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Introduction 1
We have developed both a homology theory and a homotopy theory in the context
of metric subanalytic germs (see Definition 2.1). The former is called MD homology.
It is covered in Chapter 2, which contains a paper that is joined work with my PhD
advisors Javier Fernández de Bobadilla and María Pe Pereira and with Edson Sam-
paio. The latter is called MD homotopy and is covered in Chapter 3. Both theories
are functors from a category of germs of metric subanalytic spaces (resp. germs of
metric subanalytic spaces that are punctured in a way that will be defined) to a cat-
egory of commutative diagrams of groups. For the concrete definition of the domain
categories see Definition 2.10 and Definition 3.47 respectively; for the target categories
see Definition 2.42 and Definition 3.52 respectively. Similarly to classical homology
and homotopy theories, the groups appearing in the target category are abelian in
the homology theory for any degree and in the homotopy theory for degree n > 1.
Both theories serve as a bi-Lipschitz subanalytic invariant. Therefore, in the context
of real or complex analytic germs equipped with the inner or the outer metric, they
are analytic invariants.

The MD homology shares several properties with the singular homology: it is in-
variant by suitable metric homotopies (see Definition 2.75 and Theorem 2.76 as well
as Definition 2.79 and Theorem 2.80); it allows a relative and absolute Mayer-Vietoris
long exact sequences (see Theorem 2.91) for a suitable cover of the metric subana-
lytic germ (see Definition 2.88); and as a consequence we have a certain theorem of
excision (see Corollary 2.92) and a Čech spectral sequence (see Theorem 2.93). The
MD homotopy has several of the properties of the ordinary homotopy theory of punc-
tured topological spaces: it admits a Hurewicz homomorphism from the MD homotopy
to the MD homology (see Proposition 3.40); in degree one, the Hurewicz homomor-
phism is an isomorphism when abelianizing the domain (see Theorem 3.55); and when
the metric subanalytic germ fulfils a certain condition that softens the one of path-
connectedness (see Definifion 3.43), it is independent from the choice of base point (see
Proposition 3.46).

In our theories the role of simplices (resp. loops and homotopies) is taken by 1-
parameter families of simplices (resp. loops and homotopies) with the following prop-
erty that we call linearly vertex approaching (l.v.a., for short). Measuring in the outer
distance, when the family parameter approaches zero, the simplex (resp. loop or ho-
motopy) approaches the vertex of the germ at a rate of order one.

The abbreviation MD stands for moderately discontinuous. The motivation behind
that name in the context of the MD homology is the following. In singular homology
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an n-chain is a cycle, if its boundary can be written as a sum
∑

i aiσi, where ai are
elements of the ring of coefficients and σi are (n−1)-simplices, whose summands cancel
in pairs. In the MD-homology an n-chain is a cycle, if its boundary can be written as a
sum

∑
i aiσi, where ai are elements of the ring of coefficients and σi are l.v.a. families

of (n− 1)-simplices, whose summands can be ordered into pairs as follows. For a pair
of summands aiσi and ai′σi′ , we have ai = ai′ and the two l.v.a. families of simplices
σi and σi′ approach each other faster than at rate tb, where t is the family parameter
and b is a fixed parameter in (0,∞]. A simple cycle in MD homology is illustrated in
Example 2.34. That is how we gain a homology group for any parameter b ∈ (0,∞].

In the context of the MD homotopy, we integrate the concept of moderate discon-
tinuities in l.v.a. families of loops from [0, 1]n into the metric subanalytic germ as
follows. Broadly speaking, we partition [0, 1]n into a finite number of closed sets and
define a l.v.a. family of continuous maps on one of those sets for each set. Then fixing
two sets with non-empty intersection, the associated l.v.a. families of continuous maps
fulfil the following: restricting to the boundary between the two sets yields two l.v.a.
families of continuous functions that approach each other faster than at rate tb, where
t is the family parameter and b ∈ (0,∞]. Again, we gain a homotopy group for every
parameter b ∈ (0,∞].

Until here, for any b ∈ (0,∞] we have constructed functors that take values in the
category of groups. We call them b-MD homology and b-MD homotopy, respectively.
But both our invariants are further enriched by group homomorphisms from the b1-MD
homology/homotopy group to the b2-MD homology/homotopy group for any b1 ≥ b2.
We call those homomorphisms connecting homomorphisms. That is why the target
categories of the MD homology functor and the MD homotopy functor do not only
consist of a family of groups, but also of homomorphisms between those groups; and
that is how the morphisms in the target categories become commutative diagrams of
groups. Furthermore, the functoriality of the b-MD homology and the b-MD homotopy
for a fixed b ∈ (0,∞] can be improved by augmenting the domain category by allowing
uncommon morphisms that are moderately discontinuous in a way similar to the one
described above for l.v.a. families of loops. Those morphisms are called b-maps (see
Definition 2.59).

There are already two different homology theories in the context of Lipschitz geom-
etry (see [42] [2], and [40]). Those two homology theories are of different nature than
the MD homology theory. In those two theories the groups in the underlying chain
complex get restricted. That has as a consequence that for a chain it is harder to be a
boundary, since the boundary is the image under the boundary operator of a smaller
group. Furthermore there are chains that get discarded before taking the homology.
In the MD homology the groups of the chain complex get quotient by a certain equiv-
alence relation that we call b-equivalence relation for any parameter b ∈ (0,∞]. That
has as a consequence that for a chain it is easier to be a cycle, since the kernel of the
boundary operator increases by quotienting the target. Furthermore there are chains
that get identified already in the chain complex before taking the homology.

What we particularly like about the MD homology theory, is that it provides those
computational tools mentioned above similarly to the tools in singular homology that
make it relatively well computable. We have given examples of computations of both
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the MD homology and the MD homotopy. In particular, we have given a concrete
formula for the MD homology of complex plane algebraic curve germs equipped with
the outer metric (see Proposition 2.105). That formula reveals how the MD homology
recovers both, all Puiseux pairs of the branches of the curve, and the set of all contact
numbers between two branches (see Corollary 2.108). In [38] (see also [29] and [15]),
it is shown that the geometric type of a complex plane algebraic curve germ equipped
with the outer metric coincides with its embedded topological type. Therefore, the MD
homology is a complete invariant of irreducible complex plane algebraic curve germs
equipped with the outer metric.

Throughout the thesis, we have chosen to work in the setting of subanalytic germs,
but oberve the following remark that is explained in Appendix A in more detail:

Remark A.8. One could define MD homology and MD homotopy in the context of
any O-minimal structure over the reals copying this thesis word by word and replacing
subanalytic (or globally subanalytic) by the definable sets and definable maps of that
O-minimal structure.

Observe that this work has laid the ground for possible future work in different
directions. For example, it is interesting to explore how strong our invariants are in
obstructing Lipschitz equisingularity (see [26]). Its relation with Zariski equisingularity
is also worth exploring because of the work done in [28] and [31]. In [22], [30] and [39]
subanalytic spaces are decomposed into pieces which are simple from the outer Lips-
chitz viewpoint. It would be interesting to study the relation of such decompositions
for subanalytic germs with our invariants.

1.1. Summary of Chapter 2

In Section 2.1, we define the domain category of the MD homology functor. The
objects are pairs of subanalytic germs (X,Y, x0) equipped with a metric d. We write
(X,Y, x0, d). The morphisms from (X,Y, x0, d) to (X ′, Y ′, x′0, d

′) are subanalytic map
germs of pairs from (X,Y ) to (X ′, Y ′) that are Lipschitz with respect to d and d′ and
that are furthermore l.v.a. as mentioned above:

Definition 2.7. A map germ f : (X,x0) → (Y, y0) is said to be linearly vertex ap-
proaching (l.v.a. for brevity) if there exists K ≥ 1 such that

1

K
||x− x0|| ≤ ||f(x)− y0|| ≤ K||x− x0||

for every x in some representative of (X,x0). The constant K is called the l.v.a con-
stant for f .

Our n-simplices are also defined as continuous subanalytic map germs that are l.v.a
from the germ of

∆̂n := ({(tx, t) ∈ Rn+1 × R : x ∈ ∆n, t ∈ [0, 1)},
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where ∆n denotes the standard n-simplex, into the metric subanalytic germ (X,x0, dX).
But they are not defined to be Lipschitz. We call them l.v.a. n-simplices. Our n-chains
are finite formal sums of n-simplices. We call the abelian groups of n-chains the pre-
chain complex and denote it by MDCpre,∞

• (X,x0, dX). It is associated to the pair
(X, ∅).

In the sequel, we develop two different equivalence relations on the pre-chain complex
(see Subsection 2.2.2 to Subsection 2.2.4): one by homological subdivisions and one
by b-equivalences. The one by homological subdivisions are simply meant to be a
technical tool. They simplify constructions for which in the singular homology theory
barycentric subdivisions would be used. The relevant identification of n-chains is the
one by the b-equivalence relation:

Definition 2.25. Let b ∈ (0,∞). Let σ1, σ2 be n-simplices in MDCpre,∞
• (X,x0, dX).

We say that σ1 and σ2 are b-equivalent (we write σ1 ∼b σ2), if

lim
t→0+

max{d(σ1(tx, t), σ2(tx, t));x ∈ ∆n}
tb

= 0.

We extend the relation to MDCpre,∞
n (X;A) by linearity.

For b =∞ we do not impose any b-equivalence relation. The quotient of the pre-chain
complex by a combination of both equivalence relations leads to one chain complex for
every b ∈ (0,∞] whose homology we call the b-MD homology.

In Subsection 2.2.5 we explain how for a pair (X,Y, x0, dX) of metric germs, the
b-MD homology of Y can be considered a subcomplex of the b-MD homology of X
and define the relative chain complex and its homology accordingly. That immediately
leads to a long exact relative b-MD homology sequence.

Notice that until here everything has been done for a fixed b ∈ (0,∞] and that
the b1-MD chain complex is richer than the b2-MD chain complex for b1 ≥ b2 since
the b1-equivalence relation is more restrictive than the b2-equivalence relation. That
leads to a natural projection from the former to the latter, which induces a homo-
morphism in homology. Those homomorphisms are the connecting homomorphisms
of the MD-homology that carry an important amount of information of the invariant.
Accordingly, in Subsection 2.2.6, the MD homology is defined as a functor from the
category of metric subanalytic germs into a category that can be described as follows
(see Definition 2.42): the objects are families of abelian groups with family parameter
b ∈ (0,∞] together with families of group homomorphisms with pairs (b1, b2) ∈ (0,∞]2,
such that b1 ≥ b2, as family parameters; the morphisms are families of commutative
diagrams of abelian groups and group homomorphisms with the same pairs as param-
eters.

In Subsection 2.3.2 we introduce the notion of a point in our category of metric
subanalytic germs (see Definition 2.50). Concretely, we mark an object in our category
as the object that takes the role of the one-point space in the topological category.
Later we introduce a concept that mimics the notion of points in a fixed topological
space (see Definition 2.57). That notion is in line with our definition of the object that
mimics the one-point set. But be aware: we get a different notion of point for any
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parameter b ∈ (0,∞]. The b-MD homology of the point for any parameter b ∈ (0,∞]
coincides with the singular homology of the one-point space (see Proposition 2.51).

In Subsection 2.3.4 it becomes clear why we have chosen to work with subanalytic
simplices. We introduce the notion of small chains with respect to a finite closed sub-
analytic cover of the germ: they are chains for which the image of each simplex is
contained in one of the elements of the cover. The two equivalence relations on the
chain complex of small chains are defined in the same way as on the chain complex
MDCpre,∞

• (X, ∅, x0, dX). Thanks to the subanalytic Hauptvermutung we get an iso-
morphism from the chain complex of small chains onto our usual chain complex for
any b ∈ (0,∞]. That isomorphism turns out to be an important computational tool.
Observe also that if we did not include the homological subdivision equivalence relation
in our definition of the chain complex, then we would not get that isomorphism. In
that case, one could only hope for a quasi-isomorphism and would expect a far harder
proof.

We show that the functoriality of the b-MD homology can be improved by augment-
ing the class of morphisms in the category of metric subanalytic germs by including
b-maps as described above. By allowing moderate discontinuities, b-maps and sections
for b-maps are easy to find and therefore provide an important computational tool.

In the sequel, we provide the main computational tools in singular homology theory
adapted to the MD homology theory. The invariance by homotopies is given for two
different notions of homotopy, one of them being the following:

Definition 2.75 (Metric homotopy). Let (X,x0, dX) and (Y, y0, dY ) be metric subana-
lytic germs. Let f, g : (X,x0, dX)→ (Y, y0, dY ) be Lipschitz l.v.a. subanalytic maps. A
continuous subanalytic map H : X×I → Y is called a metric homotopy between f and
g, if there is a uniform constant K ≥ 0 such that for any s the mapping Hs := H(−, s)
is Lipschitz l.v.a. subanalytic with Lipschitz l.v.a. constant K and H0 = f and H1 = g.

In Theorem 2.91 we construct a Mayer-Vietoris long exact sequence for the b-MD
homology groups with respect to a cover of the germ, if the cover fulfils a certain
metric condition with respect to b ∈ (0,∞] (see Definition 2.88). To obtain a relative
Mayer-Vietoris long exact sequence, we have to adapt the notion of the chain complex
relative to a subgerm (see Definition 2.85). That is why we only get an adapted version
of the excision theorem (see Corollary 2.92). The Čech spectral sequence comes along
easily (see Theorem 2.93). Still, it provides a powerful tool as can be seen for example
in the proof, in which we show that the ∞-MD homology coincides with the simplicial
homology of the link (see Theorem 2.101).

Finally in Section 2.9, we compute the MD homology of complex plane algebraic
curve germs. We fully describe it via the Eggers-Wall tree of the curve. Thereby we
show that it fully recovers the set of all Puiseux pairs of all branches. The example
of complex plane algebraic curve germs is a striking example of how important the
connecting homomorphisms are since the MD homology groups do not give any infor-
mation about the Puiseux pairs. In fact, for an irreducible complex plane algebraic
curve germ, the MD homology group for any parameter b of degree zero or one coin-
cides with the ring of coefficients and for greater degree is trivial. The MD homology
also recovers the set of all contact numbers between two branches. But it does not
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tell us which branch a Puiseux pair belongs to and which pair of branches a contact
number corresponds to. That becomes clear in Example 2.109.

1.2. Summary of Chapter 3

Analogously to the cone over the standard n-simplex ∆̂n as defined above, we define
the cone over the n-cube In to be the germ of

C(In) := {(yt, t) ∈ In × R : y ∈ In, t ∈ [0, 1)}.

But the moderate discontinuities in MD homotopy are constructed in a different way
than the ones in MD homology. Our loops and homotopies gain the possibility of
being moderately discontinuous by defining them to be weak b-maps. Weak b-maps are
very similar to b-maps dropping the Lipschitz condition. By not having the Lipschitz
condition weak b-maps cannot be composed such as b-maps. But still, they can be
concatenated and therefore serve their purpose of providing moderate discontinuous
loops and homotopies. Both the definition of b-maps and weak b-maps rely on our
notion of points, which we define to be subanalytic l.v.a. arcs:

Definition 3.4. Let q : [0, ϵ) → C(In) be a continuous path germ. We write q(s) =
(α(s), t(s)) ∈ C(In). We call q a point in (C(In), 0), if there is a representative [0, ϵ′)
of the germ [0, ϵ) and a K ≥ 1 such that

1

K
s ≤ τ(s) ≤ Ks

for all s < ϵ′.

Points in any metric subanalytic germ are defined analogously. Two points p1 and
p2 are called b-equivalent in a space with distance d, if we have

lim
t→0

d(p1(t), p2(t))

tb
= 0.

The definition of weak b-maps is the following:

Definition 3.7. Let (X,x0, dX) be a metric subanalytic germ and let (Z, 0) be a sub-
analytic subgerm of C(In). Let b ∈ (0,∞). A weak b-moderately discontinuous sub-
analytic map (weak b-map, for abbreviation) from (Z, 0) to (X,x0, dX) is a finite
collection {(Cj , fj)}j∈J , where {Cj}j∈J is a finite closed subanalytic cover of (Z, 0)
and fj : Cj → X are continuous l.v.a. subanalytic maps for which for any j1, j2 ∈ J
and any point q in Cj1 ∩ Cj2, the points fj1◦q and fj2◦q are b-equivalent.

Two weak b-maps {(Cj , fj)}j∈J and {(C ′
k, f

′
k)}k∈K are called equivalent, if for any

j ∈ J and k ∈ K and any point q contained in the intersection Cj ∩ C ′
k, the points

fj ◦ q and f ′k◦q are b-equivalent in X.

The b-MD homotopy groups are defined analogously to the ordinary homotopy
groups of punctured topological spaces with the following difference: we use weak
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b-maps with their b-equivalence relation instead of continuous maps; and we use our
notion of points with their b-equivalence relation. Points are of relevance for example
in the definition of homotopies relative to a subspace (see Definition 3.14).

Thanks to the definition we have found, the properties mentioned above, that the b-
MD homotopy theory shares with the ordinary homotopy theory, come along easily: the
existence of the Hurewicz homomorphism; the fact that the Hurewicz homomorphism
is an isomorphism in degree one when abelianizing the domain; the independence of the
base point, when the germ is b-path connected (see Definition 3.43); and the fact that
the higher degree b-MD homotopy groups are abelian. Those properties are proven in
Subsection 3.1.3 and Subsection 3.1.4 and in Section 3.2.

Until now we have focused on the b-MD homotopy groups for a fixed b ∈ (0,∞]. But
the MD homotopy also provides the connecting homomorphisms the MD homology
provides. That is, we have a homomorphism from the n-th b1-MD homotopy group
to the n-th b2-MD homotopy group for any b1 ≥ b2. Therefore observe that a weak
b1-map is also a weak b2-map for b1 ≥ b2. Consequently the target category of the
MD homotopy is defined analogously to the one of the MD homology. The difference
is that for degree one any group is allowed as opposed to restricting to abelian groups.
Functoriality is shown in Subsection 3.1.5. The domain category is the category of
punctured metric subanalytic germs. A punctured metric subanalytic germ is a metric
subanalytic germ together with a fixed point defined as above. In the same way as for
the b-MD homology, we improve functoriality for a fixed b ∈ (0,∞] by allowing b-maps
as morphisms.

Among others, in Section 3.3, we show that the ∞-homotopy coincides with the
ordinary homotopy of the link, just as in the case of the MD homology. In Section 3.4 we
conjecture that the MD homotopy detects the existence of fast loops as an obstruction
to metrical conicalness.
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Moderately Discontinuous
Metric Homology 2

The homology theory we have developed in this chapter shares several properties with
the singular homology: it is invariant by suitable metric homotopies (see Definition 2.75
and Theorem 2.76 as well as Definition 2.79 and Theorem 2.80); it allows a relative
and absolute Mayer-Vietoris long exact sequences (see Theorem 2.91) for a suitable
cover of the metric subanalytic germ (see Definition 2.88); and as a consequence we
have a certain theorem of excision (see Corollary 2.92) and a Ĉech spectral sequence
(see Theorem 2.93). In Subsection 2.3.2 we compute the homology we have developed
for the object in its domain category that corresponds to the one-point space in the
topological category.

2.1. Pairs of metric subanalytic germs

As usual in algebraic topology, our invariant will be a functor from a category of
geometric nature to a category of an algebraic nature. We start defining precisely the
geometric category.

Definition 2.1. A subanalytic germ (X,x0) is a germ (X,x0) of a subanalytic set
X ⊂ Rm such that x0 ∈ X (where X denotes the closure of X in Rm). We say that x0
is the vertex of (X,x0).

A metric subanalytic set (X, dX) is a subanalytic set X in some Rm, together with
a subanalytic metric dX that induces the same topology on X as the restriction of the
standard topology on Rm.

A metric subanalytic germ (X,x0, dX) is a subanalytic germ (X,x0) where (X, dX)
is a metric subanalytic set. We omit x0 and dX in the notation when it is clear from
the context.

A metric subanalytic subgerm of a metric subanalytic germ (X,x0, dX) is a metric
subanalytic germ (Y, x0, dY ) with Y ⊆ X and dY equal to the restriction dX |Y of the
metric dX to Y , that is, the restriction to Y × Y of dX : X ×X → R.

A pair of metric subanalytic germs (X,Y, x0, dX) is the metric subanalytic germ
(X,x0, dX) together with the subgerm (Y, x0, dX |Y ).

Given two germs (X,x0) and (Y, y0), a subanalytic map germ f : (X,x0)→ (Y, y0)
is a subanalytic continuous map f : X → Y that admits a continuous and subanalytic
extension to a map germ f : (X ∪ {x0}, x0)→ (Y ∪ {y0}, y0).
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Remark 2.2. Notice that in our definition, for a subanalytic germ (X,x0) it is possible
that x0 /∈ X. These sets play an important role (see for example Definition 2.54 or
2.88 ).

Example 2.3. A subanalytic germ (X,x0) ⊂ (Rm, x0) with the outer metric (the
metric induced by restriction of the euclidean metric in Rm) is a metric subanalytic
germ. We denote the associated metric subanalytic germ by (X,x0, dout).

We denote by (X,x0, din) the metric subanalytic germ with the inner metric (defined
to be the infimum of the lengths of the rectifiable paths between two points). This dis-
tance is not known to be subanalytic. However, according to [23] there is a subanalytic
distance d′ on X such that the identity Id : (X,x0, din) → (X,x0, d

′) is bi-Lipschitz.
This allows us to apply the theory to the germ (X,x0, dinn) in the following way: our
homology can be calculated for (X,x0, d

′). Moreover if d′′ is a different choice of sub-
analytic metric with the same property than d′, then the identity map is a subanalytic
bi-Lipschitz homeomorhism between (X,x0, d

′) and (X,x0, d
′′). Hence the invariant

calculated to each of the two subanaytic metric germs is the same. See Remark 2.11)
for an extension of this idea.

Some basic examples are the following:

Definition 2.4 (Standard b-cones and straight cones). Let L ⊂ Rk be a subanalytic
set and b ∈ Q ∩ (0,+∞). Consider the subanalytic set

CbL = {(tbx, t) ∈ Rk × R; x ∈ L and t ∈ [0,+∞)}.

The outer (respectively inner) standard b-cone over L is the triple (CbL, (0, 0), dout)
(respectively (CbL, (0, 0), din)), where dout denotes the outer metric and din denotes the
inner metric.

When b = 1, we say C1
L is a straight cone over L and we denote it by (C(L), dout) :=

(C1
L, (0, 0), dout) and (C(L), din) := (C1

L, (0, 0), din).
By CbL or C(L) we always mean the germ (CbL, (0, 0)) or (C(L), (0, 0)).

Remark 2.5. We can assume that we are always working with bounded representatives
of germs, and in particular with globally subanalytic sets (see Remark A.6). Recall
that the collection of all globally subanalytic sets forms an O-minimal structure (see
Remark A.6). Therefore, references for O-minimal structures such as [9] can also be
applied to our category.

Remark 2.6. We recall that the link of a subanalytic germ is well defined as a topolog-
ical space as the intersection of X with a small enough sphere centered at x0; we denote
it by Link(X,x0) or simply LX . Moreover, the conical structure theorem says, given
a subanalytic germ (X,x0) and a family of subanalytic subgerms (Z1, 0),...,(Zk, 0) ⊆
(X, 0), that there exists a subanalytic homeomorphism h : C(LX)→ (X,x0) such that
||x0 − h(tx, t)|| = t and such that h(C(LZi)) = Zi with LZi in LX (see Theorem 4.10,
5.22, 5.23 in [9]). We say that the conical structure h is compatible with the family
{Zi}. The conical structure is why we say that x0 is the vertex of (X,x0).
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Let us add that in Proposition 1 of [11], when X is semialgebraic it is proved that
the link is well defined up to semialgebraic homeomorphisms. However, this fact is not
used along this thesis.

Definition 2.7. A map germ f : (X,x0) → (Y, y0) is said to be linearly vertex ap-
proaching (l.v.a. for brevity) if there exists K ≥ 1 such that

1

K
||x− x0|| ≤ ||f(x)− y0|| ≤ K||x− x0||

for every x in some representative of (X,x0). The constant K is called the l.v.a con-
stant for f .

Remark 2.8. Let (X,x0) be a subanalytic germ with compact link. Consider any sub-
analytic map germ f : (X,x0)→ (Y, y0) that is a homeomorphism onto its image. Let
{Zj}j∈J be a finite collection of closed subanalytic subsets of X. There is a subanalytic
homeomorphism germ ϕ : (X,x0) → (X,x0) such that ϕ(Zj) = Zj for all j ∈ J and
such that ||f◦ϕ(x)− y0|| = ||x− x0||, which is stronger than l.v.a.

Proof. Let h : C(LX) → (X,x0) be a subanalytic homemomorphism defining the
conical structure compatible with the Zi (which means that h(C(LZi)) = Zi) and such
that ||h(tx, t)− x0|| = t (see Remark 2.6).

Consider the mapping g : C(LX) → C(LX) that sends (xt, t) 7→ (x · ||f ◦ h(xt, t) −
x0||, ||f ◦ h(xt, t) − x0||). It is clearly subanalytic in the coordinates y = xt and t for
t ̸= 0 and therefore it extends continuously and subanalytically to the closure C(LX).
Note that g is a homeomorphism.

To finish, it is clear that ϕ := h ◦ g−1 ◦ h−1 satisfies the statement.

Remark 2.8 can also be shown adapting the following result of Shiota’s:

Corollary 2 of [36]. Let f1 and f2 be subanalytic functions on X with

f−1
1 (0) = f−1

2 (0), {f1 < 0} = {f2 < 0}, {f1 > 0} = {f2 > 0}.

Then there exists a subanalytic homeomorphism ϕ of X such that

f1◦ϕ = f2

on a neighborhood of f−1
1 (0).

We assume x0 = 0. If the family {Zj}j∈J is empty, we simply apply Corollary 2
of [36] to the functions ||x|| and ||f(x)||. The proof of Corollary 2 [36] only uses the
subanalytic triangulation Theorem (Theorem 1 of [36]) together with Lemmata 10 and
11 in the same paper, which are stated in the presence of the family {Zj}j∈J . Notice
that the subanalytic triangulation Theorem (Theorem 1 of [36]) is valid when the
family {Zj}j∈J is non-empty (this is Theorem II of Chapter II of [37]). So Remark 2.8
is true without the assumption that f is a homeomorphism onto its image.

We have preferred to give a simple proof of the case that is used in this thesis for
the sake of completeness, i.e. including the assumption that f is a homeomorphism
onto its image.
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Definition 2.9. Let (X,x0, d1) and (Y, y0, d2) be two metric subanalytic germs. A Lip-
schitz linearly vertex approaching subanalytic map germ (Lipschitz l.v.a. subanalytic
map for short)

f : (X,x0, dX)→ (Y, y0, dY )

is a l.v.a subanalytic map germ such that there exists K ≥ 1 and a representative X of
the germ such that

dY (f(x), f(x̃)) ≤ KdX(x, x̃) ∀x, x̃ ∈ X.

Any such K which also serves as a l.v.a. constant for f will be called a Lipschitz
l.v.a. constant for f .

A Lipschitz l.v.a. subanalytic map of pairs is a map germ of pairs

f : (X,Y, x0, dX)→ (X ′, Y ′, x′0, dX′)

such that f : (X,x0, dX)→ (X ′, x′0, dX′) is a Lipschitz l.v.a. subanalytic map.

Given a subanalytic subgerm (Y, x0, dX |Y ) ⊂ (X,x0, dX), the inclusion is an example
of a Lipschitz l.v.a. map.

Definition 2.10. The category of pairs of subanalytic metric subanalytic germs has
pairs of metric subanalytic germs as objects and Lipschitz l.v.a. subanalytic maps of
pairs as morphisms.

Remark 2.11. Equivalently, we can work with the bigger category of subanalytic germs
(X,x0, dX) which are endowed with a metric dX that induce the same topology as the
euclidean metric, and such that there exists a subanalytic metric d′ that is bi-Lipschitz
equivalent to dX , which means that the identity (X,x0, dX)→ (X,x0, d

′) is bi-Lipschitz.
Hence we are not asking dX to be a subanalytic metric. Then, a subanalytic germ
(X,x0) with the inner metric belongs to this category, see Example 2.3.

2.2. Definition of the Moderately Discontinuous Metric
Homology

The Moderately Discontinuous Metric Homology (Moderately Discontinuous Homol-
ogy, or MD-Homology, for short) is a functor from the category of pairs of metric
subanalytic germs to an algebraic category whose objects are diagrams of groups. Its
definition needs a series of steps.

2.2.1. The pre-chain group MDCpre,∞
• ((X, x0);A).

Notation 2.12. For any n ∈ N0, we denote by ∆n ⊂ Rn+1 the standard n-simplex

∆n := {(p0, ..., pn) ∈ (R≥0)
n+1 :

n∑
i=0

pi = 1}

oriented as follows: the standard orientation on Rn+1 orients the convex hull of ∆n∪0,
where 0 denotes the origin, which in turn induces an orientation on ∆n. We denote by
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ikn : ∆n−1 → ∆n the map sending p0, ..., pn−1 to p0, ..., pk−1, 0, pk, ..., pn−1. The image
of ikn is the k-th facet of ∆n.

Consider the oriented germ of the cone over ∆n and denote it as

∆̂n := ({(tx, t) ∈ Rn+1 × R : x ∈ ∆n, t ∈ [0, 1)},

and let jkn : ∆̂n−1 → ∆̂n be the map sending (tx, t) 7→ (tikn(x), t). The k-th facet of ∆̂n

is the image of jkn. More generally, a face of ∆̂n is the cone over a face of ∆n.
We will usually use ∆̂n to denote the germ (∆̂n, (0, 0)).

The following definition is coherent with Definition 2.7:

Definition 2.13. A linearly vertex approaching (subanalytic) n-simplex is a continu-
ous subanalytic map germ σ : ∆̂n → (X,x0) such that there is a K ≥ 1 such that

1

K
t ≤ ||σ(xt, t)− x0|| ≤ Kt

for any x ∈ ∆n and any small enough t. We will say simply a l.v.a. simplex.
Similarly, a map ν : ∆̂n → ∆̂n, expressed as ν(xt, y) = (ν1(xt, t)ν2(xt, t), ν2(xt, t))

in the coordinates (xt, t) of ∆̂n, is linearly vertex approaching, if there is a K ≥ 1 such
that 1

K t ≤ ν2(xt, t) ≤ Kt.

Definition 2.14. Given a subanalytic germ (X,x0) and an abelian group A, a linearly
vertex approaching n-chain in (X,x0) (l.v.a. n-chain, for brevity) is a finite formal
sum

∑
i aiσi, where ai ∈ A and σi is a l.v.a subanalytic n-simplex in (X,x0). We

define MDCpre,∞
n ((X,x0);A) to be the abelian group of n-chains. Given a subanalytic

germ (X,x0) and an abelian group A, a linearly vertex approaching n-chain in (X,x0)
(l.v.a. n-chain, for brevity) is a finite formal sum

∑
i aiσi, where ai ∈ A and σi is

a l.v.a subanalytic n-simplex in (X,x0). We define MDCpre,∞
n ((X,x0);A) to be the

abelian group of n-chains.
We define the boundary of σ to be the formal sum

∂σ =

n∑
k=0

(−1)kσ◦jkn.

The boundary extends linearly to n-chains and defines a complex MDCpre,∞
• ((X,x0);A)

whose components are the groups MDCpre,∞
n ((X,x0);A) for n ≥ 0.

Often, when it is clear from the context we will skip the coefficients group A and/or
the vertex in the notation.

2.2.2. The homological subdivision equivalence relation in
MDCpre,∞

• ((X, x0);A)

As in Singular Homology Theory, in order to prove Excision and Mayer-Vietoris we
will need to subdivide simplices. In Singular Homology, the standard procedure is to
devide a simplex into a chain of smaller simplices by taking barycentric subdivisions.
The existence of a Lebesgue number in that context guarantees that iterating that

13



procedure enough times yields a chain for which all of its simplices are contained in
one of the open sets of the cover. In our theory, the role of open subgerms are taken by
subgerms whose representatives are open and whose closure contains the vertex, but
that do not contain the vertex themselves. Observe that those are the complements
of subgerms whose representatives are closed and contain the vertex. Therefore an
open cover of germs does not cover the image of a l.v.a. simplex. As a result we
do not get a Lebesgue number. That is why we do not adapt the procedure used in
Singular Homology, but build a chain complex that incorporates the subdivisions from
the beginning.

Observe also that by incorporating subdivisions from the beginning and therefore
not depending on the Lebesgue number we achieve that Mayer-Vietoris, and therefore
also the Excision Theorem and the Čech Theorem, can be shown directly for closed
covers. In fact, that is what we do in Section 2.6. In Subsection 2.6.5 we then show
that the proofs for closed covers can be adapted to open covers.

Given a finite simplicial complex K we denote by |K| the geometric realization of
K. We call the subsets of |K|, that correspond to a simplex in K, the faces of |K|.
Let Z be a subanalytic set. A subanalytic triangulation is a finite simplicial complex
K of closed simplices and a subanalytic homeomorphism α : |K| → Z.

Remark 2.15. Given a finite family S of closed subanalytic subsets of Z, there exists
a subanalytic triangulation α : |K| → Z compatible with S, that is, such that every
subset of S is a union of images of simplices of |K|. See for example Theorem 4.4. in
[9] or Theorem II.2.1. in [37].

By a subanalytic triangulation of a subanalytic germ (X,x0) we mean a subanalytic
triangulation of a representative of it, which is compatible with the vertex.

Given two subanalytic triangulations α : |K| → Z and α′ : |K ′| → Z, we say that
α′ refines α if the image by α of any simplex of |K| is the union of images by α′ of
simplices of |K ′|.

Given a subanalytic triangulation α : |K| → Z, a simplex of |K| is called maximal if
it is not strictly contained in another simplex. We consider the collection T := {Ti}i∈I
of subsets of Z that are images of the maximal simplices of |K|. We call it the collection
of maximal triangles.

Given two simplicial complexes K and K ′, a continuous mapping f : |K| → |K ′|
preserves the simplicial structure if it takes faces to faces.

In the next definition we will need a representative of the germ ∆̂n. By abuse of
notation we denote it also by ∆̂n, and consider the representative

{(tx, t) ∈ Rn+1 × R : x ∈ ∆n, t ∈ [0, 1/2]}.

Definition 2.16. A homological subdivision of ∆̂n is a finite family {ρi}i∈I of in-
jective l.v.a. subanalytic map germs ρi : ∆̂n → ∆̂n for which there is a subanalytic
triangulation α : |K| → ∆̂n with the following properties:

• the triangulation α is compatible with the collection of all faces of ∆̂n;

• all maximal triangles of α meet the vertex of ∆̂n;
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• the collection {Ti} of maximal triangles of α is also indexed by I;

• for any i ∈ I, the image of ρi is Ti and α−1|Ti◦ρi is a homeomorphism that takes
faces of ∆̂n to faces of |K|.

For a homological subdivision {ρi}i∈I , the sign of ρi for any i ∈ I is defined to be 1,
if ρi is orientation preserving, and −1, if it is orientation reversing. We denote it by
sgn(ρi).

Note that this implies that, whenever the sum
∑

i∈I sgn(ρi)ρi is a cycle in the sin-
gular homology Hn+1(∆̂n, ∂∆̂n ∪ ∆̂≥ϵ

n ;Z) for ϵ = min{ϵi} where ∆̂≥ϵ
n denotes the set

{(tx, t) ∈ Rn+1 × R : x ∈, t ∈ [ϵ, 1)}, then
∑

i∈I sgn(ρi)ρi represents the fundamen-
tal class. However, in general

∑
i∈I sgn(ρi)ρi does not have to represent a cycle in

Hn+1(∆̂n, ∂∆̂n ∪ ∆̂≥ϵ
n ;Z).

Definition 2.17 (Immediate equivalences). Two chains∑
j∈J

ajσj ,
∑
k∈K

bkτk ∈MDCpre,∞
n (X;A)

are called immediately equivalent (and we denote it by
∑

j∈J ajσj →∞
∑

k∈K bkτk), if
for any j ∈ J there are homological subdivisions {ρji}i∈Ij such that we have the equality∑

j∈J

∑
i∈Ij

sgn(ρji)ajσj◦ρji =
∑
k∈K

bkτk

in MDCpre,∞
n (X;A).

Remark 2.18. The immediate equivalences can be defined as well by imposing σ →∞∑
i∈I sgn(ρi)σ◦ρi for any l.v.a n-simplex σ and any subdivision {ρi}i∈I , and extending

the immediate equivalences by linearity.

Remark 2.19. Any l.v.a. subanalytic homeomorphism µ : (∆̂n, 0) → (∆̂n, 0) which
preserves the simplicial structure is a homological subdivision of ∆̂n for which the index
set I has just one element. As a consequence, for any n-simplex σ, we have σ →∞ σ◦µ,
if µ is orientation preserving, and σ →∞ −σ◦µ, if µ is orientation reversing.

Definition 2.20 (The homological subdivision equivalence relation). The subdivision
equivalence relation in MDCpre,∞

n (X;A) (denoted by ∼S,∞) is the equivalence relation
generated by immediate equivalences. That is z ∼S,∞ z′ if there exists a sequence
w1, ..., wk such that z = w1, z′ = wk and for any 1 ≤ i < k we have either the
immediate equivalence wi →∞ wi+1 or wi+1 →∞ wi.

Lemma 2.21. Given any three chains w1, w2, w3 ∈MDCpre,∞
n (X;A), and immediate

equivalences w3 →∞ w1 and w3 →∞ w2 there exists an element w4 ∈MDCpre,∞
n (X;A)

and two immediate equivalences w1 →∞ w4 and w2 →∞ w4.

Proof. Since the immediate equivalences are compatible with linear combinations (see
Remark 2.18) we may assume that w3 is equal to an n-simplex σ. Then there exist
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two subdivisions {ρi}i∈I and {ρ′i′}i′∈I′ of ∆̂n such that we have the equalities

w1 =
∑
i∈I

sgn(ρi)σ◦ρi, w2 =
∑
i′∈I′

sgn(ρ′i′)σ◦ρ′i′ . (2.1)

Let α : |K| → ∆̂n and α′ : |K ′| → ∆̂n be the subanalytic triangulations asso-
ciated with the homological subdivisions {ρi}i∈I and {ρ′i′}i′∈I′ . By the subanalytic
Hauptvermutung (Chapter II, Theorem II in [37])) there is a subanalytic triangulation
β : |L| → ∆̂n refining α and α′. Let {Tj}j∈J be the collection of maximal trian-
gles of the triangulation β. Let {νj}j∈J be a collection of orientation preserving l.v.a.
subanalytic homeomorphisms νj : ∆̂n → Tj preserving the simplical structure.

Consider the splitting J =
⨿
i∈I Ji, where j ∈ Ji if and only if Tj is included in the

image of ρi.
Then the collection {ρ−1

i ◦νj}j∈Ji is a homological subdivision of ∆̂n and we have the
immediate equivalence

σ◦ρi →∞
∑
j∈Ji

σ◦ρi◦ρ−1
i ◦νj =

∑
j∈Ji

σ◦νj . (2.2)

The splitting J =
⨿
i′∈I′ J

′
i′ is defined considering the analogous interaction between

the triangulations α′ and β. By the same kind of arguments we have the immediate
equivalence

σ◦ρ′i →∞
∑
j∈J ′

i

σ◦νj . (2.3)

Defining w4 :=
∑

j∈J σ◦νj and using Equations (2.1), (2.2) and (2.3) we complete
the proof.

Corollary 2.22. We have the equivalence w ∼S,∞ z if there exist sequences of imme-
diate equivalences z = z0 →∞ z1 →∞ ...→∞ zl and w = w0 →∞ w1 →∞ ...→∞ wm =
zl.

Proof. The sequence z = x1, ..., xk = w predicted in Definition 2.20 is monotonous at
the i-th position if we have either xi−1 →∞ xi →∞ xi+1 or xi+1 →∞ xi →∞ xi−1.
The sequence x1, ..., xk has a roof at the i-th position if we have xi →∞ xi−1 and
xi →∞ xi+1. The sequence x1, ..., xk has a valley at the i-th position if we have
xi−1 →∞ xi and xi+1 →∞ xi. Repeated applications of the previous lemma allow to
replace every roof by a valley.

2.2.3. ∞-Moderately discontinuous homology

Lemma 2.23. The homological subdivision equivalence relation is compatible with
the boundary operator ∂ in MDCpre,∞

n (X;A) in the following sense: given a sim-
plex σ ∈ MDCpre,∞

n (X;A) and {ρi}i∈I a homological subdivision of ∆̂n, then ∂σ and∑
i∈I ∂(sgn(ρi)σ◦ρi) are ∼S,∞-equivalent.

Proof. A homological subdivision {ρi}i∈I of ∆̂n induces a homological subdivision
{ρki }i∈Ik of the k-th facet of ∆̂n. So ∂(

∑
i∈I sgn(ρi)σ ◦ ρi) splits as the sum, with
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appropriate signs, of the facets of σ (expressed after the corresponding homological
subdivision) and the sum of the interior facets of all σ ◦ ρi which cancels in pairs.

Definition 2.24 (∞-MD Homology). We define the∞-moderately discontinuous chain
complex of (X,x0, dX) with coefficients in A (∞-MD complex for short) to be the quo-
tient of MDCpre,∞

• ((X,x0, dX);A) by the homological subdivision equivalence relation.
We denote it by MDC∞

• ((X,x0, dX);A). Its homology is called the ∞-moderately dis-
continuous homology with coefficients in A and is denoted by MDH∞

• ((X,x0, dX);A).

Note that this homology does not depend on a metric. As we will see in Section 2.8,
the ∞-moderately discontinuous homology coincides with the homology of the link of
the germ (X,x0).

2.2.4. b-Moderately discontinuous homology

Given a metric subanalytic germ (X,x0, dX), for each b ∈ (0,+∞), we define the
following equivalence relation in the set of l.v.a. subanalytic n-simplices:

Definition 2.25. Let b ∈ (0,∞). Let σ1, σ2 be n-simplices in MDCpre,∞
• (X,x0, dX).

We say that σ1 and σ2 are b-equivalent (we write σ1 ∼b σ2) if

lim
t→0+

max{dX(σ1(tx, t), σ2(tx, t));x ∈ ∆n}
tb

= 0.

We extend the relation to MDCpre,∞
n (X;A) by linearity.

Remark 2.26. The quotient of the free group MDCpre,∞
• ((X,x0, dX);A) by the ∼b-

equivalence relation is the free group generated by the ∼b-equivalence classes of simplices
with coefficients in A. As a consequence we have the following: let w =

∑
j∈J bjτj and

w′ =
∑

j∈J ′ b′jτ
′
j be chains in MDCpre,∞

• ((X,x0, dX);A). Split the index sets J =⨿
k∈K Jk and J ′ =

⨿
k∈K J

′
k in the unique way that satisfies the following properties:

• any two j1, j2 ∈ J belong to the same Jk if and only if we have τj1 ∼b τj2,

• any two j′1, j
′
2 ∈ J belong to the same J ′

k if and only if we have τ ′j′1 ∼b τ
′
j′2

,

• for any k ∈ K and j ∈ Jk and j′ ∈ J ′
k we have τj ∼b τ ′j′.

Then w ∼b w′ if and only if for any k ∈ K we have the equality∑
j∈Jk

bj =
∑
j′∈J ′

k

bj′ . (2.4)

The following arc interpretation of the b-equivalence relation will be useful later.

Lemma 2.27. Let σ1, σ2 be n-simplices in MDCpre,∞
• (X,x0, dX). Then we have that

the following statements are equivalent:

(i) σ1 ∼b σ2;
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(ii) for any subanalytic continuous arc γ : [0, ϵ) → ∆̂n such that γ(0) is equal to the
vertex and γ(t) is different to the vertex for t ̸= 0 we have the equality

lim
t→0+

d(σ1(γ(t)), σ2(γ(t)))

γ2(t)b
= 0, (2.5)

where γ(t) = (γ2(t)γ1(t), γ2(t)) is the expression of the arc in the coordinates
(tx, t) of ∆̂n;

(iii) for any subanalytic l.v.a. continuous arc γ : [0, ϵ)→ ∆̂n we have the equality

lim
t→0+

d(σ1(γ(t)), σ2(γ(t)))

tb
= 0. (2.6)

Proof. If we have the equivalence σ1 ∼b σ2 it is obvious that the limit vanishes for any
arc as in the statement of (ii). Let γ(t) = (γ2(t)γ1(t), γ2(t)) be any subanalytic l.v.a
continuous arc. Then the limit lim

t→0+

γ2(t)
t is finite, and therefore condition (ii) implies

condition (iii).
So, to finish the proof, we only need to prove that (iii) ⇒ (i). Assume that the

condition on arcs in (iii) is satisfied. The function

t 7→ max{d(σ1(tx, t), σ2(tx, t));x ∈ ∆n}

is subanalytic. Therefore it admits an expansion of the form

max{d(σ1(tx, t), σ2(tx, t));x ∈ ∆n} = Ctb
′
+ o(tb

′
)

for a certain b′ ∈ Q and C > 0. Then the subset

Z := {(tx, t) ∈ ∆̂n : d(σ1(tx, t), σ2(tx, t)) ≥ (C/2)tb
′}

is subanalytic and contains sequences converging to the vertex of ∆̂n. Therefore,
by the subanalytic Curve Selection Lemma there exists a subanalytic continuous arc
γ : [0, ϵ)→ Z such that γ(0) is equal to x0 and γ(t) is different to the vertex for t ̸= 0.
By Remark 2.8 we can assume that ||γ(t) − x0|| = t. Thus, we have the following
inequality

lim
t→0+

d(σ1(γ(t)), σ2(γ(t)))

tb′
≥ C/2.

The equivalence σ1 ∼b σ2 holds if and only if we have the strict inequality b′ > b. The
previous inequality implies that if b′ ≤ b then the arc γ contradicts the arc condition
in the statement of (iii).

Lemma 2.28. Let σ, σ′ be simplices in MDCpre,∞
n (X;A) such that σ ∼b σ′. If {ρi}i∈I

is a homological subdivision of ∆̂n, then we have∑
i∈I

sgn(ρi)σ◦ρi ∼b
∑
i∈I

sgn(ρi)σ
′◦ρi.
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Proof. Let γ be any subanalytic l.v.a continuous arc in ∆̂n. Since ρi is l.v.a then ρi◦γ
is also a subanalytic l.v.a continuous arc. Since we have the equivalence σ ∼b σ′,
Lemma 2.27 implies the vanishing of the limit

lim
t→0+

d(σ(ρi(γ(t))), σ
′(ρi(γ(t))))

tb
= 0.

Again by Lemma 2.27 this implies the equivalence σ◦ρi ∼b σ′◦ρi.

In order to define the complex of b-moderately discontinuous chains we introduce
the b-subdivision equivalence relation.

Definition 2.29 (The b-subdivision equivalence relation). Two chains∑
j∈J

ajσj ,
∑
k∈K

bkτk ∈MDCpre,∞
n (X;A)

are called b-immediately equivalent (and we denote it by
∑

j∈J ajσj →b
∑

k∈K bkτk),
if for any j ∈ J there is a homological subdivision {ρi}i∈Ij such that we have the
b-equivalence ∑

j∈J

∑
i∈Ij

sgn(ρi)ajσj◦ρi ∼b
∑
k∈K

bkτk

in MDCpre,∞
n (X;A).

The b-subdivision equivalence relation in MDCpre,∞
n (X;A) is the equivalence rela-

tion generated by the b-immediate equivalences, and is denoted by ∼S,b. The equivalence
classes are called b-moderately discontinuous chains or b-chains.

We denote by MDCbn(X;A) the quotient group of MDCpre,∞
n (X;A) by the ∼S,b-

equivalence relation. It is the group of b-moderately discontinuous chains.

Proposition 2.30. w ∼S,b z if and only if there exist sequences of b-immediate equiv-
alences w = w0 →b w1 →b ...→b wl and z = z0 →b z1 →b ...→b zm = wl.

Proof. The proof is an adaptation of the proofs of Lemma 2.21 and Corollary 2.22,
taking into account Lemma 2.28.

Remark 2.31. Often we will need to define homomorphisms

h :MDCb•((X,x0, dX);A)→ G,

where G is an abelian group. The usual procedure is to define first a homomorphism
h̄ : MDCpre,∞

• ((X,x0, dX);A)→ G, and check that it descends to a well defined h. It
is convenient to record that h̄ descends if and only if the following two conditions hold:

• For any σ, z ∈MDCpre,∞
• ((X,x0, dX);A), where σ is a simplex and z is a chain

such that we have the immediate equivalence σ →∞ z, we have the equality h(σ) =
h(z).
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• For any two simplices σ, σ′ ∈ MDCpre,∞
• ((X,x0, dX);A) such that we have the

equivalence σ ∼b σ′, we have the equality h(σ) = h(σ′).

Lemma 2.32. The boundary operator ∂ in MDCpre,∞
• (X;A) descends to a well defined

boundary operator in MDCb•(X;A).

Proof. We have to check the conditions of Remark 2.31. The first condition is exactly
Lemma 2.23. The second condition is similar to the proof of Lemma 2.28.

Definition 2.33 (b-Moderately discontinuous homology). We define the b-moderately
discontinuous chain complex of (X,x0, dX) with coefficients in A (the b-MD com-
plex for short) to be the complex MDCb•((X,x0, dX);A) with the boundary operator
defined in the previous lemma. Its homology is called the b-moderately discontinu-
ous homology with coefficients in A (b-MD homology, for short) and is denoted by
MDHb

•((X,x0, dX);A).

For b1 ≥ b2 the chain complex MDCb1• ((X,x0, dX);A) is richer than the chain com-
plex MDCb2• ((X,x0, dX);A). But for the b-MD homology the situation is more com-
plex:

Example 2.34. We take the straight cone over the circle and for every level (xt1, t1),
where t1 ∈ (0, ϵ) is fixed, we remove an open segment of length tb1 from the circle as
illustrated in Figure 2.1. We denote the result by X and we equip X with the outer
metric dX . We denote the boundary arcs of X by x1(t) and x2(t) respectively and
parametrize both such that ∥xk(t)∥ = t. For b′ < b, the l.v.a. simplex σ : ∆̂1 → X
defined as follows is a cycle in the chain group MDCb

′
1 ((X, 0, dX);A). Let St denote the

sphere in R3 of radius t. For a fixed t ∈ (0, ϵ], we define σ(t(−), t) : ∆1 → X∩St to be a
continuous subanalytic function for which σ(t(0, 1), t) = x1(t) and σ(t(1, 0), t) = x2(t)
and such that σ is continuous.

x1(t) x2(t)

Figure 2.1.: The subanalytic metric germ X.

The following consequence of Proposition 2.30 will be used repeatedly:

Lemma 2.35. Given an element z ∈ MDCpre,∞
• ((X,x0, dX);A), the class [z] in

MDCb•((X,x0, dX);A) vanishes if and only if there exists a sequence of immediate
equivalences z = z0 →∞ z1 →∞ ... →∞ zr such that zr ∼b 0. Notice that, by Re-
mark 2.26, the chain zr =

∑
i∈I aiσi is as follows: consider the subdivision of the index
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set I =
⨿
j∈J Ij so that i, i′ belong to the same Ij if and only if σi ∼b σi′. Then for

any j ∈ J we have the equality ∑
i∈Ij

ai = 0. (2.7)

Proof. If there exists a sequence z = z0 →∞ z1 →∞ ...→∞ zr ∼b 0, then the class [z] ∈
MDCb•((X,x0, dX);A) vanishes obviously. Let us prove the converse. Suppose that z ∈
MDCpre,∞

• ((X,x0, dX);A) is such that its class [z] vanishes in MDCb•((X,x0, dX);A).
By Proposition 2.30 there exists a sequence of b-immediate equivalences

z = z0 →b z1 →b ...→b zr = 0, (2.8)

We proceed by induction over r. If r = 1, there is nothing to show.
For the induction step we prove the following: if z′1, z1 and z2 are chains in the

complex MDCpre,∞
• ((X,x0, dX);A) such that z′1 ∼b z1 and z1 →∞ z2, then there is a

z′2 ∈MDCpre,∞
• ((X,x0, dX);A) such that z′1 →∞ z′2 and z′2 ∼b z2. To show that, write

z1 =
∑

i∈I aiσi and let {ρi,l}l∈Li
be homological subdivisions for which

z2 =
∑
i∈I

∑
l∈Li

aisgn(ρi,l)σi◦ρi,l.

Let z′1 =
∑

j∈J a
′
jσ

′
j . Let I =

⨿
k∈K Vk and J =

⨿
k∈K V

′
k be the splitting in accordance

with Remark 2.26 applied to z1 and z′1. For any j ∈ J , choose a fixed kj ∈ V ′
k. Then

it is
z′1 =

∑
k∈K

∑
j∈V ′

k

a′j◦σ′jk + z̃1 =
∑
k∈K

∑
i∈Vk

ai◦σ′jk + z̃1

where z̃1 ∼b 0. Set

z′2 :=
∑
k∈K

∑
i∈Vk

∑
l∈Li

sgn(ρi,l)ai◦σ′jk◦ρi,l + z̃1.

By Lemma 2.28, it is z′2 ∼b z2.
Now suppose r > 1. By what we have just shown and the induction hypothesis,

sequence (2.8) can be transformed into

z = z0 →∞ z′0 →∞ z′1 →∞ ...→∞ z′r ∼b zr ∼b 0.

Remark 2.36. For the outer metric, in a joint paper with Javer Fernández de Bobadilla,
María Pe Pereira and Edson Sampaio (preprint), we proved that the MD Homology
for b = 1 coincides with the singular homology of the tangent cone.

Moreover, considering X equipped with the inner metric, it would be interesting to
study the relation of our invariants for b = 1 with the topology of the Gromov tangent
cone of [1]. The obstruction of the Gromov Tangent Cone analyzed in Section 3 of [1]
resembles our equivalence relation for points at b = 1, since it involves identifying sub-
analytic arcs that approach each other at speed larger than 1. We thank A. Parusinski
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for pointing out a possible relation with that article.

2.2.5. Relative b-Moderately Discontinuous Homology

In our setting relative homology exists in two different levels of generality. Let us start
with the less general one, which is analogue to the classical Singular Homology Theory
(See Subsection 2.6.1 for the other one, which is essential for the formulation of the
relative Mayer-Vietoris Theorem in our theory).

Consider b ∈ (0,+∞]. Given a subanalytic subgerm (Y, x0, dX|Y ) ↪→ (X,x0, dX), we
denote by K• the minimal subcomplex of MDCb•(X,x0, dX) which contains the classes
[σ], where σ is a l.v.a. simplex in Y . An easy application of Lemma 2.35 shows that
the obvious epimorphism of complexes MDCb•(Y, x0, dX|Y ) → K• is an isomorphism.
Therefore we have an inclusion of complexes

MDCb•(Y, x0, dX|Y ) ↪→MDCb•(X,x0, dX). (2.9)

Definition 2.37. Consider b ∈ (0,+∞]. Given a subanalytic subgerm (Y, x0, dX|Y ) ↪→
(X,x0, dX), we define the complex of relative b-moderately discontinuous chains with
coefficients in A, denoted by MDCb•((X,Y, x0, dX);A) as the following quotient:

MDCb•((X,x0, dX);A)

/
MDCb•((Y, x0, dX |Y );A),

which makes sense by inclusion (2.9).
The b-moderately discontinuous homologyMDHb

∗((X,Y, x0, dX);A) with coefficients
in A is the homology of the complex MDCb•((X,Y, x0, dX);A).

We abbreviate calling these complexes and graded abelian groups the b-MD complex
and b-MD homology of the pair (X,Y, x0, dX). When it is clear from the context we
will denote it simply by MDC∞

• (X,Y ;A) and similarly for homology.

Notation 2.38. Denote by Kom(Ab)− the category of complexes of abelian groups
bounded from the right. Denote by D(Ab)− the bounded above derived category of
abelian groups. It is the localization at quasi-isomorphisms of the category whose objects
are complexes bounded from the right and whose morphisms are homotopy classes of
morphisms of complexes. Since we will deal with homology we will index the complexes
as ... → Ck → Ck−1 → .... There is a functor denoted by H∗ from Kom(Ab)− to the
category GrAb of graded abelian groups, which consists in taking the homology of a
complex.

At this point we check functoriality for the first time:

Proposition 2.39. For every b ∈ (0,+∞], the assignments

(X,Y, x0, dX) 7→MDCb•((X,Y, x0, dX);A) and

(X,Y, x0, dX) 7→MDHb
•((X,Y, x0, dX);A)

are functors from the category of pairs of metric subanalytic germs to Kom(Ab)− resp.
GrAb.
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Proof. A Lipschitz l.v.a. subanalytic map f : (X,x0, dX) → (X ′, x′0, dX′) induces
morphisms MDCpre,∞• (X,x0.dx) → MDCb•(X

′, x′0, dX′) for every b ∈ (0,+∞], by
taking σ 7→ f ◦ σ for every l.v.a. simplex σ and extending by linearity. One can
check that it descends to a well defined morphism from MDCb•((X,x0, dX);A) to
MDCb•((X

′, x′0, dX′);A) because it satisfies the two conditions of Remark 2.31, which
are straightforward.

If f takes a subanalytic subgerm Y into a subanalytic subgerm Y ′, then the ho-
momorphism defined above transforms the subcomplex MDCb•((Y, x0, dX |Y );A) into
MDCb•((Y

′, x′0, dX′ |Y ′);A), and hence descends to the relative homology groups.

Notation 2.40. Given a Lipschitz l.v.a. subanalytic map

f : (X,Y, x0, dX)→ (X ′, Y ′, x′0, dX′)

we denote by f∗ the induced map at the level of b-MD chains for every b ∈ (0,+∞].

2.2.6. The final definition of Moderately Discontinuous Homology

In this section we introduce the complete definition of Moderately Discontinuous Chain
Complexes/Homology as a functor from the category of pairs of metric subanalytic
germs, to a category of diagrams of complexes/groups.

The starting observation is the following: for b1 ≥ b2 with bi ∈ (0,+∞] there are
natural epimorphisms (see Section 2.3.3 for the associated long exact sequence):

hb1,b2 :MDCb1• ((X,Y, x0, dX);A)→MDCb2• ((X,Y, x0, dX);A) (2.10)

which induces a map in homology:

hb1,b2∗ :MDHb1
• ((X,Y, x0, dX);A)→MDHb2

• ((X,Y, x0, dX);A). (2.11)

Notation 2.41. We define the category B, where the set of objects is (0,∞] and there
is a unique morphism from b to b′ if and only if b ≥ b′.

Definition 2.42 (Categories of B-complexes and B-graded abelian groups). The cat-
egory B−Kom(Ab)− of B-complexes is the category whose objects are functors from
B to Kom(Ab)− and the morphisms are natural transformations of functors. The cat-
egory B − D(Ab)− is the category whose objects are functors from B to D(Ab)− and
the morphisms are natural transformations of functors. The category B − GrAb of
B-graded abelian groups is the category whose objects are functors from B to the cate-
gory GrAb and the morphisms are natural transformations of functors. Concatenation
of objects in B−Kom(Ab)− with the homology functor H∗ yields a functor B−H∗ :
B−Kom(Ab)− → B−GrAb which factorizes through B−D : B−D(Ab)− → B−GrAb.

Proposition 2.43. The assignments (X,Y, x0, dX) 7→ MDC⋆• ((X,Y, x0, dX);A) and
(X,Y, x0, dX) 7→ MDH⋆

∗ ((X,Y, x0, dX);A) are functors from the category of pairs of
metric subanalytic germs to B−Kom(Ab)− and B−GrAb respectively.
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Proof. One only needs to check that the functoriality for Lipschitz l.v.a subanalytic
maps for each b ∈ B commutes with the epimorphisms (2.10), (2.11) which is clear.

It is interesting to record that in the case of complex (resp. real) analytic germs our
homology theory gives complex (resp. real) analytic invariants.

Corollary 2.44. Given a complex (resp. real) analytic germ (X,x0), the B-moderately
discontinuous homology MDHb

•(X,x0, dout) and MDHb
•(X,x0, dinn) for the outer and

inner metrics are complex (resp. real) analytic invariants.

Proof. A real or complex analytic diffeomorphism is well known to be bi-Lipschitz both
for the inner and outer metric and it is clearly l.v.a.

2.2.7. Bi-Lipschitz invariance of b-MD homology with respect to the inner
distance

We check that a subanalytic homeomorphism between two germs (X,x0) and (Y, y0)
that is bi-Lipschitz for the inner metric is l.v.a.. Then we conclude that the MD
Homology for dinn is a bi-Lispchitz invariant.

Proposition 2.45. Let (X,x0) and (Y, y0) be two germs of subanalytic sets. Let dX,inn
(resp. dY,inn) be the inner distance of X (resp. Y ). Then we have the following:

(a) dX,inn (resp. dY,inn) induces the same topology on X (resp. Y ) as the topology
induced by the standard topology on Rm;

(b) If there exists an inner bi-Lipschitz homeomorphism h : (X,x0) → (Y, y0) then
there exists K > 0 satisfying the inequalities

1

K
∥x− x0∥ ≤ ∥h(x)− y0∥ ≤ K∥x− x0∥.

In order to prove Proposition 2.45, we recall the following result.

Proposition 2.46 (Proposition 3 in [23]). Let X ⊂ Rm be a subanalytic set and ε > 0.
Then there exists a finite decomposition X =

∪k
j=1 Γj such that:

1. each Γj is a subanalytic connected analytic submanifold of Rm,

2. each Γj satisfies dΓν ,inn
(p, q) ≤ (1 + ε)∥p− q∥ for any p, q ∈ Γj.

Proof of Proposition 2.45. Let us consider X =
∪k
j=1 Γj as in Proposition 2.46 and

ε = 1. Thus, if x ∈ X, there exists a j such that x ∈ Γj and, moreover, we get

1

2
∥x− x0∥ ≤ dX,inn(x, x0) ≤ dΓj ,inn(x, x0) ≤ 2∥x− x0∥. (2.12)

Since ∥x − y∥ ≤ dX,inn(x, y) for any x, y ∈ X, to prove item (a) it is enough to prove
that for any x ∈ X and any ball Binn,η(x) with respect to the inner distance, we
can find a ball Bδ(x) with respect to the outer distance such that Bδ(x) ⊂ Binn,η(x).
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But to do this, we just apply Proposition 2.46 to (X,x) and ε = 1, and we get that
Bη/2(x) ⊂ Binn,η(x).

Obviously we have the same result for Y and, in particular, we have

1

2
∥y − y0∥ ≤ dY,inn(y, y0) ≤ 2∥y − y0∥. (2.13)

In order to get item (b), we just need to apply the Lipschitz properties of h and Eq.
(2.12) in Eq. (2.13).

Thus, by considering Remark 2.11, the following is immediate.

Corollary 2.47. Let (X,x0) and (Y, y0) be two subanalytic germs. If there exists
a subanalytic bi-Lipschitz homeomorphism h : (X,x0, dX,inn) → (Y, y0, dY,inn), then
(X,x0, dX,inn) and (Y, y0, dY,inn) have the same MD homology. In particular, h in-
duces isomorphisms

hn : MDHb
n(X,x0, dX,inn)→MDHb

n(Y, y0, dY,inn)

for all b ∈ (0,+∞] and n ∈ N.

2.3. Basic properties of MD-Homology

In this section we prove properties of MD-Homology in analogy with usual homology
theories (relative exact sequence, its value at a “point” and sufficiency of chains which
are small with respect to a cover). The analogues of homotopy invariance, Mayer-
Vietoris and Excision are more subtle and are treated later in the thesis. We introduce
also a long exact sequence measuring the relation of the b-MD homologies for different
b.

2.3.1. The relative MD-Homology sequence

The relative homology sequence comes quite easily from the definition.

Proposition 2.48. Let (X,x0, dX) be a metric subanalytic germ. Let Z ⊂ Y ⊂ X be
subanalytic subgerms. For any b ∈ B there is a long exact sequence

...→MDHb
n(Y, Z;A)→MDHb

n(X,Z;A)→MDHb
n(X,Y ;A)

→MDHb
n−1(Y, Z;A)→MDHb

n−1(X,Z;A)→MDHb
n−1(X,Y ;A)→ ...

(2.14)

This exact sequence is functorial in Z ⊂ Y ⊂ X and in b ∈ B.

Proof. The proof is obvious from the definitions.

Similarly we obtain the spectral sequence of a filtration of pairs of metric subanalytic
germs:
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Proposition 2.49. Let Z0 ⊂ Z1 ⊂ ... ⊂ Zr = X be a filtration by closed subanalytic
subgerms of (X,x0). Let Y be another closed subanalytic subgerm of (X,x0, dX). For
each b, the induced filtration in MDCb•(X,Y ;A) yields a spectral sequence abutting to
MDHb

p+q(X,Y ;A) with E1 page equal to

E[b]1p,q =MDHb
p+q(Zp ∪ Y, Zp−1 ∪ Y ;A).

The spectral sequence is functorial in b ∈ B.

2.3.2. The Moderately Discontinuous Homology of a “point”

Like in any homology theory the point plays a special role. In the next definition we
clarify the notion of point in our category.

Definition 2.50. A point in the category of metric subanalytic germs is a metric
subanalytic germ isomorphic to ([0, ϵ), 0, d), where d is the Euclidean metric.

Proposition 2.51. For any b ∈ [1,∞) the complex MDCb•((0, ϵ);A) is quasi-isomorphic
to the complex A[0], i.e. MDHb

0((0, ϵ);A) = A and MDHb
n((0, ϵ);A) = 0 for all n > 0.

Proof. We show that the augmented chain complex of Cb•([0, ϵ);A) by A in degree −1
has trivial homology by constructing a chain homotopy H from the identity to the
0-map: denote by σ0 the identity map on [0, ϵ). On degree −1, we define H(a) =
aσ0. For n ∈ N0, given σ : ∆̂n → [0, ϵ) in MDCpre,∞

n ((0, ϵ);A) define H(σ) ∈
MDCpre,∞

n+1 ((0, ϵ);A) to be the suspension of σ by σ0 given by the formula

H(σ)(ts0, ..., tsn+1, t) := (−1)n+1(Sσ(
ts0
S
, ...,

tsn
S
, t) + sn+1(σ0(t)))

where (s0, ..., sn+1) are barycentric coordinates in ∆n+1 and S := s0+ ...+sn. If S = 0,
define H(σ)(ts0, ..., tsn+1, t) := (−1)n+1σ0(t). Observe that for an n-simplex σ with
n ≥ 1 it is H(σ ◦ jkn) = −H(σ) ◦ jkn+1 for k ≤ n and H(σ) ◦ jn+1

n+1 = (−1)n+1σ. This
defines the chain homotopy in the augmentation of MDCpre,∞

• ((0, ϵ);A).
In order to finish the proof, we use Remark 2.31 in order to show that the chain ho-

motopy descends to a chain homotopy defined in the augmentation of MDCb•((0, ϵ);A).
Let {ρi}i∈I be a homological subdivision of ∆̂n associated with a triangulation α :

|K| → ∆̂n. Notice that ∆n+1 is the cone over ∆n, with vertex p = (0, ..., 0, 1); this
allows us to see ∆̂n+1 as the cone over ∆̂n. Let C(K) be the cone over the simplicial
complexK and let β : |C(K)| → ∆̂n+1 be the triangulation obtained by taking the cone
over the triangulation α. Define ρ′i : ∆̂n+1 → ∆̂n+1 to be the cone over the mapping
ρi. Then the collection {ρ′i}i∈I is a homological subdivision of ∆̂n+1 associated with
the triangulation β, such that for any i ∈ I we have the equality

H(σ◦ρi) = H(σ)◦ρ′i.

This shows that the homotopy descends to MDC∞
• ((0, ϵ);A).

In order to prove that it descends to MDCb•((0, ϵ);A) it only remains to show that it
preserves the b-equivalence relation. Let σ1 and σ2 be b-equivalent l.v.a. n-simplices.
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Then H(σ1) and H(σ2) are b-equivalent, since we have the inequality

|(Sσ1(
ts0
S
, ...,

tsn
S
, t)− (Sσ2(

ts0
S
, ...,

tsn
S
, t)|

≤Smax{|σ1(u0t, . . . unt, t)− σ2(u0t, . . . unt, t)| : (u0, . . . , un) ∈ ∆n}

for every (s0, . . . , sn) ∈ ∆n and S ≤ 1.

2.3.3. Relative homology with respect to b ∈ [0,+∞)

In our theory we have also a notion of relative homology with respect to b ∈ [0,+∞).

Definition 2.52. Let (X,Y ) be a pair of metric subanalytic germs, A an abelian
group and b1 ≥ b2 ∈ Obj(B). We define the chain complex MDCb1,b2• (X,Y ;A) to be
the kernel of the epimorphism

hb1,b2 :MDCb1• (X,Y ;A)→MDCb2• (X,Y ;A)

The n-th (b1, b2)-moderately discontinuous homology is defined to be the homology of
MDCb1,b2• (X,Y ;A).

Proposition 2.53. The following long exact sequence is an immediate consequence of
the last definition:

...→MDHb1,b2
n (X,Y ;A)→MDHb1

n (X,Y ;A)→MDHb2
n (X,Y ;A)→

→MDHb1,b2
n−1 (X,Y ;A)→MDHb1

n−1(X,Y ;A)→MDHb2
n−1(X,Y ;A)→ ...

(2.15)

Its association to (X,Y ) is functorial.

2.3.4. MD-chains which are small with respect to a subanalytic cover

We will need to use chains which are small with respect to covers as in the classical
development of singular homology (see for example [17], Ch 15) as a technical tool.

Definition 2.54. Let (X,x0) be a subanalytic germ. A finite closed subanalytic cover
of X is a finite collection of closed subanalytic subsets C := {Ci}i∈I of X such that
X =

∪
i∈I Ci.

Let (X,x0, dX) be a metric subanalytic germ. Given a finite closed subanalytic cover
C, a chain

∑
j∈J ajσj ∈ MDCpre,∞

• (X,x0;A) is called small with respect to C, if for
any j the image of σj is contained in one of the subsets of the cover. We denote by
MDCpre,∞,C

• (X,x0;A) the subcomplex of MDCpre,∞
• (X,x0;A) formed by the chains

which are small with respect to the cover.
We define the complexes MDC∞,C

• (X,x0;A) and MDCb,C• (X,x0, dX ;A) by restrict-
ing the equivalence relations ∼S,∞ and ∼S,b to MDCpre,∞,C

• (X,x0;A).
Given a subanalytic subgerm Y ⊂ X we define the complexes MDC∞,C

• (X,Y ;A) and
MDCb,C• (X,Y, dX ;A) as the quotients of MDC∞,C

• (X,x0;A) and MDCb,C• (X,x0, dX ;A)

by MDC∞,C
• (Y, x0;A) and MDCb,C• (Y, x0, dX |Y ;A) respectively (as in Definition 2.37,

we may assume that the complexes we quotient by are subcomplexes).
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Proposition 2.55. Let C be a finite closed subanalytic cover of X. The natural mor-
phism of complexes

g :MDCb,C• (X,Y ;A)→MDCb•(X,Y ;A)

is an isomorphism.

Proof. By the 5-Lemma it is enough to prove the proposition for absolute homology,
that is to prove the isomorphism MDCb,C• (X;A)→MDCb•(X;A) for any metric sub-
analytic germ (X,x0, dX).

The surjectivity is proved as follows: let σ : ∆̂n → (X,x0) be an n-simplex. We
consider the collection D of closed subanalytic subsets of ∆̂n given by the preimages by
σ of the subsets of C together with the collection of all the faces of ∆̂n. Let α : |K| → ∆̂n

be a triangulation of a representative of ∆̂n compatible with D (see Remark 2.15). Let
{Ti}i∈I be the collection of maximal triangles of α. By restricting the representative of
∆̂n we may assume that each maximal triangle Ti contains the vertex. For each i ∈ I
choose a subanalytic orientation preserving, homeomorphism ρi : ∆̂n → Ti sending the
vertex to the vertex, and which preserves the simplicial structure. By Remark 2.8 we
may assume ρi to be l.v.a. Then the collection {ρi}i∈I is a homological subdivision
of ∆̂n, and we have the equivalence σ ∼S,b

∑
i∈I sgn(ρi)σ◦ρi. Since the chain on the

right hand side is small with respect to C surjectivity is proven.
Injectivity is an immediate consequence of Lemma 2.35.

Proposition 2.55 allows us to improve Remark 2.31 in the following manner:

Remark 2.56. In order to define a homomorphism

MDCb•((X,x0, dX);A)→ G,

where G is an abelian group, we will often proceed as follows: We take a finite closed
subanalytic cover C of X, define a homomorphism h̄ : MDCpre,∞,C

• ((Ci, x0, dX);A)→
G, check that the two conditions of Remark 2.31 hold and compose with g−1 on the
right, where g is the isomorphism of Proposition 2.55.

2.4. Moderately discontinuous functoriality

In this section we improve functoriality properties of the b-MD homology for a fixed
b by allowing a certain class of non-continuous maps. This makes our theory quite
flexible. The discontinuities that we allow are moderated in a Lipschitz sense. This
may be seen as a motivation for the name of our homology.

2.4.1. Definition and functoriality of b-maps

Definition 2.57. Let (X,x0, dX) be a metric subanalytic germ. In line with Defi-
nition 2.50, we define a point in X to be a continuous l.v.a. subanalytic map germ
p : [0, ϵ) → X. For any subanalytic Y ⊆ X, we say that p is contained in Y, if
Im(p) ⊆ Y . Observe that a point in X is the same as a l.v.a. 0-simplex of X.
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Two points p and q are called b-equivalent, for b ∈ (0,+∞), and we write p ∼b q, if

lim
t→0

dX(p(t), q(t))

tb
= 0.

We can restate the equivalence of (i) and (iii) of Lemma 2.27 as follows:.

Remark 2.58. Let σ1, σ2 be n-simplices in MDCpre,∞
• (X,x0, dX). It follows from

Lemma 2.27 that we have the equivalence σ1 ∼b σ2 if and only if for any point p in
∆̂n, σ1 ◦ p and σ2 ◦ p are b-equivalent.

Definition 2.59. Let (X,x0, dX) and (Y, y0, dY ) be metric subanalytic germs, b ∈
(0,∞). A b-moderately discontinuous subanalytic map (b-map, for abbreviation) from
(X,x0, dX) to (Y, y0, dY ) is a finite collection {(Ci, fi)}i∈I , where {Ci}i∈I is a finite
closed subanalytic cover of X and fi : Ci → Y is a Lipschitz l.v.a. subanalytic map
satisfying the following: for any b-equivalent pair of points p and q contained in Ci and
Cj respectively, the points fi ◦ p and fj ◦ q are b-equivalent in Y .

Two b-maps {(Ci, fi)}i∈I and {(C ′
i, f

′
i)}i∈I′ are called b-equivalent if for any b-

equivalent pair of points p, q with Im(p) ⊆ Ci and Im(q) ⊆ C ′
i′, the points fi ◦ p

and f ′i′ ◦ q are b-equivalent in Y .
We make an abuse of language and we also say that a b-map from (X,x0, dX) to

(Y, y0, dY ) is an equivalence class as above.
For b = ∞, a b-map from X to Y is a Lipschitz l.v.a. subanalytic map from X to

Y .

Proposition 2.60 (Definition of composition of b-maps). Let {(Ci, fi)}i∈I be a b-map
from X to Y and let {(Dj , gj)}j∈J be a b-map from Y to Z. Then the composition of
the two b-maps is well defined by {(f−1

i (Dj) ∩ Ci, gj ◦ fi|f−1
i (Dj)∩Ci

)}(i,j)∈I×J .

Proof. Any pair of b-equivalent points p and q that are contained in f−1
i1

(Dj1) ∩ Ci1
resp. f−1

i2
(Dj2) ∩ Ci2 are sent by fi1 resp. fi2 to b-equivalent points in Y contained in

Dj1 resp. Dj2 . Those are sent by gj1 resp. gj2 to b-equivalent points in Z.
Let {(Ĉi, f̂i)}i∈Î and {(D̂j , ĝj)}j∈Ĵ be b-equivalent to {(Ci, fi)}i∈I and {(Dj , gj)}j∈J

respectively. Let p and q be b-equivalent points contained in f−1
i (Dj)∩Ci and f̂−1

î
(D̂ĵ)∩

Ĉî respectively. By the exact same reasoning p and q are sent to b-equivalent points in
Z by gj ◦ fi and ĝĵ ◦ f̂î respectively.

Corollary 2.61. The category of metric subanalytic germs with b-maps is well defined.

Definition 2.62. A b-map between pairs of metric subanalytic germs (X,Y, x0, dX)
and (X̃, Ỹ , x̃0, dX̃) is a b-map from X to X̃ admitting a representative {(Ci, fi)}i∈I for
which the image of Ci ∩ Y under fi is contained in Ỹ for any i.

Let ϕ := {(Ci, fi)}i∈I be a b-map between two pairs (X,Y, x0, dX) and (X̃, Ỹ , x̃0, dX̃).
We are going to define a homomorphism

ϕb• :MDCb•((X,x0, dX);A)→MDCb•((X̃, x̃0, dX̃);A)
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depending on {(Ci, fi)}i∈I that clearly descends to a homomorphism on the relative
chain complexes. Following Remark 2.56, to define ϕb•, we define a homomorphism

ϕpre,bC :MDCpre,∞,C
• ((X,x0, dX);A)→MDCb•((X̃, x̃0, dX̃);A)

where C is a finite closed subanalytic refinement of {Ci}i as follows: the image of any
σ ∈ MDCpre,∞,C

• ((X,x0, dX);A) is contained in some Ci. We define the image of σ
under ϕpre,bC to be fi ◦ σ and extend this definition linearly.

There are five things to be checked to guarantee that ϕpre,bC and ϕb• are well-defined:

1. If the image of σ is also contained in a different Cj , fj ◦ σ is b-subdivision equiv-
alent to fi ◦ σ;

2. ϕpre,bC is compatible with the b-equivalence relation;

3. ϕpre,bC is compatible with ∞-immediately equivalences;

4. If C and C̃ are different refinements of {Ci}i, ϕpre,bC and ϕpre,bC̃ define the same ϕ;

5. If {(C̃i, f̃i)}i∈Ĩ is b-equivalent to {(Ci, fi)}i∈I , consider a refinement C that refines
both {Ci}i∈I and {C̃i}i∈Ĩ . The image of any σ ∈MDCpre,∞,C

• ((X,Y, x0, dX);A)

is contained both in some Ci and in some C̃j . The two simplices fi ◦σ and f̃j ◦σ
are b-subdivision equivalent.

For (1), we are going to show that fi ◦ σ and fj ◦ σ are b-equivalent, where σ is an
n-simplex whose image is contained both in Ci and Cj . Let p be a point in ∆̂n. By
definition of b-map, fi ◦ σ ◦ p and fj ◦ σ ◦ p are b-equivalent. So the statement follows
from Remark 2.58. For (5), we can use the exact same argument to show that fi ◦ σ
and f̃j ◦ σ are b-equivalent. Statement (3) is obvious. For (2), let σ and σ′ be l.v.a.
simplices that are b-equivalent whose images are contained in Ci1 resp. Ci2 . We have
to show that fi1◦σ and fi2◦σ′ are b-equivalent. Suppose they were not. Then there
would be a point p in ∆̂n for which fi1 ◦ σ ◦ p and fi2 ◦ σ′ ◦ p are not b-equivalent. So
σ ◦ p and σ′ ◦ p would not be b-equivalent. To show (4), take a common refinement D
of C and C̃. Then, D defines the same ϕb• as C and the same as C̃.

Then, we have proved the following:

Proposition 2.63 (Functoriality for b-maps). For a fixed b ∈ (0,∞], there are well
defined functors

(X,Y, x0, dX) 7→MDCb∗((X,Y, x0, dX);A)

(X,Y, x0, dX) 7→MDHb
∗((X,Y, x0, dX);A)

from the category of pairs of metric subanalytic germs with b-maps to Kom(Ab)− and
GrAb respectively.

Corollary 2.64. The b-moderately discontinuous homology is invariant by isomor-
phisms in the category of b-maps.
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2.4.2. A sufficient geometric condition

Notation 2.65. Let (X,x0, dX) be a metric subanalytic germ. Denote by LX,ϵ the link
{x ∈ X : ||x− x0|| = ϵ}.

Definition 2.66. Let (X,x0, dX) be a metric subanalytic germ and Y ⊂ X a subana-
lytic subgerm. Let b ∈ (0,∞). The b-horn neighborhood of amplitude η of Y in X is
the subset

Hb,η(Y ;X) :=
∪
y∈Y

B(y, η∥y − x0∥b),

where B(y, η∥y − x0∥b) := {x ∈ X : dX(x, y) < η∥y − x0∥b} denotes the ball in X
centered in y of radius ηdX(y, x0)b. The ∞-horn neighborhood Hb,η(Y ;X) is defined
to be Y .

The importance of b-horn neighbourhoods in our theory is due to the following:

Remark 2.67. Any l.v.a. simplex that is b-equivalent to a l.v.a. simplex whose image
is contained in Y is contained in any b-horn neighborhood Y in X.

We have the following geometric condition that is sufficient for a collection {(Ci, fi)}i∈I
to define a b-map:

Lemma 2.68. Let (X,x0, dX) and (Y, y0, dY ) be metric subanalytic germs, b ∈ (0,∞).
Let {(Ci, fi)}i∈I be a finite collection, where {Ci}i∈I is a finite closed subanalytic cover
of X, the maps fi : Ci → Y are Lipschitz l.v.a. subanalytic and admit an extension
f i : Hb,η(Ci;X) → Y that are Lipschitz (non-necessarily subanalytic) l.v.a. maps for
some η ∈ R>0, and the following condition is satisfied for any pair of indices i, j ∈ I:

lim
ϵ→0

sup{dY (f i(x), f j(x));x ∈ LX,ϵ ∩Hb,η(Ci;X) ∩Hb,η(Cj ;X)}
ϵb

= 0 (2.16)

Then, {(Ci, fi)}i∈I is a b-map.

Proof. We suppose x0 = 0. Let p and q be two b-equivalent points contained in Ci and
Cj respectively. We have to show that fi◦p and fj◦q are b-equivalent.

Since p and q are b-equivalent, the image of q is contained in Hb,η(Ci;X). By the
triangle inequality we have

dX(fi ◦ p(t), fj ◦ q(t))
tb

≤ dX(f i ◦ p(t), f i ◦ q(t))
tb

+
dX(f i ◦ q(t), f j ◦ q(t))

tb
.

Since f i is Lipschitz and p and q are b-equivalent, the first summand of the right
hand side converges to 0 as t approaches 0. The second summand converges to 0 by
the equation (2.16).
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Lemma 2.69. Let {(Ci, fi)}i∈I and {(C ′
i, f

′
i)}i∈I′ be two collections fulfilling the con-

ditions of Lemma 2.68. If for any i ∈ I and i′ ∈ I ′, it is

lim
ϵ→0

sup{dY (f̄i(x), f̄ ′i′(x));x ∈ LX,ϵ ∩Hb,η(Ci;X) ∩Hb,η(C ′
i′ ;X)}

ϵb
= 0, (2.17)

the two b-maps defined by them are b-equivalent.

Proof. The proof is analogous to the one of Lemma 2.68.

2.4.3. Applications using b-maps

Definition 2.70. A section of a b-map φ : X → Y (b-section for short) is a b-map
ψ : Y → X such that φ◦ψ = IdY in the category of b-maps.

Remark 2.71. Notice that admitting sections in the category of b-maps is much less
restrictive than in the category of continuous subanalytic maps, since b-maps are only
piecewise continuous, and piecewise univalued.

Theorem 2.72. Let φ : X → Y be a Lipschitz l.v.a. subanalytic map between two
metric subanalytic germs so that there exists a finite closed subanalytic cover {Yi}i∈I
of Y so that

φ|φ−1(Yi) : φ
−1(Yi)→ Yi

admits a b-section {(Yi,j , ψi,j)}j∈Ji for any i ∈ I. Suppose that for any two points p
and q in X for which φ ◦ p and φ ◦ q are b-equivalent in Y , p and q are b-equivalent in
X. Then, φ induces an isomorphism

φ∗ : MDCb•(X;A)→MDCb•(Y ;A).

Consequently φ∗ induces an isomorphism in b-MD homology.

Proof. The b-sections glue to a global b-section (Yi,j , ψi,j)i∈I,j∈Ji : let p1 and p2 be b-
equivalent points in Yi1,j1 and Yi2,j2 respectively. Then, φ ◦ ψil,jl ◦ pl is b-equivalent to
pl for l = 1, 2 and therefore φ ◦ψil,jl ◦ p1 and φ ◦ψil,jl ◦ p2 are b-equivalent. Therefore,
by hypothesis so are ψil,jl ◦ p1 and ψil,jl ◦ p1.

To show that the global b-section is in fact the inverse of (X,φ), we have to show that
{(φ−1(Yi,j), ψi,j ◦ φ)}i∈I,j∈Ji is b-equivalent to (X, idX). Let p and q be b-equivalent
points in φ−1(Yi,j) and X respectively. Then φ ◦ ψi,j ◦ φ ◦ p is b-equivalent to φ ◦ p,
which is b-equivalent to φ ◦ q as φ is Lipschitz. Therefore, ψi,j ◦φ ◦ p is b-equivalent to
q.

Corollary 2.73. Let φ : (X,x0, dX)→ (Y, y0, dY ) be a Lipschitz l.v.a. subanalytic map
between two metric subanalytic germs so that there exists a finite closed subanalytic
cover {Yi}ß∈I of Y and open sets Ui containing Yi for every i ∈ I such that there is a
b-horn neighborhood Hb,η(Yi;Y ) contained in Ui, and

φ|φ−1(Ui) : φ
−1(Ui)→ Ui
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admits a section ψi in the category of Lipschitz l.v.a. subanalytic maps for any i ∈ I.
Suppose that

lim
t→0+

sup{diam(φ−1(y)) : y ∈ LY,t}
tb

= 0,

Then, φ fulfils the hypothesis of Theorem 2.72 and therefore induces an isomorphism
in Kom(Ab)− and GrAb.

Proof. Let p1 and p2 be points in X for which φ ◦ p1 and φ ◦ p2 are b-equivalent and
contained in Yi and Yj respectively. By Remark 2.67, φ◦p2 is contained in Hb,η(Yi;Y ).
As ψi is Lipschitz, ψi ◦ φ ◦ p1 and ψi ◦ φ ◦ p2 are b-equivalent. Further, if Kl is a l.v.a.
constant for φ ◦ pl, l ∈ {1, 2}, we have

dX(pl(t), ψi ◦ φ ◦ pl(t))
tb

≤ Kb
l

sup{diam(φ−1(y)) : y ∈ LY,∥φ◦pl(t)∥}
∥φ ◦ pl(t)∥b

and therefore pl and ψi ◦ φ ◦ pl are b-equivalent. Using the triangle inequality, we get
that p1 and p2 are b-equivalent.

The following corollary is an example of how b-maps and Theorem 2.72 can be used
concretely.

Corollary 2.74. Let X be a metric subanalytic germ such that

lim
t→0+

diam(LX,t)

tb
= 0

Then X has the b-MD homology of a point in the category of metric subanalytic germs
(recall Definition 2.50).

Proof. Map X to [0, 1) by outer distance to the vertex of X and use the previous
corollary. Considering the trivial cover of X by the single open subset X, the required
section is the parametrization of an arc in X by its distance to the origin.

2.5. Metric homotopy and b-homotopy invariance

Now we prove the invariance of MD-Homology by different kinds of metric homotopies.
Here the theory differs if we consider actual (Lipschitz l.v.a. subanalytic) maps or b-
maps. For actual maps the notion of metric homotopy is simply a family of Lipschitz
l.v.a subanalytic maps with uniform Lipschitz and l.v.a. constant. For b-maps the
definition is slightly more elaborated.

In this section I denotes the unit interval [0, 1].

2.5.1. Metric homotopy

Definition 2.75 (Metric homotopy). Let (X,x0, dX) and (Y, y0, dY ) be metric subana-
lytic germs. Let f, g : (X,x0, dX)→ (Y, y0, dY ) be Lipschitz l.v.a. subanalytic maps. A
continuous subanalytic map H : X×I → Y is called a metric homotopy between f and
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g, if there is a uniform constant K ≥ 0 such that for any s the mapping Hs := H(−, s)
is Lipschitz l.v.a. subanalytic with Lipschitz l.v.a. constant K and H0 = f and H1 = g.

Theorem 2.76. Let (X,x0, dX) and (Y, y0, dY ) be metric subanalytic germs. Let A be
an abelian group.

1. Let f, g : (X,x0) → (Y, y0) be l.v.a. subanalytic maps such that there exists a
continuous subanalytic mapping H : X × I → Y with H0 = f and H1 = g such
that there exists a uniform constant K > 0 such that for every s, the mapping Hs

is l.v.a. for the constant K. Then we have that both f∞, g∞ :MDC∞
• (X;A)→

MDC∞
• (Y ;A) are the same in D(Ab)−.

2. Let f, g : (X,x0, dX) → (Y, y0, dY ) be Lipschitz l.v.a. subanalytic maps that are
metrically homotopic. Then

f•, g• :MDC⋆• (X;A)→MDC⋆• (Y ;A)

represent the same map in the category B − D(Ab)−. As a consequence they
induce the same homomorphism in MD homology.

Proof. Let us prove Assertion (2). The proof of Assertion (1) is completely similar,
disregarding metric considerations.

A common proof for the analogue statement in singular homology uses the inclusions
x→ (x, 0) and x→ (x, 1) from X to X × I and constructs a chain homotopy between
the maps they induce on the singular chain complex; functoriality then yields the
desired result. To prove Assertion (2), we imitate the idea behind that chain homotopy,
but as X × I is not an object of the category of metric subanalytic germs, we directly
construct a chain homotopy ηb from f b• to gb•. Such a chain homotopy will be clearly
compatible with the homomorphisms connecting the complexes for different b’s.

Let H be a metric homotopy from f to g. In order to construct the chain homotopy
ηb• : MDCb•(X;A) → MDCb•+1(Y ;A), by Remark 2.31, it is enough to construct a
homomorphism h• : MDCpre,∞• (X;A)→MDCb•+1(Y ;A) fulfilling the two conditions
of the remark.

Define
∆̂n × I := {(t(x, s), t) : (x, s) ∈ ∆n × I, t ∈ [0, 1)} ⊂ Rn+2.

The parameter s is the “homotopy parameter”, and the parameter t measures the
proximity to the vertex, as usually along this thesis. We have the notion of l.v.a.
maps from ∆̂n × I to a metric germ (X,x0, dX), in an analogous way with the case
of maps from ∆̂n. Moreover Definition 2.16 extends in an obvious way to a notion of
homological subdivision of ∆̂n × I.

Let σ : ∆̂n → X be a l.v.a. simplex. Define ĥn(σ) : ∆̂n × I → Y to be the continuous
subanalytic extension of the map given by (t(x, s), t) 7→ H(σ(tx, t), s) for t ̸= 0. The
map ĥn(σ) is subanalytic and l.v.a..

Let αj : |K| → ∆̂n × I be triangulations of ∆̂n × I for j = 1, 2, and let {ρj,i}i∈Ij
be an orientation preserving homological subdivisions of ∆̂n × I associated with each
of the triangulations. For j = 1, 2 the sum zj :=

∑
i∈Ij ĥn(σ)◦ρj,i is an element of
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MDCpre,∞
• (Y,A). By choosing a common refinement of the subanalytic triangulations

α1 and α2 and arguing like in the proof of Lemma 2.21, we show that there exists
an element z3 ∈ MDCpre,∞,

• (Y,A) and immediate equivalences z1 →∞ z3 and z2 →∞
z3. This shows that the assignment hn(σ) := zj in MDCb•(Y,A) gives, extending by
linearity, a well defined homomorphism

hn :MDCpre,∞n (X;A)→MDCbn+1(Y ;A).

Now we check that the conditions of Remark 2.31 are satisfied.
If we have two b-equivalent simplices σ ∼b σ′, in order to prove the equivalence

hn(σ) ∼b hn(σ′), using the arc characterization of Lemma 2.27, it is enough to prove
that for any subanalytic l.v.a continuous arc γ : [0, ϵ) → ∆̂n, with coordinates γ(t) =
(γ2(t)γ1(t), γ2(t)), and for any subanalytic function ρ : [0, ϵ)→ I, we have the vanishing
of the limit

lim
t→0+

d(H(σ(γ(t)), ρ(s)), σ′(γ(t)), ρ(s)))

tb
= 0.

Since the numerator is bounded by Kd(σ(γ(t), σ′(γ(t)), and we have σ ∼b σ′ and γ is
l.v.a. the limit vanishes as needed.

Let σ be a n-simplex, and {ρi}i∈I be a homological subdivision of ∆̂n associated
with a subanalytic triangulation α : |K| → ∆̂n. The triangulation α induces a de-
composition of ∆̂n × I that can be refined to a subanalytic triangulation β of ∆̂n × I.
Let {µk}k∈K be a homological subdivision associated to β. Then we have that hn(σ),
previously defined, coincides with

∑
k sgn(µk)ĥn(σ)◦µk.

Thus, we have constructed for every n a well defined map

ηbn :MDCbn(X;A)→MDCbn+1(Y ;A).

In order to prove that it is a chain homotopy we have to check the equation ∂ηbn +
ηbn−1∂ = gb•− f b• . For this we only need a cancelling of interior boundaries very similar
to the proof of Lemma 2.23.

2.5.2. b-Homotopies.

For the definition of b-homotopies we need a notion of product of a metric subanalytic
germ (X, 0, dX) with the interval I, which lives in the category of metric subanalytic
germs. Moreover we need the hypothesis dX,out ≤ dX which in particular holds for the
inner and the outer metrics.

Definition 2.77. Let (X, 0, dX) be a metric subanalytic germ. For x ∈ X we denote
by ||x|| the usual euclidean norm of x, which may differ from dX(x, 0). By X ×p I, we
denote the following metric subanalytic germ (X̃, ṽ, d̃):

X̃ := {(x, ∥x∥s) : x ∈ X, s ∈ I} ⊂ X × R
ṽ := (0, 0)

d̃((x1, ||x1||s1), (x2, ||x2||s2)) := sup{dX(x1, x2), dX,▽((x1, ||x1||s1), (x2, ||x2||s2))}
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where dX,▽ is defined as follows: let T denote the straight cone over the unit interval:

T := {(d, ds) ∈ R2 : d ∈ [0, 1], s ∈ [0, 1]}

Let d▽ denote the maximum metric on T . We define

dX,▽((x1, ∥x1∥s1), (x2, ∥x2∥s2)) := d▽((∥x1∥, ∥x1∥s1), (∥x2∥, ∥x2∥s2))

For a visualization of dX,▽, see Figure 2.2.

{(∥x∥, ∥x∥s1) : x ∈ X}

0
s1

1s

∥x∥

0

1

(∥x2∥, ∥x2∥s2)

(∥x1∥, ∥x1∥s1)∥x1∥

∥x2∥

s2

dX,▽((x1, ∥x1∥s1), (x2, ∥x2∥s2)) = max{l1, l2}

{(∥x∥, ∥x∥s2) : x ∈ X}

T

l1

l2

Figure 2.2.: The metric dX,▽.

Lemma 2.78. Let dX be a metric on a subanalytic germ (X,x0) such that dX,out ≤ dX .
The following inequality holds

dX,▽((x1, ∥x1∥s), (x2, ∥x2∥s)) ≤M
√
2dX(x1, x2) (2.18)

for any x1, x2 ∈ X, s ∈ I, where M is the bi-Lipschitz constant between the maximum
and the Euclidean norm on T .

Moreover,
d̃((x1, ∥x1∥s), (x2, ∥x2∥s)) ≤M

√
2dX(x1, x2). (2.19)

Proof. We have the following easy chain of inequalities:

dX,▽((x1, ∥x1∥s), (x2, ∥x2∥s)) ≤M
√

1 + s2|∥x1∥ − ∥x2∥| ≤

≤M
√

1 + s2∥x1 − x2∥ ≤M
√

1 + s2dX(x1, x2).

Notice that s ≤ 1. To prove (2.19) we just use the previous inequality and the definition
to get that d̃ ≤ dX ·maxM

√
1 + s2, 1.

Definition 2.79 (b-homotopy). Let (X,x0, dX) and (Y, y0, dY ) be metric subanalytic
germs. A b-homotopy is a b-map from X ×p I to Y .
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Theorem 2.80. If there is a b-homotopy H with H0 = f and H1 = g, then

f•, g• :MDCb•(X;A)→MDCb•(Y ;A)

represent the same map in the category D(Ab)−. As a consequence they induce the
same homomorphism in MD homology.

Proof. For this proof we can follow the classical proof for singular homotopy much
more closely: denote by is : X → X ×p I the inclusion given by is(x) := (x, ||x||s)
(which is a Lipschitz l.v.a. subanalytic map by (2.19)). It is enough to prove that i0
and i1 induce chain homotopic homomorphisms from MDCb∗(X) to MDCb∗(X ×p I).

Given any l.v.a. simplex σ : ∆̂n → X we define η̂n(σ) : ∆̂n × I → X ×p I to be the
map (t(x, s), t) 7→ (σ(tx, t), ||σ(tx, t)||s).

In order to define the homomorphism ηn : MDCbn(X) → MDCbn(X ×p I) we pro-
ceed as in the proof of Theorem 2.76: choose an orientation preserving homological
subdivision {ρk}k∈K of ∆̂n × I associated with a triangulation and define ηn(σ) :=∑

k∈K η̂n(σ)◦ρi. Independence of the subdivision and compatibility with immediate
equivalences is checked in the same way. Compatibility with b-equivalences follows by
the inequality (2.19).

Checking that the collection of maps ηn for n varying is a chain homotopy between
the homomorphisms induced by i0 and i1 is like in Theorem 2.76.

Definition 2.81. Let ι : X ↪→ Y be a Lipschitz l.v.a. map of metric subanalytic germs
which on the level of sets is an injection. A b-retraction is a b-map r : Y → X such that
r◦ι is the identity as a b-map. A b-deformation retraction is a b-retraction such that ι◦r
is b-homotopic to the identity. In those cases X is called a b-retract or b-deformation
retract of Y , respectively. A metric subanalytic germ is called b-contractible if it admits
[0, ϵ) as a b-deformation retract.

The usual consequences of the existence of retracts and deformation retracts in
topology hold trivially in our theory

Corollary 2.82. If ι : X ↪→ Y admits a b-retraction the connecting homomorphisms
in the long exact sequence of relative b-MD homology vanishes. If ι : X ↪→ Y admits
a b-deformation retraction, ι induces a quasi-isomorphism of b-MD chain complexes.
If X is b-contractible then it has the b-MD homology of the metric subanalytic germ
[0, ϵ).

Example 2.83. Let b ∈ (1,∞). Let (X, 0) = ([0, ϵ), 0) be the point of our category as
defined in Definition 2.50. Let (Y, 0) = (CbS1 , 0) be the b-cone over the unit cycle as
defined in Definition 2.4. Fix x1 ∈ S1 and define ι : (X, 0)→ (Y, 0) by ι(t) := (tbx1, t).
Then the projection r : (Y, 0) → (X, 0) defined by r(tbx, t) := t is a b′-deformation
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retraction for any b′ < b. Indeed the b-map {(Ci, fi)}i∈{1,2} from Y ×p I to Y given by

C1 := {((tbx, t), s) ∈ Y ×p I : s ∈ [0,
1

2
}, C1 := {((tbx, t), s) ∈ Y ×p I : s ∈ [0,

1

2
},

f1((t
bx, t), s) := ((tbx1, t), s), f2(t

bx, t), s) := (tbx, t)

is a b′-homotopy from ι◦r to the identity on Y .

2.6. Mayer-Vietoris and Excision

2.6.1. An extension of relative homology

For the proof and statement of the relative Mayer-Vietoris exact sequence we need to
generalize the concept of relative homology.

Definition 2.84 (Category of pairs of metric subanalytic subgerms). A pair of metric
subanalytic subgerms (Y1, Y2, x0, dX)rel X is given by two metric subanalytic subgerms
(Yi, x0) of a certain metric subanalytic germ (X,x0, dX). Recall that on each Yi we
consider the restriction metric dX |Yi.

A Lipschitz l.v.a. subanalytic map between the pairs of subgerms (Y1, Y2, x0, dX)rel X
and (Y ′

1 , Y
′
2 , x0, dX′)rel X′ is a Lipschitz l.v.a. subanalytic map

(Y1 ∪ Y2, x0, dX|Y1∪Y2
)→ (Y ′

1 ∪ Y ′
2 , x0, dX′|Y ′

1∪Y ′
2

)

that carries Yi into Y ′
i .

The category of pairs of metric subanalytic subgerms has, as objects, pairs of metric
subanalytic subgerms, and as morphisms, Lipschitz subanalytic l.v.a. maps between
them, as defined above.

Definition 2.85. Consider b ∈ (0,+∞]. Given a pair of subanalytic subgerms
(Y1, Y2, x0, dX)rel X , we identify MDCb•(Yi, x0, dX|Yi

) with the subgroup of
MDCb•(X,x0, dX) generated by all l.v.a. simplices in X that are b-equivalent to a
representative fully contained in Yi. We define the complex of relative b-moderately
discontinuous chains of the pair (Y1, Y2, x0, dX)rel X with coefficients in A, denoting it
by MDCb•((Y1, Y2, x0, dX);A)relX , as the quotient

MDCb•((Y1, x0, dX|Y1 );A) +MDCb•((Y2, x0, dX|Y2 );A)

/
MDCb•((Y2, x0, dX|Y2 );A).

The b-moderately discontinuous homology of the pair (Y1, Y2, x0, dX)rel X is denoted
by MDHb

∗((Y1, Y2, x0, dX);A)rel X and it is the homology of the complex defined above.
We abbreviate calling these complexes and graded abelian groups the b-MD complex

and b-MD homology of the pair (Y1, Y2, x0, dX)rel X .

It is straightforward that a Lipschitz subanalytic l.v.a. map f between pairs of
subanalytic subgerms of some (X,x0, dX), (X ′, x′0, dX′) induces morphisms at the level
of b-MD chains for every b ∈ (0,+∞] (we denote by f∗ the morphism at the level of
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b-MD chains similarly to Notation 2.40). Moreover, morphisms (2.10) and (2.11) also
hold. So, the following proposition is obvious from the definitions:

Proposition 2.86. The assignments

(Y1, Y2, x0, dX)rel X 7→MDC⋆• ((Y1, Y2, x0, dX);A)rel X

and
(Y1, Y2, x0, dX)rel X 7→MDH⋆

∗ ((Y1, Y2, x0, dX);A)rel X

are functors from the category of pairs of metric subanalytic subgerms to B−Kom(Ab)−

and B−GrAb respectively.

We have also the obvious generalizations of the definitions of small chain com-
plexes with respect to a finite closed subanalytic covering C. We denote them by
MDCpre,+∞,C

• (Y1, Y2;A)relX , MDCb,C• (Y1, Y2;A)relX . We also have the analogue to
Proposition 2.55:

g :MDCb,C• (Y1, Y2, dX ;A)relX →MDCb•(Y1, Y2, dX , A)relX (2.20)

is an isomorphism for every b ∈ (0,∞].

Remark 2.87. Note that when Y2 ⊂ Y1 then MDCb,C• (Y1, Y2, dX ;A)relX coincides
with MDCb,C• (Y1, Y2, dX ;A).

2.6.2. b-covers

Definition 2.88. Let (X,x0, dX) be a metric germ and Y1, Y2 subanalytic subgerms,
consider b ∈ (0,∞]. A collection {Ui}i∈I of subanalytic subgerms is called a closed
b-cover of (Y1, Y2), if it is a finite closed cover of Y1 and for any i there is a subanalytic
subset Ûi ⊆ Y1 such that

• for any two b-equivalent points p, q : [0, ϵ) → (Y1, x0), if p has image in Ui then
q has image in Ûi.

• For any finite J ⊆ I there is a subanalytic retraction rJ : ∩i∈J Ûi → ∩i∈JUi which
induces an inverse in homology of the associated morphism of complexes:

MDCb•((∩i∈JUi, Y2, x0, dX);A)relX →MDCb•((∩i∈J Ûi, Y2, x0, dX);A)relX .

We call the collection {Ûi}i∈I a b-extension of {Ui}i∈I .

Observe that for b =∞ any finite closed subanalytic cover of X is a closed b-cover.
The following remark is a consequence of the definition of b-horn neighborhood and

of Theorem 2.76.
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Remark 2.89. In the terminology of the previous definition, when Y1 = X and Y2 =
∅, the following two conditions imply the two conditions of the previous definition
respectively:

• there is a b-horn neighborhood Hb,η(Ui;X) contained in Ûi for any i ∈ I (see
Definition 2.66).

• For any finite J ⊆ I, the intersection ∩i∈JUi is a b-deformation retract of ∩i∈J Ûi
(see 2.81).

Lemma 2.90. Let (X,x0, dX) be a metric germ, b ∈ (0,∞] and U ⊂ Û ⊂ X be
subanalytic subsets such that for any two b-equivalent points p, q : [0, ϵ)→ (X,x0), if p
has image in Ui then q has image in Ûi. If σi : ∆̂n → X are b-equivalent l.v.a simplices
for i = 1, 2 and σ1 is a simplex in U then σ2 is a simplex in Û .

Proof. Assume the contrary. Then σ−1
2 (X \ Û) is a subanalytic subset of ∆̂n having

the vertex at its closure. By the subanalytic Curve Selection Lemma and Remark 2.8
there exists a l.v.a subanalytic map γ : [0, ϵ)→ ∆̂n such that γ(t) is in σ−1

2 (X \ Û) for
t > 0. The arcs pi := σi◦γ give a contradiction.

2.6.3. The Mayer-Vietoris Exact Sequence

Theorem 2.91. Let (X,x0, dX) be a metric germ, Y1, Y2 subanalytic subgerms and
{U, V } a closed b-cover of (Y1, Y2). The single complex associated with the Mayer-
Vietoris double complex

MDCb•(U ∩ V, Y2)relX →MDCb•(U, Y2)relX ⊕MDCb•(V, Y2)relX

is quasi-isomorphic to MDCb•(Y1, Y2)relX . As a consequence there is a Mayer-Vietoris
long exact sequence as follows:

...→MDHb
n(U ∩ V, Y2)relX →MDHb

n(U, Y2)relX ⊕MDHb
n(V, Y2)relX →

→MDHb
n(Y1, Y2)relX →MDHb

n−1(U ∩ V, Y2)relX → ...
(2.21)

Note that we have omitted the coefficient group A in the notation for brevity.

Proof. We omit the coefficient group A in the notation for brevity.
We have the following short exact sequence, where α(σ, τ) := σ − τ is extended

linearly:

0→ Ker(α)→MDCb•(U, Y2)relX ⊕MDCb•(V, Y2)relX
α−→MDCb•(Y1, Y2)relX → 0

(2.22)
Surjectivity follows from the fact that (2.20) is an isomorphism. As a consequence,

the single complex associated with the double complex

d : Ker(α)→MDCb•(U, Y2)relX ⊕MDCb•(V, Y2)relX

is quasi-isomorphic to MDCb•(Y1, Y2)relX .
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Let {Û , V̂ } be a b-extension of {U, V }. In the analogue short exact sequence for
{Û , V̂ }, we denote the analogue of α by α̂. The inclusions U ↪→ Û and V ↪→ V̂
together induce a morphism

ιU,V∗ MDCb•(U, Y2)relX ⊕MDCb•(V, Y2)relX →MDCb•(Û , Y2)relX ⊕MDCb•(V̂ , Y2)relX

that restricts to a morphism Ker(α)→ Ker(α̂). This restriction admits the following
factorization:

Ker(α) f−→MDCb(Û ∩ V̂ , Y2)relX
g−→ Ker(α̂)

where g(σ̂) := (σ̂, σ̂) is extended linearly and f is defined as follows:
Let ([

∑
i∈I aiσi], [

∑
j∈J biψj ]) be an element of MDCb•(U, Y2)relX⊕MDCb•(V, Y2)relX

such that [
∑

i∈I aiσi] + [
∑

j∈J biψj ] = 0 in MDCb•(Y1, Y2)relX . After replacing the rep-
resentatives by the ones obtained by sequences of →∞-equivalences as in Lemma 2.35,
consider splittings I = I0 ∪ I1 ∪ ..., Ir, J = J0 ∪ J1 ∪ ..., Jr as above, which satisfy that

1. [σi] ∈ Ker(MDCb•(U)relX →MDCb•(U, Y2)relX) for any i ∈ I0,

2. [ψj ] ∈ Ker(MDCb•(V )relX →MDCb•(V, Y2)relX) for any j ∈ J0,

3. σi ∼b ψj if i ∈ Ik and j ∈ Jk for a given k ≥ 1,

and that for any k ≥ 1 we have∑
i∈Ik

ai +
∑
j∈Jk

bk = 0.

If Ik and Jk are non-empty, there is a τ ∈MDCb•(V, Y2)relX in the same b-equivalence
class as σi for any i ∈ Ik. Observe that any l.v.a. simplex b-equivalent to a l.v.a.
simplex in V is contained in V̂ by Lemma 2.90, so σi ∈ MDCb•(Û ∩ V̂ , Y2)relX . We
define

f(
∑
i∈I

ai[σi],
∑
j∈J

bi[ψj ]) :=
∑
i∈I\I0

ai[σi] =
∑

j∈J\J0

bj [ψj ].

By hypothesis, there are retractions rU : Û → U and rV : V̂ → V , whose induced
maps provide an inverse to ιU,V∗ in the derived category. We denote the inverse by rU,V .
Then, in the derived category rU,V ◦g is a left-inverse for f . In the derived category,
f also has a right-inverse: let ι denote the inclusion U ∩ V ↪→ Û ∩ V̂ . Then in the
derived category the isomorphism ι∗ :MDCb(U ∩ V, Y2)relX →MDCb(Û ∩ V̂ , Y2)relX
is the composition of the inclusion

h :MDCb•(U ∩ V, Y2)relX ↪→ Ker(α)

and f .
We conclude that f is an isomorphism in the derived category, and, using it and the

isomorphism ι∗ we conclude that h is an isomorphism in the derived category. So in
the derived category, the single complex associated with the double complex

MDCb•(U ∩ V, Y2)relX →MDCb•(U, Y2)relX ⊕MDCb•(V, Y2)relX
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is isomorphic to the double complex associated with d which is isomorphic to the
complex MDCb•(Y1, Y2)relX .

As a consequence we obtain the Excision Theorem.

Corollary 2.92. Let (X,x0, dX) be a metric germ. Let U ⊂ X\{x0} and K\{x0} ⊂ U
such that {U,X \K} is a closed b-cover of (X,U). Then the inclusion induces a quasi-
isomorphism MDCb•(X \K,U ;A)relX →MDCb•(X,U ;A). As a consequence for each
n we have an isomorphism

MDHb
n(X \K,U ;A)relX

≃→MDHb
n(X,U ;A)

Proof. Apply Theorem 2.91 to the b-cover {U,X \K}.

2.6.4. The Čech homology complexes

Let U = {Ui}i∈{1,...,r} be a finite closed subanalytic cover of X. Denote by Ui1,...,ir
the intersection Ui1 ∩ ... ∩ Uir . The Čech double complex of b-MD homology of a pair
(X,Y ) associated with U with coefficients in A is defined by

MDCb(U , X, Y ;A)p,q :=
⊕

1≤i0<...<ip≤r
MDCbq(Ui0,...,ip , Y ;A)relX ,

with vertical differential equal to the b-MD differential and horizontal differential the
usual Čech homology differential:

MDCbq(Ui0,...,ip , Y ;A)relX → ⊕pk=0MDCbq(Ui0,...,̂ik,...,ip , Y ;A)relX

[σ] 7→
p∑

k=0

(−1)kjbik([σ]),

where jbik is the b-MD chain map associated to the inclusion Ui0,...,ip ⊂ Ui0,...,̂ik,...,ip .

Theorem 2.93. Let Y1, Y2 be subanalytic subgerms of a metric germ (X,x0, dX). If
for any two disjoint finite subsets I, J ⊂ {1, ..., r} we have that {(∩æ∈JUj)∩Ui}i∈I is a
b-cover of (∪i∈IUi∩ (∩æ∈JUj), Y2) and ∪ri=1Ui = Y1, then the single complex associated
with the Čech complex MDCb•,•(U , Y1, Y2;A) is quasi-isomorphic to MDCb•(Y1, Y2;A)relX .
Consequently there is a Čech spectral sequence abutting to MDHb

∗(Y1, Y2;A)relX with
E1 page

E[b]1p,q :=
⊕

1≤i0<...<ip≤r
MDHb

q(Ui0,...,ip , Y2;A)relX .

Proof. The case of a cover of 2 closed subsets is exactly Theorem 2.91. The general
case runs by induction on the number of open subsets, applying Mayer-Vietoris for
the decomposition V ∪ Ur with V := U1 ∪ ... ∪ Ur−1 and the induction step for the
decompositions U1 ∪ ... ∪ Ur−1 and (U1 ∩ Ur) ∪ ... ∪ (Ur−1 ∩ Ur):
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Let Ã• and B̃• denote the single complexes associated with the Čech complexes

MDCb•,•({U1∩Ur, . . . , Ur−1∩Ur}, V ∩Ur, Y2;A) and MDCb•,•({U1, . . . , Ur−1}, V, Y2;A),

respectively. By induction hypothesis, we get that Ã• and B̃• are quasi-isomorphic to

A• :=MDCb•(V ∩ Ur, Y2;A)relX and B• :=MDCb•(V, Y2;A)relX ,

respectively.
We get the following diagram:

S•(A• →MDC•(Ur, Y2;A)relX ⊕B•) MDC•(Y1, Y2;A)relX

S•(Ã• →MDC•(Ur, Y2;A)relX ⊕ B̃•)

where S • (D•,•) for a double complex D•,• denotes the single complex assiciated with
that double complex. The vertical arrow represents the chain map resulting from the
quasi-isomorphisms Ã• → A• and B̃• → B• and is therefore a quasi-isomorphism. The
horizontal arrow is the result of applying the Mayer Vietoris Theorem (Theorem 2.91)
to the cover {Ur, V } and is therefore also a quasi-isomorphism.

Now the statement follows from the fact that the complex at the bottom of that
commutative diagram by definition is isomorphic to the single complex associated with
the Čech complex MDCb•,•(U , Y1, Y2;A).

Definition 2.94. The nerve of the cover U = {Ui}i∈{1,...,r} is the simplicial complex
which assigns a p-simplex to each non-empty intersection Ui0,...,ip, and identifies faces
according to the inclusions Ui0,...,ip ⊂ Ui0,...,̂ik,...,ip.

Corollary 2.95. In the setting of the last theorem, if Y1 = X and Y2 = ∅ and for any
finite set of indexes Ui0,...,ip is either empty or has the b-MD homology of a point, the
b-MD homology of X coincides with the ordinary homology of the nerve of the cover
with coefficients in A.

Proof. In the spectral sequence of Theorem 2.93 we have E[b]1p,q = 0 if q > 0 and
E[b]1p,0 =

⊕
1≤i0<...<ip≤rMDHb

0(Ui0,...,ip , A), where MDHb
0(Ui0,...,ip ;A)

∼= A if and
only if Ui0,...,ip is not empty.

2.6.5. Mayer-Vietoris and Čech spectral sequence for open coverings

The purpose of this section is to prove the validity of the Mayer-Vietoris sequence and
the Čech spectral sequence for finite open subanalytic coverings.

Let (Y1, Y2) be subanalytic subgerms of a metric subanalytic germ (X,x0, dX). A
collection {Ui}ri=1 of subanalytic subgerms is an open b-cover of (Y1, Y2) if it is a finite
open subanalytic cover, that is the Ui are open subanalytic sets and ∪iUi = Y1 \ {x0}
and the conditions of Definition 2.88 are satisfied.
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Theorem 2.96. All the results in Sections 2.6.3 and 2.6.4 remain true replacing closed
b-covers by open b-covers.

Proof. Everything boils down to proving Theorem 2.91. In fact, Corollary 2.92 is
a direct consequence of Theorem 2.91 and the proof of Theorem 2.93 consists of a
repeated application of Theorem 2.91. In the proof of Theorem 2.91, the only place in
which the hypothesis that the subsets of the b-cover are closed is used, is in showing
the surjectivity of the last mapping of Sequence (2.22).

In the case that the cover {U, V } is formed by closed subsets, surjectivity is direct
from the fact that (2.20) is an isomorphism if the cover C is closed. In the case that the
cover {U, V } is formed by open subsets, surjectivity follows from the fact that (2.20) is
an isomorphism for a closed cover together with Proposition 2.97. Indeed, in the case
that the cover is formed by open subsets, we have that

MDCb•(Y1, Y2)relX
∼=MDCb,C• (Y1, Y2)relX ,

where C is a finite closed subanalytic cover refining the open cover. The existence of
such a refinement is shown in the following proposition.

Proposition 2.97. Let U = {U1, ..., Uk} a finite open subanalytic covering of a sub-
analytic germ (X, 0). Then there exists a subanalytic closed set Ci contained in Ui for
every i such that {C1, .., Ck} is a closed covering.

The proof is obtained by repeatedly applying the following lemma:

Lemma 2.98. Let U = {U1, ..., Uk} be a finite open subanalytic covering of a subana-
lytic germ (X, 0). There exists a closed set C1 contained in U1 such that {U2, .., Uk, C̊1}
is also an open covering of (X, 0) where C̊1 is the interior of C1.

Proof. Let LX be the link of X. By the conical Structure Theorem (see Remark 2.6)
we can take a subanalytic homeomorphism h : C(LX) → X for a small enough rep-
resentative for (X, 0) compatible with the covering U . That is, any Ui coincides with
h(Li) for a certain subanalytic subset Li of LX .

We prove that given a finite open subanalytic covering U = {U1, ..., Uk} of LX , there
exists a closed set D1 contained in U1 such that {U2, .., Uk, D̊1} is also an open covering
of LX where D̊1 is the interior of D1.

To finish the proof we will consider the covering given by Ci := h(C(Di)).
Let us prove the statement for a covering of LX . We denote by ∂XY the boundary

set Ȳ \ Y̊ of Y in X.
Let K be ∂XU1 ∩ (U2 ∪ ... ∪ Uk). Note that in fact ∂XU1 equals K.
Let θ : K → R be the function θ(x) := dout(x, ∂X(U2 ∪ ... ∪ Uk). Choose another

subanalytic function η : K → R such that η(x) < θ(x) for every x ∈ K.
Let {Ki}i∈I be a stratification of K by Cr subanalytic submanifolds.
For every i ∈ I, consider the following subset in the normal bundle of Ki

Wi := {(x, v) ∈ NKi : ||v|| < η(x)}.
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Let Vi be a neighbourhood of Ki inside NKi, whose existence follows the Definable
Tubular Neighborhood Theorem (see Theorem 6.11 in [9]), such that π|Vi is a diffeomor-
phism and such that π(Vi) is a subanalytic neighbourhood of Ki where π : NKi → X
is defined by π(x, v) = x+ v.

Define U(K, η) := ∪i∈Iπ(Vi ∩Wi). This is a globally subanalytic neighbourhood of
K. By the definition of η, we have that the closure of U(K, η) ∩ X is contained in
U2 ∪ ... ∪ Uk.

We define C1 as U1\U(K, η). This is a closed set since it coincides with U1\U(K, η).
Moreover {C̊1, U2, ..., Uk} covers X.

2.7. Moderately Discontinuous Homology in degree 0

Definition 2.99. Let (X,x0) be a metric subanalytic germ. Two connected components
X1 and X2 of X \ {x0} are b-equivalent if there exist two l.v.a. 0-simplices σi :
∆̂0 → (Xi, x0) which are b-equivalent. The equivalence classes are called b-connected
components of X. The ∞-connected components are the usual connected components
of X \ {x0}.

Proposition 2.100. The b-moderately discontinuous homology MDHb
0(X;A) at de-

gree 0 is isomorphic to Ar(b,X), where r(b,X) is the number of b-connected components
of X. A basis is given by the choice of a 0-simplex in each b-connected component. For
b1, b2 ∈ (0,∞], b1 ≥ b2, the homomorphism hb1,b20 is the projection that sends a base
element α of Ar(b1,X) onto the base element of Ar(b2,X) that represents the b2-connected
component α lies in.

Proof. Let L := X∩Sϵ be the link of X (where ϵ > 0 is small enough). Let θ : C1
L → X

be a subanalytic homeomorphism preserving the distance to the origin (this exists by
Remark 2.6). Let τ : ∆n → L be a subanalytic map. The straight n-simplex with
respect to θ associated with τ is defined to be the map germ σ : ∆̂n → X given by
σ(tz, t) := θ(τ(z), t).

Let x1, x2 be two points in the same connected component of L. Then there exists a
subanalytic path γ : [0, 1]→ L joining x1 and x2. The boundary operator “∂” applied
to the straight simplex associated with γ is the difference of the straight simplices
associated with xi. So, we conclude that two straight 0-simplices in the same connected
component of X \ {x0} are b-homologous for any b.

Let σ : ∆̂0 = [0, 1) → (X,x0) be any 0-simplex. Up to reparametrization (see Re-
mark 2.8) we may assume that ||σ(t)|| = t. We can express the restriction θ−1◦σ|∆0×(0,1)

as a pair θ−1◦σ|∆0×(0,1)(t) = (γ(t), t), where γ : (0, 1)→ L is the germ at 0 of a suban-
alytic path. We may choose the radius ϵ defining the link L small enough so that ϵ is
in the domain of definition of the germ σ, and hence of γ. The map τ : ∆̂1 → (X,x0),
where τ(ts, t) := θ(γ(ϵ + s(t − ϵ)), t), defines a 1-simplex whose boundary shows that
σ is b-homologous to a straight simplex.

We have proven that all 0-simplices lying in the same connected component of X \
{x0} are b-homologous for any b.

After this the proof is obvious.

45



2.8. The ∞-MD Homology: comparison with the homology
of the link

Let (X,Y, {x0}, dX) be a pair of closed metric subanalytic germs in Rn. By Remark 2.15
there is a finite subanalytic triangulation α : |K| → X ∩Bϵ of a representative X ∩Bϵ,
which is compatible with Y and x0. By choosing ϵ sufficiently small and intersecting
with Sϵ we obtain a subanalytic triangulation β : |L| → X ∩Sϵ compatible with Y ∩Sϵ
such that (K,α) is the cone over (K,β). In other words: there exists a pair of simplicial
complexes (L1, L2) and a subanalytic homeomorphism

h : (C(|L1|), C(|L2|))→ (X,Y, {x0}) ∩Bϵ

from the cones of the geometric realizations to the representative (X,Y, {x0})∩Bϵ. By
the reparametrization trick of Remark 2.8 we may assume that ||h(tx, t)|| = t.

Denote by CSimp
• (L1, L2;A) the simplicial homology complex for the pair (L1, L2)

with coefficients in A. The homeomorphism h induces a morphism of complexes

c : CSimp
• (L1, L2;A)→MDC∞

• (X,Y ;A). (2.23)

Theorem 2.101. The morphism (2.23) is a quasi-isomorphism. As a consequence
we have an isomorphism between the singular homology H∗(X \ {x0}, Y \ {x0};A) and
MDH∞

∗ (X,Y, x0;A).

Proof. By using the relative homology sequence and the 5-lemma we reduce to the
absolute case Y = ∅. The singular homology H∗(X \ {x0};A) is isomorphic to the
singular homology of the link, by homotopy invariance, and the later is isomorphic
with the simplicial homology of L1.

A simplex of L1 is called maximal if it is not strictly contained in another simplex.
The collection {Zi}i∈I of maximal simplices forms a closed cover of |L1| such that any
finite intersection is a simplex, and hence, contractible. Then the simplicial homology
of L1 coincides with the homology of the nerve of the cover.

The collection {h(C(Zi))}i∈I is a closed subanalytic cover. Any finite intersection
∩i∈Jh(C(Zi)) is of the form h(C(T )) where T is a simplex in L1. An immediate appli-
cation of Assertion (1) of Theorem 2.76 shows that h(C(T )) has the ∞-MD homology
of a point. Since any closed subanalytic cover is an ∞-cover, by Corollary 2.95 the
homology MDH∞

∗ (X \ {x0};A) coincides with the homology with coefficients in A of
the nerve of the cover. This concludes the proof.

2.9. MD Homology of plane curves with the outer metric.

Throughout this subsection, whenever we say curve germ, we refer to a complex alge-
braic plane curve germ in the origin equipped with the outer geometry. We are going
to recall the definition of the Eggers-Wall tree of a curve germ. It uses the following
correspondence between Puiseux pairs and Puiseux exponents: let (m1, k1) . . . (ml, kl)
denote all Puiseux pairs of a curve germ in order. Then the Puiseux exponents of that
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curve germ are given by mi∏i
j=1 kj

for i = 1, . . . l. We call (mi, ki) the Puiseux pair cor-

responding to mi∏i
j=1 kj

. Recall the following definition of the contact number between

two branches, which can be found for example on p. 68 of [41].

Definition 2.102. Let C be a curve germ. Let fi =
∑∞

j=1 αi,jx
j
κi be parametrizations

of the branches Ci of C, where i ∈ {1, . . . , n}. Let i ̸= k ∈ I. The contact number
c(Ci, Ck) between Ci and Ck is defined as

c(Ci, Ck) := min{j : αi,j ̸= αk,j}

Definition 2.103. Let C be a curve germ. In this definition, we are defining the
Eggers-Wall tree GC of C. Depending on the context, GC can be interpreted either as
a graph or as a topological space with a finite number of special points; we call these
special points in the topological space vertices as they correspond to the vertices in the
graph.

If C is irreducible, we define the Eggers-Wall tree GC of C to be the segment [0,∞]
with a vertex at both ends and one vertex at each rational number in that segment that
is a Puiseux exponent of C. Every vertex is decorated by the corresponding value in
Q ∪ {∞}. For two adjacent vertices at q1 and q2 respectively, with q1 < q2, the edge
between them is weighted by the product

∏l
i=0 ki, where k0 = 1 and (m1, k1), . . . , (ml, kl)

are all Puiseux pairs corresponding to Puiseux exponents less than or equal to q1.
If C is reducible, the Eggers-Wall tree GC is defined as follows. Let Cn denote one

of its branches and let Ĉn denote the union of all the other branches. Let c be the
greatest contact number that Cn has with any of the other branches and let Ck be one
of the branches that Cn has that contact number with. If C has only two branches, we
have Ck = Ĉn. If GCn does not have a vertex at c, add it in the following manner: let
q1 be the greatest vertex in GCn smaller than c and q2 the smallest one greater than
c. We add c as a vertex in GCn and give both edges {q1, c} and {c, q2} the weight the
edge {q1, q2} had before. Then, we do the same for the segment in GĈn

corresponding
to GCk

, if it does not contain c as a vertex already. Now, glue the segment from 0 to c
in GCn to the segment from 0 to c in GCk

by the identity on [0, c]. As GCk
is naturally

embedded in GĈn
, we have glued GĈn

and GCn to one graph GC .
There is a natural map r : GC → [0,∞] defined as follows: For a point g ∈ GC , let

Cg be one of the branches of C for which g is in the image of the natural inclusion
GCg ↪→ GC . We assign to g the point in the segment [0,∞] that is sent to g by that
inclusion.

Example 2.104. Let C be the curve with the following four branches:

C1 = {(x, y) ∈ C2 : y = x
3
2 + x

5
2 },

C2 = {(x, y) ∈ C2 : y = x
3
2 + x

11
4 },

C3 = {(x, y) ∈ C2 : y = x
3
2 + x

11
4 + x

37
12 },

C4 = {(x, y) ∈ C2 : y = x
5
2 + x

11
4 }.
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We have visualized the Eggers-Wall tree GC together with the function r : GC → [0,∞]
in Figure 2.3.

0

1

3
2

2
1

5
2

5
2

2

2
11
4

11
4

37
12

4 12
4

∞

2

∞ ∞ ∞

r−→

0

∞

3
2

37
12

11
4

5
2

4

Figure 2.3.: The Eggers-Wall tree GC and r : GC → [0,∞].

Proposition 2.105. Let C be a curve germ. Let GC be the Eggers-Wall tree of C with
r : GC → [0,∞] as defined above. Let A be an abelian group. The MD homology of C
with respect to A can be described as follows:

1. For any b ∈ [1,∞], it is MDHb
0(C;A)

∼= MDHb
1(C;A)

∼= Alb, where lb is the
number of points in r−1(b + ϵ), where ϵ is so small that r−1((b, b + ϵ]) does not
contain a vertex. For the case b =∞, we consider ∞+ ϵ =∞.

2. For any b ∈ [1,∞] and n > 1, it is MDHb
n(C;A)

∼= {0}.

3. For b1, b2 ∈ [1,∞] with b1 ≥ b2, h
b1,b2
0 (C) and hb1,b21 (C) are the homomorphisms

given by multiplication with the following matrices M0 and M1, respectively: let ϵ
be so small that r−1((b1, b1+ ϵ]) and r−1((b2, b2+ ϵ]) do not contain any vertices.
Let G1,..., Gl be the connected components of r−1([b2 + ϵ, b1 + ϵ]), where l = lb2.
For i ∈ {1, . . . , l}, let pi be the unique point in r−1(b2 + ϵ) ∩ Gi. Further, let
p1,i, . . . , pmi,i be the points in r−1(b1 + ϵ) ∩ Gi. Notice that

∑l
i=1mi = lb1. We

define

M0 :=



m1 times︷ ︸︸ ︷
1 . . . 1
0 . . . 0
0 . . . 0

...
0 . . . 0

m2 times︷ ︸︸ ︷
0 . . . 0
1 . . . 1
0 . . . 0

...
0 . . . 0

. . .

ml times︷ ︸︸ ︷
0 . . . 0
0 . . . 0

...
0 . . . 0
1 . . . 1


Now, for i ∈ {1, . . . , l} and j ∈ {1, . . . ,mi}, let kj,i :=

wj,i

wi
, where wj,i and wi are
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the weights assigned to the edges on which pj,i respectively pi lie. We define

M1 :=


k1,1 . . . km1,1

0 . . . 0
0 . . . 0

...
0 . . . 0

0 . . . 0
k1,2 . . . km2,2

0 . . . 0
...

0 . . . 0

. . .

0 . . . 0
0 . . . 0

...
0 . . . 0
k1,l . . . kml,l


The data used in the statement of this proposition is visualized in Example 2.106.

Proof. Let fi ∈ C[[x
1
κi ]], i ∈ {1, . . . , n}, be parametrizations of the branches of C.

For fi =
∑∞

j=1 αi,jx
j
κi , b ∈ [1,∞), let fi,b be the truncation

∑⌊b⌋
j=1 αi,jx

j
κi , where ⌊b⌋

denotes the greatest integer smaller than or equal to b. In the case of b = ∞, we set
fi,b := fi.

The proof consists in an application of the Mayer-Vietoris Theorem, which resembles
the computation of the singular homology of a circle in a certain way. The subsets
involved in the Mayer-Vietoris decomposition are of the following form: we write x ∈
C \ {0} as x = rxe

2πφx . Let ϕ1, ϕ2, ϕ3, ϕ4 ∈ R with ϕ1 < ϕ2 and ϕ3 < ϕ4 be fixed. For
b ∈ [1,∞], we define the subgerm (Vb, 0) of (C2, 0) by

Vb := ({(x, y) ∈ C2 : y = fi,b(x), (x = 0 or ∃n,m ∈ Z :ϕ1 < φx + 2πn < ϕ2

or ϕ3 < φx + 2πm < ϕ4)}.

Recall Definition 2.99. Because of Proposition 2.100, for b1 ≥ b2 ≥ b3 we have the
following:

• The map Hb1
0 (Vb3 ,Z) → Hb2

0 (Vb3 ,Z) is an isomorphism, as for any b ≥ b3 the
b-connected components of Vb3 are just its connected components.

• The map Hb3
0 (Vb1 ;Z)→ Hb3

0 (Vb2 ;Z) induced by the natural projection Vb1 → Vb2
is an isomorphism, as there is a 1 : 1 correspondence between the b3-connected
components of Vb and the connected components of Vb3 for any b ≥ b3.

As a consequence, in the following commutative diagram we get the indicated isomor-
phisms:

MDHb2
0 (V∞;Z) MDHb1

0 (V∞;Z) MDH∞
0 (V∞;Z)

MDHb2
0 (Vb1 ;Z) MDHb1

0 (Vb1 ;Z) MDH∞
0 (Vb1 ;Z)

MDHb2
0 (Vb2 ;Z) MDHb1

0 (Vb2 ;Z) MDH∞
0 (Vb2 ;Z)

φV

∼= ∼=

∼=

∼= ψV

∼= ∼=
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So φV is the same as ψV up to concatenation with isomorphisms. By Theorem 2.101,
up to isomorphisms the latter is the same as

ψ̂V : H0(Vb1 \ {0},Z)→ H0(Vb2 \ {0},Z),

where H0 denotes the singular homology.
Now we introduce the specific b-cover that we use to apply the Mayer-Vietoris The-

orem. Let U1 = V∞ with ϕ1 = 1
4π and ϕ2 = 7

4π and ϕ3 = ϕ4; and let U2 = V∞ with
ϕ1 = 3

2π and ϕ2 = 5
2π and ϕ3 = ϕ4. We have that U1 ∩ U2 = V∞ with ϕ1 = 1

4π and
ϕ2 =

1
2π and ϕ3 = 3

2π and ϕ4 = 7
4π. Note that {U1, U2} is a b-cover of C for any b ≥ 1.

The n-th b-moderately discontinuous homology groups of U1 and U2 and U1 ∩ U2 are
trivial for any b ≥ 1, if n ≥ 1. So, by the Mayer-Vietoris Theorem (Theorem 2.91),
for any n > 1, the n-th b-moderately discontinuous homology of C is trivial. This
completes the proof of statement (2).

Furthermore, by the Mayer-Vietoris Theorem for b1 ≥ b2 this gives us the following
diagram with exact rows, in which we have omitted Z:

0 MDHb1
1 (C) MDHb1

0 (U1 ∩ U2) MDHb1
0 (U1)⊕MDHb1

0 (U2) MDHb1
0 (C) 0

0 MDHb2
1 (C) MDHb2

0 (U1 ∩ U2) MDHb2
0 (U1)⊕MDHb2

0 (U2) MDHb2
0 (C) 0

h
b1,b2
1 φU1∩U2

φU1
⊕φU2

h
b1,b2
0

We have shown above that we can replaceMDHbi
0 (V ;Z) byH0(Vbi ;Z) for i ∈ {1, 2} and

V ∈ {U1∩U2, U1, U2, C}, and that we can replace φV by ψ̂V for V ∈ {U1∩U2, U1, U2}.
Comparing the result with the analogous Mayer-Vietoris sequence in singular homol-
ogy, we get that MDHbi

1 (C;Z) ∼= H1(Cbi ;Z) for i ∈ {1, 2} and that for j ∈ {0, 1} the
homomorphism hb1,b2j is the morphism induced on the j-th singular homology by the
projection ρ : Cb1 → Cb2 which is the following covering map: the base space Cb2 is the
disjoint union of lb2 circles. The covering space Cb1 is the disjoint union of lb1 circles.
Let l := lb2 . For i ∈ {1, . . . , l} and j ∈ {1, . . . ,mi), let ρi,j be the ki,j : 1 covering map
from the circle to itself. For i ∈ {1, . . . , l}, let ρi :

⨿mi
j=1 S1 → S1 be the morphism that

all ρi,j together induce on the coproduct ⨿mi
j=1S1. Concretely, ρi sends an element x in

the j-th copy of S1 to ρi,j(x). Then,

ρ :
l⨿

i=1

mi⨿
j=1

S1 →
l⨿

i=1

S1

is is given by
⨿l
i=1 ρi. Concretely, ρ sends an element x in

⨿mi
j=1 S1 by ρi into the i-th

copy of S1 in
⨿l
i=1 S1. The proof of statement (1) is completed by the well-known

fact of how the 0-th and first singular homology groups of Cb look like. The proof of
statement (3) is completed by the well-known fact of how the morphism on the 0-th
and first singular homology groups induced by ρ looks like.
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Example 2.106. We continue Example 2.104 to visualize the data of the statement
of Proposition 2.105. Let b1 ∈ [114 ,

37
12) and b2 ∈ [32 ,

5
2). In Figure 2.4, we have pictured

Gi and pi and pj,i for that choice of b1 and b2. There, G1 is the graph on the left hand
side and G2 is the graph on the right hand side.

5
2

2
1

5
2

2 2
11
4

11
4

2

4

p1

4

p2

p1,1 p2,1 p1,2

Figure 2.4.: The data of Propoistion 2.105.

It is

• lb1 = 3 and l := lb2 = 2,

• m1 = 2 and m2 = 1,

• k1,1 = 1 and k2,1 = 2 and k1,2 = 4.

Corollary 2.107. Let C be an irreducible curve germ. We use the same notation as
in Proposition 2.105. The MD homology of C with respect to A is as follows:

1. For any b ∈ [1,∞], it is MDHb
0(C;A)

∼=MDHb
1(C;A)

∼= A and
MDHb

n(C;A)
∼= {0}, if n > 1.

2. For any b1, b2 ∈ [1,∞], b1 ≥ b2, it is hb1,b20 = idA.

3. For b1, b2 ∈ [1,∞], b1 ≥ b2, it is

• hb1,b21 = idA, if (b2, b1] does not contain any Puiseux exponent,

• hb1,b21 (x) = kx, if (b2, b1] contains one Puiseux exponent with corresponding
Puiseux pair (m, k) for some m ∈ N.

If (b2, b1] contains more than one Puiseux exponent, hb1,b21 can be determined by
concatenation.

Proof. This corollary follows directly from Proposition 2.105.

By [38] (see also [29] and [15]), the classification of curve germs by its outer bi-
Lipschitz geometry coincides with the classification of curve germs by its embedded
topology. Therefore, we get the following corollary:

Corollary 2.108. Let C be an irreducible curve germ. The MD homology of C with
respect to Z detects all Puiseux pairs of C and therefore determines its outer geometry.
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Proof. We use the same notation as in Proposition 2.105. By Corollary 2.107, the set
P of all Puiseux exponents of C can be described as follows:

P = {b ∈ (1,∞) : there is no δ > 0 such that hb,b−δ1 is an isomorphism}. (2.24)

If C is reducible, equation (2.24) yields the set of all Puiseux exponents of all branches
of C. Furthermore, b is a contact number between two branches of C if and only if
MDHb

1(C;Z) is not isomorphic to MDHb−δ
1 (C;Z) for any δ. But this method of local

analysis of the MD homology of the curve does not tell us which branch/branches
those Puiseux exponents and contact numbers correspond to. For a small number of
branches, such as two, this question can be answered by simple arithmetics, analysing
the morphisms hb1,b21 more globally. But in general, the MD homology might not be
able to answer this question:

Example 2.109. We use the same notation as in Proposition 2.105. Let C and D be
the curves with the following five components respectively:

C1 = {(x, y) ∈ C2 : y = x+ x2 + x
5
2 }, D1 = {(x, y) ∈ C2 : y = x+ x2},

C2 = {(x, y) ∈ C2 : y = x+ 2x2}, D2 = {(x, y) ∈ C2 : y = x+ 2x2},
C3 = {(x, y) ∈ C2 : y = 2x+ x2}, D3 = {(x, y) ∈ C2 : y = 2x+ x2},
C4 = {(x, y) ∈ C2 : y = 2x+ 2x2}, D4 = {(x, y) ∈ C2 : y = 2x+ 2x2},

C5 = {(x, y) ∈ C2 : y = 2x+ 3x2}, D5 = {(x, y) ∈ C2 : y = 2x+ 3x2 + x
5
2 }

The embedded topological types of the two curves do not coincide since their Eggers-
Wall trees are not isomorphic as trees. But their MD homology with respect to Z
are isomorphic: we denote the morphisms hb1,b2∗ of the MD homology of C and D by
hb1,b2∗ (C) and hb1,b2∗ (D) respectively. Having a look at their Eggers-Wall trees, it becomes
clear that the 0-th and first b-moderately discontinuous homology groups coincide for
any b and so do the morphisms hb1,b20 (D) and hb1,b20 (D) for any b1 ≥ b2. As the
Eggers-Wall trees of C and D coincide on r−1([0, 52)) and r−1((52 ,∞]), hb1,b21 (C) and
hb1,b21 (D) also coincide, if b1, b2 < 5

2 or b1, b2 > 5
2 . If b1 ≥ 5

2 and b2 < 5
2 , h

b1,b2
1 (C) and

hb1,b21 (D) are the same up to concatenation with isomorphisms on the right and on the
left. For example, if b1 ≥ 5

2 and b2 ∈ [1, 2), hb1,b21 (C) and hb1,b21 (D) are given by matrix
multiplication with M1(C) and M1(D), respectively, where

M1(C) :=

(
2 1 0 0 0
0 0 1 1 1

)
,M1(D) :=

(
1 1 0 0 0
0 0 1 1 2

)
.

2.10. Finite generation, Bibrair’s conjecture and rationality of
jumps

The following conjecture was stated orally by Lev Birbrair in Oaxaca in fall 2018.
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Conjecture 2.110 (Birbrair). Let (X,x0, dout) ⊂ (Rm, x0) be a subanalytic germ
with the outer metric. Then for any b and η > 0 sufficiently small, we have that
MDHb

∗(X,x0, dout) is isomorphic to the ordinary homology of the punctured cone
Hb,η(X,Rm) \ {x0}.

Since Hb,η(X,Rm) is subanalytic for b ∈ Q, we know that its singular homology
groups are finitely generated. Therefore, a positive answer to Conjecture 2.110, to-
gether with the fact (communicated to us by A. Parusinski) that any subanalytic
subset with the inner metric admits a bi-Lipschitz subanalytic LNE re-embedding (see
[8]) would imply immediately the following conjecture for b ∈ Q:

Conjecture 2.111. Let (X,x0) ⊂ (Rm, x0) be a subanalytic germ. Then for any b ∈
(0,∞] we have that MDHb

∗(X,x0, dout) and MDHb
∗(X,x0, din) are finitely generated.

Conjecture 2.111 can be shown for any b ∈ (0,+∞) by proving the following two
conjectures besides Birbrair’s conjecture:

Definition 2.112. Let (X,x0, dX) be a subanalytic germ. An exponent b ∈ B is a
jumping exponent for X, if for any ϵ > 0 the homomorphism MDHb+ϵ

∗ (X,x0, dX)→
MDHb−ϵ

∗ (X,x0, dX) is not an isomorphism.

Conjecture 2.113 (Rationality). Let (X,x0) ⊂ (Rm, x0) be a subanalytic germ and
dX be either the inner or the outer metric. Then the jumping exponents are rational
numbers.

Conjecture 2.114 (Finiteness). Let (X,x0) ⊂ (Rm, x0) be a subanalytic germ and
let dX be either the inner or the outer metric. Then X has only a finite number of
jumping exponents.
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Moderately Discontinuous
Metric Homotopy 3

The homotopy theory we develop in this chapter is in concordance with the homology
theory we developed in the previous chapter: it admits a Hurewicz morphism from the
homotopy group of degree n to the homology group of degree n (see Proposition 3.40)
that fulfils the Hurewicz Theorem in degree n = 1 (see Theorem 3.55). Similarly to the
MD homology, it is a functor from a category of geometric nature (see Definition 3.47)
to a category of an algebraic nature (see Definition 3.52).

Notation 3.1. In this chapter I := [0, 1] denotes the unit interval.

Notation 3.2. For any n ∈ N, we denote by 0 the origin of Rn.

Notation 3.3. For readability, in this chapter we denote (yt, t) in C(In) by (y, t).
But be aware that this does not provide a system of coordinates of C(In). We also
denote (y1, ..., yn) ∈ In by y1..n or sometimes by (y1..n−1, yn) and similarly. To recall
the definition of C(In), see Definition 2.4.

We consider C(In) to be equipped with the norm induced by the norm on Rn+1.
Therefore it makes sense to talk about l.v.a. maps from or into C(In) (recall Defini-
tion 2.7). Recall the definition (Definition 2.50) of a point in the category of metric
subanalytic germs.

Definition 3.4. Let q : [0, ϵ) → C(In) be a continuous path germ. We write q(s) =
(α(s), t(s)) ∈ C(In). We call q a point in (C(In), 0), if there is a representative [0, ϵ′)
of the germ [0, ϵ) and a K ≥ 1 such that

1

K
s ≤ t(s) ≤ Ks

for all s < ϵ′.
If we even have the equality t(s) = s for all s < ϵ′, then we call q a normal point in

(C(In), 0),
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3.1. Definition of the moderately discontinuous metric
homotopy

3.1.1. Weak b-maps

We are going to weaken the concept of b-maps (recall Definition 2.59). Recall that
b-maps were introduced to augment the class of morphisms in the category of metric
subanalytic germs. Weak b-maps are going to serve a different purpose. In fact, two
weak b-maps cannot be composed. Weak b-maps are a means of weakening the notion
of continuity in the concepts that provide the basis of classical homotopy theory: loops
and homotopies. Indeed both, the role of loops and the one of homotopies in the
classical homotopy theory will be taken by weak b-maps in our theory.

Before defining weak b-maps, we are going to prove a characterization theorem for
b-maps on a convex metric subanalytic germ, namely Proposition 3.6. This will reveal
the analogy between b-maps and weak b-maps.

Remark 3.5. Let φ be a b-map (later we are going to refer to this remark also for
weak b-maps) and let q be a point in its domain. When we write φ◦q, we refer to the
following: let {(Cj , fj)}j∈J be a representative of φ. The collection {q−1(Cj) : j ∈ J}
is a closed subanalytic cover of q’s domain. We can deduce that there is a j ∈ J for
which q as a germ is contained in Cj. Then, φ◦q refers to fj◦q. Notice that this is
well-defined up to b-equivalence of points (recall Definition 2.50).

We state the following proposition for any convex metric subanalytic germ (Z, z0) for
the sake of generality. What we have in mind is Z = C(In) for some n ∈ N. Observe
that, if a germ (Z, z0) has a convex representative, then there is an ϵ′ > 0 such that
the intersection of Z with any ball of radius smaller than ϵ′ is convex.

Proposition 3.6. Let (Z, z0) and (X,x0) be metric subanalytic germs. Let (Z, z0)
have a convex representative. Let Z be equipped with the outer metric (that coincides
with the inner one).

a) Let (Z1, Z2) be a finite subanalytic closed cover of Z. Let φk be a b-map from Zk
to X for k = 1, 2. For example, φk can be a subanalytic Lipschitz l.v.a. map from
Zk to Z. Then φ1 and φ2 glue to a global b-map if and only if for any point q in
Z1 ∩ Z2, the points φ1◦q and φ2◦q are b-equivalent.

b) Let φ1 = {(Cj , fj)}j∈J and φ2 = {(Dk, gk)}k∈K be two b-maps from Z to X. Then,
φ1 and φ2 are equivalent if and only if for any j ∈ J and k ∈ K and any point q in
the intersection Cj ∩Dk, the points fj◦q and gk◦q are b-equivalent.

Proof. First we show statement a). By definition, if φ1 and φ2 together form a b-
map on Z, φ1◦q and φ2◦q have to be b-equivalent for any q in the intersection. To
show the reverse implication, let q1 and q2 be two different points contained in Z1

and Z2 respectively that are b-equivalent. We define lt : [0, 1] → Z by the formula
lt(s) := q2(t)s + (1 − s)q1(t). Then, l(s, t) := lt(s) is subanalytic. As Z1 ∩ Im(lt)
and Z2 ∩ Im(lt) are compact, the intersection Z1 ∩ Z2 ∩ Im(lt) is non-empty for any
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t. So Im(l) ∩ Z1 ∩ Z2 is a non-empty subanalytic set with z0 in its closure. So by the
subanalytic Curve Selection Lemma, there is a continuous subanalytic germ

r : [0, 1]→ Im(l) ∩ Z1 ∩ Z2

with r(0) = z0 and r(t) ̸= z0 for any t > 0. By reparametrizing r, we can achieve that
r(t) ∈ Im(lt), so in particular that r is l.v.a. Then, r is b-equivalent to qk for k = 1, 2.
Using the triangle inequality, the fact that φk are Lipschitz on Zk and the fact that
φ1◦r and φ2◦r are b-equivalent, we get that φ1◦q1 and φ2◦q2 are b-equivalent.

For statement b), we can use the exact same line of argumentation.

Proposition 3.6 motivates the following definition:

Definition 3.7 (Weak b-map). Let (X,x0, dX) be a metric subanalytic germ and let
(Z, 0) be a subanalytic subgerm of C(In). Let b ∈ (0,∞). A weak b-moderately dis-
continuous subanalytic map (weak b-map, for abbreviation) from (Z, 0) to (X,x0, dX)
is a finite collection {(Cj , fj)}j∈J , where {Cj}j∈J is a finite closed subanalytic cover
of (Z, 0) and fj : Cj → X are continuous l.v.a. subanalytic maps for which for any
j1, j2 ∈ J and any point q in Cj1 ∩Cj2, the points fj1◦q and fj2◦q are b-equivalent. We
call {Cj}j∈J the cover of the weak b-map {(Cj , fj)}j∈J .

Two weak b-maps {(Cj , fj)}j∈J and {(C ′
k, f

′
k)}k∈K are called equivalent, if for any

j ∈ J and k ∈ K and any point q contained in the intersection Cj ∩ C ′
k, the points

fj ◦ q and f ′k◦q are b-equivalent in X.
We make an abuse of language and we also say that a weak b-map from (Z, z0) to

(X,x0, dX) is an equivalence class as above.
For b =∞, a weak b-map from Z to X is a continuous l.v.a. subanalytic map germ

from (Z, z0) to (X,x0, dX).

Notice that the fi are not necessarily Lipschitz, unlike the case of b-maps.

Remark 3.8. Definition 3.7 implies that statement a) of Proposition 3.6 also holds
for weak b-maps: two weak b-maps φ1 and φ2 defined on Z1 and Z2 respectively glue
to a global weak b-map if and only if for any point q in Z1 ∩ Z2, the points φ1◦q and
φ2◦q are b-equivalent.

Remark 3.9. Let φ = {(Cj , fj)}j∈J be a weak b-map (or b-map) and {Dk}k∈K a
refinement of {Cj}j∈J . For k ∈ K, let r(k) ∈ J be such that Dk ⊆ Cr(k). Then
{(Dk, fr(k)|Dk

)}k∈K is equivalent to φ.

Remark 3.10. Any weak b-map from Z to X has a representative {(Cj , fj)}j∈J , for
which the interior of Cj1 ∩ Cj2 is empty for any j1, j2 ∈ J . This follows from Re-
mark 3.9.

Remark 3.11. Let b ≥ b′. Then, any weak b-map from C(In) to (X,x0, dX) is also
a weak b′-map. Since C(In) is convex, by Theorem 3.6 this statement is also true for
b-maps.

Remark 3.12. Let φ = {(Cj , fj)}j∈J be a weak b-map (or b-map). Suppose there are
j1, j2 ∈ J with Cj1 ⊆ Cj2. Then, {(Cj , fj)}j∈J\{j1} is equivalent to φ.
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The definition of b-map and weak b-map is similar. Indeed, by Theorem 3.6, any
weak b-map {(Cj , fj)}j∈J defined on a convex subgerm of C(I), for which all fj are
Lipschitz, is a b-map. But, as opposed to b-maps, two weak b-maps cannot be composed
with each other. Nevertheless, a weak b-map can be composed with continuous l.v.a.
subanalytic maps on its right and with b-maps on its left.as opposed to b-maps, two
weak b-maps cannot be composed with each other. Nevertheless, a weak b-map can be
composed with continuous l.v.a. subanalytic maps on its right and with b-maps on its
left. This definition is analogous to the composition of two b-maps:

Definition 3.13. Let Z and Z ′ be subanalytic convex subgerms of C(In) and C(Im),
respectively. Let φ = {(Cj , fj)}j∈J be a weak b-map from Z to X. For a contin-
uous l.v.a. subanalytic map ϕ from Z ′ to Z, we define φ◦ϕ to be the weak b-map
{(ϕ−1(Cj), φj◦ϕ)}j∈J from Z ′ to X. For a b-map ψ = (Dk, gk)k∈K from X to X ′, we
define ψ◦φ to be the weak b-map {(f−1

j (Dk) ∩ Cj , gk ◦ fj|f−1
j (Dk)∩Cj

)}(j,k)∈J×K from
C(In) to X ′.

3.1.2. Definition of the b-moderately discontinuous metric homotopy
groups

We are going to define the b-moderately discontinuous metric homotopy groups for
fixed b ∈ (0,∞]. For that we need to weaken the concept of b-homotopies (recall
Definition 2.79) from C(In) to X.

Definition 3.14 (Weak b-homotopy (relative to W )). Let (X,x0, dX) be a metric
subanalytic germ and let φ0 and φ1 be weak b-maps from C(In) to X. A weak b-
homotopy from φ0 to φ1 is a weak b-map H from C(In+1) to X for which H◦ιk = φk
for k ∈ 0, 1, where ιk denotes the inclusion of C(In) into C(In+1) given by (y, t) →
((y, k), t). We say that φ0 and φ1 are weakly b-homotopically equivalent.

Let (W, 0) ⊆ (C(In), 0) be a subgerm. A weak b-homotopy relative to W from φ1 to
φ2 is a weak b-homotopy from φ1 to φ2 for which for any point q in ρ−1(W ), the points
H◦q and φ1◦ρ◦q, where ρ : C(In+1) → C(In) denotes the projection (y1..n+1, t) 7→
(y1..n, t), are b-equivalent.

Remark 3.15. Let φ0 and φ1 be weak b-maps from C(In) to X. Let (W, 0) ⊆
(C(In), 0) be a subgerm. There is a necessary condition for φ1 and φ2 to admit a
weak b-homotopy relative to W between them: for any point q in W , the points φ0◦q
and φ1◦q are b-equivalent.

The following definition describes the objects in the domain of the moderately dis-
continuous metric homotopy functor.

Definition 3.16. A pointed metric subanalytic germ ((X,x0, dX), p(t)) is a metric
subanalytic germ (X,x0, dX) together with a point p : [0, ϵ) → X. We often suppress
x0 and dX in the notation and simply write (X, p(t)) or (X, p).

Definition 3.17 (b-MD n-loop). Let ((X,x0, dX), p(t)) be a pointed metric subanalytic
germ and b ∈ (0,∞] and n ∈ N. A b-moderately discontinuous n-loop (b-MD n-loop, for
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short) is a weak b-map φ from C(In) to X for which the following boundary condition
holds: for any normal point q in C(∂In), the point φ◦q is b-equivalent to p.

We denote the set of all b-MD n-loops in (X, p) by MDΓbn(X, p). Observe that we
suppress x0 and dX in the notation MDπbn(X, p), even though they influence the set
of b-MD n-loops in (X, p).

With respect to the boundary condition for b-MD n-loops, observe that for a normal
point q in C(In), the point fj◦q does not need to be a normal point in X. That
boundary condition has a simple sufficient condition:

Example 3.18. Let φ be a weak b-map from C(In) to X that has a representative
{(Cj , fj)}j∈J as follows: for any j ∈ J , we have fj(y, t) = p(t) for any (y, t) ∈
C(∂In) ∩ Cj. Then φ is a b-MD n-loop.

Remark 3.19. Any two b-MD n-loops φ1 and φ2 in (X, p(t)) fulfil the necessary
condition of Remark 3.15 to admit a weak b-homotopy relative to W = C(∂In) between
them: for any point q in C(∂In), the points φ0◦q and φ1◦q are b-equivalent.

Proof. Let q be a point in C(∂In). By Remark 2.8, there is a subanalytic homeomor-
phism h : [0, ϵ) → [0, ϵ), for which q̃ := q◦h is a normal point. Since both q and q̃ are
l.v.a., the homeomorphism h is also l.v.a.. Therefore, the b-equivalence between φ1◦q̃
and φ2◦q̃ implies the b-equivalence between φ1◦q and φ2◦q.

Therefore the following definition is well-defined.

Definition 3.20. The n-th b-moderately discontinuous homotopy set (n-th b-MD ho-
motopy set, for short), denoted by MDπbn(X, p) is the quotient of MDΓbn(X, p) by weak
b-homotopies relative to C(∂In).

We call the equivalence class in MDπbn(X, p) of an element φ ∈ MDΓbn(X, p) the
b-homotopy class of φ and denote it by [φ].

In Definition 3.20 we have used that the relation by weak b-homotopies relative to
∂I is transitive by Remark 3.8 and clearly reflexive and symmetric. In order to give
two simple but important examples of weak b-homotopies, we adapt the notion of l.v.a.
to homotopies in the topological sense:

Definition 3.21. Let (Z, z0) and (X,x0) be subanalytic germs and let η : Z × I → X
be a subanalytic continuous homotopy. We call η l.v.a., if there is a K ≥ 1 such that

1

K
∥z − z0∥ ≤ ∥η(z, s)− x0∥ ≤ K∥z − z0∥

for any (z, s) ∈ Z × I.

Example 3.22. Let φ = {(Cj , fj)}j∈J be a weak b-map from C(In) to (X,x0). Suppose
there is a subanalytic l.v.a. homotopy η : Cj0 × I → X relative to

Bj0 := ∪j∈J\{j0}Cj ∩ Cj0
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from fj0 to some f̂j0 : Cj0 → X. Relative to Bj0 means that H(x, s) = fj0(x) for
all x ∈ Bj0. Then, φ is weakly b-homotopically equivalent to {(Cj , f̂j)}j∈J , where
f̂j = fj for j ̸= j0. Observe that implicitly we have used that for any s ∈ I we have
η((∗, 0), s) = x0, where (∗, 0) is the vertex of C(In). That is a consequence of η being
l.v.a..

Example 3.23. Let η : C(In) × I → C(In) be a subanalytic l.v.a. homotopy. We
write ηs for the map C(In) → C(In) sending (y1..n, t) to η((y1..n, t), s). Assume that
η0 = idC(In). Since η is l.v.a., we can define η̂ : C(In+1) → C(In) by the formula
η̂(y1..n+1, t) := η((y1..n, t), yn+1). Then φ◦η̂ defines a weak b-homotopy from φ to φ◦η1.

We are going to equip MDπbn(X, p) with a group structure.

Notation 3.24. Let n ∈ N and let 0 ≤ α1 ≤ α2 ≤ 1 and 0 ≤ α′
1 < α′

2 ≤ 1. Then,
ϕ
α′
1,α

′
2

α1,α2 denotes the continuous subanalytic l.v.a. homeomorphism from C([α′
1, α

′
2] ×

In−1) to C([α1, α2]× In−1) that linearly transforms the former into the latter. This is
defined by the formula

ϕ
α′
1,α

′
2

α1,α2(y1..n, t) := ((α2 −
α2 − α1

α′
2 − α′

1

(α′
2 − y1), y2..n), t)

We suppress n in the notation. When α′
1 = 0 and α′

2 = 1, we simply write ϕα1,α2.

Remark 3.25. Let n ∈ N, 0 ≤ α1 < α2 ≤ 1 and 0 ≤ β1 < β2 ≤ 1. Then we have
ϕβ1,β2◦ϕα1,α2 = ϕγ1,γ2, where γ1 = α1(β2 − β1) + β1 and γ2 = α2(β2 − β1) + β1.

Definition 3.26 (Concatenation of weak b-maps (·)). Let φ1 and φ2 be b-MD n-loops.
By the same argument as the one in Remark 3.19 and by Remark 3.8, φ1◦ϕ−1

0, 1
2

and

φ2◦ϕ−1
1
2
,1

glue to a weak b-map on C(In), which we call the concatenation of φ1 and φ2.
We denote it by φ1 · φ2.

If Hk are weak b-homotopies from φk to φ̂k for k = 1, 2, then by Remark 3.8 H1◦ϕ−1
0, 1

2

and H2◦ϕ−1
1
2
,1

glue to a weak b-homotopy. So we can define the concatenation of [φ1]

and [φ2] to be [φ1 · φ2].

Notation 3.27. Let φ be a b-MD n-loop and a ∈ N. The notation φa stands for the
result of concatenating φ with itself a times.

Remark 3.28. In order to concatenate any two weak b-maps φ1 and φ2 (in that
order) from C(In) to X, it is enough to ask that for any subanalytic continuous path
µ : [0, ϵ) → In−1 that the two points φ1◦q1 and φ2◦q0 are b-equivalent, where qk(t) :=
(k, µ(t), t) ∈ C(In). If n = 1, we define qk(t) := (k, t).

The following remark gives an intuition of how to decompose b-maps defined on
C(I).

Remark 3.29. a) Let φ be a weak b-map from C(In) to X. Let y0 ∈ (0, 1). By
Example 3.23, (φ◦ϕ0,y0) · (φ◦ϕy0,1) is weakly b-homotopically equivalent to φ. If
y0 =

1
2 , then we have (φ◦ϕ0,y0) · (φ◦ϕy0,1) = φ.
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b) Let φ be a weak b-map from C(I) to X. Let q be a point in C(I) different from
qk(t) := (k, t) ∈ C(I) for k = 0, 1. Let A1 and A2 be the regions of C(I) enclosed
by q0 and q and by q and q1, respectively. Then there are l.v.a. homeomorphisms
ψ1 and ψ2 from C(I) to Ak, such that (φ◦ψ1) · (φ◦ψ2) is weakly b-homotopically
equivalent to φ.

We are going to show that concatenation equips MDπbn(X, p) with a well-defined
group structure. That can be done in the same way as for the ordinary homotopy
groups of a punctured topological space.

Notation 3.30. Let ((X,x0, dX), p(t)) be a pointed metric subanalytic germ and n ∈ N.
We denote by cp,n the weak b-map from C(In) to X defined by cp,n(y, t) = p(t).

Lemma 3.31 (Existence of unit element). Let φ be a b-MD n-loop in (X, p). Then,
[φ] · [cp,n] = [cp,n] · [φ] = [φ].

Proof. We have illustrated the homotopy used in the analogous proof for the ordinary
homotopy theory in Figure 3.1a. There, φ lies on the top of I2 and cp,n on the bottom.

y1

y2

y3

y1

y3

y2

(a) Unit element.

y1

y3

y2

(b) Inverse element.

Figure 3.1.: Group axioms.

The same idea can be adapted to the MD homotopy. That can be formalized as
follows. Write φ = {(Cj , fj)}j∈J . Let r : I → I be defined by r(yn+1) :=

1
2 + 1

2yn+1.
We define

Ĉj := {(y1..n+1, t) ∈ C(In+1) : (y1..n, t) ∈ ϕ0,r(yn+1)(Cj)},

f̂j : Ĉj → X, (y1..n+1, t) 7→ fj◦ϕ−1
0,r(yn+1)

(y1..n, t),

T := {(y1..n+1, t) ∈ C(In+1) : (y1..n, t) ∈ Im(ϕr(yn+1),1)},
g : T → X, (x, t) 7→ p1(t).
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By Remark 3.8 and the same argument as the one of Remark 3.19, the weak b-maps
{(Ĉj , f̂j)}j∈J and (T, g) glue to a weak b-homotopy from φ · cp1,n to φ. The weak
b-homotopy from cp1,n · φ to φ is constructed analogously.

Lemma 3.32 (Associativity). Let φ1, φ2 and φ3 be b-MD n-loops. It is ([φ1] · [φ2]) ·
[φ3] = [φ1] · ([φ2] · [φ3]).

Proof. By Remark 3.25, (φ1 ·φ2) ·φ3 is given by glueing together φ1◦ϕ−1
0, 1

4

, φ2◦ϕ−1
1
4
, 1
2

and

φ3◦ϕ−1
1
2
,1
. In the same way φ1 · (φ2 · φ3) is given by gluing together φ1◦ϕ−1

0, 1
2

, φ2◦ϕ−1
1
2
, 3
4

and φ3◦ϕ−1
3
4
,1
. There is a weak b-homotopy between them as a result of Example 3.23

applied to the continuous homotopy illustrated in Figure 3.2.

Figure 3.2.: Associativity.

Notation 3.33. Let φ be a weak b-map from C(In) to X. We denote the weak b-map
{(
←−
Cj ,
←−
fj )} by ←−φ , where

←−
Cj and

←−
fj are the result of mirroring Cj and fj respectively at

the y1-axis:

←−
Cj := {(y1..n, t) ∈ I(Cn) : (1− y1, y2..n, t) ∈ Cj},
←−
fj (y1..n, t) := fj(1− y1, y2..n, t)

Lemma 3.34 (Existence of inverse elements). Let φ be a b-MD n-loop in (X, p).
Then we have [φ] · [←−φ ] = [←−φ ] · [φ] = [cp,n].

Proof. We have illustrated the homotopy used in the analogous proof for the ordinary
homotopy theory in Figure 3.1b. Again, φ lies on the top of I2 and cp,n on the bottom.
The intersection of any prism similar to the ones drawn in that figure with an affine
plane spanned by y1 and y3 gives a triangle. The homotopy is constant on the two
sides of any such triangle that lie in the interior of I2. The same idea can be adapted

62



to the MD homotopy. That can be formalized in a similar way as we formalized the
proof of Lemma 3.31.

Notation 3.35. Let φ be a b-MD n-loop and a ∈ N. The notation φ−a stands for the
result of concatenating ←−φ with itself a times.

The following small adaptation of the proof of Lemma 3.34 will be used repeatedly:

Lemma 3.36. Let φ = {(Cj , fj)}j∈J be a weak b-map from C(I) to X. Let q0(t) :=
(0, t) ∈ C(I) be the left lateral point of C(I) and q1(t) := (1, t) ∈ C(I) the right
lateral point. Let pk := φ◦qk. We define the constant weak b-maps l = (C(I), g0) and
r = (C(I), g1) by gk(y, t) := pk(t). Then there is a weak b-homotopy relative to C(∂I)
from φ · ←−φ to l and from ←−φ · φ to r.

Proof. The proof is analogous to the one of Lemma 3.34.

Proposition 3.37. The concatenation defined in Definition 3.26 defines a group struc-
ture on MDπbn(X, p).

Proof. The statement was shown in Lemma 3.31, Lemma 3.32 and Lemma 3.34.

Definition 3.38. From now on we call MDπbn(X, p) the n-th b-MD homotopy group
of (X, p). We also call MDπb1(X, p) the b-MD fundamental group of (X, p).

3.1.3. The Hurewicz homomorphism

In the same way as in the topological homotopy and homology theories, for the b-MD
homology and homotopy theories there is a Hurewicz homomorphism relating those
theories .

Let ((X,x0, d), p) be a pointed metric subanalytic b-connected germ. We define an
auxiliary map

ζn,b : {φ : φ is a weak b-map from C(In) to X} →MDCbn(X;Z) (3.1)

as follows: let φ = {(Cj , fj)}j∈J be a weak b-map from C(In) to X. Let {ρk}k∈K be an
orientation preserving homological subdivision (recall Definition 2.16) of C(In) whose
associated triangulation is compatible with {Cj}j∈J . For every k ∈ K, let r(k) ∈ J
such that the image of ρk is contained in Cr(k). We define the map ζ by the formula

ζn,b(φ) :=
∑
k∈K

fr(k)◦ρk. (3.2)

We have defined ζn,b on its general domain instead of defining it on the domain of
b-MD n-loops and make the following lemma for that general domain. The reason for
that is that we need that generality in the proof of the Hurewicz Theorem of degree
one (Theorem 3.55) further ahead.

Lemma 3.39. Let ((X,x0, d), p) be a pointed metric subanalytic b-connected germ. Let
ζn,b be as defined above. Then ζn,b has the following properties:
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1. The map ζn,b is well-defined independent from the choice of the homological sub-
division.

2. It is ζn,b(φ1) + ζn,b(φ2) = ζn,b(φ1 · φ2).

3. It is ζn,b(←−φ ) = −ζn,b(φ).

Proof. All the stated properties follow from the homological subdivision equivalence
in MDCbn((X, Im(p));Z). In particular, for property (3) recall Remark 2.19.

Proposition 3.40 (Hurewicz homomorphism). Let ((X,x0), p) be a pointed metric
subanalytic b-connected germ. Let b ∈ (0,∞] and n ∈ N. Then the restriction of ζn,b
to the space of b-MD n-loops induces a homomorphism

ζn,b :MDπbn(X, p)→MDHb
n(X;Z),

which we call the Hurewicz morphism.

Proof. By Lemma 3.39, if ζn,b is well-defined, then it is a homomorphism. We consider
MDCbn(X, Im(p);Z) to be a subcomplex of MDCbn(X;Z) in the way we explained at
the beginning of Subsection 2.2.5.

We show that ζn,b is well-defined. For that, first we show that the image of a b-MD
n-loop φ under ζn,b is a cycle. Observe that the long exact relative b-MD homol-
ogy sequence (recall Proposition 2.48) gives us an isomorphism ψp :MDHb

n(X;Z) ∼−→
MDHb

n(X, Im(p);Z) as follows: we apply the long exact relative b-MD homology se-
quence to the subanalytic subgerms ∅ ⊂ Im(p) ⊂ X and use Proposition 2.51 to fill
in the b-MD homology of the point. It is clear that ψp◦ζn,b(φ) is trivial. Therefore
ζn,b(φ) is trivial.

Now we show that ζn,b respects the equivalence by weak b-homotopies. Let φ1

and φ2 be b-MD n-loops and let η be a weak b-homotopy between them. Choose an
orientation preserving homological subdivision of C(In+1) compatible with η’s cover.
Via that subdivision we can construct an element z ∈MDCbn+1(X,Z) for which δ(z) =
ζn,b(φ1)− ζn,b(φ1) + r, where r is an element of MDCbn(Im(p),Z). Then ψp◦ζn,b(r) is
trivial and therefore ζn,b(r) is trivial.

In the Hurewicz Theorem for degree one (see Theorem 3.55 in Section 3.2), we
show that the Hurewicz morphism defines an isomorphism from the abelianization of
MDπb1(X, p) to MDHb

1((X, Im(p));Z).

3.1.4. Other properties

Apart from the Hurewicz morphism whose existence we have shown above, the b-
MD homotopy groups share more of the classical properties of the ordinary homotopy
groups of a punctured topological space. We are going to show that the b-MD homo-
topy groups of degree n > 1 are abelian for any b ∈ (0,∞]; and that, if the metric
subanalytic germ is b-path connected (see Definition 3.43), the b-MD homotopy groups
are independent from the choice of base point. We have not written down the definition
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of b-MD homotopy groups relative to a metric subanalytic subgerm yet. That definition
can be done analogously to the absolute one. We think that it will be straightforward
to prove the existence of the long exact sequence of relative b-MD homotopy groups.

Proposition 3.41. For n > 1, MDπbn(X, p) is abelian for any b ∈ (0,∞].

To prove the proposition, we can proceed exactly as in a proof for the ordinary higher
homotopy groups, in which the following argument from [14] is used:

Lemma 3.42 (Eckmann-Hilton argument). Let X be a set and let ◦ and ⊗ be two
binary operations on X that are both unital. Further suppose that

(x1◦x2)⊗ (x3◦x4) = (x1 ⊗ x3)◦(x2 ⊗ x4)

Then, ◦ and ⊗ coincide and are commutative.

Proof of Proposition 3.41. We have defined · by glueing two b-MD n-loops along the
y1-axis. One can easily check that the binary operation defined by glueing two b-MD
n-loops the same way along the y2-axis fulfils the hypothesis of Lemma 3.42 together
with ·.

Just as the ordinary homotopy group is independent from the choice of base point,
if the topological space is path-connected, the b-MD homotopy group is independent
from the choice of base point, if the metric subanalytic germ is b-path connected (see
Definition 3.43). Notice that the first time the word point was used in the last sentence
it referred to the set-theoretical notion of point.

Definition 3.43. Let (X,x0, d) be a metric subanalytic germ. It is called b-path con-
nected, if for any two points p1(t) and p2(t) in X, there is a weak b-map η : C(I)→ X
for which η(0, t) and η(1, t) are b-equivalent to p1(t) and p2(t), respectively. We say
that η connects p1 and p2.

The concept of b-path connectedness is related to the concept of b-connected com-
ponents (recall Definition 2.99) as follows.

Definition 3.44. Let (X,x0, d) be a metric subanalytic germ. It is called b-connected,
if it only has one b-connected component.

Lemma 3.45. Let (X,x0, dX) be a metric b-connected subanalytic germ. Then (X,x0, dX)
is b-path connected.

Proof. We recall the notion of straight points. Let h : (X,x0)
∼−→ C(LX) be a subana-

lytic isomorphism for which it is ∥h(x)− 0∥ = ∥x− x0∥. A point p̃ is called a straight
point with respect to h, if p(t) = h−1(x, t) for some x in the link LX .

Let p1(t) and p2(t) be two points in X. Since X is b-connected, we can assume
that p1((0, ϵ)) and p2((0, ϵ)) lie in the same connected component of X \ {x0}. Then,
showing the statement is an easy adaptation of the proof of Proposition 2.100. First
we can show that there is a continuous subanalytic l.v.a. map connecting pk with a
straight point. Then we can show that for any two straight points there is a weak
b-map from C(I) to X connecting those two straight points. Concretely:

65



We assume that p1((0, ϵ)) and p2((0, ϵ)) lie in the same connected component of
X \ {x0}. Let xk : [0, ϵ]→ L and τk : [0, ϵ]→ [0, ϵ] be such that h◦pk(t) = (xk(t), τk(t))
for k = 1, 2. Observe that t = 0 implies τk(t) = 0. We define continuous subanalytic
l.v.a. maps ηk : C(I)→ X for k = 1, 2 by the formula

η(y, t) := h−1(xk(t+ (ϵ− t)y), τk(t)).

Then ηk connects the point pk with the straight point p̃k : t 7→ h−1(xk(ϵ), τk(t)) for
k = 1, 2. Since x1(ϵ) and x1(ϵ) are in the same conneted component of LX,ϵ, there is
a subanalytic path γ from one to the other. So we can define η3 connecting p̃1 and p̃2
by the formula

η3(y, t) := h−1(γ(y), τ1(t) + (τ2(t)− τ1(t))y).

The concatenation η1 · η3 · ←−η2 yields η as stated.
If p1((0, ϵ)) and p2((0, ϵ)) lie in different connected components of X \{x0}, there are

p̃k in the connected component of pk such that p̃1 is b-equivalent to p̃2. Then the b-map
from p1 to p̃1 as obtained above and the one from p̃2 to p2 can be concatenated.

Proposition 3.46 (Independence of base point). Let (X,x0, dX) be a metric suban-
alytic germ. Let p1(t) and p2(t) be points in X. Let η be any weak b-map from C(I)
to X connecting p1 and p2 as in Lemma 3.45. Let η̂ be the weak b-map from C(I)
to X defined by the formula η̂ := η◦ρ, where ρ : C(In) → C(I) is the projection
ρ(y1..n, t) := (y1, t). Then the homomorphism

ζ :MDπbn(X, p1)→MDπbn(X, p2)

defined by ζ(φ) :=
←−
η̂ ·φ·η̂ is an isomorphism. Moreover, its inverse is ζ−1(φ) := η̂·φ·

←−
η̂ .

Proof. The statement is obvious.

3.1.5. Functoriality

The MD homotopy functor is defined in the following domain:

Definition 3.47. The category of pointed metric subanalytic germs has pointed metric
subanalytic germs (recall Definition 3.16) as objects and subanalytic Lipschitz l.v.a.
maps f : ((X,x0, dX), p)→ ((X ′, x′0, dX′), p′) for which f◦p = p′ as morphisms.

Similarly to the case of the MD homology, the domain of the b-MD homotopy can
also be augmented:

Definition 3.48. The category of pointed metric subanalytic germs with b-maps has
pointed metric subanalytic germs (recall Definition 3.16) as objects and b-maps ψ :
((X,x0, dX), p)→ ((X ′, x′0, dX′), p′) for which ψ◦p is b-equivalent to p′ as morphisms.

The target category is defined analogously to the target category of the MD-homology
functor (recall Definition 2.42)).

Notation 3.49. We denote the category of groups by G and the category of abelian
groups by AG.
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Proposition 3.50. Let n ∈ N and b ∈ (0,∞]. There are functorial assignments
((X,x0, dX), p) 7→MDπb1(X, p) (resp. ((X,x0, dX), p) 7→MDπbn(X, p) for n > 1) from
the category of pointed metric subanalytic germs with b-maps to G (resp. AG).

Proof. We assign to a b-map ψ : ((X, , x0, dX), pX) → ((X ′, x′0, dX′), pX′) the group
homomorphisms ψ∗ : MDπbn(X, qX) → MDπbn(X

′, qX′) that sends φ to ψ◦φ. It is
easy to see that ψ∗ is well-defined

Proposition 3.51. Let n ∈ N and b ∈ (0,∞]. There are functorial assignments
((X,x0, dX), p) 7→MDπb1(X, p) (resp. ((X,x0, dX), p) 7→MDπbn(X, p) for n > 1) from
the category of pointed metric subanalytic germs with b-maps to G (resp. AG).

Proof. We assign to a b-map ψ : ((X, , x0, dX), pX) → ((X ′, x′0, dX′), pX′) the group
homomorphisms ψ∗ : MDπbn(X, qX) → MDπbn(X

′, qX′) that sends φ to ψ◦φ. It is
easy to see that ψ∗ is well-defined.

Definition 3.52. The category B − G (resp. B − AG) of B-groups (resp. B-abelian
groups) is the category whose objects are functors from B to G (resp. AG) and the
morphisms are natural transformations of functors.

Proposition 3.53. Let n ∈ N. There are functorial assignments ((X,x0, dX), p) 7→
MDπ⋆1(X, p) (resp. ((X,x0, dX), p) 7→ MDπ⋆n(X, p) for n > 1) from the category of
pointed metric subanalytic germs to B− G (resp. B−AG).

Proof. We assign to an object (X, p) the groups MDπbn(X, p) for any b ∈ (0,∞] to-
gether with the morphisms ηb,b′ : MDπbn(X, p) → MDπb

′
n (X, p) for any b ≥ b′ that

we get from Remark 3.11. To a morphism g : ((X, , x0, dX), pX)→ ((X ′, x′0, dX′), pX′)
between pointed metric subanalytic germs we assign the group homomorphisms gb∗ :
MDπbn(X, qX)→MDπbn(X

′, qX′) for any b ∈ (0,∞] that sends φ to g◦φ. It is easy to
see that gb∗ is well-defined and that it commutes with the ηb,b′ .

Notation 3.54. We denote the group homomorphisms MDπb∗(X, qX)→MDπb∗(X
′, qX′)

induced by g : (X, pX)→ (X ′, pX′) by gb∗.

3.2. The Hurewicz Theorem in degree 1

In this chapter we adapt an important computational tool in the context of the ordinary
homotopy and homology theory of punctured topological spaces to our theory: the
Hurewicz Theorem in degree 1. For the statement in topology see for example Theorem
4.29 of [33]. We follow the line of proof given in [32]. Recall the definition of ζ in
equation (3.1) and (3.2).

Theorem 3.55 (Hurewicz Theorem). Let (X,x0, d) be a b-path connected metric sub-
analytic germ and let p be any point in X. Let b ∈ (0,∞] and n ∈ N and let Ψn,b denote
the Hurewicz morphism (recall Proposition 3.40). Let C := [MDπb1(X, p),MDπb1(X, p)]
denote the commutator of MDπb1(X, p). Then,

Ψn,b :MDπb1(X, p)/C →MDHb
1(X,Z)
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defined by the formula
Ψn,b([φ]C) := ζn,b([φ])

is a group isomorphism.

Proof. We fix a l.v.a. homeomorphism µ : ∆̂1 → C(I). Via µ we identify ∆̂1 with
C(I) and subanalytic l.v.a. maps on the domain ∆̂1 with the corresponding maps on
C(I) and vice versa. Recall from Lemma 3.45 that we say that a b-map φ from C(I)
to X connects two points p0 and p1 in X, if the two lateral points φ(0, t) and φ(1, t)
of φ are b-equivalent to p0 and p1, respectively.

We are going to construct the inverse of Ψ and denote it by Γ. For any b-equivalence
class [r(t)] of a point r(t) in X, we fix a weak b-map τ[r] connecting r and p. This exists
due to Lemma 3.45. For the equivalence class [p], we choose τ[p] to be the constant
map cp,q : (y, t) 7→ p(t). For a b-MD 1-simplex σ and k ∈ {0, 1}, we denote by pk the
the two lateral points t 7→ σ(kt, t) of σ. We define

Γ([σ]) := [←−τ [p0] · σ · τ[p1]]C.

Since the target of Γ is the quotient of MDπb1(X, p) by its commutator, we can extend
this definition linearly by Γ(a1σ1 + a2σ2) := [Γ(σ1)

a1 · Γ(σ2)a2 ]C; in particular it is
Γ(−σ) := [

←−−
Γ(σ)]C.

We have defined a group homomorphism from MDCpre,∞1 (X,Z) to MDπb1(X, p).
To show that it descends to a morphism on MDCb1(X,Z), we have to check the two
conditions of Remark 2.31. Clearly, if σ1 and σ2 are b-equivalent l.v.a. 1-simplices, they
are sent to the same weak b-map. If σ is a l.v.a. 1-simplex and z a l.v.a. 1-chain with
σ1 →∞ z, then σ and z are sent to weakly b-homotopically equivalent b-MD 1-loops.

To show that Γ descends to a morphism on MDHb
1(X,Z), let υ be a b-MD 2-simplex.

Let p1 be the point t 7→ υ◦j02((0, 1), t) (j02 is defined in Notation 2.12). By Lemma 3.36,
we have

Γ(∂υ) = [←−τ p1 · υ◦j02 ·
←−−
υ◦j12 · υ◦j22 · τp1 ]C.

So there is a continuous weak b-homotopy from Γ(∂υ) to the constant weak b-map cp,1.
We show that Γ is the inverse of Ψn,b. Since we have chosen τ[p] to be (y, t) 7→ p(t), we

get Γ◦Ψn,b = idMDπb
1(X,p)/C

. To show that Ψn,b◦Γ = idMDHb
1(X,Z)

, let z =
∑n

l=1 alσl ∈
MDHb

n(X,Z). For every l ∈ L, let pl,0 and pl,1 denote the two lateral points of σl. We
have

Ψn,b(Γ(z)) = Ψn,b(
←−−−τ[p1,0] · σ1 · τ[p1,1])

a1 · ... · (←−−−τ[pn,0] · σn · τ[pn,1])
an).

By Lemma 3.39, the right side is equal to

n∑
l=1

al(−τ[pl,0] + σl + τ[pl,1]) =

n∑
l=1

alσl +Σ,

where Σ is a sum that cancels in pairs as z is a cycle.
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3.3. Basic computations

This section is divided into the computation of the ∞-MD homotopy group for any
degree n and some basic computations for the b-MD fundamental group

3.3.1. The ∞-MD homotopy groups

In this subsection we use the existence of subanalytic representatives in any topological
homotopy class.

Proposition 3.56. Let ((X,x0, dX), p) be a pointed metric subanalytic germ. Fix ϵ > 0
small enough. There is a group isomorphism

ζ :MDπ∞n (X, p)
∼−→ πn(LX,ϵ, p(ϵ)),

where πn(LX,ϵ, p(ϵ)) denotes the standard n-th homotopy group of the link LX,ϵ of X.

Proof. Let h : (X, Im(p), x0)
∼−→ (C(LX,ϵ), p(ϵ)) be a subanalytic homeomorphism. It

exists since the subanalytic conical structure theorem is compatible with subgerms.
We can assume that h(x) = (α(x), ∥x−x0∥) for some α(x) ∈ L. Let α : LX,ϵ → X and
τ : (0, ϵ] → X such that h(x) = (α(x), τ(x)) for x ̸= x0. We fix t0 ∈ (0, ϵ] and define
the image of a∞-MD n-loop φ : C(In)→ X under ζ to be φt0 , defined by the formula
φt0(y) := α(φ(y, t0)). It is clear that φt0 and φt̃0 are homotopic in the topological
sense for any t0, t̃0 ∈ (0, ϵ). Furthermore, if H : C(In+1)→ X is a weak ∞-homotopy
between φ and φ̃, then Ht0 defined in the same way as φt0 is a homotopy from φt0 to
φ̃t0 .

Now we define the inverse υ of ζ. Let [γ] ∈ πn(LX,ϵ) and let γ̃ ∈ [γ] be a
subanalytic representative. We define the image of [γ] under υ to be the mapping
(y, t) 7→ h−1(γ̃(y), t).

We call a b-MD n-loop {(Cj , fj)}j∈J straight, if for any j ∈ J we have h◦fj(y, t) =
(α(y), t) for some subanalytic α : In → L. Then υ is the inverse of ζ due to the existence
of straight representatives in the weak ∞-homotopy class of any ∞-MD n-loop.

Corollary 3.57. Let ((X,x0, dX), p(t)) be a pointed metric subanalytic germ whose
link (LX,ϵ) is path-connected. Let b ∈ (0,∞]. If the ordinary fundamental group
π1(LX,ϵ, p(ϵ)) is abelian and the group homomorphism MDπ∞1 (X, p) → MDπb1(X, p)
is surjective, then MDπb1(X, p) =MDHb

1(X,Z).

Proof. Since MDπ∞1 (X, p) → MDπb1(X, p) is surjective and MDπ∞1 (X, p) is abelian,
so is MDπb1(X, p). Now the statement follows from the Hurewicz Theorem (Theo-
rem 3.55).

3.3.2. Computations for the MD fundamental group

As expected, the MD fundamental group of the point is trivial.

Proposition 3.58. Let ([0, ϵ), d, 0)) be the point of our category (recall Definition 2.50).
Let p(t) be a l.v.a. subanalytic continuous path in [0, ϵ). The MD-fundamental group
of ([0, ϵ), p) is trivial.
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Proof. We are going to show that MDπ∞1 ([0, ϵ), p)→MDπb1([0, ϵ), p) is surjective and
apply Corollary 3.57. Let φ = {(Cj , fj)}j∈{1,...,r} be a b-MD 1-loop. We can assume
that J = {1, . . . , r} and that every Cj is the straight cone over a closed interval [aj−1, aj ]
and that a0 < a1 < ... < ar. In particular we have that φ is weakly b-homotopically
equivalent to f1 · ... · fr. For j ∈ {1, . . . , r − 1}, we define the constant weak b-map gj
on C(I) by gj(y, t) := fj(aj , t). Then φ is weakly b-homotopically equivalent to the
result of alternatingly concatenating fj and gj as follows:

f1 · g1 · f2 · ... · gr−1 · fr (3.3)

We replace every gj in (3.3) by

g̃j : (y, t) 7→ fj(aj , t) + y(fj+1(aj , t)− fj(aj , t)).

We can do that, because they define the same b-map since the points p1(t) := fj(aj , t)
and p2(t) := fj+1(aj , t) are b-equivalent. As a result we get a continuous b-MD 1-loop
that is weakly b-homotopically equivalent to φ.

Proposition 3.59. Let L ⊂ Rm be a subanalytically path-connected subanalytic set.
Let b ∈ Q∩ [1,∞) and let (CbL, 0, d) be the b-cone over L as in Definition 2.4, where d
is the outer metric. Let p be a point in CbL and let t0 > 0 be small.

a) If b′ < b, then MDπb
′

1 (C
b
L, p) is trivial.

b) Suppose that L is compact. If b′ ≥ b, then the morphism

η∞,b′ :MDπ∞1 (CbL, p)→MDπb
′

1 (C
b
L, p)

is surjective.

Proof. Statement a) follows from the functoriality of the b′-MD homotopy with respect
to b′-maps as follows. We define ψ : LbX → [0, ϵ) to be the b′-map ψ = (CbL, f), where
f : CbL → [0, ϵ) is defined by f(xtb, t) = t. We show that ψ has an inverse as a b′-map.
For that, we choose a point p̃(t) in CbL that is a normal point in the following sense: if
we write p̃(t) = (αq̃(t)τq̃(t)

b, τq̃(t)), then it is τq̃(t) = t. The inverse of ψ is the b′-map
([0, ϵ), g), where g : [0, ϵ)→ CbL is defined by g(t) = p̃(t).

For Statement b), let φ = {(Cj , fj)}j∈J be a b′-MD 1-loop. We can assume that
J = {1, . . . , r} and that every Cj is the straight cone over a closed interval [aj−1, aj ]
and that a0 < a1 < ... < ar. In particular we have that φ is weakly b-homotopically
equivalent to f1 ·...·fr. We write fm(y, t) = (αm(y, t)τm(y, t)

b, τm(y, t)) for m = j, j+1.
We write fm(y, t) = (αm(y, t)τm(y, t)

b, τm(y, t)) for m = j, j + 1. Since fm is l.v.a.,
the development of τm(y, t) as a fractional power series around 0 has to have a term
of degree one for m = j, j + 1. Let o>b′(τm(aj , t)) be the sum of all terms in τm(aj , t)
of degree greater than b′. We can assume that τm(aj , t) does not have terms of degree
greater than b′. From a computation using that {∥x∥ : x ∈ L} is bounded and that for
τ1, τ2 > 0 small enough it is |τ b1 − τ b2 | ≤ |τ1 − τ2|, we get that the function

(y, t) 7→ (αm(y, t)(τm(y, t)− o>b′(τm(aj , t)))b, τm(y, t)− o>b′(τm(aj , t)))
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is b′-equivalent to fm for m = j, j + 1. Therefore fm can be replaced by that function.
We know that the points pj(t) := fj(aj , t) and pj+1(t) := fj+1(aj , t) are b′-equivalent.

So both,

lim
t→0

|τj(aj , t)− τj+1(aj , t))|
tb′

= 0 (3.4)

and

lim
t→0

dout(αj(aj , t)τj(aj , t)
b, αj+1(aj , t)τj+1(aj , t)

b)

tb′
= 0 (3.5)

and tend to zero. From equation (3.4) we can deduce that

τj(aj , t) = τj+1(aj , t), (3.6)

since τj(aj , t) and τj+1(aj , t) do not have terms of degree greater than b′. Therefore
from equation (3.5) we can deduce that αj(aj , t) and αj+1(aj , t) tend to the same point
in L, using that L is compact. Therefore, by the Monotonicity Theorem, there is a
t0 > 0 such that

d(αj(aj , t1), αj+1(aj , t1)) ≤ d(αj(aj , t2), αj+1(aj , t2)) (3.7)

for all t1, t2 ∈ [0, t0] with t1 ≤ t2. For m = j, j + 1, we define the subanalytic l.v.a.
maps gm : C(I)→ CbL by the formula

gm(y, t) := (αm(aj , t− yt)τm(aj , t)b, τm(aj , t)).

We have that gj and gj+1 coincide as weak b′-maps. That follows from equation (3.6)
and inequality (3.7) applied to t1 = t− yt and t2 = t.

By Lemma 3.36, the concatenation f1 · ... · fr is weakly b-homotopically equivalent
to

f1 · ... · fj · gj · ←−−gj+1 · fj+1 · ... · fr
We have connected the moderate discontinuity between fj and fj+1 in a continuous
way. Repeating this procedure for all j ∈ J \{r} yields a weak b-map (C(I), f̂) without
moderate discontinuities. It is in the image of η∞,b.

Corollary 3.60. Let L be a compact path-connected subanalytic space with abelian
ordinary fundamental group. Let CbL denote the b-cone over L equipped with the outer
distance. Let p be a point in CbL. Then we have

MDπ1(C
b
L, p)

∼=MDH1(C
b
L;Z)

for every b ∈ (0,∞].

Proof. The statement follows from Corollary 3.57 and Proposition 3.59.

Example 3.61. Let S1 be the circle. We are going to show that the b′-MD fundamental
group of CbS1 is
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1. Z, if b′ ∈ [b,∞],

2. trivial, if b′ ∈ [1, b).

Proof. Statement (2) follows from part a) of Proposition 3.59. To show statement (1),
we use Corollary 3.60. To compute the first b′-MD homology group of CbS1 , we use
Corollary 2.95 that relates the MD homology with the nerve of a cover. To construct
the cover we choose three open segments Sj of S1, where j ∈ {1, 2, 3}, such that each
segment overlaps with one of the other two segments at one of its ends and with the
third segment at the other of its ends. We ask the overlap of the segments to be small
enough so that the intersection of the three segments is empty. Now we define the cover
{Uj}j∈{1,2,3} of CbS1 by Uj := {(xtb, t) ∈ CbS1 : x ∈ Sj}. That cover fulfils the hypothesis
of Corollary 2.95: each Uj and any intersection of two of the Uj ’s is b′-contractible and
the intersection of the three of them is empty; furthermore for any subset J ⊆ {1, 2, 3},
the collection {Uj}j∈J is a b′-cover of ∪j∈JUj . Therefore the first b′-MD homology of
CbS1 coincides with the homology of the nerve of the cover {Uj}j∈{1,2,3} which is Z.

3.4. Detection of fast loops

In [4] the concept of fast loops plays an important role in the classification of normal
complex algebraic surface germs. There a fast loop is defined as follows:

Definition 3.62. Let (X,x0, d) be a metric germ. For ϵ > 0, let LX,ϵ denote the
intersection of X with the sphere in Rn of radius ϵ. Let β > 1. A smooth family of
closed curves γ : [0, 1]× [0, ϵ0)→ X is called β-fast loop in X, if

• γϵ(t) := γ(t, ϵ) is a loop contained in LX,ϵ for any ϵ,

• γϵ is not contractible in LX,ϵ,

• lim
ϵ→0

length(γϵ)
ϵβ

= 0, where length(γϵ) is defined as follows:

length(γϵ) := sup{
n∑
j=1

d(γϵ(tj−1), γϵ(tj)) : n ∈ N, 0 = t0 < t1 < · · · < tn = 1}

When it is not important what the specific paremeter β looks like, we simply call γ a
fast loop in X.

The concept was first introduced in [7], where it was shown, that at least under
certain conditions, the existence of a fast loop in a metric germ X is an obstruction
for X to be metrically conical. The existence of fast loops has the following impact on
the MD fundamental group:

Proposition 3.63. Let (X,x0, d) be a metric subanalytic germ with path-connected
link. Let p be a point in X. Let there be a subanalytic fast loop γϵ(s) in X. Then the
morphism

η∞,b′ :MDπ∞1 (X, p)→MDπb1(X, p)
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is not injective for any b ∈ (0, β).

Proof. By Proposition 3.46 we can assume that p(t) := γt(0). We define the ∞-
MD 1-loop φ = (C(I), f) by the formula f(y, t) := γt(y). By definition of fast loop
and Proposition 3.56, we know that φ is a non-trivial element of MDπ∞1 (X, p). Let
b ∈ [1, β). Then φ is trivial as an element of MDπb1(X, p).

We conjecture the following extension of Proposition 3.59:

Conjecture 3.64. Let L ⊂ Rm be a compact path-connected subanalytic set. Let
b ∈ Q ∩ [1,∞) and let (CbL, 0, d) be the b-cone over L as in Definition 2.4, where d is
the inner or outer metric. Let p be a point in CbL and let t0 > 0 be small. If b′ ≥ b,
then the morphism

η∞,b′ :MDπ∞1 (CbL, p)→MDπb
′

1 (C
b
L, p)

is an isomorphism. In particular MDπb
′

1 (C
b
L, p) is isomorphic to π1(L, p(t0)), where

π1 denotes the ordinary fundamental group.

If Conjecture 3.64 is true, then it implies that the MD fundamental group detects
the existence of subanalytic fast loops as an obstruction to metrical conicalness:

Conjecture 3.65. Let (X,x0, d) be a metric subanalytic germ with path-connected link
LX . The MD fundamental group of (X, p), where p is any point in X, captures the
existence of subanalytic fast loops in the following sense. Let C1

LX
denote the straight

cone over LX . Let pL be any point in C1
LX

. If there is a subanalytic fast loop in X,
then the MD fundamental group of (X, p) is different to the one of (C1

LX
, pL).

Proof. The statement follows immediately from Proposition 3.63 and Conjecture 3.64.

3.5. Alternative setting

We could have defined the MD homotopy theory without requiring the f ′js in a weak
b-map {(Cj , fj)}j∈J to be subanalytic. That would define a bi-Lipschitz invariant as
opposed to the subanalytic bi-Lipschitz invariant we have defined. The main reasons
why we have defined the MD homotopy theory in the subanalytic setting is to guarantee
that we have a Hurewicz morphism as in topology.
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Subanalytic geometry
and O-minimal structures A

This appendix collects a few facts on subanalytic geometry that I have learned from
Edson Sampaio.

Definition A.1. A subset X ∈ Rm is called semianalytic at x ∈ Rm if there exists an
open neighborhood U of x in Rm such that U ∩X can be written as a finite union of
sets of the form {x ∈ Rm | p(x) = 0, q1(x) > 0, . . . , qk(x) > 0}, where p, q1, . . . , qk are
analytic functions on U . A subset X ⊂ Rm is called semianalytic if X is semianalytic
at each point x ∈ Rm.

Definition A.2. A subset X ⊂ Rm is called subanalytic at x ∈ Rm if there exists
an open neighborhood U of x in Rm and a relatively compact semianalytic subset S ⊂
Rm × Rk, for some m, such that U ∩ X = π(S) where π : Rm × Rk → Rm is the
orthogonal projection map. A subset X ⊂ Rm is called subanalytic if X is subanalytic
at each point of Rm.

Definition A.3. Let X ⊂ Rm be a subanalytic set. A map f : X → Rk is called a
subanalytic map if its graph is subanalytic.

Definition A.4. A subset X ⊂ Rm is called globally subanalytic if its image under
the map

(x1, . . . , xm) 7→ (
x1√
1 + x21

, . . . ,
xm√
1 + x2m

)

from Rm to Rm is subanalytic.

Remark A.5. In [12], a globally subanalytic set is called a finitely subanalytic set.

Remark A.6. 1. Any globally subanalytic set is a subanalytic set;

2. Any bounded subanalytic set is a globally subanalytic set;

3. The collection of all globally subanalytic sets forms an O-minimal structure (see
Theorem in [12]).

For completeness of statement 3 of the previous remark, we remind the definition of
O-minimal structures:

Definition A.7 (O-minimal structure). An O-minimal structure over the reals is a
collection {Sn}n∈N, that satisfies the following axioms:
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1. For any n ∈ N, the collection Sn contains all algebraic subsets of Rn.

2. For any n ∈ N, the collection Sn is a Boolean subalgebra of the powerset of Rn,
i.e.

• Rn ∈ Sn;
• ∅ ∈ Sn;
• for any A,B ∈ Sn we have A ∩B ∈ Sn;
• for any A,B ∈ Sn we have A ∪B ∈ Sn;
• for any A ∈ S, its complement AC is in Sn.

3. For any A ∈ Sm and B ∈ Sn, we have A×B ∈ Sm+n.

4. If p : Rn+1 → Rn denotes the projection forgetting the last coordainate and
A ∈ Sn+1, then we have p(A) ∈ Sn.

5. The elements of S1 are precisely all finite unions of points and intervals.

Any set A ∈ Sn for n ∈ N is called definable. For any two definable sets A and B
of a given O-minimal structure, a map f : A → B is called definable, if its graph is
definable.

When working with subanalytic germs, one can take into account only bounded
representatives. By statement 2 of Remark A.6, those representatives are globally
subanalytic. That is the setting we have chosen to work in in this thesis. The theorems
and facts we use in the thesis in this context are the following:

• Let A and B be bounded subanalytic sets. Let f : A → B be a subanalytic
map. Then it follows directoy from the axioms of O-minimal structures and
Definition A.3 that the images and preimages of globally subanalytic sets under
f are globally subanalytic (see Remark 2 of [25]). We use the statement about
preimages for example in Proposition 2.55.

• The Monotonicity Theorem (see Theorem 2.1 in [9]), which states the following:
if f : (a, b) → C is a subanalytic function with C ⊂ R bounded, then there is a
finite subdivision a = a0 < a1, · · · < ak = b such that, on each interval (aai , ai+1),
the function f is continuous and either constant or strictly monotone. We use it
for example in Proposition 3.59.

• The Conical Structure Theorem for sets of an O-minimal structure. We use it
often, for example in Remark 2.8. We have stated it for subanalytic germs in
Remark 2.6:

Remark 2.6. We recall that the link of a subanalytic germ is well defined as a
topological space as the intersection of X with a small enough sphere centered at
x0; we denote it by Link(X,x0) or simply LX . Moreover, the conical structure
theorem says, given a subanalytic germ (X,x0) and a family of subanalytic sub-
germs (Z1, 0),...,(Zk, 0) ⊆ (X, 0), that there exists a subanalytic homeomorphism
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h : C(LX)→ (X,x0) such that ||x0−h(tx, t)|| = t and such that h(C(LZi)) = Zi
with LZi in LX (see Theorem 4.10, 5.22, 5.23 in [9]). We say that the conical
structure h is compatible with the family {Zi}. The conical structure is why we
say that x0 is the vertex of (X,x0).

• The Curve Selection Lemma (see Theorem 3.2 of [9]) for sets of an O-minimal
structure which states the following. Let A ⊆ Rn be a defineble set and b ∈ Ā.
Then there is a continuous definable map γ : [0, 1)→ Rn such that γ(0) = b and
γ((0, 1)) ⊆ A. We use it for example in Lemma 2.27.

• Triangulability as explained in Remark 2.15:

Remark 2.15. Given a finite family S of closed subanalytic subsets of Z, there
exists a subanalytic triangulation α : |K| → Z compatible with S, that is, such
that every subset of S is a union of images of simplices of |K|. See for example
Theorem 4.4. in [9] or Theorem II.2.1. in [37].

We use it for example in Proposition 2.55.

• The subanalytic Hauptvermutung (see Chapter II, Theorem II in [37])), which
states that for any two subanalytic triangulations of a subanalytic space there is
a subanalytic triangulation refining them. It is used for example in Lemma 2.21.

Since all the mentioned statemenets are true for O-minimal structures over the reals
in general, we observe the following:

Remark A.8. One could define MD homology and MD homotopy in the context of
any O-minimal structure over the reals copying this thesis word by word and replacing
subanalytic (or globally subanalytic) by the definable sets and definable maps of that
O-minimal structure.

Remark A.9. To give an example of Remark A.8: one could take Rexp, which is the
smallest O-minimal structure over the reals generated by the exponential function.
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Summary in English
(formality)

This thesis is called Moderately Discontinuous Algebraic Topology for Metric Subana-
lytic Germs.

Introduction

We have developed both a homology theory and a homotopy theory in the context
of metric subanalytic germs (see Definition 2.1). The former is called MD homology
and is covered in Chapter 2, which contains a paper that is joined work with my PhD
advisors Javier Fernández de Bobadilla and María Pe Pereira and with Edson Sam-
paio. The latter is called MD homotopy and is covered in Chapter 3. Both theories
are functors from a category of germs of metric subanalytic spaces (resp. germs of
metric subanalytic spaces that are punctured in a way that will be defined) to a cat-
egory of commutative diagrams of groups. For the concrete definition of the domain
categories see Definition 2.10 and Definition 3.47 respectively; for the target categories
see Definition 2.42 and Definition 3.52 respectively. Similarly to classical homology
and homotopy theories, the groups appearing in the target category are abelian in the
homology theory for any degree and in the homotopy theory for degree n > 1.

Objectives and results

The main objective was to construct an analytic invariant of real or complex analytic
germs that would also contain information about the bi-Lipschitz geometry of the
germ. We also had the objective to provide computational tools for that invariant. An
optional objective was to concretely compute the invariant for some real or complex
analytic germs.

The realization of those objectives is given by the MD homology and the MD homo-
topy as described above. The MD homology shares several of the properties with the
singular homology: it is invariant by suitable metric homotopies (see Definition 2.75
and Theorem 2.76 as well as Definition 2.79 and Theorem 2.80); it allows a relative
and absolute Mayer-Vietoris long exact sequences (see Theorem 2.91) for a suitable
cover of the metric subanalytic germ (see Definition 2.88); and as a consequence we
have a certain theorem of excision (see Corollary 2.92) and a Čech spectral sequence
(see Theorem 2.93).
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The MD homotopy shares several of the properties of the ordinary homotopy theory
of punctured topological spaces: it admits a Hurewicz homomorphism from the MD
homotopy to the MD homology (see Proposition 3.40); in degree one, the Hurewicz
homomorphism is an isomorphism when abelianizing the domain (see Theorem 3.55);
and when the metric subanalytic germ fulfils a certain condition that softens the one
of path-connectedness (see Definifion 3.43), it is independent from the choice of base
point (see Proposition 3.46).

The fact that the MD homology provides those computational tools mentioned above
similarly to the tools in singular homology make it relatively well computable. We have
given examples of computations of both the MD homology and the MD homotopy.
In particular, we have given a concrete formula for the MD homology of complex
plane algebraic curve germs equipped with the outer metric (see Proposition 2.105).
That formula reveals how the MD homology recovers both, all Puiseux pairs of the
branches of the curve, and the set of all contact numbers between two branches (see
Corollary 2.108). In [38] (see also [29] and [15]), it is shown that the geometric type of
a complex plane algebraic curve germ equipped with the outer metric coincides with
its embedded topological type. Therefore, the MD homology is a complete invariant
of irreducible complex plane algebraic curve germs equipped with the outer metric.

Conclusions

Both the MD homology and the MD homotopy fulfil the main objective of constructing
an analytic invariant of real or complex analytic germs. Indeed, both theories serve
as a bi-Lipschitz subanalytic invariant. Therefore, in the context of real or complex
analytic germs equipped with the inner or the outer metric, they are analytic invariants.
Both theories also provide several powerful computational tools as mentioned above
and therefore meet the second objective. In the context of the MD homology we have
also attained the optional objective of computing the invariant for an important group
of complex analytic germs: for all complex plane algebraic curve germs.

Both theories seem very promising since they are rich invariants, as can be seen in
the context of complex plane algebraic curve germs, and also well computable thanks
to their various computational tools. Furthermore they provide a new and innovative
approach to studying algebraic germs. Therefore we have the hope that the work done
in this thesis might lay the ground for a new series of research in that direction.
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Resumen en español
(formalidad)

Esta tesis se llama Topología Algebraica Moderadamente Discontinua para Gérmenes
Métricos Subanalíticos.

Introducción

Hemos desarrollado tanto una teoría de homología como una teoría de homotopía en
el contexto de gérmenes subanalíticos métricos (véase Definition 2.1). La teoría de
homología se llama MD homología. La desarrollamos en el capítulo 2, que contiene
un artículo que es trabajo conjunto con mis directores de tesis Javier Fernández de
Bobadilla y María Pe Pereira y con Edson Sampaio. La teoría de homotopía se llama
MD homotopía y la desarrollamos en el capítulo 3. Ambas teorías son funtores de una
categoría de gérmenes de espacios métricos subanalíticos (resp. gérmenes de espacios
métricos subanalíticos puntuados de una manera que definamos) a una categoría de
diagramas comutativos de grupos. Para la definición concreta de la categoría del
dominio véase Definition 2.10 y Definition 3.47 respectivamente; para la definición de
la categoría de llegada véase Definition 2.42 y Definition 3.52 respectivamente. Como
pasa también en el contexto de las teorías de homología y homotopía clásicas, los
grupos que aparecen en la categoría de llegada son abelianos en la teoría de homología
de cualquier grado y en la teoría de homotopía para grado n > 1.

Objetivos y resultados

El objetivo principal era construir un invariante analítico de gérmenes reales o comple-
jos que también contuviera información sobre la geometría bilipschitz del gérmen. Otro
objetivo era dar herramientas computacionales para este invariante. Como objetivo
opcional teníamos el cálculo concreto del invariante para algunos gérmenes analíticos
reales o complejos.

La realización de estos objetivos viene dada por el desarrollo de la MD homología
y la MD homotopía que hemos descrito arriba. La MD homología comparte varias
propiedades con la homología singular: es invariante bajo homotopías métricas ade-
cuadas (véase Definition 2.75 y Theorem 2.76 y también Definition 2.79 y Theo-
rem 2.80); permite una sucesión exacta larga de Mayer-Vietoris tanto absoluta como
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relativa; y como consecuencia tenemos cierto teorema de excisión (véase Corollary 2.92)
y una sucesión espectral de Čech (véase Theorem 2.93).

La MD homotopía comparte varias propiedades con la homotopía habitual de espa-
cios topológicos puntuados: admite un homomorfismo de Hurewicz de la MD homo-
topía a la MD homología (véase Proposition 3.40); en grado uno, el homomorfismo de
Hurewicz es un isomorfismo después de abelianizar el dominio (véase Theorem 3.55); y
cuando el gérmen métrico subanalítico cumple cierta condición que suaviza el concepto
de conexo por caminos, es independiente del punto base (véase Proposition 3.46).

Las herramientas de la MD homología descritas arriba parecidas a las herramientas
en homología singular facilitan mucho el cálculo concreto de la MD homología. Hemos
dado ejemplos tanto de cálculos de la MD homología como de cálculos de la MD
homotopía. En particular hemos dado una formula concreta de la MD homología de
gérmenes de curvas complejas algebraicas planas equipadas con la métrica externa
(véase Proposition 2.105). Esta fórmula demuestra que la MD homología recupera
tanto todos los pares de Puiseux de todas las ramas de la curva como el conjunto de
todos los números de contacto entre dos ramas (véase Corollary 2.108). En [38] (véase
también [29] and [15]), está demostrado que el tipo geométrico de gérmenes de curvas
complejas algebraicas planas equipadas con la métrica externa coincide con su tipo
topológico. Por lo tanto la MD homología es un invariante completo de gérmenes de
curvas complejas algebraicas planas irreducibles equipadas con la métrica externa.

Conclusiones

Tanto la MD homología como la MD homotopía cumplen el objetivo principal de con-
struir un invariante analítico de gérmenes analíticos reales o complejos. De hecho
ambas teorías son invariantes bilipschitz subanalíticos. Como consecuencia son invari-
antes analíticos en el contexto de gérmenes reales o complejos analíticos equipados
con la métrica interna o externa. Ambas teorías además ofrecen varias herramientas
computacionales potentes y por lo tanto cumplen el segundo objetivo. En el contexto
de la MD homotopía también logramos el objetivo opcional de calcular el invariante
para un grupo importante de gérmenes analíticos complejos: para todos los gérmenes
de curvas complejas algebraicas planas irreducibles equipadas con la métrica externa.

Ambas teorías parecen muy prometedoras ya que son invariantes bastante ricos como
se puede ver en el contexto de gérmenes de curvas complejas algebraicas planas irre-
ducibles equipadas con la métrica externa y porque además se dejan calcular relativa-
mente bien gracias a sus herramientas computacionales. Además esta aproximación al
estudio de gérmenes analíticos es totalmente nueva. Por lo tanto tenemos la esperanza
de que el trabajo hecho en esta tesis haya sido el inicio de una seria de investigación
en esta dirección.
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