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Abstract

Starting from a highly continuous Isogeometric analysis, we introduce hyperplanes that partition the domain into
subdomains and reduce the continuity of the discretization spaces along those hyperplanes. As the continuity is
reduced, the number of degrees of freedom in the system grows. The resulting discretization spaces are finer than
standard maximal continuity IGA spaces. Despite the increase in the number of degrees of freedom, these finer
spaces entail faster results with direct solvers than both traditional Finite Element Analysis (FEA) and Isogeometric
Analysis (IGA) for meshes with a fixed number of elements. In this work, we analyze the impact of continuity
reduction on the number of Floating Point Operations (FLOPs) and computational times required to solve fluid flow
and electromagnetic problems with structured meshes and uniform polynomial orders. Theoretical estimates show
that for sufficiently large grids, an optimal continuity reduction decreases the computational cost by a factor of O(p2).
Numerical results confirm these theoretical estimates. In a 2D mesh with one million elements and polynomial order
equal to five, the discretization including an optimal continuity pattern allows to solve the vector electric field, the
scalar magnetic field, and the fluid flow problems an order of magnitude faster, than when using a highly continuous
IGA discretization. 3D numerical results exhibit more moderate savings due to the limited mesh sizes considered in
this work.

Keywords: Isogeometric Analysis (IGA), Finite Element Analysis (FEA), refined Isogeometric Analysis (rIGA),
solver-based discretization, Multi-field problems, k-refinement.

1. Introduction

Isogeometric analysis (IGA) is a discretization method frequently employed to solve numerical problems governed
by partial differential equations (PDEs) [1–3]. This method defines the geometry using conventional Computer-aided
design (CAD) functions and, in particular, non-uniform rational B-spline (NURBS). These functions can represent
complex geometries commonly found in engineering design and are capable of preserving exactly the geometry de-
scription under refinement. Moreover, IGA employs the functions that Computed-Aided Design (CAD) uses to build
the discretization of the governing PDEs. Therefore, it is possible to build algebraic systems directly from the compu-
tational domain representation based on spline functions, which arise from CAD, avoiding the definition of a separate
geometric description for the numerical analysis. This results in a reduction of the total analysis time [1].

The performance of direct solvers strongly depends upon the employed discretization. In particular, for IGA, the
continuity of the solution spaces plays a significant role in the direct solvers performance. Highly-continuous spaces
degrade their performance, increasing the solution times by a factor up to O(p3) with respect to traditional finite
element analysis (FEA) per unknown, being p the polynomial order [4–6].
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As a remedy to the lack of performance exhibited by direct solvers when applied to IGA discretizations, in [7–9]
we proposed the refined Isogeometric analysis method (rIGA). Starting from a highly continuous IGA discretization,
rIGA introduces lower continuous hyperplanes, which act as separators in terms of the direct solver, to reduce the
interconnection between the degrees of freedom (DoF) used in the mesh. By doing so, both the solution time and best
approximation errors are simultaneously improved. In particular, rIGA delivers speed-up factors proportional to p2

when solving scalar problems. For instance, in a 2D mesh with four million elements and p = 5, a Laplace linear
system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with
one million elements and p = 3, the linear rIGA system is solved 15 times faster than the IGA one [7].

In this work, we apply rIGA to solve multi-field problems that possibly employ high-continuity discretizations
of H1, H(curl), H(div), and L2 spaces and/or a combination of them (as described in [10]). We consider an electro-
magnetic problem and an incompressible fluid flow problem to numerically analyze the main features and limitations
of rIGA in multi-fields examples. In the electromagnetic problem, we approximate the electric field resulting from a
time-harmonic magnetic dipole source by using a spline-based generalization of the 2D Ndelec finite element spaces.
In the incompressible Stoke flow problem in an enclosed domain, we use a spline-based generalization of the Raviar-
Thomas finite element spaces to approximate the velocity field.

This paper is organized as follows: Section 2 introduces the main ideas of IGA when applied to multi-field
problems, and the performance of direct solvers for IGA discretizations. Section 3 describes the refined isogeometric
analysis (rIGA) proposed to solve multi-field problems. Section 4 details the implementation. Section 5 presents the
numerical experiments. We discuss some features and limitations of the proposed method in Section 6.

2. Isogeometric Analysis discretizations for direct solvers

In order to approximate the solution of problems governed by partial differential equations (PDEs), we can use
numerical methods as finite element analysis (FEA) and isogeometric analysis (IGA). These methods build discretiza-
tions of the problems using a variational formulation with trial and test functions defined as a linear combination of
the basis functions. Depending on the PDEs that govern the problems, we select the discretization spaces. For
instance, in FEA, we implement classical Lagrange spaces (gradient-conforming spaces) to study heat transfer prob-
lems, Nedelec (or Whitney) spaces (curl-conforming spaces) to study electromagnetics problems, and Taylor-Hood
or Raviart-Thomas spaces (divergence-conforming spaces) for incompressible fluid flow problems (Figure 1).

In IGA, we may use spline generalizations of the FEA discretization spaces. These discretization spaces are
globally continuous due to the high inter-element smoothness that the splines provide. Moreover, those spaces are
structure-preserving since the gradient-, curl-, divergence-, and integral-conforming properties of the FEA spaces hold
in the continuous setting.

We now give a brief introduction to B-spline based spaces and then we describe proper gradient-, curl-, divergence-
, and integral-conforming IGA spaces.

2.1. B-spline spaces

A B-spline space consists of a set of all possible combinations of univariate (one-dimensional) B-splines functions
arranged on knot vectors. The univariate B-spline functions are defined by the Cox-de Boor recursion formula [11, 12],
and the knot vectors are defined as

Ξ =
(
ξ1, . . . , ξnb fx +px+1

)
∀ ξi ∈ R, (1)

where ξi is the i-th knot, px is the polynomial order, and nb f = nelem + px is the number of basis functions, where
nelem = d

√
Nelem is the number of elements in one spatial dimension, and d the dimension of the space.

A set of B-spline basis functions {N1,px , . . . ,Nnb fx ,px } with support on a single knot vector (e.g., Ξ) defines a 1D
space (with all the properties required for analysis purposes). This space is denoted as

S
px
kx
B span

{
Ni,px

}nb fx

i=1
, (2)

where px and kx indicates the polynomial degree and continuity of the functions that define the space.
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(a) Bezier spaces:
φ ∈ H1(Ω).

ux

uy

(b) Nedelec spaces:
u = (ux, uy) ∈ H(curl; Ω).

ux

uy

(c) Raviart-Thomas spaces:
u = (ux, uy) ∈ H(div; Ω).

Figure 1: Example of three types of FEA spaces for a 2D discretization with 4 × 4 elements and polynomial basis functions of order p = 2 (and
p = 1). Red and violet circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton.

In 2D, we define the spaces by a set of bivariate B-spline basis functions. These functions are constructed as the
tensor product of two univariate B-splines basis functions with support on different knot vectors and are defined as

Npx,py

ix,iy
= N

px
ix
|Ξ ⊗ N

py

iy
|Ψ , ix = 1, . . . , nb fx , iy = 1, . . . , nb fy , (3)

where N px
ix
|Ξ and N py

iy
|Ψ are the B-spline functions with support on the knot vectors Ξ = (ξi, . . . , ξnb fx +px+1) and

Ψ = (ψi, . . . , ψnb fy +py+1), respectively. We denote the 2D space as

S
px,py

kx,ky
B span

{
Npx,py

ix,iy

}nb fx ,nb fy

ix,iy=1
. (4)

The 3D spaces are defined by a set of trivariate B-splines basis functions. Using three different sets of B-splines
functions with support on the knot vectorsΞ = (ξi, . . . , ξnb fx +px+1),Ψ = (ψi, . . . , ψnb fy +py+1), andΦ = (ϕi, . . . , ϕnb fz +pz+1),
we define the trivariate B-splines basis functions as

Npx,py,pz

ix,iy,iz
= N

px
ix
|Ξ ⊗ N

py

iy
|Ψ ⊗ N

py

iz
|Φ, ix = 1, . . . , nb fx , iy = 1, . . . , nb fy , iz = 1, . . . , nb fz , (5)

whereN px
ix
|Ξ ,N py

iy
|Ψ , andN py

iz
|Φ are the B-spline functions with support on the Ξ, Ψ , and Φ knot vectors, respectively.

We denote the 3D space as

S
px,py,pz

kx,ky,kz
B span

{
Npx,py,pz

ix,iy,iz

}nb fx ,nb fy ,nb fz

ix,iy,iz=1
. (6)

2.2. B-spline discrete spaces
Next, we present the smooth generalization of the gradient (grad), divergence (div), curl, and integral (int) con-

forming spaces on which we base our study. We define the parametric spaces, and then we introduce an appropriate
transformation to obtain the discrete spaces on the physical domain.
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2.2.1. H1 conforming discrete spaces
We now describe the smooth gradient-conforming IGA discrete spaces (Figure 2). They coincide with the classical

linear Lagrange FEA spaces for polynomial degree equal one. However, for a higher polynomial degree, the support
of the basis functions increases with the continuity of the space. This results in smoother spaces than their FEA
counterparts.

φ ∈ S
p,p

k,k

Figure 2: Illustration of a H1 conforming IGA space for a 2D discretization with 6 × 6 elements, polynomial order p = 3, and continuity degree
k = 2. Blue circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton.

The gradient-conforming IGA discrete spaces in a parametric domain Ω̂ ⊂ R are given by

Q̂
grad
h (Ω̂) =

 S
p, p

k, k 2D

S
p, p, p

k, k, k 3D,
(7)

where S with indexes refers to a B-spline space, p is the polynomial degree, k indicates the basis functions continuity.
To move the space definition from the parametric to a physical domain Ω, we use the following pullback mapping

ι
grad
φ (θ) = θ ◦ F, θ ∈ H1(Ω) (8)

where ιgrad is a gradient-preserving transformation and F is the geometric mapping from the parametric to the physical
domain. Thus, the discrete space in the physical domain is

Q
grad
h :=

{
φ ∈ H1(Ω) : ιgrad

φ (θ) ∈ Q̂ grad
h (Ω̂)

}
. (9)

2.2.2. H(curl) conforming discrete space
The curl-conforming IGA discrete spaces consist of a spline generalization of the Nedelec FEA spaces (Figure 3).

A set of those discrete spaces is defined in a parametric domain Ω̂ ⊂ Rd=2,3 as follows

V̂ curl
h (Ω̂) =

 S
p−1, p

k−1, k × S
p, p−1

k, k−1 2D

S
p−1, p, p

k−1, k, k × S
p, p−1, p

k, k−1, k × S
p, p, p−1

k, k, k−1 3D,
(10)

where p is the polynomial degree, k indicates the basis functions continuity, and S with indexes is a spline space.
We use a curl-preserving map (that corresponds to the inverse of the covariant Piola transformation) to define the

discrete space on the physical domain. This transformation is

ιcurl
u (v) = (DF)T (v ◦ F), v ∈ H(curl; Ω) ∩H1(Ω) (11)

where F is the geometric mapping from the parametric domain to the physical domain, and DF is the gradient of the
mapping. Then, the set of discrete spaces in the physical domain is defined as

V curl
h (Ω) B

{
v ∈ H (curl; Ω) ∩H1 (Ω) : ιcurl

u (v) ∈ V̂ curl
h (Ω̂)

}
. (12)

This set of curl-conforming spaces was introduced by Buffa et al. in [13] to obtain regular discrete solutions of
Maxwell’s equations.
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ux ∈ S
p −1,p
k−1,k uy ∈ S

p,p−1
k,k−1

Figure 3: Example of highly-continuous curl-conforming spaces for a 2D discretization with 6 × 6 elements, polynomial order p = 3, and
continuity degree k = 2. Violet circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton.

2.2.3. H(div) conforming discrete spaces
The set of divergence-conforming IGA discrete spaces we consider here consists of a spline generalization of the

Raviart-Thomas FEA spaces (Figure 4).

ux ∈ S
p,p−1

k,k−1 uy ∈ S
p−1,p

k−1,k

Figure 4: Example of highly-continuous div-conforming spaces for a 2D discretization with 6 × 6 elements, polynomial order p = 3, and
continuity degree k = 2. Violet and red circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton.

These spaces are defined in the parametric domain (Ω̂ ⊂ Rd=2,3) as follows

V̂ div
h (Ω̂) =

 S
p, p−1

k, k−1 × S
p−1, p

k−1, k 2D

S
p, p−1, p−1

k, k−1, k−1 × S
p−1, p, p−1

k−1, k, k−1 × S
p−1, p−1, p

k−1, k−1, k 3D,
(13)

where p is the polynomial degree, k indicates the basis functions continuity, and S with indexes is a spline space.
In this case, we use a divergence-preserving map (that corresponds to the inverse of the contravariant Piola trans-

formation) to define the discrete spaces on the physical domain. This transformations is

ιdiv
u (v) = det(DF)(DF)−1(v ◦ F), v ∈ H(div; Ω) ∩H1(Ω), (14)

where F is the geometric mapping from the parametric domain to the physical domain, DF is the gradient of the
mapping, and det(DF) is its determinant. Then, the set of discrete spaces in the physical domain is defined as

V div
h (Ω) B

{
v ∈ H (div; Ω) ∩H1 (Ω) : ιdiv

u (v) ∈ V̂ div
h (Ω̂)

}
. (15)
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Buffa et al. [10] introduced this set of divergence-conforming spaces to approximate the solution of Stokes prob-
lems. Later, Evans et al. [14–16] implemented this discretization framework for the Generalized Stokes and Navier-
Stokes equations. Sarmiento et al. [17–19] used these spaces to analyze the performance of solvers and implemented
these spaces in a high-performance framework for isogeometric analysis [20]. This structure preserving discretization
allowed the detailed analysis of the interfacial interactions between complex fluids in [21].

2.2.4. L2 conforming discrete spaces
We illustrate the integral-conforming IGA discrete spaces in Figure 5. These spaces are high-continuity discretiza-

tion spaces with inter-element regularity C (k−1) : (p − 1) ≥ (k − 1) ≥ 0.

φ ∈ S
p−1,p−1

k−1,k−1

Figure 5: Illustration of a L2 conforming IGA space for a 2D discretization with 6 × 6 elements, polynomial order of degree 2, and continuity
degree one, considering that p = 3 and k = 2. Red circles represent the nodal degrees of freedom in the system, while black lines denote the mesh

skeleton.

The L2 conforming discrete spaces satisfy the following relationship in 2D and 3D, respectively.

S
p−1, p−1

k−1, k−1 ≡
{
∇v : v ∈ S p, p

k, k

}
in 2D, S

p−1, p−1, p−1
k−1, k−1, k−1 ≡

{
∇v : v ∈ S p, p, p

k, k, k

}
in 3D,

where S p, p
k, k and S p, p, p

k, k, k are smooth grad-conforming discrete spaces.
We define the integral-conforming IGA discrete spaces in the parametric domain (Ω̂ ⊂ R) as follows

Q̂ int
h (Ω̂) =

 S
p−1, p−1

k−1, k−1 2D

S
p−1, p−1, p−1

k−1, k−1, k−1 3D,
(16)

where p − 1 is the polynomial degree, k − 1 indicates the basis functions continuity, and S with indexes is a spline
space.

In this case, we use an integral-preserving transformation to define the discrete space on the physical domain. The
transformation is

ιint
φ (q) = det(DF)(q ◦ F), q ∈ L2(Ω) (17)

where F is the geometric mapping from the parametric domain to the physical domain, DF is the gradient of the
mapping, and det(DF) is its determinant. Thus, the discrete space in the physical domain is defined as

Q int
h :=

{
q ∈ L2(Ω) : ιint

φ (q) ∈ Q̂ int
h (Ω̂)

}
. (18)

2.3. Computational complexity
We consider a direct multifrontal method to solve the algebraic systems that numerically represent the problems

governed by PDEs. The multifrontal solver partitions the domain into macro-elements interconnected by separators.
In multi-field cases, the size of the macro-elements and separators is equal to the sum of the unknowns that each
of those subdomains contains in each field. For instance, when solving an electromagnetic problem on a 2D square
domain, the subdomains contain the unknowns of both components of the vectorial electric/magnetic field. In scalar
problems (e.g., heat transfer), the subdomains contain the unknowns of the scalar-valued field. The elimination of the
degrees of freedom on the separators dominates the cost of the LU factorization [4, 5].
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2.3.1. H1 conforming
Figure 6 illustrates the vertical and horizontal separators that partition a 2D square mesh composed by 6 × 6

elements into four subdomains, and shows the size of the vertical separator (number of degrees of freedom that it
contains) when using a H1-conforming IGA space.

φ ∈ S
p,p

k,kVertical separator

Subdomain

Figure 6: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The H1

conforming IGA space has a polynomial order p = 3 and a continuity degree k = 2.

In 2D, the size of the separators at the first and second partition (vertical and horizontal cut) is given by

qsep|y = O
(
nφ|y(k + 1)

)
, (vertical separator)

qsep|x = O
(
nφ|x(k + 1)

)
, (horizontal separators)

(19)

where nφ|y = (nelem + p) and nφ|x ≈ 0.5(nelem + p) are the lengths of the separators, and (k +1) represents the separators
thickness. Therefore,

qsep|y = O
(
(nelem + p)(k + 1)

)
, qsep|x = O

(
0.5(nelem + p)(k + 1)

)
. (20)

The size of the separators in all partition levels can be computed based on the previous mathematical expres-
sions (20) by following a recursive partition of the domain. Then, the size of the separators at the i-th partition level
is

qsep|y = O
(
2−(i−1) ((nelem + p)(k + 1)

))
, qsep|x = O

(
2−i ((nelem + p)(k + 1)

))
, (21)

and the cost to solve the LU factorization in 2D is given by

θ H1

IGA|2D = O

∑̀
i=1

22(i−1)
(
2−(i−1) ((nelem + p)(k + 1)

))3
+ 22(i−1)+1

(
2−i ((nelem + p)(k + 1)

))3

 ,
= O

(((
nelem + p

)(
k + 1

))3)
,

(22)

where ` is the number of partition levels. We follow the same procedure that we use to estimate the cost of LU
factorization in 2D to build the estimate for the 3D case. The cost in this case is

θ H1

IGA|3D = O

((
(nelem + p)2(k + 1)

)3
)
. (23)
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ux ∈ S
p−1,p

k−1,k uy ∈ S
p,p−1

k,k−1
Vertical separator

Subdomain

Figure 7: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The H(curl)
conforming IGA space has a polynomial order p = 3 and a continuity degree k = 2.

2.3.2. H(curl) conforming
Figure 7 illustrates the vertical and horizontal separators that partition a 2D square mesh composed by 6 × 6 ele-

ments into four subdomains, and shows the size of the vertical separator for the case in which we use curl-conforming
IGA spaces.

The size of the separators depends on the number of fields used to build the curl-conforming discrete spaces. In
appendix A, we estimate the size of the separators for any partition level. The cost to solve the LU factorization in 2D
is then

θ H(curl)
IGA |2D = O

((
(nelem + p)(2k + 1)

)3
)
, (24)

and in 3D, the cost is

θ H(curl)
IGA |3D = O

((
(nelem + p)2(3k + 2)

)3
)
. (25)

2.3.3. H(div) conforming
Figure 8 illustrates the vertical and horizontal separators that partition a 2D square mesh composed by 6 × 6

elements into four subdomains, and shows the size of the vertical separator for the case in which we use divergence-
conforming IGA spaces.

These separators contain unknowns of the fields corresponding to the H(div) conforming spaces. We present the
size of the separators for this case in appendix B. In 2D, the cost to solve the LU factorization discretized using these
spaces is

θ H(div)
IGA |2D = O

((
(nelem + p)(2k + 1)

)3
)
. (26)

In 3D, the cost is

θ H(div)
IGA |3D = O

((
(nelem + p)2(3k + 1)

)3
)
. (27)

2.3.4. L2 conforming
Figure 9 illustrates the vertical and horizontal separators that partition a 2D square mesh composed by 6 × 6

elements into four subdomains, and shows the size of the vertical separator when using an integral-conforming IGA
space.
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ux ∈ S
p,p−1

k,k−1 uy ∈ S
p−1,p

k−1,k
Vertical separator

Subdomain

Figure 8: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The H(div)
conforming IGA space has a polynomial order p = 3 and a continuity degree k = 2.

φ ∈ S
p−1,p−1

k−1,k−1Vertical separator

Subdomain

Figure 9: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The L2

conforming IGA space has a polynomial order of degree 2, and continuity degree one, considering that p = 3 and k = 2.

These separators contain field unknowns corresponding to the L2 conforming discrete IGA space. In appendix C,
we present the size of the separators for this case. The cost to solve the LU factorization discretized using this spaces
in 2D is

θ L2

IGA|2D = O

((
(nelem + p)(k)

)3
)
. (28)

In 3D, the cost is

θ L2

IGA|3D = O

((
(nelem + p)2(k)

)3
)
. (29)

3. Refined Isogeometric Analysis discretizations for direct solvers

The refined isogeometric analysis (rIGA) is a discretization technique first presented by Garcia et al. in [7].
This strategy optimizes the direct solver performance while using highly continuous discretizations and preserves the
optimal convergence order of the method with respect to a fixed number of elements in the domain. rIGA reduces
the continuity over specific inter-element boundaries that correspond with the location of the separators at different
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partition levels. Figure 10 illustrates a classical Cp−1 IGA discretization and a rIGA discretization based on a gradient-
conforming space on a single field.

(a) Cp−1 IGA (b) rIGA

Figure 10: Illustration of an IGA and a rIGA space. We show the spaces of a 2D discretization with a mesh size of 6 × 6 elements and basis
functions of order p = 3. Blue circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton. Bold lines

represent C0 continuity.

For multi-field problems discretized using gradient- or integral-conforming spaces, rIGA uses C0-hyperplanes to
reduce the continuity over certain inter-element boundaries. Specifically, we reduce the continuity to zero across the
interface between the subdomains (macro-elements) that result from the recursive partitioning of the mesh performed
during the elimination process. For problems discretized using curl- or divergence-conforming spaces, rIGA uses
a combination of C1- and C0-hyperplanes to reduce the continuity in k degrees across the interface between the
subdomains resulting from the recursive partition. The continuity reduction weakens the interconnection between
the subdomains since it reduces the number of basis functions with support over the corresponding inter-element
boundary (decreases the separator thickness), which improves the performance of the factorization.

For scalar problems, the best discretization provided by rIGA reduces the solution time and the memory re-
quirements and improves the best approximation error with respect to those on maximum continuity (Cp−1) IGA. In
particular, the solution via a direct solver becomes faster by a factor of approximately p2 when compared to IGA,
and the gains are even larger when compared to FEA, particularly in 3D (see [7]). Moreover, by using an alternative
version of rIGA introduced in [8], the speed-up to solve numerical problems is approximately 25% faster.

3.1. Computational complexity

In rIGA, the computational cost of the LU factorization consists of the cost of eliminating the degrees of freedom
on the separators and on the macro-elements (subdomains that result from the recursive partitioning of the mesh using
low continuity separators) [7–9].

3.1.1. H1 conforming
The continuity reduction modifies the separators size, reducing their thickness and increasing their length. Fig-

ure 11 illustrates the vertical separator that interconnects the two subdomains that result from the first partition level
once we reduce the continuity over the inter-element boundaries that correspond with the location of the separators at
the first and second partition levels.

Considering that the separators correspond to C0-hyperplanes, the size of the vertical separator at the first partition
(vertical cut) and the horizontal separators at the second partition (horizontal cut) is given by

qsep|y = O
(
nφ|y(1)

)
, (vertical separator)

qsep|x = O
(
nφ|x(1)

)
. (horizontal separators)

(30)

The length of these separators is nφ|y = (nelem + p+ (2i−1)(k)) and nφ|x ≈ 0.5(nelem + p+ (2i−1)(k)). The additional
term (last term inside the parenthesis) corresponds to the number of unknowns added to the separators length due to
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φ ∈ S
p,p

k−(k)|vs,k−(k)|hsVertical separator

Subdomain

Figure 11: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The H1

conforming rIGA space has a polynomial order p = 3 and a continuity degree k = 2. The continuity is reduced by k degrees across the
macro-element interfaces where the vertical (vs) and horizontal (hs) separators are located on the mesh.

the continuity reduction at i partition levels. Therefore,

qsep|y = O

((
nelem + p + (2i − 1)(k)

))
, qsep|x = O

(
0.5

(
nelem + p + (2i − 1)(k)

))
, (31)

and the size of the separators at the i-th partition level is given by

qsep|y = O

(
2−(i−1)

(
nelem + p + (2i − 1)(k)

))
, qsep|x = O

(
2−i

(
nelem + p + (2i − 1)(k)

))
. (32)

The cost to eliminate the degrees of freedom in all the separators is

θ H1

sep |2D = O

∑̀
i=1

22(i−1)
(
2−(i−1)

(
nelem + p + (2i − 1)(k)

))3
+ 22(i−1)+1

(
2−i

(
nelem + p + (2i − 1)(k)

))3


= O

((
nelem + p + (2` − 1)(k)

)3
)
,

(33)

where ` is the number of partition levels that involve continuity reduction.
We estimate the cost to eliminate the remaining degrees of freedom, located within the macro-elements, assuming

that those are Cp−1 systems. Then in 2D, the size of the macro-elements is

nm-e =

(
2−`

(
nelem + p + (2` − 1)(k)

))2
, (34)

and the cost to eliminate the degrees of freedom in all macro-elements is

θ H1

m-e|2D = 22`O

(
2−3`

(
(nelem + p + (2` − 1)(k))(k + 1)

)3
)
, (35)

where 22` is the number of macro-elements in a 2D mesh.
The total cost of the LU factorization when using rIGA to build a gradient-conforming discretization in 2D is

θ H1

rIGA|2D = θ H1

m-e|2D + θ H1

sep|2D

θ H1

rIGA|2D = 2−`O
((

(nelem + p + (2` − 1)(k))(k + 1)
)3
)

+ O

((
nelem + p + (2` − 1)(k)

)3
)
,

(36)

and the cost in 3D is

θ H1

rIGA|3D = θ H1

m-e|3D + θ H1

sep|3D

θ H1

rIGA|3D = 2−3`O

((
(nelem + p + (2` − 1)(k))2(k + 1)

)3
)

+ O

( (
(nelem + p + (2` − 1)(k))2

)3
)
.

(37)
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3.1.2. H(curl) conforming
The size of a separator is equal to the sum of the unknowns it contains in each of the components of the vectorial

field corresponding to the set of curl-conforming discrete spaces (Figure 12).

+

ux ∈ S
p−1,p

k−1−(k−1)|vs,k−(k−1)|hs
uy ∈ S

p,p−1
k−(k−1)|vs,k−1−(k−1)|hs

Vertical separator

Subdomain

Figure 12: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The H(curl)
conforming rIGA space has a polynomial order p = 3 and a continuity degree k = 2. The continuity is reduced by k − 1 degrees across the

macro-element interfaces where the vertical (vs) and horizontal (hs) separators are located on the mesh.

The vertical separators correspond to C0- and C1-hyperplanes, while the horizontal separators correspond to C1-
and C0-hyperplanes in the fields ux and uy, respectively. Appendix D presents the separators size.

The cost to eliminate the degrees of freedom in all the separators is

θ H(curl)
sep |2D = O

((
nelem + p + (2` − 1)(k − 1)

)3
)
, (38)

where ` is the number of partition levels that involve continuity reduction. Further, and considering the macro-
elements’ size presented in Appendix D, the cost to eliminate the degrees of freedom on the macro-elements becomes

θ H(curl)
m-e |2D = 22`O

(
2−3`

(
(nelem + p + (2` − 1)(k − 1))(2k + 1)

)3
)
. (39)

The total cost of the LU factorization when using rIGA to build a curl-conforming solution is equal to the sum of
the cost to eliminate the degrees of freedom on both separators and the macro-elements. In 2D, this cost is

θ H(curl)
rIGA |2D = 2−`O

((
(nelem + p + (2` − 1)(k − 1))(2k + 1)

)3
)

+ O

((
nelem + p + (2` − 1)(k − 1)

)3
)
. (40)

The cost in 3D is

θ H(curl)
rIGA |3D = 2−3`O

((
(nelem + p + (2` − 1)(k − 1))2(3k + 2)

)3
)

+ O

((
(nelem + p + (2` − 1)(k − 1))2

)3
)
. (41)

3.1.3. H(div) conforming
The separators contain unknowns of each of the components of the vectorial field corresponding to the divergence-

conforming space. Figure 13 illustrates the size of the vertical separator that divides the domain into two subdomains
at the first partition level.

In appendix E, we present the separators size for all partition levels that involve continuity reduction. The cost to
eliminate the separators degrees of freedom is given by

θ H(div)
sep |2D = O

((
(nelem + p + (2` − 1)(k − 1))

)3
)
, (42)
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+

ux ∈ S
p,p−1

k−(k−1)|vs,k−1−(k−1)|hs
uy ∈ S

p−1,p
k−1−(k−1)|vs,k−(k−1)|hs

Vertical separator

Subdomain

Figure 13: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The H(div)
conforming rIGA space has a polynomial order p = 3 and a continuity degree k = 2. The continuity is reduced by k degrees across the

macro-element interfaces where the vertical (vs) and horizontal (hs) separators are located on the mesh.

where ` is the number of partition levels that involve continuity reduction.
The cost to eliminate the degrees of freedom on the macro-elements is computed based on the macro-elements

size presented in appendix E. The cost to eliminate the degrees of freedom in all macro-elements is

θ H(div)
m-e |2D = 22`O

(
2−3`

(
(nelem + p + (2` − 1)(k − 1))(2k + 1)

)3
)
. (43)

Then, the total cost of the LU factorization when using rIGA to build a discretization using H(div) conforming
spaces in 2D is

θ H(div)
rIGA |2D = 2−`O

((
(nelem + p + (2` − 1)(k − 1))(2k + 1)

)3
)

+ O

((
(nelem + p + (2` − 1)(k − 1))

)3
)
. (44)

In 3D, the LU factorizaton cost is

θ H(div)
rIGA |3D = 2−3`O

((
(nelem + p + (2` − 1)(k − 1))2(3k + 1)

)3
)

+ O

((
(nelem + p + (2` − 1)(k − 1))2

)3
)
. (45)

3.1.4. L2 conforming
Figure 14 illustrates the size of the vertical separator that divides the domain into two subdomains at the first par-

tition level. In this case, the sepators contain unknowns of one scalar field that corresponds to an integral-conforming
space.

Appendix F shows the size of the separators for any partition level that involve continuity reduction when using
an integral-conforming rIGA space, and the cost to eliminate the degrees of freedom in all separators is

θ L2

sep|2D = O

((
nelem + p + (2` − 1)(k − 1)

)3
)
, (46)

where ` is the number of partition levels that involve continuity reduction.
Considering the macro-elements size presented in appendix F, the cost to eliminate the degrees of freedom in all

macro-elements is

θ L2

m-e|2D = 22`O

(
2−3`

(
(nelem + p + (2` − 1)(k − 1))(k)

)3
)
, (47)

where 22` is the number of macro-elements in a 2D mesh.
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φ ∈ S
p−1,p−1
k−1−(k−1)|vs,k−1−(k−1)|hsVertical separator

Subdomain

Figure 14: Illustration of the size of the vertical separator that splits a 2D mesh of 6 × 6 elements into two symmetric subdomains. The L2

conforming rIGA space has a polynomial order of degree 2, and continuity degree one, considering that p = 3 and k = 2. The continuity is
reduced by k degrees across the macro-element interfaces where the vertical (vs) and horizontal (hs) separators are located on the mesh.

The total cost of the LU factorization when using rIGA to build an integral-conforming discretization in 2D is

θ L2

rIGA|2D = 2−`O
((

(nelem + p + (2` − 1)(k − 1))(k)
)3
)

+ O

((
nelem + p + (2` − 1)(k − 1)

)3
)
, (48)

and the cost in 3D is

θ L2

rIGA|3D = 2−3`O

((
(nelem + p + (2` − 1)(k − 1))2(k)

)3
)

+ O

( (
(nelem + p + (2` − 1)(k − 1))2

)3
)
. (49)

3.1.5. Theoretical reduction factors
Table 1 shows the theoretical reduction factors obtained when using rIGA method to discretize the problems as

opposed to highly-continuous (Cp−1) IGA. Once we achieve the asymptotic regime (large enough mesh sizes), the
optimal reduction factor delivers a reduction factor in the number of FLOPs of approximately p2.

4. Implementation details

We implement the model problem using PetIGA-MF, a multi-field extension of PetIGA that we describe in [19].
This framework allows the use of a different space for each field of interest. For instance, we can use H(curl) dis-
cretizations to solve electromagnetics problems or H(div) spaces to solve incompressible flows. PetIGA-MF gener-
alizes the implementation of PetIGA [20] which is based on PETSc [22, 23] and uses data management libraries to
pack the data of the multiple fields in a single object, thus simplifying the discretization construction.

We solve the system that results from the discretization of the problem using the sequential version of the multi-
frontal solver MUMPS [24, 25] with the automatic choice of partitioning technique, resulting in METIS [26] algorithm
for all the studied cases.

The standard PETSc installation uses by default 32-bit indices. This configuration fails once the system matrix
of the problem contains more than 231 − 1 (approximately 1.6e+9) non-zero entries on a single process. This limit is
independent of the available physical memory of the machine. By setting up PETSc with 64-bit indices, the limit in
the number of non-zero entries grows. Nevertheless, since MUMPS does not support 64-bit indices, we cannot use
this package to perform the matrix factorization. PARDISO [27, 28] is a sparse direct solver package that supports
64-bit indices. This package uses a combination of supernode techniques [29] to perform the matrix factorizations.
Assuming that the performance of PARDISO is approximately the same as that of MUMPS, we use this package to
provide the computational cost for the cases we cannot solve using PETSc+MUMPS.

We report the global FLOPs and computational times (in seconds). This allows us to analyze the impact of the
local reduction of continuity in the computational cost. For each of the mesh sizes and polynomial degrees that we use
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Discretization
2D 3D

nelem
Polynomial degree (p) nelem

Polynomial degree (p)
3 4 5 6 3 4 5 6

Gradient- 512 10.74 13.38 13.79 13.11 64 11.48 15.30 16.26 15.46
conforming 1024 13.69 19.74 22.51 22.79 128 14.68 23.50 31.98 37.80

(H1) 2048 16.13 26.00 33.22 36.64 256 18.74 35.76 54.60 71.69

Curl- 512 3.50 6.67 9.19 10.51 64 3.01 5.57 7.92 9.49
conforming 1024 3.81 7.84 11.68 14.76 128 3.41 7.09 11.17 14.70
(H(curl)) 2048 3.98 9.00 14.81 19.99 256 3.65 8.07 13.50 19.89

Divergence- 512 3.50 6.67 9.19 10.51 64 3.86 7.64 10.77 12.4
conforming 1024 3.81 7.84 11.68 14.76 128 4.38 9.74 15.23 19.25

(H(div)) 2048 3.98 9.00 14.81 19.99 256 4.69 11.1 20.26 30.98

Integral- 512 5.54 10.74 13.38 13.79 64 5.52 11.48 15.30 16.26
conforming 1024 6.05 13.69 19.74 22.51 128 6.29 14.68 23.50 31.98

(L2) 2048 6.60 16.13 26.00 33.22 256 6.73 18.74 35.76 54.60

Table 1: Theoretical reduction factors obtained when using rIGA method to build the solution spaces. These factors correspond to the ratio
between the Cp−1 IGA and the optimal rIGA solutions.

to discretize the model problem, we consider a range of cases with a particular number of partition levels that locally
reduce the continuity.

All computational tests are solved sequentially in TACC systems. We use the Stampede supercomputer to solve
the Stoke flow problems and Stampede2 supercomputer for the electromagnetic problems. In Stampede, we use nodes
outfitted with 2.7 GHz cores and 1TB of memory. In Stampede2, we use nodes equipped with turbo boost 2.1 GHz
cores (up to peak 3.7 GHz depending on instruction set and number of active cores) and 192GB of memory.

5. Numerical Results

We analyze the performance of the direct solvers when using rIGA discretizations to solve multi-field problems.
For this, we consider an electromagnetic problem solved using H(curl) and H1 conforming spaces, and an incom-
pressible fluid flow problem solved with a set of H(div) × L2 conforming spaces.

5.1. H(curl) and H1 conforming spaces
We first study the impact of the continuity reduction on H(curl) and H1 conforming spaces. The model problems

use in this case are based on the time-harmonic Maxwell and Helmholtz equations, in 2D. The Maxwell problem
formulation is 

Find E , with E : Ω→ Rd, such that:

∇ ×
(
µ̃−1∇ × E

)
+ σ̃ E = −∇ ×M in Ω,

E × n = 0 in ∂Ω,

(50)

where Ω is the region of study, E is the electric field, M = (0, 0,MH) is the time-harmonic magnetic dipole source,
n is the outward unit normal vector to the domain boundary ∂Ω, µ̃ = iωµ, and σ̃ = σ + iωε. Additionally, ε is the
electric permittivity, σ is the electrical conductivity, µ is the magnetic permeability, and ω is the angular frequency.

A weak formulation of the problem is
Find E , with E ∈ V curl

0 , such that:(
∇ ×W, µ̃−1∇ × E

)
Ω

+
(
W, σ̃ E

)
Ω

= −
(
∇ ×W,M

)
Ω

for all W ∈ V curl
0 ,

(51)
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where V curl
0 = {v ∈ H (curl; Ω) : v × n = 0 on ∂Ω} corresponds to the trial and test spaces for the electric field,

respectively. We denote by (·.·)Ω the L2 inner product on Ω. Now, we introduce a discrete formulation of the Maxwell
test problem. 

Find E , with E ∈ V curl
0,h , such that:(

∇ ×W, µ̃−1∇ × E
)
Ω

+
(
W, σ̃ E

)
Ω

= −
(
∇ ×W,M

)
Ω

for all W ∈ V curl
0,h ,

(52)

whereV curl
0,h is computed using (12). In this case, the parametric space reads as

V̂ curl
0,h :=

{
v̂ ∈ V̂ curl

h (Ω̂) : v̂ × n̂ = 0 on ∂Ω̂
}
.

The strong formulation of the Helmholtz problem in terms of the only nonzero Magnetic field component is
Find H , with H : Ω→ R, such that:

−σ̃−1∇2H + µ̃ H = −µ̃ MH in Ω,

H = 0 in ∂Ω,

(53)

where Ω is the region of study, H is the only nonzero magnetic field component, and MH is the only nonzero compo-
nent of the time-harmonic magnetic dipole source. The weak formulation of the system problem is

Find H , with H ∈ V H1

0 , such that:(
∇F, σ̃−1∇H

)
Ω

+
(
F, µ̃ H

)
Ω

= −
(
F, µ̃ MH

)
Ω

for all F ∈ V H1

0 ,

(54)

where V H1

0 = {v ∈ H1 (Ω) : v = 0 on ∂Ω} corresponds to the trial and test spaces for the magnetic field, respectively.
The Galerkin formulation of the Helmholtz test problem is

Find H , with H ∈ Q grad
0,h , such that:(

∇ × F, σ̃−1∇ × H
)
Ω

+
(
F, µ̃ H

)
Ω

= −
(
F, µ̃ MH

)
Ω

for all F ∈ Q grad
0,h ,

(55)

where Q grad
0,h is computed using (9). In this case, the parametric space reads as

Q̂
grad
0,h :=

{
v̂ ∈ Q̂ grad

h (Ω̂) : v̂ = 0 on ∂Ω̂
}
.

5.1.1. Electro-magnetics problem
The performance of the direct solvers is unrelated to the specific boundary conditions, domain size or physical

properties implemented in the test problems. However, in order to obtain an adequate numerical solution on a lossy
media (σ > 0) without boundary-induced errors, we employ a sufficiently large domain so the electric waves vanish
before reaching the domain boundaries. In particular, we solve both the electric and magnetic problems over a domain
Ω = (0, 10)d, being d the spatial dimension. We impose homogeneous Dirichlet boundary conditions along the entire
domain boundary (E × n = 0, H = 0), and a scalar magnetic source

MH =

10 ||x − x0|| <= r
0 elsewhere,

(56)

where r is the radius and x0 refers to the location of the magnetic source. We consider a magnetic permeability
µ = 4π10−7, a free-space electric permittivity ε = 8.8510−12, and an angular frequency ω = 4π107.

We assume that the electrical conductivity σ is piecewise constant and that it is given by σ = σ j(x)∀x ∈ Ω j where
Ω = ∪n

j=1Ω j and ∩n
j=1Ω j = ∅. Figure 15 illustrates the electrical conductivity coefficient distribution. We solve two
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Figure 15: Electrical conductivity coefficient distribution

model problems. The first one involves a homogeneous electrical conductivity coefficient equal to one (σ = 1) over
the entire domain, while in the second model, the electrical conductivity σ is given by

σ =


σ| = 1
σ| = 10
σ| = 0.1.

Figures 16 and 17 illustrate the electric field (E) and the only nonzero magnetic field (H) resulting from imposing
the magnetic source (MH) of radius r = 0.01 at x0 = [4.8, 4.8]. We solve these 2D problems using a mesh size of
10242 elements, and polynomial degree p = 4.

To ensure that the numerical problems are converging to the correct solution, we compute the L2-norm of ∇×H−
σ̃E, being E = (Ex,Ey) and H = (Hz) the only nonzero magnetic field. The numerical results in Table 2 exhibit a slow
convergence as we increase the order of approximation. This is a consequence of the discontinuity (lack of regularity)
of the source. To recover a fast convergence, we consider the following alternative magnetic source:

MH = b e
−||x − x0||

2

2a (57)

where b = 50 and a = 0.001. The above source is C∞. Table 3 presents the L2-norm of ∇ × H − σ̃E. rIGA delivers
L2-norms values that are smaller than the ones obtained with IGA and larger than those from FEM, as expected. In
addition, rIGA shows a similar (up to a constant) rate of convergence than IGA in terms of mesh size and polynomial
degree. The poor convergence observed for the case with σ = σ j(x) is due to the discontinuities of σ.

Figures 18 and 19 display the number of FLOPs required to solve the Maxwell and Helmholtz problem in 2D,
respectively. The number of FLOPs is plotted with respect to the macro-elements size s = nelem/2`, being ` the
number of partition levels in which we perform continuity reduction.

We use a constant factor approximately equal to 16 to fit the theoretical estimates (equations (24) and (40)) with
the computed number of FLOPs required to solve the 2D Maxwell problem and the 2D Helmholtz problem. This
constant includes the contribution of building the Schur complements and the total number of FLOPs that LAPACK
performs to factorize the system. The constant factor is slightly dependent on the polynomial degree.

Tables 4 and 5 provide the number of FLOPs and computational times (in seconds) required to solve the 2D
Maxwell and 2D Helmholtz equation using IGA and optimal rIGA discretizations, respectively.

The numerical results show that rIGA reduces the number of FLOPs required for solving both Maxwell and
Helmholtz problems by a factor up to O(p2). For instance, when we solve the 2D Maxwell problem using a mesh size
of 10242 elements and polynomial degree p = 5, the optimal rIGA case reports a reduction with respect to Cp−1 IGA
of approximately 12 times in terms of the number of FLOPs. When we solve the 2D Helmholtz problem using the
same mesh size and polynomial degree, the reduction factor in the number of FLOPs is 31.

The theoretical estimates explain well the numerical results. In particular, the estimates predict the optimal rIGA
case which delivers the maximum reduction cost for both Maxwell and Helmholtz problems.
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Figure 16: Absolute value of the real part of the 2D electric field (|Re(E)|) distribution in logarithmic scale. Problem solution approximated over a
mesh size of 10242 elements and a polynomial degree p = 5.
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Figure 17: Absolute value of the real part of the 2D magnetic field (|Re(H)|) distribution in logarithmic scale. Problem solution approximated over
a mesh size of 10242 elements and a polynomial degree p = 5.

In terms of computational times, rIGA reports a maximum reduction factor with respect to Cp−1 IGA of almost 11
times when solving the Maxwell problem, and of almost 20 times when solving the Helmholtz problem, both in 2D,
with a mesh size of 10242 elements and polynomial degree p = 5. The optimal rIGA case required approximately 3
minutes to solve the Maxwell problem, while IGA required 30 minutes. For solving Helmholtz problem, we go from
5 minutes (with IGA) to 15 seconds (with rIGA).

Remark. Focusing on the case with a smooth magnetic source (57) and considering that both Maxwell and Helmholtz
problems are solved using a mesh size of 10242 elements and polynomial degree p = 5, the L2-norm of ∇ × H − σ̃E
computed with optimal rIGA reports a reduction of 10% with respect to Cp−1 IGA for σ = 1, while for σ = σ j(x)
optimal rIGA reports a reduction factor with respect to Cp−1 IGA of two order of magnitud.

5.2. H(div) × L2 conforming spaces
We now study the impact of the continuity reduction on a set of H(div) × L2 conforming spaces. The model

problem consists of a linear system of PDEs for the conservation of linear momentum and mass. This boundary value
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σ = 1 σ = σ j(x)

Polynomial Mesh IGA rIGA FEM IGA rIGA FEM
degree size (Nelem)

3 5122 2.52e-3 2.52e-3 2.64e-4 2.79e-3 2.55e-3 2.87e-4
10242 1.57e-4 1.53e-4 4.19e-5 3.54e-4 1.80e-4 6.22e-5

4 5122 1.83e-3 1.83e-3 5.66e-5 2.16e-3 1.85e-3 1.16e-4
10242 1.03e-4 9.86e-5 1.06e-5 3.28e-4 1.17e-4 1.82e-5

5 5122 1.64e-3 1.58e-3 8.23e-5 1.99e-3 1.60e-3 1.03e-4
10242 6.05e-5 5.42e-5 *** 2.66e-4 7.04e-5 ***

6 5122 1.26e-3 1.24e-3 1.82e-5 1.62e-3 1.26e-3 1.07e-5
10242 *** 3.38e-5 *** *** 4.80e-5 ***

Table 2: L2-norm of ∇ × H − σ̃E. Case with the discontinuous magnetic source presented in (56). The asterisks reflect that the computation was
not accomplished due to the lack of memory.

σ = 1 σ = σ j(x)

Polynomial Mesh IGA rIGA FEM IGA rIGA FEM
degree size (Nelem)

3 5122 5.06e-04 4.60e-04 7.41e-05 1.62e-3 4.80e-4 8.97e-5
10242 4.33e-06 4.26e-06 1.29e-06 5.98e-4 1.48e-5 9.78e-6

4 5122 2.58e-05 1.70e-05 2.79e-07 1.70e-3 3.03e-5 9.58e-6
10242 3.40e-08 2.94e-08 1.05e-09 8.32e-4 7.32e-6 5.17e-6

5 5122 2.12e-06 1.41e-06 9.06e-10 1.32e-3 1.14e-5 6.35e-6
10242 3.99e-10 3.68e-10 *** 7.00e-4 5.55e-6 ***

6 5122 2.55e-07 1.37e-07 2.88e-12 1.57e-3 8.09e-6 4.71e-6
10242 *** 5.45e-12 *** *** 4.48e-6 ***

Table 3: L2-norm of ∇ × H − σ̃E. Case with the smooth magnetic source presented in (57). The asterisks reflect that the computation was not
accomplished due to the lack of memory.

problem represents incompressible fluid flows in steady state. We formulate the problem as follows
Find {u, pe} , with u : Ω→ Rd, and pe : Ω→ R, such that:

−∇ · σ (u, pe) = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω,

(58)

where Ω = (0, 1)d is the region occuped by the fluid, u is the fluid velocity field, pe is the pressure field, f is the external
volumetric forces acting on the fluid, and g is the fluid velocity at the boundary. Additionally, σ (u, pe) = −peI+2ν∇su
is the Cauchy stress tensor for incompressible Newtonian fluids, where I refers to the identity matrix, ν is the kinematic
viscosity, and ∇su is the symmetric part of the velocity gradient (strain rate).
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Figure 18: Number of FLOPs required to solve the 2D Maxwell equation with the multifrontal direct solver. The dashed lines with rounded
markers correspond to the numerical results and the solid lines represent the theoretical estimates.
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Figure 19: Number of FLOPs required to solve the 2D Helmholtz problem with the multifrontal direct solver. The dashed lines with rounded
markers correspond to the numerical results and the solid lines represent the theoretical estimates.

The weak formulation of the system is
Find {u, pe} , with u ∈ V H1

g , and pe ∈ Q0, such that:

(∇sw, 2ν∇su)Ω − (∇ · w, pe)Ω + (qe,∇ · u)Ω = (w, f)Ω

for all w ∈ V H1

0 , and qe ∈ Q0,

(59)

where V H1

g = {v ∈ H1 (Ω) : v = g on ∂Ω} and V H1

0 = {v ∈ H1 (Ω) : v = 0 on ∂Ω} are the trial and test spaces for the
velocity field, respectively. The trial and test spaces for the pressure field correspond to Q0 = L2

0 (Ω) ⊂ L2 (Ω) that is
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Polynomial Method Nelem = 5122 Nelem = 10242

degree FLOPs Time [s] FLOPs Time [s]

3 IGA 6.362e+11 37.221 5.924e+12 314.729
rIGA 2.063e+11 14.920 1.624e+12 95.222

IGA/rIGA 3.08 2.5 3.64 3.30

4 IGA 1.697e+12 91.853 1.486e+13 947.220
rIGA 2.626e+11 18.447 1.922e+12 115.483

IGA/rIGA 6.46 4.98 7.73 8.20

5 IGA 3.576e+12 211.684 2.967e+13 1670.075
rIGA 3.601e+11 25.638 2.562e+12 151.575

IGA/rIGA 9.93 8.25 11.58 11.02

6 IGA 6.445e+12 316.894 5.334e+13 ***
rIGA 4.468e+11 30.596 2.944e+12 196.624

IGA/rIGA 14.42 10.36 18.11 —

Table 4: Number of FLOPs and computational times (in seconds) required to solve the 2D Maxwell problem with the multifrontal direct solver
using two mesh sizes and four polynomial degrees (p ranging from 3 to 6).

Polynomial Method Nelem = 5122 Nelem = 10242

degree FLOPs Time [s] FLOPs Time [s]

3 IGA 1.362e+11 8.801 1.187e+12 66.899
rIGA 1.311e+10 1.713 9.121e+10 8.841

IGA/rIGA 10.38 5.14 13.01 7.56

4 IGA 3.161e+11 19.172 2.703e+12 145.458
rIGA 1.861e+10 2.275 1.223e+11 11.739

IGA/rIGA 16.98 8.42 22.10 12.39

5 IGA 6.259e+11 47.657 5.181e+12 317.254
rIGA 2.877e+10 3.202 1.657e+11 15.647

IGA/rIGA 21.67 14.88 31.27 20.27

6 IGA 1.035e+12 54.598 9.049e+12 486.781
rIGA 4.054e+10 4.307 2.102e+11 19.924

IGA/rIGA 25.53 12.68 43.09 24.43

Table 5: Number of FLOPs and computational times (in seconds) required to solve the 2D Helmholtz problem with the multifrontal direct solver
using two mesh sizes and four polynomial degrees (p ranging from 3 to 6).

a space with zero average on Ω. In here, (·.·)Ω denotes the L2 inner product on Ω. The weak problem has a unique
solution (u, pe) ∈ Vg × Q0.

Since the discretization spaces used in this case are designed for H(div) problems, we can strongly set the normal
component of the velocity (gn) at the boundary. The parametric spaces, in this case are

V̂ div
gn,h

:=
{
v̂ ∈ V̂ div

h (Ω̂) : v̂ · n̂ = gn on ∂Ω̂
}
,

Q̂ int
0,h :=

{
q̂e ∈ Q̂

int
h (Ω̂) :

∫
Ω

q̂e = 0
}
.

To impose the tangential component of the velocity (gt), we use Nitsche’s method. This approach weakly imposes
the tangential component of the vectorial field at the boundary [30]. Now, we introduce the Galerkin formulation that
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uses the weak imposition of the tangential component of the velocity.

Find {u, pe} , with u ∈ V div
gn,h, and pe ∈ Q

int
0,h, such that:

(∇sw, 2ν∇su)Ω − (∇ · w, pe)Ω + (qe,∇ · u)Ω

−(w, 2ν∇su · n)Γ +
(
w, 2νu αp

)
Γ

−(u, 2ν∇sw · n)Γ

=

(w, f)Ω

+
(
w, 2νg αp

)
Γ

−(g, 2ν∇sw · n)Γ

for all w ∈ V div
0,h , and qe ∈ Q

int
0,h,

(60)

whereV div
0,h and Q int

0,h are computed using (15) and (18), respectively. Γ refers to the boundary in which the tangential
condition is impossed, g is the boundary condition data that consists in a tangential value gt and a normal value
gn, and αp = Cpen/h f . Cpen = 5(p + 1) is the penalty parameter that depends upon the polynomial degree of the
discretization and h f , which is the wall normal mesh size [31]. In the Galerkin formulation, the term in blue comes
from the natural boundary condition (consistency), the penalization terms are in red and the terms in green conform
the adjoint consistency.

5.2.1. Lid-driven cavity problem (Stokes flow)
We solve a lid-driven cavity problem over a unitary domain, assuming a Stokes flow. We impose a tangential

velocity at the top boundary of the domain (∂ΩT ) equal to one, and on the remaining boundaries (∂Ωr) we consider
a no-slip condition. Moreover, no external forces are considered (f = 0). Figure 20 illustrates the structure of the
lid-driven cavity test problem.

x

y

Ω = (0, 1)2

u|∂ΩT = [1, 0]

u|∂Ωr = [0, 0]

(a) 2D domain

x
y

z

Ω = (0, 1)3

u|∂ΩT = [0, 1, 0]

u|∂Ωr = [0, 0, 0]

(b) 3D domain

Figure 20: Lid-driven cavity fluid flow test problem.

The pressure and the stress fields, in this problem, involve corner singularities. Due to this, the exact solution of
the velocity lies in a Sobolev spaceW1,p(Ω), being 1 < p ≤ 2, instead of lying in H(div) or H1. In [14], Evans et
al. showed that the H(div) × L2 IGA discretization approximates well the smooth portions of the flow and properly
resolve the flow close to the corner singularities showing that the vorticity nearby those corners slowly converges to
the highly accurate pseudospectral results presented in [32].

In addition to this classical Stokes benchmark problem, we consider a 2D case in which the boundary condition at
the top boundary of the domain consists of a continuous function

u|∂ΩT =


[10x, 0], ∀ x < 0.1
[1, 0]. ∀ 0.1 ≤ x ≤ 0.9
[10(1 − x), 0]. ∀ 0.9 ≤ x ≤ 1

(61)
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In this case, the problem does not experience corner singularities, and the exact solution of the fluid flow problem
is in the proper spaces.

Figure 21 illustrates the magnitude of the velocity for the Stokes problem solved using a mesh size of 10242

elements and polynomial degree p = 5 in 2D. In Figure 22, we plot the horizontal velocity along the vertical centerline
when using the top boundary condition u|∂ΩT = [1, 0] and the one defined with (61) and Figure 23 compares the
horizontal velocity along the vertical centerline for IGA and the optimal case of rIGA in both 2D and 3D with u|∂ΩT =

[1, 0] (that corresponds to a classical Stokes benchmark problem). The smooth portion of the flow inside the domain
is accurately approximated, and the continuity reduction shows no notorious impact on the solution, as expected.
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Figure 21: Magnitude of the velocity (u) of the 2D Stokes problem. Problem solution approximated over a mesh size of 10242 elements and a
polynomial degree p = 5.
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Figure 22: Horizontal velocity ux along the vertical centerline. Comparison between using a top boundary condition of u|∂ΩT = [1, 0] and u|∂ΩT
defined by (61).

Figures 24 and 25 display the number of FLOPs required to solve the Stokes problem in 2D and 3D, respectively.
The number of FLOPs is plotted with respect to the macro-elements size s = nelem/2`, being ` the number of partition
levels over which we perform continuity reduction.

For 2D, we use a constant factor close to 16 to fit the theoretical estimates provided in (28) and (44) with the
computed number of FLOPs. For 3D, the constant factor used to fit the theoretical estimates with the numerical
results is close to 7. These constants include the contribution of forming the Schur complements and the total number
of FLOPs that LAPACK performs to factorize the system, and are slightly dependent on the polynomial degree.

Tables 6 and 7 provide the number of FLOPs and computational times (in seconds) for the corresponding IGA
and optimal rIGA discretizations in 2D and 3D, respectively.
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Figure 23: Comparison of the horizontal velocity ux along the vertical centerline for IGA and the optimal case of rIGA.
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Figure 24: Number of FLOPs required to solve the 2D Stokes problem with the multifrontal direct solver. The dashed lines with rounded markers
correspond to the numerical results and the solid lines represent the theoretical estimates.

The theoretical estimates describe well the behaviour we observe in the numerical experiments. In particular,
these estimates predict the macro-element size that delivers the maximum cost reduction. The numerical results show
that rIGA decreases the number of FLOPs required for solving the Stokes problem by a factor up to O(p2) in 2D. For
instance, in the case that we solve the model problem using a mesh size of 10242 elements and polynomial degree
p = 5, the optimal rIGA case reports a reduction with respect to Cp−1 IGA of approximately 14 times in terms of the
number of FLOPs. In 3D, the reduction factor of the number of FLOPs is approximately p. In 3D, the examples we
can solve are in the pre-asymptotic regime, and due to that, the maximum reduction factor of the number of FLOPs
we can observe is O(p). As we reach the asymptotic regime (for a sufficiently large grid), the reduction factor of the
number of FLOPs becomes O(p2). For example, when using the FLOPs estimates of (44) with p = 6 and Nelem = 2563

we obtain a factor of 31 in the computational time savings.
In terms of computational times, rIGA reduces the computational time with respect to the maximum continuity

IGA by an order of magnitude when solving the Stokes problem in 2D, with a mesh size of 10242 elements and
polynomial degree p = 5. That is, rIGA takes seven minutes to solve a problem where IGA for the same mesh takes
over 80 minutes. In 3D, the case solved with a mesh size of 323 elements and polynomial degree p = 4 reports the
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Figure 25: Number of FLOPs required to solve the 3D Stokes problem with the multifrontal direct solver. The dashed lines with rounded markers
correspond to the numerical results and the solid lines represent the theoretical estimates.

Polynomial Method Nelem = 5122 Nelem = 10242

degree FLOPs Time [s] FLOPs Time [s]

3
IGA 1.78e+12 106.27 1.45e+13 794.28
rIGA 4.76e+11 34.51 3.68e+12 226.29

IGA/rIGA 3.73 3.07 3.94 3.51

4
IGA 5.01e+12 277.83 4.19e+13 2191.69
rIGA 6.52e+11 46.24 4.92e+12 309.11

IGA/rIGA 7.68 6.01 8.37 7.09

5
IGA 1.07e+13 583.97 9.73e+13 4975.04
rIGA 9.03e+11 62.67 6.85e+12 429.88

IGA/rIGA 11.85 9.32 14.20 11.57

6
IGA 1.98e+13 1038.72 1.93e+14 12996.36
rIGA 1.24e+12 83.32 8.04e+12 645.24

IGA/rIGA 15.97 12.47 24.00 20.14

Note: Results in blue were computed with Pardiso and PETSc using 64bit indices.

Table 6: Number of FLOPs and computational times (in seconds) required to solve the 2D Stokes problem with the multifrontal direct solver using
two mesh sizes and four polynomial degrees (p ranging from 3 to 6).

largest solvable problem using sequential MUMPS. In this case, the improvement in scaling is just above four times,
as the meshes are rather small (i.e., the 90 minutes of IGA reduce to 20 with rIGA).

6. Conclusions

We extend the refined isogeometric analysis (rIGA) to solve multi-field problems. This extension delivers a
reduction in the computational cost and provides better approximability than Cp−1 IGA. rIGA computes the solution
of the 2D electromagnetic problem with the spline-generalization of the Ndelec finite element spaces approximately
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Polynomial Method Nelem = 163 Nelem = 323

degree FLOPs Time [s] FLOPs Time [s]

3
IGA 2.59e+11 15.36 1.32e+13 667.42
rIGA 1.34e+11 8.79 4.56e+12 242.99

IGA/rIGA 1.93 1.74 2.89 2.75

4
IGA 9.63e+11 53.42 4.49e+13 2222.29
rIGA 3.72e+11 22.78 9.96e+12 530.63

IGA/rIGA 2.59 2.34 4.51 4.19

5
IGA 2.63e+12 138.27 1.09e+14 5394.60
rIGA 1.24e+12 69.58 2.14e+13 1179.58

IGA/rIGA 2.12 1.98 5.09 4.57

6
IGA 5.64e+12 285.07 2.26e+14 14674.84
rIGA 2.89e+12 165.49 4.50e+13 3019.07

IGA/rIGA 1.95 1.72 5.02 4.86

Note: Results in blue were computed with Pardiso and PETSc using 64bit indices.

Table 7: Number of FLOPs and computational times (in seconds) required to solve the 3D Stokes problem with the multifrontal direct solver using
two mesh sizes and four polynomial degrees (p ranging from 3 to 6).

p2 faster than Cp−1 IGA. Similarly, the numerical results of the incompressible fluid flow problem solved with the
spline-based generalization of the Raviart-Thomas finite elements spaces show a reduction factor in the computational
cost up to p2 for 2D. In 3D, the maximum size of a problems that we can solve with sequential MUMPS is in the
pre-asymptotic regime. Thus, the maximum gain factors are of O(p). In multi-field problems, we require additional
time (larger grids than in scalar problems) to arrive at the asymptotic limit and reap the full benefits. For sufficiently
large grids (asymptotic regime), the theoretical estimates show that the gain factor scales like O(p2).

The optimal discretizations obtained with rIGA consists of enriched/nested spaces with respect to Cp−1 IGA.
Therefore, the best approximation error is improved by definition. Similarly, the best approximation error of the
corresponding C0 FEA discretization is smaller than that of rIGA. Nevertheless, since rIGA is orders of magnitude
faster than FEM in 2D and especially in 3D, the slight improvement in the errors do not justify the use of FEM from
the computational cost point of view. The total numerical error for stable elliptic problems improves when going from
IGA to rIGA discretizations.

As future work, we plan to apply rIGA to solve hyperbolic and parabolic PDEs systems in order to perform a
deeper analysis on the effect of the continuity reduction on the total numerical error. In particular, we shall evaluate
how significant is the impact of the continuity reduction on the problems’ stability. As an observation, the first work
in this topic has been just published in 2018. In this work, the authors study the spectral approximation properties of
rIGA and show how the local reduction of continuity impact on the error in the eigenvalues and eigenfunctions [33].
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[24] P. R. Amestoy, I. S. Duff, J.-Y. LÉxcellent, J. Koster, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling,
SIAM Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41.

[25] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing
32 (2) (2006) 136 – 156.

[26] Karypis Laboratory, METIS, http://glaros.dtc.umn.edu/gkhome/metis/metis/overview (2016).
URL http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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Appendices
A. Curl-conforming IGA spaces: Separators’ size

The size of the separators for the case in which we use curl-conforming IGA spaces in 2D is given by

qsep = qux
sep + quy

sep,

where qux
sep and quy

sep refer to the size of the separators in each of the curl-conforming spaces. Table 8 presents the size
of the separators in each space where the first term inside parenthesis is the length and the second corresponds to the

Separator qux
sep quy

sep

qsep|y (Vertical) O
(
2−(i−1) (nelem + p)(k)

)
O

(
2−(i−1) (nelem + p − 1)(k + 1)

)
qsep|x (Horizontal) O

(
2−i (nelem + p − 1)(k + 1)

)
O

(
2−i(nelem + p)(k)

)
Table 8: Size of the separators in each of the fields corresponding to the curl-conforming spaces.

thickness of the separators. Then, the size of the separators at the i-th partition level is

qsep|y = O
(
2−(i−1) ((nelem + p)(2k + 1) − (k + 1)

))
, (62)

qsep|x = O
(
2−i ((nelem + p)(2k + 1) − (k + 1)

))
. (63)

B. Divergence-conforming IGA spaces: Separators’ size

The size of the separators for the case in which we use divergence-conforming IGA spaces in 2D is given by

qsep = qux
sep + quy

sep,

where qux
sep and quy

sep refer to the size of the separators in each of the spaces. Table 9 presents the size of the separators
in those spaces

Separator qux
sep quy

sep

qsep|y (Vertical) O
(
2−(i−1) (nelem + p − 1)(k + 1)

)
O

(
2−(i−1) (nelem + p)(k)

)
qsep|x (Horizontal) O

(
2−i (nelem + p)(k)

)
O

(
2−i(nelem + p − 1)(k + 1)

)
Table 9: Size of the separators in each of the fields corresponding to the divergence-conforming spaces.

where the first term inside parenthesis is the length and the second corresponds to the thickness of the separators.
Then, the size of the separators at the i-th partition level is

qsep|y = O
(
2−(i−1) ((nelem + p)(2k + 1) − (k + 1))

)
, (64)

qsep|x = O
(
2−(i) ((nelem + p)(2k + 1) − (k + 1))

)
. (65)

C. Integral-conforming IGA spaces: Separators’ size

The size of the separators for the case in which we use an integral-conforming IGA space in 2D is qsep = qφsep,
where qφsep is given in Table 10.
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Separator qφsep

qsep|y (Vertical) O
(
2−(i−1) (nelem + p − 1)(k)

)
qsep|x (Horizontal) O

(
2−i(nelem + p − 1)(k)

)
Table 10: Size of the separators for the integral-conforming spaces.

where the first term inside parenthesis is the length and the second corresponds to the thickness of the separators.
Then, the size of the separators at the i-th partition level is

qsep|y = O
(
2−(i−1)(nelem + p − 1)(k)

)
, (66)

qsep|x = O
(
2−(i)(nelem + p − 1)(k)

)
. (67)

D. Curl-conforming rIGA spaces: Separators and macro-elements size

D.1. Separators’ size

The size of the separators for the case in which we use curl-conforming rIGA spaces in 2D is given by

qsep = qux
sep + quy

sep,

where qux
sep and quy

sep refer to the size of the separators in each of the curl-conforming spaces. Table 11 presents the size
of the separators in each space where the first term inside parenthesis is the length and the second corresponds to the

Separator qsep|y (Vertical) qsep|x (Horizontal)

qux
sep O

(
2−(i−1) (nelem + p + (2i − 1)(k − 1))(1)

)
O

(
2−i (nelem + p − 1 + (2i − 1)(k − 1))(2)

)
quy

sep O
(
2−(i−1) (nelem + p − 1 + (2i − 1)(k − 1))(2)

)
O

(
2−i(nelem + p + (2i − 1)(k − 1))(1)

)
Table 11: Size of the separators in each of the fields corresponding to the curl-conforming spaces.

thickness of the separators. Then, the size of the separators at the i-th partition level is

qsep|y = O
(
2−(i−1)

(
(nelem + p + (2i − 1)(k − 1))

))
, (68)

qsep|x = O
(
2−i

(
(nelem + p + (2i − 1)(k − 1))

))
, (69)

D.2. Macro-elements’ size

The size of the macro-elements in 2D is nm-e = nm-e|x · nm-e|y, being nm-e|x and nm-e|y the size of the macro-element
in the horizontal and vertical spatial directions, respectively. Table 12 provides the macro-elements sizes.

nm-e|x nm-e|y

ux 2−`
(
nelem + p − 1 + (2` − 1)(k − 1)

)
2−`

(
nelem + p + (2` − 1)(k − 1)

)
uy 2−`

(
nelem + p + (2` − 1)(k − 1)

)
2−`

(
nelem + p − 1 + (2` − 1)(k − 1)

)
Table 12: Macro-element sizes in the vectorial field corresponding to the curl-conforming discrete spaces.
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E. Divergence-conforming rIGA spaces: Separators and macro-elements size

E.1. Separators’ size
The size of the separators for the case in which we use divergence-conforming IGA spaces in 2D is given by

qsep = qux
sep + quy

sep,

where qux
sep and quy

sep refer to the size of the separators in each of the spaces. Table 13 presents the size of the separators
in those spaces where the first term inside parenthesis is the length and the second corresponds to the thickness of the

Separator qsep|y (Vertical) qsep|x (Horizontal)

qux
sep O

(
2−(i−1) (nelem + p − 1 + (2i − 1)(k − 1))(2)

)
O

(
2−i(nelem + p + (2i − 1)(k − 1))(1)

)
quy

sep O
(
2−(i−1) (nelem + p + (2i − 1)(k − 1))(1)

)
O

(
2−i (nelem + p − 1 + (2i − 1)(k − 1))(2)

)
Table 13: Size of the separators in each of the fields corresponding to the divergence and integral-conforming spaces.

separators. Then, the size of the separators at the i-th partition level is

qsep|y = O
(
2−(i−1)

(
(nelem + p + (2i − 1)(k − 1))

))
, (70)

qsep|x = O
(
2−i

(
(nelem + p + (2i − 1)(k − 1))

))
, (71)

E.2. Macro-elements’ size
In 2D, the size of the macro-elements is nm-e = nm-e|x · nm-e|y, being nm-e|x and nm-e|y the size of the macro-element

in the horizontal and vertical spatial directions, respectively. Table 16 provides the macro-elements sizes for the fields,
assuming that the macro-elements are Cp−1 systems.

nm-e|x nm-e|y

ux 2−`
(
nelem + p + (2` − 1)(k − 1)

)
2−`

(
nelem + p − 1 + (2` − 1)(k − 1)

)
uy 2−`

(
nelem + p − 1 + (2` − 1)(k − 1)

)
2−`

(
nelem + p + (2` − 1)(k − 1)

)
Table 14: Macro-element size in the vectorial field corresponding to the divergence-conforming spaces.

F. Integral-conforming rIGA spaces: Separators and macro-elements size

F.1. Separators’ size
The size of the separators for the case in which we use an integral-conforming IGA space in 2D is given by

qsep = qφsep, where qφsep is given in Table 15

Separator qφsep

qsep|y (Vertical) O
(
2−(i−1) (nelem + p − 1 + (2i − 1)(k − 1))(1)

)
qsep|x (Horizontal) O

(
2−i(nelem + p − 1 + (2i − 1)(k − 1))(1)

)
Table 15: Size of the separators for the integral-conforming spaces.

where the first term inside parenthesis is the length and the second corresponds to the thickness of the separators.
Then, the size of the separators at the i-th partition level is

qsep|y = O
(
2−(i−1)

(
(nelem + p + (2i − 1)(k − 1))

))
, (72)

qsep|x = O
(
2−i

(
(nelem + p + (2i − 1)(k − 1))

))
, (73)
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F.2. Macro-elements’ size

In 2D, the size of the macro-elements is nm-e = nm-e|x · nm-e|y, being nm-e|x and nm-e|y the size of the macro-element
in the horizontal and vertical spatial directions, respectively. Table 16 provides the macro-elements sizes for the field,
assuming that the macro-elements are Cp−1 systems.

nm-e|x nm-e|y

φ 2−`
(
nelem + p − 1 + (2` − 1)(k − 1)

)
2−`

(
nelem + p − 1 + (2` − 1)(k − 1)

)
Table 16: Macro-element size in the scalar field corresponding to the integral-conforming space.

32


