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Abstract

In recent years, a variety of research areas have contributed to a set of
related problems with rare event, anomaly, novelty and outlier detection
terms as the main actors. These multiple research areas have created
a mix-up between terminology and problems. In some research, similar
problems have been named differently; while in some other works, the
same term has been used to describe different problems. This confusion
between terms and problems causes the repetition of research and hinders
the advance of the field. Therefore, a standardization is imperative.

The goal of this paper is to underline the differences between each term,
and organize the area by looking at all these terms under the umbrella of
supervised classification. Therefore, a one-to-one assignment of terms to
learning scenarios is proposed. In fact, each learning scenario is associated
with the term most frequently used in the literature. In order to validate
this proposal, a set of experiments retrieving papers from Google Scholar,
ACM Digital Library and IEEE Xplore has been carried out.

1 Introduction

Numerous applications require filtering or detecting abnormal observations in
data. For instance, in security, intruders are abnormalities (Ribeiro et al., 2016;
Pimentel et al., 2014; Luca et al., 2016; Phua et al., 2010; Yeung and Ding, 2001);
in traffic data, road accidents (Theofilatos et al., 2016); in geology, the eruption
of volcanoes (Dzierma and Wehrmann, 2010); in food control, foreign objects
inside food wrappers (Einarsdéttir et al., 2016); in economics, bankruptcy of
a company (Fan et al., 2017); or in neuroscience, an unexperienced stimulus is
considered an abnormality (Katkas and Montaldi, 2018). In some situations, the
abnormalities are called rare events, anomalies, novelties, outliers, exceptions,
aberrations, surprises, peculiarities, noise or contaminants among others. Of
these, the most common terms in the literature are rare event, anomaly, novelty
and outlier.

Considering the importance of abnormalities in different areas, a lot of re-
search has been done, mainly in the last 10 years. However, the fact that these



contributions have been carried out in different knowledge areas, a mix-up be-
tween names and problems has occurred in the literature. Particularly, when
the same term is used in distinct disciplines but with other meaning and vice
versa. Moreover, the terminology has changed over time and even in the same
discipline; a similar problem has been named differently in different time peri-
ods. On the one hand, different names have been used for similar problems. For
instance, Van Den Eeckhaut et al. (2006) deal with a problem of predicting, in a
fixed period of time, the risk factor of a landslide in an area. The authors create
a landslide susceptibility map in which each area is scored based on the risk of a
landslide. This is done using historical data of either normal and ground which
has suffered a landslide (abnormal). In this study, the authors refer to land-
slides as rare events because landslides seldom occur. In Ribeiro et al. (2016)
a similar problem is addressed, but with a different term. Here, a study in the
railway industry is carried out. Train passenger doors have several subsystems
in order to keep them open or closed according to a variety of safety and comfort
rules. In some situations these doors fail due to the deterioration of the sys-
tem. Therefore, the authors predict whether the door is going to fail in a fixed
period of time or not. In order to do that, both normal and failure historical
data is used to learn a model. In this case, the door failures are referred to as
anomalies. As can be seen, both problems are very similar and different terms
have been used to refer to the abnormalities. In both problems, temporal data
of normal and abnormal classes is available to build the prediction models.

On the other hand, the same terms have been used to describe widely differ-
ent problems. In the following two problems, the authors use the term novelty
to describe the abnormalities. In Luca et al. (2016) a variety of patients are
constantly monitored with a 3D accelerometer. Those patients eventually suf-
fer an epileptic seizure. Due to abrupt movement during a seizure, the patient
could became injured. Therefore, detecting this behavior as soon as possible is
relevant in order to avoid this harmful situation. In order to predict if a patient
is suffering an epileptic seizure, a model is built based on the recorded movement
data of several patients. The data consists of 3D accelerometer data divided in
fixed time windows in which whether or not an epileptic seizure has occurred
is annotated. However, notably less abnormal (seizure) data is available due to
the eventuality of these attacks. In the prediction phase, given new information
about a currently monitored patient, the classifier detects if the patient is suffer-
ing an attack at that moment. Einarsdéttir et al. (2016) detect foreign objects
inside food envelopes. A classifier is learned only from food-images without ab-
normal objects. In other words, the model is learned using information of only
one class. However, in the detection phase, the model classifies new instances
in two classes, normal (without foreign objects) and abnormal (with foreign ob-
jects). While both examples are named with the same term, the problems are
widely different. For instance, the former has both normal and abnormal data
available to train the model, whereas the latter only learns from a dataset with
observations of only one class.

As we have seen in the previous paragraphs, there is an important mix-up
between terms and problems. Possibly motivated by the same mix-up detected



by us, some papers that present specific learning methods have made an effort in
their introduction section to discuss the differences between one or two terms, or
to clearly define their learning scenario. However, to the best of our knowledge,
no paper in the literature has treated the four rare event, anomaly, novelty and
outlier terms under the supervised classification point of view. For instance,
in Luca et al. (2016); Dufrenois and Noyer (2016) a brief discussion about the
novelty term and one-class classification framework is made. In Weiss and Hirsh
(1998), the authors clearly define their rare event learning scenario. In Campos
et al. (2016), an effort is made to distinguish between one class classification
and outlier detection. Finally, in Ribeiro et al. (2016), three methods related
with outlier, anomaly and novelty detection learning scenarios are used to solve
the same problem. Also, some insights are given about all these three learning
scenarios. However, none of these papers frame the corresponding terms into
the supervised classification framework.

This confusion calls for the repetition of research and hinders the advance of
the field. Therefore, the aim of this paper is to contribute with a first step in the
organization of the area. In order to do that, this work underlines the differences
between each term, and organizes the area by looking at all these terms under
the umbrella of supervised classification. Particularly, for each term, the most
frequently used learning scenario is associated.

Paper reference Brief description of the main character- Term used
istics of the paper

Van Den Eeckhaut  The risk factor of a landslide is predicted in  Rare event
et al. (2006) a fixed period of time. The data consist of
historical landslided and normal land features.
Ribeiro et al.  Failure of the train passenger doors is pre- Anomaly detection

(2016) dicted in a fixed period of time. The data
consist of both normal and failure temporal
instances.

Luca et al. (2016) Whether the patient is suffering an epileptic = Novelty detection
seizure is predicted. The data consists of nor-
mal and abnormal patient records. The pa-
tient records are timely monitored.
Einarsdéttir et al. The presence of foreign objects inside food en-  Novelty detection
(2016) velopes is predicted. The data consist only of
images of food envelopes without foreign ob-
jects.

Table 1: An illustrative example of the mix-up between terms and problems in
the literature.

This paper is organized as follows. Each section describes a supervised learn-
ing scenario: Section 2 describes rare event detection, Section 3, anomaly de-
tection and Section 4, novelty detection. In each section, the objective of the
classification task, the characteristics of the input data and the most popular
techniques for the described learning scenario are reviewed. In Section 5, the
related outlier term is treated. In Section 6, the one-to-one assignment of terms
to learning scenarios is described coupled with a brief discussion about the main



evaluation techniques of each learning scenario. In Section 7, the experimental
validation is described. Finally, in Section 8, the conclusions of this work are
exposed.

2 Rare Event Detection

Almost all the papers that use the term rare event to describe the abnormalities
of the problem to be solved share the time dimension as a common characteristic
(Theofilatos et al., 2016; Heard et al., 2010; Dzierma and Wehrmann, 2010).
For instance in Theofilatos et al. (2016), a road accident study in the Attica
Tollway (Greece) is performed. The authors divide the tollway into different
sections and they detect the occurrence of an accident in a certain section of
the highway. A model is built based on recorded data from ground-sensors and
traffic-cameras. More specifically, the data is sliced into one-hour time intervals
and manually labeled by experts. Therefore, given a new one-hour time interval,
the model detects an accident occurrence. In Dzierma and Wehrmann (2010),
a geomorphological study is performed. The authors predict if a new volcano
eruption is going to happen in a fixed period of time. A Poisson Process is
learned with the historical Volcanoes Explosivity Index (VEI) of two volcanoes.
Next, given a new VEI of one of the two volcanoes, the occurrence of the eruption
in a fixed time interval is predicted.

In the previously described problems, the goal consists on the prediction of
occurrence of a rare event in a bound period of time. A genuine characteristic of
the rare event learning scenario, from a supervised classification point of view, is
that the instances are time series (Hamilton, 1994). From this perspective, the
objective is to classify new incoming time series as rare (when the rare event has
occurred) or normal (no event has occurred) using a previously learned model.
This approach is known in machine learning as supervised time series classifi-
cation (Esling and Agon, 2012). However, due to the temporal nature of the
problem, two different classification approaches can be found in the literature.
Firstly, the full length supervised time series classification is dealt with. For
example, in Murray et al. (2005), the SMART! dataset is used to detect if a
hard-drive is faulty in a fixed period of time. The authors learn a model us-
ing recorded hard-drive sensor measurements at different times. Then, given
new hard-drive sensor data, failure is detected. In Zhang et al. (2017), a termo-
technology dataset which contains information gathered over time about heating
systems is used. The objective is to detect if the heating system has failed in a
fixed period of time. Secondly, another type of classification of rare events can
be found in the literature, in which the objective is to classify new observations
(time-series) as early as possible, preferably before the full time series is avail-
able. This approach is known as early supervised time-series classification in
machine learning literature (Mori, 2015). For example, in Ogbechie et al. (2017)
a prediction of faulty metal bars is studied. During the bar melting process,

The SMART dataset is hard-drive self-monitoring recovered data in which both normal
and failure behaviors are collected.
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Figure 1: A flowchart of the supervised time series classification data mining
task (Mori (2015)).

several sensors monitor the characteristics of each bar. These measurements,
recovered from both normal and faulty bars, are used to learn a model. Next,
given information about a new bar, the classifier predicts if the bar is going to
be faulty. The early detection of a faulty bar is crucial because, depending on
when it is detected, it can be fixed during the rest of the process.

According to the characteristics of the data, in most of the problems referred
to with the rare event term, instances are time series and are labeled in two
categories: normal (N) and rare (R). Furthermore, in many papers, the data
shows an unbalanced distribution of classes. Formally, assuming that the data
is generated by a generative mechanism P(x,c¢) (Mitchell, 1997), P(C = R) <«
P(C = N). Considering the instances during the training stage, both normal
and abnormal instances are available to learn the classifier. Therefore, rare
event classification can be formalized as a (highly) unbalanced supervised time
series classification problem (Koknar-Tezel and Latecki, 2011; Cao et al., 2011).
Formally, this scenario can be described as follows:

A time series (TS) is an ordered pair (timestamp, value) of fixed length m:

TSZ{(tl,xl),...,(ti,xi),...,(tm,xm)} (1)

with t; e N, fori=1,...,m
Time series classification is a supervised data mining task in which giving a
training set of time series, TR = {(TS1,v1),...,(TSn,yn)}, in which y rep-
resents the label of the corresponding time series, the objective is to build a
classifier that is able to predict the class label of any new time series as ac-
curately as possible (Mori, 2015). In the particular case of a rare event, it
is common to have a scenario where P(C = R) < P(C = N). A common
classification process can be seen in Figure 1.

Besides, there are some problems in the literature in which the prediction
must be output as soon as possible. This learning scenario is known as early
time series classification (Mori et al., 2018).

However, even though the problem itself has the time dimension as a key



component, in some rare event detection applications, instances are transformed
without considering this genuine characteristic. Therefore, the approach treats
the problem as an unbalanced non-temporal classification task, similar to those
found in the anomaly detection learning scenario (further described in Section
3). For instance in Murray et al. (2005), the data is composed of several hard
drive sensor measurements at different time intervals. Therefore, for the same
drive, many readings of the same sensors are available. However, the authors
do not consider the order in which the measures have been recorded, and, given
new hard-drive unordered measurements, the model classifies the drive as faulty
or normal. Hence, the temporal nature of the data is not leveraged.

Regarding the rare event literature, the objective of most of the related
papers is focused on classifying the rare class. Therefore, in order to evaluate
the performance of the classification task, popular metrics such as AUC (Zhang
et al., 2017; Xu et al., 2016; Ren et al., 2016) and the recall of the rare class
(Zhang et al., 2017; Ren et al., 2016) have been commonly used.

Among the most frequently used techniques in time series classification, rare
event logistic regression, an adaptation of the logistic regression for this learning
scenario, is a popular choice (King et al., 2001; Theofilatos et al., 2016; Ren
et al., 2016; Van Den Eeckhaut et al., 2006). However, techniques such as
Kullback-Leibler divergence to discriminate between rare and normal events
(Xu et al., 2016), long-short term neural networks (Zhang et al., 2017), rule-
based classification learned with genetic algorithms (Weiss and Hirsh, 1998),
multiple-instance naive Bayes (Murray et al., 2005), Poisson Processes (Dzierma
and Wehrmann, 2010), support vector data regression with surrogate functions
(Bourinet, 2016), Bayesian networks (Cheon et al., 2009) or support vector
machines (Khreich et al., 2017) have been successfully adapted for this learning
scenario.

Taking into account the unbalanced distribution of classes, most of the pre-
vious methods are coupled with techniques specifically designed to deal with
unbalanced time-series classification. Some of these techniques include: the
Structure Preserving Over Sampling (SPO) technique (Cao et al., 2011), or
an adaptation of the classical Synthetic Minority Over-sampling TEchnique
(SMOTE) (Koknar-Tezel and Latecki, 2011).

Finally, another widely different rare event related learning scenario can be
found in the literature. The estimation of the probability of occurrence of a rare
event (Wu et al., 2003; Cadini et al., 2017; Dessai and Hulme, 2004; Duenas-
Osorio and Vemuru, 2009; Bedford and Cooke, 2001). This approach is mainly
used in engineering and physics and some illustrative examples of rare event
probability estimation include: the estimation of the probability of infrastruc-
ture failure in a fixed period of time (Duenas-Osorio and Vemuru, 2009), the
estimation of the probability of failure of technical systems in a fixed period of
time (Bedford and Cooke, 2001), or the estimation of the probability of extreme
climate developments in a specific time window (Dessai and Hulme, 2004). Since
this learning scenario is beyond the supervised classification framework, it is not
considered in this paper. Among the most frequently used techniques in order
to estimate the rare event probability, importance sampling, Monte Carlo sim-
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Figure 2: A flowchart of a supervised classification task. This learning scenario
is assigned to the anomaly detection term.

ulations (Balesdent et al., 2016; Auffray et al., 2014), kriging (Auffray et al.,
2014) or first order reliability method (FORM) (Straub et al., 2016) are found
in the literature.

3 Anomaly detection

Most of the problems which describe the abnormalities with the anomaly term
are non-temporal. The data is labeled in two categories: normal (N) and
anomaly (A). For instance, in Miri Rostami and Ahmadzadeh (2018), the au-
thors detect breast cancer using the Surveillance Epidemiology and End Results
(SEER) 2 dataset. This dataset consists of patients which have been examined
for cancer diseases. The patients which suffer from cancer are described with
anomaly term. Hence, the data consists of cases of both normal and anoma-
lous instances. A model is then learned which classifies new unseen cases as
anomalous or normal. Fiore et al. (2017) detects credit-card transactions using
a public dataset with legal and notably less fraudulent transactions. A neural
network is learned to classify new incoming transactions as legal or fraudulent.

In anomaly detection learning scenario, anomalous instances are scarce due
to the unbalanced distribution between normal and anomaly classes (Chandola
et al., 2009). Therefore, this scenario can be formalized as (highly) unbalanced
supervised classification. Formally, an instance is defined as x = (z1,...,Tm).
Given a training set TR = {(X1,%1),.--, (Xn,¥n)}, in which y represents the
label of the corresponding instance, the objective is to learn a classifier that is
able to predict a new class label of any new instance as accurately as possible.
Regarding the probability distribution of the class variable, P(A) < P(N).
Where A represents the anomaly class label and A the normal class label. An
illustrative example can be seen in Figure 2.

In order to evaluate the performance of the classifiers, due to the (highly)

2 Available here: https://seer.cancer.gov/data/



unbalanced distribution of classes, common metrics such as accuracy are not
informative enough. Therefore, authors focus on the correct classification of
abnormalities. A popular evaluation measure used is the maximization of the
recall of the minority class (Ribeiro et al., 2016; Miri Rostami and Ahmadzadeh,
2018).

For anomaly detection, popular supervised classifiers have been adapted
obtaining competitive results. For instance, support vector machines (Zhou
et al., 2017), neural networks (Noto et al., 2012) or Gaussian mixture models
(Reynolds, 2015) present genuine algorithms to deal with anomaly detection
domains. Note that, since anomaly detection can be formalized as a (highly)
unbalanced supervised classification problem, techniques that specifically deal
with unbalanced domains can be used for anomaly detection. Similar to the rare
event oversampling techniques, SMOTE (Miri Rostami and Ahmadzadeh, 2018;
Araujo et al., 2018), is widely used to synthetically generate instances from the
minority class.

4 Novelty detection

In most of the papers that use the term novelty to describe the abnormalities,
the model is learned using a dataset that contains only one class. For instance,
in Khreich et al. (2017), system call traces are classified as novel or normal. A
novel instance corresponds to an unsupported or unexpected system call trace.
To learn the model, only normal system call traces which have been gathered
in a secure environment are used. When a new system call arrives, the classifier
predicts it as normal or novel. Similarly, in Einarsdéttir et al. (2016), a study
in food control is carried out. Specifically, in some cases, foreign objects can
be found inside food envelopes. Since this situation can result in bad customer
experience and legal issues, the detection of foreign objects is crucial. The
authors learn a classifier using X-ray images only from normal food (without
foreign objects inside). Next, giving a new unseen X-ray image, the classifier
predicts it as novel (with foreign object inside) or normal. The novelty term
has also been commonly used in streaming scenarios. Masud et al. (2013) start
from a labeled dataset, where an initial model is learned. This model classifies
the new incoming instances either among the normal known classes or as novel
(the instance is not similar to any known class). If this new instance is classified
as novel, it is kept in a buffer because it is considered as a candidate for a
new class. When this buffer is full, new classes are sought in this buffer. The
classifier is updated with new emerging novel classes for future predictions.
Regarding the two aforementioned problems, two different learning scenarios
can be considered. What we call the static novelty detection learning scenario
is considered. Here, the problem can be cast as a binary supervised classifica-
tion problem. Given a dataset composed by only one class, a model is built.
This model learns a decision boundary that isolates the normal behavior. For
prediction, when a new instance arrives, it is classified as novel or as normal. In
this framework, the efforts are focused on correctly classifying the normal class
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Figure 3: A flowchart of the supervised classification framework task in which
only one class is available to learn the classification model. This learning sce-
nario is assigned to the the static novelty detection term.

(Pimentel et al., 2014; Einarsdéttir et al., 2016; Kafkas and Montaldi, 2018).
Therefore, in order to evaluate the performance of the classifiers, the recall of
the normal class is commonly maximized (Swarnkar and Hubballi, 2016; Luca
et al., 2016). Formally, the training set is generated only from P(x|C = N). At
the training stage, even though the classifier is learned using information about
only one class (normal class), it is built considering that another behavior exists
which is different that which is normal.

Formally, an instance is defined as x = (z1,...,Z;,). Given a training
dataset, TR = {(x1,91 = N),...,(Xn,yn = N)}, the objective is to learn
a classifier that will be able to predict between normal N and novel. Note that,
in this learning scenario, only one class, the normal class A, is available to train
the model. An illustrative example can be graphically seen in Figure 3.

Besides, what we call dynamic novelty detection is considered. In some sit-
uations, in the literature, it is also known as evolving classes, future classes or
novel class detection (Masud et al., 2013; Mu et al., 2018; Faria et al., 2016).
This learning scenario can be formalized as a supervised classification problem
in which the number of labels for the class variable is unknown. In other words,
the generative probability distribution dynamically changes during the classifi-
cation process. Therefore, the classifier has to adapt to these changes. When a
new instance arrives, the model has to classify among the current classes or it
stores it in a buffer (Masud et al., 2013; Spinosa et al., 2007; Zhu et al., 2018).
Considering the life-cycle of the classes, these can drift, be born, die or reappear.
Hence, the classifier must be updated for those changes, considering that the
adaptation time is relevant in a streaming environment. Note that most of the
existing approaches consider a dynamically (highly) unbalanced supervised clas-
sification scenario (Masud et al., 2013; Spinosa et al., 2007; Chen et al., 2008;
Zhu et al., 2018) since a few instances may constitute a new emerging class
(Figure 5). To evaluate the performance of the classifier in this environment,
genuine metrics have been proposed. For instance, Masud et al. (2013) use the
percentage of novel class instances classified as a current class; the percentage of
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Figure 4: A flowchart of the dynamic novelty detection problem. In this prob-
lem, the number of labels for the class variable is unknown, and dynamically
changes over time.

existing class instances falsely identified as novel; and, the total misclassification
error. Zhu et al. (2018) use the average precision among all classes. Chen et al.
(2008) output the evolution of the classification error as new events occur: the
emergence of a class, disappearance or drift.

The dynamic novelty detection learning scenario can be divided in two
stages. Firstly, the initial learning stage (also known as offline stage), in which
given a labeled training dataset, a model is built. Secondly, the prediction stage
(also known as online stage), in which new classes may emerge and disappear,
and the old classes may also drift. These two phases are formalized as follows:

Initial training phase (offline): In the offline phase a classifier Cy is
learned considering a set of labels L.

Prediction phase (online): The online phase can be described as a pre-
diction and adaptation stage in which a data stream (DS) is observed. A DS
is a possibly infinite sequence of instances. At time ¢, the current classifier C
predicts a new instance. If the instance is classified as one of the current labels,
the classifier is adapted with this knowledge to create C;41. If the new instance
can not be classified in the current set of labels, it is kept apart in a buffer and
the model does not modify. Once the buffer is full the classifier is updated and
the set of labels L; modified.

An illustrative flowchart of this learning scenario can be seen in Figure 4.

According to the techniques used in static novelty detection, one class clas-
sification techniques are those which are the most representative ones in this
learning scenario. For instance, one class SVM (Dufrenois and Noyer, 2016;
Erfani et al., 2016; Khreich et al., 2017), K-Nearest Neighbors data description
(Tax, 2001), graph embedded one class classifiers (Mygdalis et al., 2016), one
class Random Forests (Désir et al., 2013) and Isolation Forest (Zhang et al.,

10
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Figure 5: Flowchart of the dynamic novelty detection learning scenario. At
the beginning, the given classes are modeled. When new instances arrive, they
are classified among known classes or they are rejected as not belonging to any
existing class (see the crossed instances in Figure 5b). Finally, the new emerging
class is sought.
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2011) have been successfully applied under the static novelty detection learning
scenario. Besides, in dynamic novelty detection, techniques such as OLINDDA
(Spinosa et al., 2007), a sphere-based novelty detection algorithm, in which
clustering is done with the k-means algorithm; MuENLForest (Zhu et al., 2018)
which discovers new labels in a multi-label classification framework by creating
an ensemble of Random Forest and Isolation Forest classifiers to discover emerg-
ing new classes; or the ensemble proposed in Masud et al. (2013), which creates
an ensemble of decision trees which, in each leaf node, runs a k-means algo-
rithm to discover sphere-shaped emerging new classes, have been successfully
proposed in the literature.

5 The related outlier detection scenario

The outlier term also comes up when seeking related works with rare event,
anomaly and novelty terms. While the term is mainly associated with an un-
supervised framework, the literature shows examples where the term is used to
name other previously explained scenarios (Hodge and Austin, 2004; Zhang and
Zulkernine, 2006; Billor et al., 2000). Therefore, it is briefly considered in this
section.

In some papers, the term outlier has been related with noise, linking these
observations with incorrect or inconsistent behaviors (Aggarwal, 2017). Conse-
quently, the outlier detection task forms part of a preprocessing phase (Teng
et al., 1990; Rousseeuw et al., 2011). For instance, when human errors are intro-
duced retrieving data, these erratic observations are considered outliers (Barai
and Lopamudra, 2017). In other situations, the detection of instances with high
deviation are considered outliers (Radovanovi¢ et al., 2015; Xuan Hong Dang
et al., 2014). In Radovanovié et al. (2015), the authors detect all-star players in
an unlabeled dataset composed by NBA players between 1973 and 2003. The
outstanding NBA players are considered outliers. In order to detect them, clus-
tering is pursued and those points which deviate significantly from others are
considered outstanding NBA players.

Regarding the characteristics of the data in the outlier detection scenario,
it can be either temporal (time-series) (Gupta et al., 2013) or non-temporal
(Aggarwal, 2017; Campos et al., 2016; Radovanovié et al., 2015).

An outlier detection task can be formalized as an unsupervised classification
problem. Formally, given a dataset D = {x1,...,X,}, the objective is to find the
instance that (highly) deviates from others. An example of an outlier detection
task can be seen in Figure 6.

6 The proposed assignment of terms and learn-
ing scenarios

In this paper, based in our experience and initial approach to the literature (see
the list of key references at the end of the paper), we did discover two major

12
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Figure 6: An example of unsupervised classification. This learning scenario is
assigned to the outlier detection task. As can be seen the outliers are deviated

instances without a clear pattern.

Relative to Characteristics Rare Events Anomaly Novelty Outlier
Data Temporal data Yes No No Possible
Data All classes repre- Yes Yes No -

sented in training
data

Problem Unbalanced Classi- Yes Yes Possible -
fication

Problem Supervised Classi- Yes Yes Yes No

fication

Table 2: Summary of the principal characteristics, extracted from the literature,
of the reviewed terms and learning scenarios.
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issues: a) the existence of a problematic mix-up between terms and learning
scenarios. And b) we realize that most of these problems can be put in the
same learning framework. Furthermore, we based on the assignment of terms to
problems in these key papers to design our taxonomy. For each paper, we have
reviewed the goal of the paper, the characteristics of the input data and the most
representative techniques used in each rare event, anomaly, novelty and outlier
detection works. Concretely, for each term related paper, the problem that the
authors want to solve, such as, whether it is a time series classification, has an
unbalanced learning characteristic, it is a classification task or a regression task,
which the evaluation measures are, and, if it is a supervised or unsupervised
classification problem has been reviewed.

In Figure 7, the assignment of terms to learning scenarios is graphically
explained. As can be seen, each term is associated with one learning scenario.
Moreover, the genuine characteristics of each learning scenario are shown in this
figure. Also, an extended summary is exposed in Table 4.

In the case of the rare event term, the most relevant learning scenario under
the supervised classification point of view is the (early) time series classification.
In most of the papers described with the rare event term, there is a temporal
nature in the problem, the classes are unbalanced and all the classes are repre-
sented in the training set.

In the problems described with the anomaly term, the most relevant learning
scenario is the (highly) unbalanced supervised classification. In this learning
scenario, the data is static, the distribution of classes is unbalanced, and all the
classes are represented in the training set.

Regarding the problems described with the novelty term, two different learn-
ing scenarios are considered. On the one hand, the static novelty detection in
which the objective is to classify an instance between novelty or normal based
on a model which has been trained with only the normal class. On the other
hand, the dynamic novelty detection is considered. In this learning scenario,
the objective is to discover new emerging classes in an streaming environment.
However, both learning scenarios share some common characteristics, such as:
both of the learning scenarios are supervised, and, both of them try to discover
instances from classes that were not available in the training set. Hence, both of
the learning scenarios do not have all the classes represented in the training data
(in the case of static novelty detection, the novel class is not available. In the
case of dynamic novelty detection, the new novel classes are neither available in
the training set).

Finally, the outlier detection term has been mostly associated with the un-
supervised classification framework in the literature.

All these learning scenarios require specific measures in order to evaluate
the performance of the classifiers that solve the related problems. Therefore,
depending on the objective of the classification task, different measures are
commonly computed in the literature. In Table 3, the most common evaluation
measures for each term are presented. Regarding the evaluation techniques used
to validate the performance of the classifier, in the majority of the papers the
k-fold cross validation, stratified k-fold cross validation and the train and test
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Figure 7: Assignment of terms to learning scenarios. The main characteristics
of each learning scenario have been summarized.

split are used.

7 Validation of the proposed assignment

In order to validate this proposal of assignment, an experiment has been carried
out considering two different scenarios. In the first scenario, the most cited
papers after the year 2000 have been gathered; while in the second scenario,
the first search-results after 2014 have been considered. In both scenarios, for
each paper, two terms are obtained. On the one hand, that used by the authors
to describe the problem, and on the other hand, that which would have been
assigned with our taxonomy. In this way, a confusion-like matrix has been
formed for every scenario.

In order to retrieve these papers, Google Scholar, ACM Digital Library and
IEEE Xplore search engines have been used individually. Hence, the experi-
ment is replicated for each individual search engine. In this way, the possible
differences between these three communities have been checked.

The goal of the experiment is two-fold. Firstly, we would like to validate
the presented proposal of assignment of terms to learning scenarios, and check
when it matches the majority of the literature papers. Secondly, we would
like to identify the most frequently confused learning scenarios between pairs
of terms. Finally, we have also tested if the confusion varies between different
communities and, hence, different search engines have been considered.

According to the confusion matrix of the most cited papers (Tables 5, 7
and 9), the terms used to describe the different types of abnormalities mostly
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Table 3: Summary of the most used evaluation measures of each term related

learning scenario.

Evaluation
Term Measures Formula References
NATIN
Accuracy [D] Zhang et al. (2017); Xu et al.
(2016); Ren et al. (2016)
b
é) Recall of Rare Tﬂ’h
o Events -
g ___AUC___ Areaunder ROCcwve .
Earliness By X - 100% Mori et al. (2018)
xzeD
% Accuracy E%M Swarnkar and Hubballi
g (2016); Luca et al. (2016)
& Recall of ﬁi—/\[
< Anomalies -
o b Accuracy EA"%?M Pimentel et al. (2014);
§ %’ Recall of +77 Einarsdéttir et al. (2016);
n .z Normal N TN = A Kafkas and Montaldi (2018)
EN_Accuracy %
Fmeasure 24P1R Masud et al. (2013, 2009);
. Miss New - ‘nrf;,,]_,old Zhu et al. (2018); Chen et al.
= & False New new +inew —old (2008); Mu et al. (2017)
< @ Tlold+n9r1d—>new
i 3 Global Error Nnew—sold T"lold —*NeW
A2z [D]

Correct
Between Accuracy between
Known known instances

Outlier

Number of outliers detected

Radovanovié et al. (2015);
Xuan Hong Dang et al.
(2014); Campos et al. (2016)

|D]: Number of instances.

L: Length of the Time Series.

t%: Time at which the prediction is made.
n.4: Number of instances correctly classified from the abnormal class.
na: Number of instances correctly classified from the normal class.

na—n: Number of instances from the abnormal class classified as normal.
nn—.A: Number of instances from the normal class classified as abnormal.
Nold—snew: Number of instances from a new class classified as an old class.
Thew—sold: Number of instances from an old class classified as a new class.
Nnew: Number of instances correctly classified as a new class.

Notq: Number of instances correctly classified as an old class.

P: Precision of the emerging class.

R: Recall of the emerging class.

Agp: Number of known instances classified as an old label.

Ap: Number of new instances classified as a new label.
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Table 4: Summary of the main characteristics of each term along with the key

references of the literature.

Term

Description

Key References

Rare Event

N

N g

A ?

CADPAN A ey
PREDICTION

TRAIN

(Early) Supervised Time
Series Classification

e Temporal data

e All classes repre-
sented in the training
set
e Unbalanced class dis-
tribution

e Supervised Classifi-
cation

Theofilatos et al.
(2016); Heard et al.
(2010); Dzierma and
Wehrmann (2010);
Hamilton (1994);
Zhang et al. (2017);
Ogbechie et al. (2017)

Anomaly
5 Jones]
@ (o)
A OO
AA AA o
A a5 2R%5
ATA AT A

| TRAIN | PREDICTION

(Highly) Unbalanced
Supervised Classification

e All classes repre-
sented in the training
set
e Unbalanced classifi-
cation
e Supervised classifi-
cation

Miri Rostami and
Ahmadzadeh (2018);
Fiore et al. (2017);
Chandola et al. (2009)

Novelty
[e]
%o
oo
A A
X a0
AA AA
A A
AAA 2Ly AA

PREDICTION

Supervised Classification
only one class for training

e Possible unbalanced
classification

e Supervised classifi-
cation

Khreich et al. (2017);
Einarsdéttir et al.
(2016); Masud et al.
(2013, 2009); Pimentel
et al. (2014); Kafkas
and Montaldi (2018);
Swarnkar and
Hubballi (2016); Luca
et al. (2016); Spinosa
et al. (2007); Zhu

et al. (2018); Chen

et al. (2008)

Outlier

Unsupervised Classification

e Possible temporal
data

e Unsupervised classi-
fication
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Hodge and Austin
(2004); Zhang and
Zulkernine (2006);
Billor et al. (2000);
Aggarwal (2017); Teng
et al. (1990);
Rousseeuw et al.
(2011); Barai and
Lopamudra (2017);
Radovanovi¢ et al.
(2015); Xuan Hong
Dang et al. (2014);
Zhang and Zulkernine
(2006); Gupta et al.
(2013); Campos et al.
(2016)




match our proposal of assignment. However, in some situations, we have found
discrepancies. Particularly, the highest discrepancies are found between the
anomaly and rare event terms. In the case in which the authors use the anomaly
term, it is frequently confused with our standardization of the rare event term.
After checking the related literature, we realize that this happens when the
problem has a temporal nature. Therefore, these problems would have been
described with the rare event term regarding our proposal of assignment of
terms. Similarly, these discrepancies are found in problems described with the
rare event term but on the opposite side. When the novelty term is used by the
authors to refer to the abnormalities of their problems, a minor set of papers
are confused with our concept of anomaly term. In these works, instances of the
novelty class are available during the training stage. Consequently, according to
the presented proposal of assignment, their learning scenario is associated with
the anomaly term. Finally, considering the outlier term, only a few situations are
found in which the outlier detection learning scenario has been confused with the
novelty detection one. In these mismatched works, a normality model is learned
from labeled data. Then, instances non-conforming the normal behavior are
rejected and considered outliers. Based on our proposal, this learning scenario
corresponds with novelty detection.

In the second scenario with the first search-results of each term after 2014
(Table 6, 8 and 10), a similar trend can be seen. However, there is some increase
in the discrepancies. The confusion of the use of the terms novelty and anomaly
is noticeable. For instance, the anomaly and the novelty problem descriptors
have been confused in more situations than in the previous experiment with the
subset of most cited works.

Regarding the different search engines, it can be seen that the mix-up is
more prominent in the ACM community. Particularly, in the first 50 search-
results (Table 8), it can be seen that the mix-up between the outlier term is
considerably higher than in other communities. However, this trend can not be
seen in the 50 most cited papers (Table 7). Moreover, the novelty term also
shows a slightly higher confusion in this community.

It can be concluded that the proposed assignment of terms to learning sce-
narios is supported by the literature. In addition, the confusion matrices reveal
the mix-up between terms and learning scenarios. This clearly promotes the
repetition of works and hinders the progress of the field. Furthermore, due to
the popularity and increase of contributions in these term-related fields in recent
years, this confusion is increasing. Therefore, we think that the standardization
of the field is necessary and, with this review, we try to take a short step towards
the solution of this mix-up.

8 Conclusions
In this paper, we have underlined those genuine characteristics of each rare

event, anomaly, novelty and outlier terms that are shared by the majority of the
papers in the literature and have been assigned to a learning scenario. In order
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Table 5: The confusion-like matrix formed from the results obtained from
Google Scholar. For each term, the 50 most cited search-results (papers) have
been analyzed after the year 2000. The terminology used by the authors is com-
pared with respect to our proposal of assignment of terms to learning scenarios.

Problem descriptor used in the searched paper

Rare Events | Anomaly | Novelty | Outlier Total

Rare Events 37 19 4 0 60

Our Anomaly 12 28 7 3 50
proposed | Novelty 0 1 37 1 39
term Outlier 1 2 2 46 51
Total 50 50 50 50 200

Table 6: The confusion-like matrix formed from the results obtained from
Google Scholar. For each term, the first 50 search-results (papers) after the
year 2014 have been analyzed. The terminology used by the authors is com-
pared with respect to our proposal of assignment of terms to learning scenarios.

Problem descriptor used in the searched paper

Rare Events | Anomaly |, Novelty |, Outlier Total

Rare Events 35 15 5 1 56

Our Anomaly 13 24 16 1 54
proposed | Novelty 0 7 26 3 36
term Outlier 2 4 3 45 54
Total 50 50 50 50 200

Table 7: The confusion-like matrix formed from the results obtained from the
ACM Digital Library. For each term, the 50 most cited search-results (papers)
have been analyzed after the year 2000. The terminology used by the authors
is compared with respect to our proposal of assignment of terms to learning

scenarios.

Problem descriptor used in the searched paper

Rare Events | Anomaly |, Novelty |, Outlier Total

Rare Events 34 10 3 2 49

Our Anomaly 13 24 12 4 53
proposed | Novelty 2 6 24 4 36
term Outlier 1 10 11 40 62
Total 50 50 50 50 200
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Table 8: The confusion-like matrix formed from the results obtained from the
ACM Digital Library. For each term, the first 50 search-results (papers) after the
year 2014 have been analyzed. The terminology used by the authors is compared

with respect to our proposal of assignment of terms to learning scenarios.

Problem descriptor used in the searched paper

Rare Events | Anomaly |, Novelty |, Outlier Total

Rare Events 30 15 4 6 55

Our Anomaly 10 23 17 12 62
proposed | Novelty 1 3 20 4 28
term Outlier 9 9 9 28 55
Total 50 50 50 50 200

Table 9: The confusion-like matrix formed from the results obtained from the
IEEE Xplore search engine. For each term, the 50 most cited search-results
(papers) have been analyzed after the year 2000. The terminology used by the
authors is compared with respect to our proposal of assignment of terms to
learning scenarios.

Problem descriptor used in the searched paper

Rare Events | Anomaly |, Novelty |, Outlier Total

Rare Events 24 15 6 4 49

Our Anomaly 16 25 8 5 54
proposed | Novelty 5 2 25 5 54
term Outlier 5 8 11 36 60
Total 50 50 50 50 200

Table 10: The confusion-like matrix formed from the results obtained from the
IEEE Xplore search engine. For each term, the first 50 search-results (papers)
after the year 2014 have been analyzed. The terminology used by the authors
is compared with respect to our proposal of assignment of terms to learning

scenarios.

Problem descriptor used in the searched paper

Rare Events | Anomaly |, Novelty |, Outlier Total

Rare Events 30 17 8 2 57

Our Anomaly 11 24 11 4 50
proposed | Novelty 1 1 21 5 28
term Outlier 8 8 10 39 65
Total 50 50 50 50 200
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to do that, we have reviewed the different aims of each paper, the characteristics
of the input data and the most representative techniques used in each rare event,
and anomaly and novelty detection works. Each term has been accompanied
with a set of illustrative applications to highlight the different learning scenarios.
We have argued that the learning scenarios associated to the reviewed terms can
be formalized under a supervised classification framework. Finally, we hope that
the discussion with the closely related outlier term can enrich the comprehension
of each scenario. Finally, the main characteristics of terms and problems have
been summarized in Table 2. In this table, both the features related with the
available data and the characteristics of the problem have been distinguished.

With this paper, we take a short step towards the standardization of the
rare event, anomaly, novelty and outlier terms. We think that our proposed
assignment of terms to learning scenarios can help to resolve the muddle which
hinders the progress in the term-related fields. Also, we think that the stan-
dardization of the terms and learning scenarios can strongly help to improve
the progress in the field by letting the community (and especially young, new-
comer researchers) to easily find what they are looking for, and by avoiding the
repetition of works.
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