that 7,,(a;,t) does not have terms of degree
greater than &’. From a computation using that {||z| : x € L} is bounded and that for
71,7 > 0 small enough it is |[7? — 75| < |7 — 7o, we get that the function

(y:t) = (m(y, ) (T (y, ) = 051 (T (@, 1)))°, T (4,) = 057 (Tim (a5, 1))

70



is b’-equivalent to f,, for m = j,j + 1. Therefore f,, can be replaced by that function.
We know that the points p;(t) := fj(a;,t) and pj1(t) :== fj+1(aj,t) are t'-equivalent.

So both,

Im(aj,t) — Tjt1(a;,t))|

%E}% i =0 (3.4)
and dout (i (a;,t)7i(a;, 1)’ a1 (aj, t)7j1(a;, t)?)
P_If(l) 3\, V) T\, ;b’j 3> V)75 Js -0 (3.5)
and tend to zero. From equation (84) we can deduce that
7j(aj,t) = 7j41(a;,t), (3.6)

since 7j(aj,t) and 7j41(aj,t) do not have terms of degree greater than '. Therefore
from equation (B3) we can deduce that oj(aj,t) and a;41(a;,t) tend to the same point
in L, using that L is compact. Therefore, by the Monotonicity Theorem, there is a
to > 0 such that

d(aj(az, t1), jr1(ag, t1)) < d(ej(ag, ta), ji(ag, t2)) (3.7)

for all t1,te € [0,tp] with ¢t < to. For m = j,j + 1, we define the subanalytic l.v.a.
maps g, : C(I) — C% by the formula

Im(y,t) = (am(aj, t — yt)Tm(ajvt)b7Tm(aj7t))-

We have that g; and g;41 coincide as weak b-maps. That follows from equation (88)
and inequality (B2) applied to t; =t — yt and ty = t.

By Lemma BZ33, the concatenation fy - ... - f, is weakly b-homotopically equivalent
to

foo fiogi G i S

We have connected the moderate discontinuity between f; and fj;11 in a continuous

A~

way. Repeating this procedure for all j € J\{r} yields a weak b-map (C(I), f) without
moderate discontinuities. It is in the image of 7o p.
O

Corollary 3.60. Let L be a compact path-connected subanalytic space with abelian
ordinary fundamental group. Let C’g denote the b-cone over L equipped with the outer
distance. Let p be a point in C%. Then we have

MDxy(CY,p) = MDH,(C%;7)
for every b € (0, c0].
Proof. The statement follows from Corollary B554 and Proposition BZ59. O

Example 3.61. Let Sy be the circle. We are going to show that the b'-MD fundamental
group of C§1 18
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1. Z, if ¥ € [b, o0,
2. trivial, if V' € [1,D).

Proof. Statement (B) follows from part a) of Proposition B59. To show statement (),
we use Corollary BB0. To compute the first o'-MD homology group of C§1’ we use
Corollary P93 that relates the MD homology with the nerve of a cover. To construct
the cover we choose three open segments S; of Sy, where j € {1,2,3}, such that each
segment overlaps with one of the other two segments at one of its ends and with the
third segment at the other of its ends. We ask the overlap of the segments to be small
enough so that the intersection of the three segments is empty. Now we define the cover
{Uj}jeqi,2,3 of C’gl by Uj == {(zt®,t) € C'Sb1 :x € S;}. That cover fulfils the hypothesis
of Corollary 2Z93: each U; and any intersection of two of the U;’s is b’-contractible and
the intersection of the three of them is empty; furthermore for any subset J C {1, 2, 3},
the collection {U;};ecs is a b'-cover of Ujc;U;. Therefore the first -MD homology of
C’Sb1 coincides with the homology of the nerve of the cover {Uj};c1 2,3y which is Z. [

3.4. Detection of fast loops

In [@] the concept of fast loops plays an important role in the classification of normal
complex algebraic surface germs. There a fast loop is defined as follows:

Definition 3.62. Let (X,x,d) be a metric germ. For e > 0, let Lx . denote the
intersection of X with the sphere in R™ of radius €. Let 8 > 1. A smooth family of
closed curves 7 : [0,1] x [0,€9) — X is called S-fast loop in X, if

e .(t) :=~(t,€) is a loop contained in Lx . for any e,
® 7 is not contractible in Lx ,

i Length(re)

e—0 €

= 0, where length(~.) is defined as follows:

length(’ye) = Sup{z d(’YE(tjfl)ave(t])) ‘ne N70 =ty <ty < <lp= 1}
j=1

When it is not important what the specific paremeter 8 looks like, we simply call v a
fast loop in X.

The concept was first introduced in [7], where it was shown, that at least under
certain conditions, the existence of a fast loop in a metric germ X is an obstruction
for X to be metrically conical. The existence of fast loops has the following impact on
the MD fundamental group:

Proposition 3.63. Let (X, x0,d) be a metric subanalytic germ with path-connected
link. Let p be a point in X. Let there be a subanalytic fast loop vc(s) in X. Then the
morphism

Moo+ MD7®(X,p) = MDri(X, p)
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is not injective for any b € (0, 3).

Proof. By Proposition B48 we can assume that p(¢) := +(0). We define the oo-
MD 1-loop ¢ = (C(I), f) by the formula f(y,t) := v (y). By definition of fast loop
and Proposition B350, we know that ¢ is a non-trivial element of M Dn°(X,p). Let
b€ [1,B). Then ¢ is trivial as an element of M D7%(X, p). O

We conjecture the following extension of Proposition B53:

Conjecture 3.64. Let L. C R™ be a compact path-connected subanalytic set. Let
beQnNl,00) and let (C%,0,d) be the b-cone over L as in Definition 24, where d is
the inner or outer metric. Let p be a point in C% and let tg > 0 be small. If b >0,
then the morphism

Noo,b’ + MDTF?O(Cg,p) — M‘Dﬂ-ll)/(cl[)np)

s an isomorphism. In particular MDﬂlf/(Cg,p) is isomorphic to m (L, p(to)), where
w1 denotes the ordinary fundamental group.

If Conjecture is true, then it implies that the MD fundamental group detects
the existence of subanalytic fast loops as an obstruction to metrical conicalness:

Conjecture 3.65. Let (X, xzg,d) be a metric subanalytic germ with path-connected link
Lx. The MD fundamental group of (X,p), where p is any point in X, captures the
existence of subanalytic fast loops in the following sense. Let CEX denote the straight
cone over Lx. Let pr be any point in C%X. If there is a subanalytic fast loop in X,
then the MD fundamental group of (X, p) is different to the one of (C’iX,pL).

Proof. The statement follows immediately from Proposition BG3 and Conjecture B64.
O

3.5. Alternative setting

We could have defined the MD homotopy theory without requiring the fj’-s in a weak
b-map {(Cj, f;)}jes to be subanalytic. That would define a bi-Lipschitz invariant as
opposed to the subanalytic bi-Lipschitz invariant we have defined. The main reasons
why we have defined the MD homotopy theory in the subanalytic setting is to guarantee
that we have a Hurewicz morphism as in topology.
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Subanalytic geometry
and O-minimal structures

This appendix collects a few facts on subanalytic geometry that I have learned from
Edson Sampaio.

Definition A.1. A subset X € R™ 1is called semianalytic at x € R™ if there exists an
open neighborhood U of x in R™ such that U N X can be written as a finite union of
sets of the form {z € R™ | p(x) = 0,q1(z) > 0,...,qx(z) > 0}, where p,q1,...,qx are
analytic functions on U. A subset X C R™ is called semianalytic if X is semianalytic
at each point x € R™.

Definition A.2. A subset X C R™ is called subanalytic at x € R™ if there exists
an open neighborhood U of x in R™ and a relatively compact semianalytic subset S C
R™ x R¥, for some m, such that U N X = 7w(S) where 7 : R™ x R¥ — R™ is the
orthogonal projection map. A subset X C R™ is called subanalytic if X is subanalytic
at each point of R™.

Definition A.3. Let X C R™ be a subanalytic set. A map f : X — RF is called a
subanalytic map if its graph is subanalytic.

Definition A.4. A subset X C R™ is called globally subanalytic if its image under

the map
il ITm

)

(X1, oy zm) = (

from R™ to R™ is subanalytic.
Remark A.5. In [12], a globally subanalytic set is called a finitely subanalytic set.
Remark A.6. 1. Any globally subanalytic set is a subanalytic set;

2. Any bounded subanalytic set is a globally subanalytic set;

3. The collection of all globally subanalytic sets forms an O-minimal structure (see
Theorem in [12]).

For completeness of statement B of the previous remark, we remind the definition of
O-minimal structures:

Definition A.7 (O-minimal structure). An O-minimal structure over the reals is a
collection {Sy }nen, that satisfies the following axioms:
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1. For any n € N, the collection S,, contains all algebraic subsets of R™.
2. For any n € N, the collection S,, is a Boolean subalgebra of the powerset of R™,
i.e.
e R" e S,;
e ) €8,;
o forany A,B € S, we have AN B € Sy;
o forany A,B € S, we have AUB € Sy;

o for any A € S, its complement A® is in S,.
3. For any A€ Sy, and B € S,,, we have A X B € Sp1p.

4. If p : R — R™ denotes the projection forgetting the last coordainate and
A € Sp41, then we have p(A) € S,,.

5. The elements of S1 are precisely all finite unions of points and intervals.

Any set A € S, for n € N is called definable. For any two definable sets A and B
of a given O-minimal structure, a map f : A — B is called definable, if its graph is
definable.

When working with subanalytic germs, one can take into account only bounded

representatives. By statement B of Remark A6, those representatives are globally
subanalytic. That is the setting we have chosen to work in in this thesis. The theorems
and facts we use in the thesis in this context are the following;:
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e Let A and B be bounded subanalytic sets. Let f : A — B be a subanalytic
map. Then it follows directoy from the axioms of O-minimal structures and
Definition A3 that the images and preimages of globally subanalytic sets under
[ are globally subanalytic (see Remark 2 of [Z5]). We use the statement about
preimages for example in Proposition 2Z5h3.

e The Monotonicity Theorem (see Theorem 2.1 in [9]), which states the following:
if f: (a,b) — C is a subanalytic function with C' C R bounded, then there is a
finite subdivision a = ag < ay, - - - < ag = b such that, on each interval (aq,, @i+1),
the function f is continuous and either constant or strictly monotone. We use it
for example in Proposition B7hd.

e The Conical Structure Theorem for sets of an O-minimal structure. We use it
often, for example in Remark 8. We have stated it for subanalytic germs in
Remark P8:

Remark Z@. We recall that the link of a subanalytic germ is well defined as a
topological space as the intersection of X with a small enough sphere centered at
xo; we denote it by Link(X,xy) or simply Lx. Moreover, the conical structure
theorem says, given a subanalytic germ (X, z9) and a family of subanalytic sub-
germs (Z1,0),...,(Z,0) C (X,0), that there exists a subanalytic homeomorphism



h:C(Lx) — (X,z0) such that ||xg — h(tx,t)|| =t and such that h(C(Lg,)) = Z;
with Ly, in Lx (see Theorem 4.10, 5.22, 5.23 in [9]). We say that the conical
structure h is compatible with the family {Z;}. The conical structure is why we
say that xq is the vertex of (X, x¢).

e The Curve Selection Lemma (see Theorem 3.2 of [9]) for sets of an O-minimal
structure which states the following. Let A C R™ be a defineble set and b € A.
Then there is a continuous definable map v : [0,1) — R™ such that (0) = b and
7((0,1)) € A. We use it for example in Lemma 2Z27.

e Triangulability as explained in Remark 27T3:

Remark ZTH. Given a finite family S of closed subanalytic subsets of Z, there
exists a subanalytic triangulation « : |K| — Z compatible with S, that is, such
that every subset of S is a union of images of simplices of |K|. See for example
Theorem 4.4. in [Q] or Theorem II.2.1. in [37].

We use it for example in Proposition Z54.

e The subanalytic Hauptvermutung (see Chapter II, Theorem II in [37])), which
states that for any two subanalytic triangulations of a subanalytic space there is
a subanalytic triangulation refining them. It is used for example in Lemma P21

Since all the mentioned statemenets are true for O-minimal structures over the reals
in general, we observe the following;:

Remark A.8. One could define MD homology and MD homotopy in the context of
any O-minimal structure over the reals copying this thesis word by word and replacing
subanalytic (or globally subanalytic) by the definable sets and definable maps of that
O-minimal structure.

Remark A.9. To give an ezample of Remark [A-8: one could take Reyp, which is the
smallest O-minimal structure over the reals generated by the exponential function.
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Summary in English
(formality)

This thesis is called Moderately Discontinuous Algebraic Topology for Metric Subana-
lytic Germs.

Introduction

We have developed both a homology theory and a homotopy theory in the context
of metric subanalytic germs (see Definition E71). The former is called MD homology
and is covered in Chapter B, which contains a paper that is joined work with my PhD
advisors Javier Fernandez de Bobadilla and Maria Pe Pereira and with Edson Sam-
paio. The latter is called MD homotopy and is covered in Chapter B. Both theories
are functors from a category of germs of metric subanalytic spaces (resp. germs of
metric subanalytic spaces that are punctured in a way that will be defined) to a cat-
egory of commutative diagrams of groups. For the concrete definition of the domain
categories see Definition 210 and Definition B4 respectively; for the target categories
see Definition P22 and Definition B52 respectively. Similarly to classical homology
and homotopy theories, the groups appearing in the target category are abelian in the
homology theory for any degree and in the homotopy theory for degree n > 1.

Objectives and results

The main objective was to construct an analytic invariant of real or complex analytic
germs that would also contain information about the bi-Lipschitz geometry of the
germ. We also had the objective to provide computational tools for that invariant. An
optional objective was to concretely compute the invariant for some real or complex
analytic germs.

The realization of those objectives is given by the MD homology and the MD homo-
topy as described above. The MD homology shares several of the properties with the
singular homology: it is invariant by suitable metric homotopies (see Definition 2Z75
and Theorem P78 as well as Definition 2279 and Theorem 2Z80); it allows a relative
and absolute Mayer-Vietoris long exact sequences (see Theorem PZO1) for a suitable
cover of the metric subanalytic germ (see Definition EZ88); and as a consequence we
have a certain theorem of excision (see Corollary 292) and a Cech spectral sequence
(see Theorem PT93).



The MD homotopy shares several of the properties of the ordinary homotopy theory
of punctured topological spaces: it admits a Hurewicz homomorphism from the MD
homotopy to the MD homology (see Proposition B20); in degree one, the Hurewicz
homomorphism is an isomorphism when abelianizing the domain (see Theorem B53);
and when the metric subanalytic germ fulfils a certain condition that softens the one
of path-connectedness (see Definifion BZ3), it is independent from the choice of base
point (see Proposition BZR).

The fact that the MD homology provides those computational tools mentioned above
similarly to the tools in singular homology make it relatively well computable. We have
given examples of computations of both the MD homology and the MD homotopy.
In particular, we have given a concrete formula for the MD homology of complex
plane algebraic curve germs equipped with the outer metric (see Proposition P-IU3).
That formula reveals how the MD homology recovers both, all Puiseux pairs of the
branches of the curve, and the set of all contact numbers between two branches (see
Corollary Z108). In [B8] (see also [29] and [I5]), it is shown that the geometric type of
a complex plane algebraic curve germ equipped with the outer metric coincides with
its embedded topological type. Therefore, the MD homology is a complete invariant
of irreducible complex plane algebraic curve germs equipped with the outer metric.

Conclusions

Both the MD homology and the MD homotopy fulfil the main objective of constructing
an analytic invariant of real or complex analytic germs. Indeed, both theories serve
as a bi-Lipschitz subanalytic invariant. Therefore, in the context of real or complex
analytic germs equipped with the inner or the outer metric, they are analytic invariants.
Both theories also provide several powerful computational tools as mentioned above
and therefore meet the second objective. In the context of the MD homology we have
also attained the optional objective of computing the invariant for an important group
of complex analytic germs: for all complex plane algebraic curve germs.

Both theories seem very promising since they are rich invariants, as can be seen in
the context of complex plane algebraic curve germs, and also well computable thanks
to their various computational tools. Furthermore they provide a new and innovative
approach to studying algebraic germs. Therefore we have the hope that the work done
in this thesis might lay the ground for a new series of research in that direction.
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Resumen en espaiol
(formalidad)

Esta tesis se llama Topologia Algebraica Moderadamente Discontinua para Gérmenes
Meétricos Subanaliticos.

Introduccién

Hemos desarrollado tanto una teoria de homologia como una teoria de homotopia en
el contexto de gérmenes subanaliticos métricos (véase Definition 270). La teoria de
homologia se llama MD homologia. La desarrollamos en el capitulo B, que contiene
un articulo que es trabajo conjunto con mis directores de tesis Javier Fernandez de
Bobadilla y Maria Pe Pereira y con Edson Sampaio. La teoria de homotopia se llama
MD homotopia y la desarrollamos en el capitulo B. Ambas teorias son funtores de una
categoria de gérmenes de espacios métricos subanaliticos (resp. gérmenes de espacios
métricos subanaliticos puntuados de una manera que definamos) a una categoria de
diagramas comutativos de grupos. Para la definiciéon concreta de la categoria del
dominio véase Definition EZ10 y Definition B2 respectivamente; para la definicién de
la categoria de llegada véase Definition 242 y Definition B2 respectivamente. Como
pasa también en el contexto de las teorias de homologia y homotopia clasicas, los
grupos que aparecen en la categoria de llegada son abelianos en la teoria de homologia
de cualquier grado y en la teoria de homotopia para grado n > 1.

Objetivos y resultados

El objetivo principal era construir un invariante analitico de gérmenes reales o comple-
jos que también contuviera informacién sobre la geometria bilipschitz del gérmen. Otro
objetivo era dar herramientas computacionales para este invariante. Como objetivo
opcional tenfamos el célculo concreto del invariante para algunos gérmenes analiticos
reales o complejos.

La realizacion de estos objetivos viene dada por el desarrollo de la MD homologia
y la MD homotopia que hemos descrito arriba. La MD homologia comparte varias
propiedades con la homologia singular: es invariante bajo homotopias métricas ade-
cuadas (véase Definition 273 y Theorem PZ7G y también Definition 279 y Theo-
rem 22X0); permite una sucesion exacta larga de Mayer-Vietoris tanto absoluta como

II1



relativa; y como consecuencia tenemos cierto teorema de excision (véase Corollary 2292)
y una sucesion espectral de Cech (véase Theorem ZT9I3).

La MD homotopia comparte varias propiedades con la homotopia habitual de espa-
cios topolégicos puntuados: admite un homomorfismo de Hurewicz de la MD homo-
topia a la MD homologia (véase Proposition B20); en grado uno, el homomorfismo de
Hurewicz es un isomorfismo después de abelianizar el dominio (véase Theorem B5H); y
cuando el gérmen métrico subanalitico cumple cierta condicién que suaviza el concepto
de conexo por caminos, es independiente del punto base (véase Proposition BZ8).

Las herramientas de la MD homologia descritas arriba parecidas a las herramientas
en homologia singular facilitan mucho el célculo concreto de la MD homologia. Hemos
dado ejemplos tanto de célculos de la MD homologia como de calculos de la MD
homotopia. En particular hemos dado una formula concreta de la MD homologia de
gérmenes de curvas complejas algebraicas planas equipadas con la métrica externa
(véase Proposition P7105). Esta formula demuestra que la MD homologia recupera
tanto todos los pares de Puiseux de todas las ramas de la curva como el conjunto de
todos los nimeros de contacto entre dos ramas (véase Corollary ZZI0R). En [38] (véase
también [29] and [15]), est4 demostrado que el tipo geométrico de gérmenes de curvas
complejas algebraicas planas equipadas con la métrica externa coincide con su tipo
topologico. Por lo tanto la MD homologia es un invariante completo de gérmenes de
curvas complejas algebraicas planas irreducibles equipadas con la métrica externa.

Conclusiones

Tanto la MD homologia como la MD homotopia cumplen el objetivo principal de con-
struir un invariante analitico de gérmenes analiticos reales o complejos. De hecho
ambas teorfas son invariantes bilipschitz subanaliticos. Como consecuencia son invari-
antes analiticos en el contexto de gérmenes reales o complejos analiticos equipados
con la métrica interna o externa. Ambas teorias ademas ofrecen varias herramientas
computacionales potentes y por lo tanto cumplen el segundo objetivo. En el contexto
de la MD homotopia también logramos el objetivo opcional de calcular el invariante
para un grupo importante de gérmenes analiticos complejos: para todos los gérmenes
de curvas complejas algebraicas planas irreducibles equipadas con la métrica externa.

Ambas teorias parecen muy prometedoras ya que son invariantes bastante ricos como
se puede ver en el contexto de gérmenes de curvas complejas algebraicas planas irre-
ducibles equipadas con la métrica externa y porque ademas se dejan calcular relativa-
mente bien gracias a sus herramientas computacionales. Ademas esta aproximacion al
estudio de gérmenes analiticos es totalmente nueva. Por lo tanto tenemos la esperanza
de que el trabajo hecho en esta tesis haya sido el inicio de una seria de investigacién
en esta direccion.
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