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Abstract

In this paper, an approach is presented for finding the optimal long-range space

rendezvous in terms of fuel and time, considering limited impulse. In this ap-

proach, the Lambert problem is expanded towards a discretized multi-impulse

transfer. Taking advantage of an analytical form of multi-impulse transfer, a

feasible solution that satisfies the impulse limit is calculated. Next, the obtained

feasible solution is utilized as a seed for generating individuals for a hybrid self-

adaptive evolutionary algorithm to minimize the total time, without violating

the impulse limit while keeping the overall fuel mass the same as or less than

the one associated with the analytical solution. The algorithm eliminates sim-

ilar individuals and regenerates them based on a combination of Gaussian and

uniform distribution of solutions from the fuel-optimal region during the opti-

mization process. Other enhancements are also applied to the algorithm to make

it auto-tuned and robust to the initial and final orbits as well as the impulse

limit. Several types of the proposed algorithm are tested considering varieties

of rendezvous missions. Results reveal that the approach can successfully re-

duce the overall transfer time in the multi-impulse transfers while minimizing

the fuel mass without violating the impulse limit. Furthermore, the proposed

algorithm has superior performance over standard evolutionary algorithms in

terms of convergence and optimality.
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1. Introduction

Rendezvous orbital dynamics is a key operational element for complicated

space missions, which has a research history of several decades, and many novel

research ideas and results on this topic are still appearing in different missions

such as asteroids explorations [1], Mars missions [2] and Earth orbit transfers

[3]. The general long-range rendezvous problems are usually solved based on the

Lambert method which has been one of the most extensively studied methods for

decades and still is a subject of interest in many researches [4, 5]. In a long-range

rendezvous, the spacecraft is expected to have an orbital maneuver where, in the

general case, all of the orbital elements involved suffer changes. This type of non-

coplanar orbit transfer problem is the early phase of the overall space rendezvous

[6]. In this type of mission, a two-impulse transfer obtained by the Lambert

method that starts on the initial orbit and ends on the final orbit within a specific

time can be the fuel-optimal transfer. However, for some specific cases, such as

bi-elliptic Hohmann transfers, it is analytically possible to have the same or less

fuel consumption than a two-impulse transfer for specific missions [7]. In either

cases, no observation is applied to the magnitude of impulses, and thus, the

solutions might not be feasible in scenarios where impulse limits are considered.

In fact, the problem becomes more challenging when propulsion systems with

low impulses are used in such non-coplanar transfers. When the goal is to find

the optimal transfer in terms of fuel and time complying a given impulse limit,

finding the global optimal solution becomes challenging. One effective option

to deal with this difficulty is to use meta-heuristics and evolutionary algorithms

[8, 9]. As a result, a more thorough investigation is needed to find the best

solution using these numerical methods and techniques [10].

In recent years, several attempts have been made to deal with impulsive
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transfers in various space missions and conditions with different techniques

[11, 12]. Such conditions or constraints can be the actuation uncertainties [13],

collision avoidance constraint [14, 15] or other criteria. According to the litera-

ture, this multi-objective problem generally includes two types of costs and two

types of constraints. The costs are fuel and time while the initial and final orbits

along with allowable impulse limit are considered as constraints. Besides the

impulse magnitude constraint, impulse direction is also sometimes considered

as another kind of constraint in the literature. It can be the tangential impulse

[16], along-track impulse [17] or continuous-thrust transfer with specific control

magnitude and direction constraints [18]. Regarding the initial and final con-

dition, the problems can be categorized as point to point, point to orbit and

orbit to orbit maneuvers. A lot of research has been dedicated to such prob-

lems. However, an efficient approach in facing the problem is that which can

be used regardless of the problem type. In [19], the problem of multi-impulse

transfer is tackled by an analytical solution based on polynomials. However,

the transfer time is not considered, and the approach is tested on special cases.

Coplanar two-impulse rendezvous is studied in [20] and [21]. The research in

[22] focused on a homotopic targeting technique for space rendezvous. Although

it adequately considered the presence of orbital perturbations, the impulse limit

is not taken into account. More research can also be found in the literature in

which either the time, the impulse limit or other criteria have been taken into

consideration besides the fuel consumption [23, 24]. Impulsive rendezvous be-

tween non-coplanar orbits considering fuel, time and impulse limits makes the

problem multi-objective and challenging to solve. To that end, a metaheuristic

algorithm combined with an analytical solution of the multi-impulse transfer

has been considered. The developed approach minimizes both the fuel and

time, keeping the minimum necessary number of impulses without violating the

impulse limit in a long-range rendezvous mission. Particularly, the proposed

strategy in the current context is a direct approach based on the discretized

Lambert problem and a novel hybrid self-adaptive evolutionary algorithm. In

this approach, as the first step, the problem is solved, disregarding the impulse
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limit and transfer time and a solution that minimizes the total fuel consump-

tion is achieved. This solution can be obtained either analytically or by means

of an NLP or an evolutionary algorithm. Having this solution, the Lambert

problem associated with the obtained transfer trajectory is extended to multi-

impulse transfers in which the overall transfer is divided into a specific number

of stages. Then, an analytical scheme is proposed based on dividing the veloc-

ity increments into the necessary number of small impulses at the intersections

of space orbits corresponding to each stage. This solution results in a specific

sequence of impulses within the proposed approach, which is feasible in terms

of fuel consumption. Considering this solution as a seed solution for generating

individuals with high quality, a robust self-adaptive evolutionary algorithm is

proposed. The algorithm benefits from several enhancements over the standard

evolutionary techniques by hybridizing an NLP solver with a modified Particle

Swarm Optimization. The algorithm is constructed as a self-adaptive tech-

nique since its parameters are auto tuned according to the orbital parameters

of the initial and final orbits as well as the specified impulse limit for the space

rendezvous mission. Combined with the proposed approach, the algorithm is

tested on a wide set of long-range space rendezvous missions with various im-

pulse limits. Results indicate that the algorithm is capable of decreasing the

overall transfer time while it satisfies the impulse limit and holds the optimal

fuel consumption.

The rest of the paper is organized as follows. Section 2 introduces the dis-

cretized Lambert problem for multi-impulse orbit transfers. The simple feasible

solution, obtained by an analytical approach is proposed in Section 3 based

on dividing the velocity increments within the intersections of space orbits. In

Section 4, the robust self-adaptive evolutionary algorithm, along with the im-

provements in its structure, are discussed. Section 5 provides the simulation

results obtained by utilizing the proposed approach in several long-range space

rendezvous missions. Finally, the conclusions are provided in Section 6.
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2. Discretized Lambert Problem

2.1. The Approach

Consider a general long-range rendezvous with initial and final orbital ele-

ments as p0 = [a0, e0, i0,Ω0, ω0, ν0] and pf = [af , ef , if ,Ωf , ωf , νf ]. Since two

orbits do not have any intersections and no orbital elements are the same be-

tween the two orbits, a two-impulse transfer trajectory that minimizes the total

fuel consumption exists. The transfer trajectory starts from the initial true

anomaly of θi of the initial orbit and ends in the final true anomaly of θf of

the final orbit. These two anomalies correspond with two radius vectors ~ri and

~rf . Besides these two anomalies, a third parameter fulfills a complete Lambert

problem regarding any desired approach. The third parameter can be semi-

major axis [25] (Lagrange transfer-time equation), eccentricity [26] (Avanzini’s

approach), a universal variable [27] (Izzo’s approach), flight-path angle [28] or

any other parameter that constructs a unique Lambert problem. Considering

the Lagrange transfer-time equation, the unknown set of variables can be estab-

lished as x = [θi θf t] when only the orbit transfer is desired. If the actual

rendezvous is also desired besides the orbit change, the unknown variables will

be x = [θi t] with respect to the relative phase difference of chaser and target.

In either case, the problem can be turned into a blackbox optimization problem

with total velocity increment ∆v as the output, which is the summation of two

impulses at intersections ∆v = ∆v1 + ∆v2.

By means of an effective nonlinear programming (NLP) method or an evolu-

tionary algorithm (EA), the best solution with minimum fuel could be approx-

imated. However, no penalty is considered for the excessive magnitude of ∆vi
when low-impulse propulsion systems are utilized. In order to find the solution

with minimum fuel and transfer time in the multi-impulse maneuver with re-

spect to a given impulse limit, a new approach is proposed as shown in Fig.

1.

In this approach, the original Lambert problem is divided into N number

of stages. Each stage represents a unique Lambert problem with unknown

5



 

i th Lambert Problem 

 
 
 
 
 
𝑎1

𝑒1

𝑖1
Ω1

𝜔1 
 
 
 
 

 

 

1 2 N-1 N 

 
 
 
 
 
𝑎2

𝑒2

𝑖2
Ω2

𝜔2 
 
 
 
 

 

 

 
 
 
 
 
 
𝑎0

𝑒0

𝑖0
Ω0

𝜔0
𝜈0  

 
 
 
 
 

 

 
 
 
 
 
 
 
𝑎𝑓
𝑒𝑓
𝑖𝑓
Ω𝑓
𝜔𝑓

𝜈𝑓  
 
 
 
 
 

 

 

 
 
 
 
 
𝑎𝑁−1

𝑒𝑁−1

𝑖𝑁−1

Ω𝑁−1

𝜔𝑁−1 
 
 
 
 

 

 

 
 
 
 
 
𝑎𝑁−2

𝑒𝑁−2

𝑖𝑁−2

Ω𝑁−2

𝜔𝑁−2 
 
 
 
 

 

 

i 

Δ𝑣1,1 
Δ𝑣1,2 

Δ𝑣2,1 

Δ𝑣2,2 
Δ𝑣𝑁−1,1 

Δ𝑣𝑁−1,2 

Δ𝑣𝑁,1 

Δ𝑣𝑁,2 

 

θ𝑖,1 θ𝑖,2 

𝑡𝑖 

… … 

Figure 1: Scheme of discretized Lambert problem.

Lambert problem variables. Having N number of stages will generate N − 1

intermediate orbits, represented by ai, ei, ii,Ωi and ωi (i = 1 to N − 1), along

with N jumps. Every jump is denoted by initial and final anomalies as θi,1 and

θi,2 corresponding to the initial and final state vectors and the transfer time ti
in each stage. By considering the orbital elements of stages and the Lambert

problem variables as the inputs, a complete multi-impulse Lambert problem

with 2N impulses (∆vi,1 and ∆vi,2) will be fulfilled. Therefore, the decision

variables, denoted by the vector x, will be formed as:

x = x(ai, ei, ii,Ωi, ωi, θi,j , ti,j) (1)

According to this approach, a total of 2N − 1 sets of orbital elements will

be known when a solution is achieved. These sets contain N − 1 intermediate

orbits, which are the inputs of the problem, and N jumps, which are trajecto-

ries representing the solution from each stage that represents a minor Lambert

problem. The 3N number of variables are associated with N Lambert prob-

lems, and 5(N − 1) variables are associated with the shape and orientation of

the N − 1 intermediate orbits. Therefore, a total of 8N − 5 decision variables

are associated with the optimization of multi-impulse transfer in this approach
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for N stages. Recalling that each stage has two impulses, the total number of

variables for n number of impulses (N = 2n) will be 4n− 5.

The initial and terminal conditions can be easily handled for various types of

long-range rendezvous missions in this approach. This can be done by adjusting

the initial true anomaly of the first stage (θ1,1) and the final true anomaly of

the last stage (θN,2). As for orbit to orbit rendezvous, the initial true anomalies

of two spacecraft ν0 and νf are unknown and therefore θ1,1 and θN,2 are free.

In this case, the problem will be tackled according to the described optimiza-

tion variables. For orbit to point rendezvous, when it is necessary for the two

spacecraft to be in the same true anomaly in the final orbit, the parameter νf
is known, which is the initial position of the target spacecraft in the final orbit

at epoch. In this case, θN,2 will be fixed and its value can be calculated based

on the total coast times and the initial true anomaly of the target spacecraft

(θN,2 = θN,2(νf , ti, t̄i)). Similarly, if it is required that the first impulse of the

chaser occurs at a specific true anomaly in the initial orbit (ν0 is known), the

variable θ1,1 will be fixed. To sum up, depending on what sort of long-range

rendezvous is the subject of the problem, the two optimization variables (θ1,1

and θN,2) can be either fixed or free.

This approach has some advantages over the traditional methods. First, as

with most of the multi-impulse approaches based on the Lambert problem [29],

the total number of inputs is lower in comparison to the traditional approach

in which the direction, magnitude and time of impulses are considered as the

decision variables [30] (total of 4n decision variables). As an example, in the

traditional approach for a two-impulse transfer, the time of acting for each

impulse along with the impulse vector, including the magnitude and two angles

representing the direction of the impulse in three dimensions are considered as

the decision variables. However, in the current approach, only three variables

are required including the initial true anomaly, the final true anomaly and the

transfer time. Although the number of variables is lower, the approach comes

with the burden of tackling the Lambert problem in achieving the solution,

which requires iterations. This is due to the fact that, by defining multiple minor
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Lambert problems, the majority of the characteristics of the transfer trajectories

wil be revealed. In the other words, the shape of the transfer trajectories are

taken into account instead of the impulse directions in the Cartesian coordinate

system. Regarding this fact, this approach can be referred to as an impulsive

shape-based approach.

The next advantage is handling the terminal conditions. The initial and final

condition for point to point, point to orbit and orbit to orbit cases can be easily

handled in the current approach by setting the Lambert problem variables as free

or fixed in the first and last stages. However, satisfying the terminal condition

in the traditional approach is an issue which usually needs to be considered as

an additional term in the objective function. Besides, since the shape of stages

is defined via the actual orbital elements with physical meanings, the method

benefits from rapid convergence as the orbital elements have known boundaries

in real applications.

2.2. The Objectives

As the boundary conditions are already satisfied by the proposed approach,

three types of objectives are defined for the problem including fuel, time and im-

pulse violation. Regarding the proposed approach, the overall fuel consumption

in terms of ∆v in every stage is denoted by Jf and is defined as:

Jf =
N∑
i=1

(
∆vi,1 + ∆vi,2

)
(2)

The total transfer time is the summation of all coasting times between the

impulses. Regarding the proposed approach, two types of coasting times exist,

denoting by ti and t̄i. The first type (ti) is the time associated with each

minor Lambert problem in every stage between ∆vi,1 and ∆vi,2. The latter

(t̄i) is the time between the impulses ∆vi,2 and ∆vi+1,1, in which the spacecraft

travels between two sequential Lambert problem. Therefore, the time objective,

represented by Jt, is defined as:
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Jt =
N∑
i=1

ti +
N−1∑
i=1

t̄i (3)

The impulse violation regarding a given impulse limit needs to be calculated

for each ∆v in every stage. As a result, the penalty denoted by the jth ∆v in

ith stage is calculated as

Ji,j = 1 + sgn(∆vi,j − η)
2 (∆vi,j − η) (4)

where η is the given allowable impulse during the orbit transfer. In this equation,

the typical sign function is used to extract the appropriate penalty for each

impulse. According to this equation, if the impulse is less than the predefined

limit (∆vi,j < η), the penalty associated with that impulse becomes zero (Ji,j =

0). On the other hand, if the impulse exceeds the predefined limit (∆vi,j >

η), the associated penalty will be equal to the amount of exceeded impulse

magnitude (Ji,j = ∆vi,j − η).

Consequently, the overall magnitude of the penalty function due to the im-

pulse violations in all stages is calculated as:

Jv =
N∑
i=1

(
Ji,1 + Ji,2

)
(5)

Having the cost functions, the overall objective function can be written via

scalarizing the three objectives as:

J = Jf + ζJv + ξJt (6)

where ζ and ξ are scalarization coefficients for impulse violation and transfer

time respectively. In the literature, the impact of the choice of the underlying

scalarizing coefficients is still far from being well understood in space orbit

design and optimization problems. Due to this matter, it is very important and

crucial to choose these parameters according to the type of the space transfer.

To demonstrate the effect of these weighting coefficients, one example of feasible
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and non-feasible solutions within the solution domain of a sample four-impulse

rendezvous with one intermediate orbit is represented in Fig. 2 and Fig. 3.

In this case, an orbit to orbit transfer with the initial and final orbits as p0 =

[10000, 0.1, 30, 40, 55] and pf = [16000, 0.4, 25, 50, 30] is considered with impulse

limit of η = 0.5km/s.

 

Figure 2: Solution domain of J (ξ = 0) in a four-impulse rendezvous (∆v = 1.4777km/s).

In Fig. 2 the solutions are plotted as a function of semi-major axis and

inclination of the intermediate orbit. In this figure, the surface associated with

a set of good solutions (obtained by means of the approach in Sec. II and

IV) is plotted, which includes the solutions with minimum fuel in this case.

In addition, neighboring solutions of the surface are plotted as green points.

Note that the time objective function has been disregarded (ξ = 0). The points

correspond to the solutions with larger objective values either due to impulse

violation or fuel consumption. Extracting the points near the minimum-fuel

region with respect to a selective threshold and recalculating J and Jt for ξ 6= 0

are shown in Fig. 3. In this figure, the objective representing the total transfer

times (Jt) for fuel-optimal region versus the overall cost is depicted.
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Figure 3: Time-optimal solutions in the neighborhood of fuel-optimal region.

In this figure, the solutions for acceptable transfers satisfying the impulse

limit are plotted along with non-feasible solutions in this matter. Local optima

regions can be obviously distinguished in Fig. 3 showing that the consideration

of ζ significantly affects the desired region and reaching the global optimal so-

lution is challenging in this type of problem. It is worth noting that the best

values of ζ are different from case to case. The major challenge is that the tuned

value of this parameter along with ξ for one space rendezvous does not neces-

sarily enhance the search process in another rendezvous problem. Therefore,

these parameters have to be tuned automatically according to the initial and

final orbits in each rendezvous mission. Such self-adaptive concepts makes the

approach robust to every unique Lambert problem with a given impulse limit.

3. Simple Feasible Solution

Regarding the proposed approach, the problem can be solved via an EA.

However, two issues will arise. First, the solution domain of the optimization
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problem becomes too large when a high number of impulses are desired. The

reason is that by considering very low-impulse transfers, the number of stages

is increased which consequently increases the number of optimization variables.

Following this, the landscape of the problem becomes chaotic, which makes

the convergence process slow and the quality of the final solution can drop

dramatically. The second issue is that the minimum number of impulses required

for the entire transfer is unknown.

In order to deal with these issues, individuals near the solution which min-

imized the fuel consumption can be used to improve the quality of the initial

populations of the EA and also to calculate the necessary number of impulses

regarding the given impulse limit. Seeding the EA based on a feasible solution

derived from the fuel-optimal region will effectively improve the convergence and

the optimality of the algorithm. This is due to the fact that the newly gener-

ated populations have small values for one or two objectives while satisfying the

impulse limit, forcing the algorithm to minimize the time near the fuel-optimal

region. The seeding technique can be used either within the initial population

at the beginning of the optimization, or during the optimization process when

the diversity of the population is less than a predefined threshold, or both. To

implement this concept, the problem is solved for N0 number of stages without

considering time (ξ = 0) and impulse violation (ζ = 0) initially. This solution

can be derived from either an existing analytical approach or a numerical solu-

tion. Having the solution for N = N0, the ∆vi,j at the intersection of transfer

orbit with Nith and Ni+1th intermediate orbits can be divided into a necessary

number of minor impulses. A schematic view of this concept is depicted in Fig.

4.

Following this process, the impulse at each intersection is divided into minor

ones keeping the impulse direction fixed. The required number of divisions can

be calculated based on the given impulse limit η as:

ϕi,j =
⌈∆vi,j

η

⌉
(7)

12



Δ𝑣𝑖,𝑗,𝜑𝑖,𝑗 Δ𝑣𝑖,𝑗,𝜑𝑖,𝑗−1

Intersection of orbitsΔ𝑣𝑖,𝑗 

Δ𝑣𝑖,𝑗,1 

Δ𝑣𝑖,𝑗,2 

Δ𝑣𝑖,𝑗,𝑘 

(i)th trajectory 

(i+1)th trajectory 

Figure 4: Impulse division at intersection of orbits.

where ϕi,j is the minimum number of required impulses. Accordingly, the actual

impulse division at intersections for 1 < k < ϕi,j can be represented by:

ϕi,j∑
k=1

∆vi,j,k = ∆vi,j (8)

where ∆vi,j,k is the kth minor impulse in the jth intersection of orbits in the ith

stage. The current division keeps the impulse direction fixed as ∆~vi,i,k/|∆~vi,i,k| =

∆~vi,j/|∆~vi,j | and it satisfies ∆vi,j,k = ∆vi,j/ϕi,j if the desired impulses are

equally divided. Calculating the orbital elements based on the newly obtained

velocity vectors and rearranging them back to the discretized Lambert problem

in the previous section will end in the solutions satisfying the given impulse

limit. The solution obtained here will be used as a candidate solution to be

utilized by the developed EA in the following section. Considering the fact

that the EA starts with a random distribution of individuals within the known

boundary limits, to minimize the overall transfer time, one can take advantage

of univariate Gaussian distribution and sample individuals near the fuel-optimal

region for seeding the algorithm instead of uniform random distribution.
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4. Hybrid Self-Adaptive Evolutionary Algorithm

The algorithm for solving the multi-impulse discrete Lambert approach is

described in this section. Particularly, a hybrid self-adaptive algorithm that

combines an enhanced evolutionary algorithm with the feasible solution is pre-

sented. During the development of the EA, the features of the space rendezvous

mission are utilized to make the approach robust to any changes in the space

mission. In this section, three components are presented briefly, describing the

main enhancements that have been taken into account. The aim of this sec-

tion is to present a layout of the connection between the algorithm parameters

and the elements of space rendezvous, which are utilized to make the algorithm

self-adaptive. Details regarding each modification are omitted and the reader is

urged to refer to the references provided.

4.1. Hybridization of Algorithms

According to the presented approach, the search space of the discretized

Lambert problem is a continuous domain, possibly with a variable number of

local optima depending on the type of mission. Since the goal is to reach the

global optimal solution considering three objectives in general, there is a high

possibility for the solution to get trapped in the local optima regions. In order

to take advantage of the swarm intelligence and the shape of the landscape of

the problem and also compensate the weaknesses of stochastic and gradient-

based methods, hybridization of methods from two different types of algorithms

has been taken into account. In recent years, such hybrid evolutionary algo-

rithms have been well developed in different spacecraft trajectory design and

optimization problems [31].

The core of the optimization algorithm in this approach is based on an

Improved Particle Swarm Optimization (IPSO), hybridized with an NLP solver.

IPSO performs searching via a swarm of particles that updates from iteration

to iteration considering some enhancements. To seek the optimal solution, each

particle moves in the direction to its previously best (pbest) position and the
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global best (gbest) position in the swarm [16]. One has

pbest(i, j) = arg min
k=1,...,j

[J(xi(k))], i ∈ {1, 2, ..., Np} (9)

gbest(j) = arg min
i=1,...,Np

k=1,...,j

[J(xi(k))] (10)

where i here denotes the particle index, Np the total number of particles, and

j the current iteration number. The velocity v̂ and position p̂ of particles are

updated by the following equations:

v̂i(j + 1) = wi(j)vi(j) + c1δ1(pbest(i, j)− xi(j)) + c2δ2(gbest(j)− xi(j)) (11)

xi(j + 1) = xi(j) + v̂i(j + 1) (12)

where v̂ denotes the velocity, wi(j) is the inertia weight used to balance the

global exploration and local exploitation, δ1 and δ2 are uniformly distributed

random numbers within range [0, 1], and c1 and c2 are personal and global

learning coefficients.

The inertia weight wi(j) is to bring about a balance between the exploration

and exploitation characteristics of the process. A large inertia weight facilitates

a global search while a small inertia weight facilitates a local search. By changing

the inertia weight dynamically, the search capability is dynamically adjusted.

In this algorithm, wi(j) is defined as [32].

wi(j + 1) =



min
(

1, wi(j) + (1− w0)×
(

exp
( (xi(j + 1)− pbest(i, j))2

−2σ2

)
+ ρ
))

if δi(j) > 0 and δi(j + 1) > 0

max
(

0.1, wi(j)− w0 ×
(
1− exp

( (xi(j + 1)− pbest(i, j))2

−2σ2

)
− ρ
))

else if δi(j) < 0 and δi(j + 1) < 0

wi(j) otherwise

(13)

where w0 is the initial inertia weight which is considered equal for all particles

in all dimensions, in the (j + 1)th iteration. The Gaussian kernel width (σ) is

adjusted in a way that covers the maximum movement of the particles. ρ is a

small positive number used to ensure a proper increase or decrease of the inertia
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weight. δi is the feedback parameter defined as:

δi(j + 1) =

 1 if J(xi(j)) < pbest(i, j − 1)

−1 else
(14)

According to this equation, the last two steps during the course of the run

are analyzed to be sure of making decisions about the value of the inertia weight.

When a particle succeeds in some sequential steps, it will have more tendency

to memorize its direction. Probably because it will have more success in this

direction. When a particle does not succeed in some sequential steps, it has less

tendency to memorize its previous direction. Probably because it will have no

more success in this direction.

In every generation within the process of optimization, the position of the

particles xi(j) is improved with an NLP, leading to fast convergence. LBFGS

[33], an approximation to BFGS, which requires a lot less memory is used as

an efficient NLP for this matter. The position of the ith particle is improved in

the jth iteration as:

xi(j + 1) = xi(j)− αjHj∇J(xi(j)) (15)

where αj is the step length and Hj is updated at every iteration by means of

the formula

Hj+1 = V Tj HjVj + ρjsjs
T
j (16)

where

ρj = 1
yTj sj

(17)

Vj = I − ρjyjsTj (18)
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and

sj = xi(j + 1)− xi(j) (19)

yj = ∇fj+1 −∇fj (20)

Since the inverse Hessian approximation Hj will generally be dense, the cost

of storing and manipulating it is prohibitive when the number of variables is

large due to high number of impulses in the rendezvous mission. To circumvent

this problem, a modified version of Hj is utilized implicitly, by storing a certain

number (λ) of the vector pairs (sj , yj) used in the formulas Eq. 16 to Eq. 20.

The product Hj∇J(xi(j)) can be obtained by performing a sequence of inner

products and vector summations involving ∇J(xi(j)) and the pairs (sj , yj).

After the new iterate is computed, the oldest vector pair in the set of pairs

(sj , yj) is replaced by the new pair obtained from the current step in Eq. 19

and Eq. 20. In this way, the set of vector pairs includes curvature information

from the most recent iterations. Practical experience has shown that modest

values of λ often produce satisfactory results. The algorithm also benefits from

other modifications as well, such as mirror effect and velocity clamping. The

reader may refer to [34, 35, 36] for the details.

4.2. Generating Near-optimal Transfers

The proposed analytical seeding is utilized for generating the populations

for the developed EA. In order not to lose the diversity of the populations,

uniform random distribution of individuals is also utilized alongside the Gaus-

sian random distribution to reach the optimal transfer. The new population xn
is then generated as a vector of mixed individuals. Assuming the generation

of n individuals (xn), the algorithm generates ε × n individuals based on the

uniform distribution (xu) and produces (1− ε)× n individuals based on Gaus-

sian distribution (xg) near the region in the search space which has the same

minimized-fuel as in the feasible solution as:
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xg ∼ N (x∗, σ2(p0, pf , N)) (21)

where x∗ is the feasible solution with the minimized fuel the same as the solution

with N0 stages, which satisfies the impulse limit and σ2 is the selective variances.

One example of such a distribution is illustrated in Fig. 5.

 

Figure 5: Distribution orbits in four-impulse rendezvous (ε = 0.4).

Fig. 5 shows the intermediate orbits in a four-impulse rendezvous problem,

separated in the two distribution types mentioned. The variance of the Gaus-

sian distribution σ2 is a vector as σ2 = [σ2
a;σ2

e ;σ2
i ;σ2

Ω;σ2
ω;σ2

θ ;σ2
t ], representing

different variances for each type of variables in the optimization. Regarding

the proposed approach, the input vector x contains the orbital elements of the

intermediate transfer trajectories along with the Lambert problem variables in

each stage. Since the scale of variables in the input vector is different, the vari-

ances should be selected properly as constant values, or as the functions of some

characteristics from initial orbit p0 and final orbit pf in the space rendezvous
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mission.

4.3. Automatic Parameter Tuning

Since the objectives Jf , Jv and Jt have different types and scales, ζ and ξ

should be carefully tuned for each rendezvous problem. Also, the variance vector

of variables σ2 used in Eq. 21 needs to be tuned according to a feedback vari-

able from the rendezvous problem. Rather than the seeding technique and the

optimization algorithm, the parameters ζ and ξ are also tuned as functions of

the rendezvous problem itself. Obviously, one selection of these parameters for

a specific rendezvous mission does not necessarily result in the optimal solution

in another mission. The issue is that depending on the shape and orientation

of the initial and final orbits or in general the amount of difference between

the orbital elements (p0 and pf ), the sensitivity of these objectives varies. For

instance, these parameters should be somehow auto-tuned to prevent the algo-

rithm from sacrificing the impulse violation in favor of time. If this happens, the

impulses achieved are not feasible, regardless of the total transfer time. Regard-

ing the impulse violation coefficient ζ, an arbitrary parameter Γ, representing

the difference of initial and final orbits as Γ(p0, pf ) is defined by the following

formula:

Γ = |a0 − af |
3Re + |e0 − ef |

0.5 + |i0 − if |
π

+ |Ω0 − Ωf |
π

+ |ω0 − ωf |
π

(22)

where Re is the Earth radius. This formula has five terms, corresponding to

each orbital element, divided by some scaling factors. These scaling factors are

selected in order to have the same impact on the overall value of Γ. The proof

of this claim is illustrated in Fig. 6 and Fig. 7.

Fig. 6 and Fig. 7 show the cumulative mean value µΓ and the standard

deviation σΓ of the related term in Γ for n instances of different pairs of space

orbits as the rendezvous missions. The plots show that the scaling factors

are adjusted fairly for uniform changes of every Γ terms regarding each orbital

element as they converge almost to a same value. Besides the difference of orbital
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Figure 6: Cumulative mean value of Γ
terms.

 

 

Figure 7: Cumulative standard deviation of
Γ terms.

elements, the minimum number of impulses required for the transfer according

to the impulse limit is considered as a tuning feedback. This parameter, denoted

by φ, can be calculated after generating the feasible solution described in Section

3. Having the required impulses at orbit intersections ϕi,j , the total number of

impulses is as:

φ =
N∑
i=1

2∑
j=1

ϕi,j (23)

where N is the total number of stages. The reason for considering this variable

as feedback for tuning the algorithm parameter is that when the number of im-

pulses increases, the likelihood of returning infeasible solutions by the algorithm

will be higher. Utilizing this parameter, the variance vector of decision variables

used in Eq. 21 is tuned as:

σ2 =
[
σ2
a σ2

e σ2
i σ2

Ω σ2
ω σ2

θ σ2
t

]′
= χ(1− e−βφ) (24)

where vector χ includes coefficients for each type of optimization variables. One

selective value for χ is 0.1 for eccentricity, 180 for true anomalies, 5000 for time,

and 100 for the rest of the optimization variables. Also, the value of 0.1 for β

adjusts the variances into a more comprehensive amount. Such a selection scales

the variances to have the optimum distribution of the generated near optimal

solutions. Also, regarding the obtained variables, the parameter ζ is defined as:
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ζ = Γ + ln(φ) (25)

This tuning method adjusts the impulse violation according to the complexity

of the space mission and the number of stages which itself varies according to

the given impulse limit. The coverage of this modeling is illustrated in Fig. 8.

 

Figure 8: Impulse violation weighting coefficient coverage.

Fig. 8 shows the variation of ζ corresponding to the cost of impulse violation

for the instances mentioned. A random impulse limit is considered for each space

rendezvous mission, leading it to produce a different number of impulses for

every long-range rendezvous. The points referring to high number of impulses

are shown as big markers while smaller markers refer to the space missions with

a low number of impulses. The proposed method makes the cost of impulse

violation comparable to the fuel cost with respect to the complexity of the

rendezvous mission and the impulse limit. Similarly, the weighting coefficient

for the transfer time is defined as:

ξ = (J∗t )−1 (26)

where J∗t is the overall maneuver time of the multi-impulse transfer obtained

within the analytical seeding phase of the algorithm. Since the algorithm at-
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tempts to find time-optimal solutions from the fuel-optimal region of the solution

domain within the process of optimization, it is cruicial to have a dynamic co-

efficient for this cost with respect to the maximum transfer time between the

initial individuals. Considering this value as the weighting coefficient for the

time scale, the overall time will be scaled to one with respect to the initial

seeds, making the value of Jt comparable to the rest of the costs.

Once all of the parameters have been tuned, the proposed EA can be utilized

to search for the best solution. The pseudo code for this strategy is presented

in Algorithm 1.

As shown, the proposed strategy in dealing with the multi-objective space

rendezvous ends up facing an optimization problem while having candidate solu-

tions near the fuel-optimal region that satisfies the impulse limit. If the diversity

of the populations is not satisfactory, such solutions are regenerated during the

optimization process. Also, the parameters involved in the process are auto-

matically tuned based on the orbital elements of the orbits and the required

impulse limit.

5. Numerical Simulations

The proposed approach is investigated in several aspects in this section.

First, a sample space rendezvous is solved considering two various impulse limits

and the obtained orbital maneuvers are analyzed. The performance of the ap-

proach in finding the best minimum transfer time while having the near optimal

fuel consumption without violating the impulse limit is studied when different

impulse limits are considered for the same space rendezvous. Next, experiments

are performed in which the approach is utilized in many different space ren-

dezvous missions. Following the experiments, the performance of the proposed

algorithm is compared with other standard EAs, indicating the superiority of

the proposed algorithm due to the enhancements.
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Algorithm 1: Long-range rendezvous optimization algorithm
Input: p0, pf , η
Data: SeedingMethod,DiversityCheck,NLPMethod

1 N0 ← 1
2 ζ0 ← 0
3 ξ0 ← 0
4 Construct problem From [p0, pf , N0, ζ0, ξ0]
5 solution← Solve(problem)
6 Extract ∆vi,j From solution
7 if ∆vi,j ≤ η then
8 Extract X From solution
9 else

10 Calculate ϕi,j(∆vi,j , η)
11 Calculate φ(ϕi,j)
12 Calculate Γ(p0, pf )
13 Calculate ζ(Γ, φ)
14 Extract J∗t From solution
15 Calculate ξ(J∗t )
16 Calculate σ2(χ, β, φ)
17 if SeedMethod = ”Gaussian” then
18 Extract X From solution
19 Construct X0 From N (X,σ2)
20 else if SeedMethod = ”Uniform” then
21 Construct X0 From U
22 end if
23 Extract J∗t From solution
24 Calculate N(φ)
25 nPop← 10N
26 nGen← 20N
27 Construct problem From [p0, pf , N, ζ, ξ]
28 for i← 1 to nGen do
29 Update wi
30 Xi ← PSOiter(problem,Xi−1)
31 if NLPMethod then
32 Xi ← SolveNLP (problem,Xi, NLPMethod)
33 end if
34 if DiversityCheck then
35 Xi ← RefinePop(Xi, σ

2)
36 end if
37 end for
38 X ← Xi

39 end if
Result: X
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5.1. Long-range Rendezvous

A space rendezvous mission with two different impulse limits is evaluated.

Consider an orbit to orbit rendezvous as in Table 1.

Table 1: Orbital elements of the orbit to orbit rendezvous

Orbital elements Initial Final
a (km) 11300 32600
e 0.2 0.5
i (deg) 40 50
Ω (deg) 275 270
ω (deg) 280 265

This space rendezvous is a non-coplanar transfer problem and two scenarios

are considered with impulse limits of η = 200m/s and η = 50m/s. As for the

first step, disregarding the impulse limit and the transfer time, the best solution

found for the optimal two-impulse transfer with minimum ∆v is the one that

starts at ~ri = [−3887;−7694.2;−3811.9] km on the initial orbit and finishes at

~rf = [4454.4; 25862; 5308.5] km on the final orbit. This solution is obtained with

the NLP method described in the previous section with few iterations. This

transfer takes 24157 seconds with the total ∆v of 2.1353km/s. Considering

this solution as the fuel-optimal transfer, the analytical multi-impulse transfer

is extracted and seeded to the developed hybrid self-adaptive algorithm. The

algorithm parameters are tuned automatically based on the multi-impulse so-

lution and the orbital parameters of the initial and final orbits as tabulated in

Table 2.

Table 2: Auto-tuned parameters of the self-adaptive algorithm

φ ζ ξ σ2
a σ2

e σ2
i σ2

Ω σ2
ω σ2

θ σ2
t

η = 0.20 12 4.36 2.40× 10−6 77.79 0.0419 3.88 1.94 5.82 125.79 3494
η = 0.05 44 5.66 7.27× 10−7 109.95 0.0592 5.48 2.74 8.23 177.79 4938

The impulse discretization is performed at the intersections. Having the im-

pulses at each intersection, the required number of divisions (ϕ) are calculated

using Eq. 7. It gives 6 divisions at each intersection for the first case and 23

and 21 divisions for the second case based on the desired impulse limit. Based
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Figure 9: Optimized multi-impulse orbit
rendezvous (η = 200m/s).  

 

Figure 10: Optimized multi-impulse orbit
rendezvous (η = 50m/s).

on the obtained number of divisions in each intersections, the total number of

impulses φ are achieved for each case using Eq. 23. The parameter Γ represent-

ing the difference of orbits is 1.8799 for this transfer based on Eq. 22. Then,

the scalarization coefficient ζ is obtained from Eq. 25 for both cases. Besides,

the variances of optimization variables in σ2 vector can be obtained from Eq.

24 Also, division of the impulses yields the multi-impulse transfers with the

overall mission duration of 4.8214 days and 15.905 days for η = 200m/s and

η = 50m/s respectively. By having these transfer times from the initial solution,

the scalarization coefficient ξ can be calculated from Eq. 26. Having all of the

tuned parameters, the main problem can be tackled by the presented approach.

The best time-optimal solutions are obtained with respect to the tuned param-

eters utilizing the developed self-adaptive algorithms. 3D visualization of the

obtained transfers are depicted in Fig. 9 and Fig. 10.

In these maneuvers, the spacecraft travels between the stages which are

optimized to have minimum overall transfer time, resulting in different Lambert

problems in each revolution. The sequence of intermediate orbits along with the

solution of the Lambert problem in each stage is optimized in order to minimize

the overall transfer time. As shown in the figures, a lower impulse limit generally
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yields longer maneuver with more revolutions and impulses. The variations of

impulses for both maneuvers are depicted in Fig. 11.

As shown, the impulse limits are satisfied for both maneuvers, leading to

the conclusion that the weighting coefficients are almost properly tuned using

the proposed method. Usually the untuned parameters lead the algorithm to

sacrifice the impulse limit in the favor of transfer time which is not desired in

the current concept. The optimized variables, such as solutions to the Lambert

problems, can be plotted for either case. As previously mentioned, the problem

input vector includes the true anomalies of the points where the spacecraft

travels between two sequential stages. Their optimized values for two cases are

illustrated in Fig. 12 and Fig. 13.

In these figures, the optimized anomalies are plotted during the overall or-

bital maneuver. Small points refer to the jumps at the beginning of the maneu-

ver while bigger points are related to the impulses near the end of the mission.

Comparing the location of the optimized true anomalies in the plots for two

cases indicates that two potential regions can be identified as the near-optimal

region for true anomalies between Lambert problems.

Regarding the obtained solution, the time histories of orbital elements can

be simulated for the spacecraft as it travels from the initial orbit to the final

orbit. The variation of orbital elements are shown in Fig. 14 to Fig. 17. Several

 

Figure 11: Sequence of impulses in multi-impulse long-range rendezvous.
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Figure 12: True anomalies of the Lambert
problem (η = 200m/s).

 

Figure 13: True anomalies of the Lambert
problem (η = 50m/s).

observations can be inferred from the time histories of orbital elements. The

non-linear variation of the elements shows that considering the linear variation

of elements is generally not an optimal choice, which is a confirmation for the

practicality of the proposed method as it is actually a shape-based approach.

Another observation is the time distance between two sequential impulses in

the results. According to the variation of elements, this time distance increases

as the spacecraft reaches the final orbit in both cases. This increment is in

agreement with the variation of a(t). Since the semi-major axis of the initial

orbit is less than the final orbits, the time of one revolution will increase as the

       

        

Figure 14: Time histories of semi-major
axis and Eccentricity (η = 200m/s).

       

        

Figure 15: Time histories of semi-major
axis and Eccentricity (η = 50m/s).
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Figure 16: Time histories of inclination,
Arg. of Perigee and RAAN (η = 200m/s).

       

        

Figure 17: Time histories of inclination,
Arg. of Perigee and RAAN (η = 50m/s).

spacecraft travels between the intermediate orbit. This is due to the fact that

the orbital period depends only on the semi-major axis in each stage.

The solutions can be also analyzed when various impulse limits are consid-

ered for a space rendezvous. As the impulse limit decreases, the tendency of

the problem shifts to complicated solution domains, which are more difficult

to optimize. Table 3 shows the characteristics of the previously defined space

rendezvous problem considering various impulse limits.

In this Table, the entire process of tuning the parameters, generating near-

optimal feasible solutions, and solving the problem is performed for each impulse

limit. First, the proposed simple feasible solution is obtained initially for each

impulse limit, and the transfer times that were obtained before using the main

algorithm are presented in the table. Then, the main algorithm is utilized to find

the best solution based on the initial feasible solution. The obtained solutions

are presented in the table to make a comparison regarding the difference between

the transfer times. According to the results from the optimizations, the absolute

improvement of the objective related to transfer time varies from case to case.

Fig. 18 illustrates a representation of the best solution found so far regarding

each impulse limit.

In this representation, the best 1000 solutions are saved during every opti-

mization and are plotted altogether to give an insight to the near-optimal region.
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Table 3: Characteristics of space rendezvous problems.

Impulse limit (m/s) 300 250 200 150 100 75 50 25
Optimization variables 59 75 91 115 179 235 347 691
Initial transfer time (day) 4.088 4.536 4.821 6.899 10.304 13.123 15.906 36.922
Best transfer time (day) 2.301 2.992 3.710 4.673 7.466 9.854 14.828 29.701

For each unique impulse limit, the best solution is considered as the target and

the relative distance of the rest of the solutions, denoted by di, is computed as:

di = xi − x∗

max
i∈{1,...,n}

[xi − x∗]
(27)

where n is the number of solutions, i is the index of each solution, xi is the input

vector of each solution, and x∗ is the best solution so far. Having, di vector for

each solution, the euclidean distance for that solution, denoted by Di, can be

computed as:

Di =

√√√√ k∑
j=1

di(j)2 (28)

where k here is the size of the input vector which varies from case to case in the

current analysis. Regarding the distances, the two local optima regions can be

identified, which is very near the global best solution, leading to conclusion that

the optimization process successfully identified the solution within the actual

near-optimal region. As the impulse limit decreases, the absolute value of the
 

 

 

  

Figure 18: Euclidean distances of the best solutions in minimum-time minimum-fuel ren-
dezvous.
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overall transfer time increases. However, it does not have a linear behavior with

respect to the given limits. The distribution of points also indicates that the

gradient of the solution domain within the near-optimal region is higher in the

low impulse limit in comparison to the high impulse limit, confirming that the

problem is more difficult to deal with in the first case. The absolute amount

of solution improvement within the selected solutions is different regarding the

results. In order to have an insight about the relative percentage of the im-

provement, the scaled values of the objectives convey more comprehensible data

regarding the percentage of the improvement. One representation of the relative

improvement of the selected solutions is shown in Fig. 19.

 

 

 

  Figure 19: Relative objective improvement for various impulse limits.

Here, τ is the relative objective improvement calculated by:

τ = J∗ − J
J∗

(29)

where J∗t is the total transfer time obtained by the simple feasible solution.

Comparing the τ values indicates that, although the absolute amount of the

improved objective in impulsive rendezvous with very low impulse limit is high,
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the relative improvement is lower than those with higher impulse limits. This is

the observation which confirms that the complexity of the optimization problem

significantly increases and less improvement is gained by the algorithm as more

impulses are taken into account for the space rendezvous.

As stated, the algorithm utilizes the analytical solution in two ways. First

is the initial seeding in which the initial population is generated based on near-

optimal region according to the obtained feasible solution. The second one is a

trigger during the optimization process which eliminates similar individuals and

regenerates them based on a method the same as the initial seeding. The initial

seeding of the algorithm and regeneration of individuals during the optimization

process is handled by ε as described in this approach. This parameter specifies

the balance between the Gaussian distribution and the uniform distribution

when generating new individuals. The quality of the final solution achieved

by the algorithm depends on the choice of ε. Comparing the best solutions

achieved with different values of ε considering various impulse limits is a matter

of interest as it shows the rather optimal value of these parameters in different

rendezvous problems. An illustration of such a comparison is shown in Fig. 20.

 

Figure 20: Average performance of the algorithm in 20 runs.

In this analysis, the problem is solved for each impulse limit considering
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different values for ε. In each case, the optimization is carried out 10 times

and all the objective improvements (τmax) are stored. Then, the average of

improvement is calculated as:

τm = 1
nr

nr∑
i=1

τmax(i) (30)

where nr is the total number of optimization runs for each case, τmax(i) is the

improvement in the ith run. The surface illustrating the average performance

of the algorithm shows that typically a value of 0.4 to 0.6 results in almost the

maximum performance for all of the cases. It can also be concluded that in

the rendezvous missions with higher impulse limits, the performance is affected

more by the ε in comparison to missions with low impulse limits.

5.2. Empirical Experiments

When comparing one metaheuristic to another in a spacecraft trajectory

optimization problem, it is crucial to perform benchmark tests using a suite

of standard problems [10]. In order to make a practical comparison between

algorithms, it is important to consider several factors. These factors include

testing a large suite of instances of the rendezvous problems, using the same

initial guess, and comparing them based on the same convergence criteria. To

achieve this end, 100 instances of orbit to orbit rendezvous are tested by the

proposed approach and some standard evolutionary algorithm. The orbital

elements of the initial and final orbits are plotted in Fig. 21.

According to Fig. 21, the orbital elements are uniformly distributed as

6600km < ai, af < 50000km, 0 < ei, ef < 0.8, 0◦ < ii, if < 90◦, 0◦ < Ωi,Ωf <

360◦ and 0◦ < ωi, ωf < 360◦. The elements are considered to satisfy the con-

ditions as −5000km < ∆a < 5000km, −0.4 < ∆e < 0.4, −30◦ < ∆i < 30◦,

−30◦ < ∆Ω < 30◦, −30◦ < ∆ω < 30◦. A random impulse limit is dedicated

to each space mission within the range of 50m/s < η < 500m/s, resulting in

problems with different number of variables and complexities. In Fig. 21, larger

impulse limits are plotted with big markers while smaller ones represent space
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Figure 21: Distribution of orbital elements for empirical experiments.

rendezvous missions with lower impulse limits.

The algorithm presented has many features for robustness and self adaptive-

ness including hybridization with NLP, adaptive weighting coefficient, regener-

ation of individuals based on near fuel-optimal region, dynamic damping ratio,

and analytical seeding based on discretization of orbit intersections. Therefore,

numerous versions of this approach can be implemented by enabling or disabling

any of these features. They will have a different effect on the obtained solu-

tion. However, due to brevity in this article, only three types of the approach

are implemented and compared with other EAs. The first one is the Hybrid

Self-Adaptive Evolutionary Algorithm (HSAEA), which is the full developed

algorithm with all of the improvements. The second is the Self-Adaptive Evolu-

tionary Algorithm (SAEA-I), which is the same as HSAEA but no hybridization

with NLP is applied during the optimization process. The third one is another

reduced version of the Self-Adaptive Evolutionary Algorithm (SAEA-II), which

is the same as SAEA-I, but no regeneration of individuals for diversity correc-

tion is used during the optimization process. On the other hand, all these three

versions benefit from the tuning of the parameters based on the characteris-

tics of the rendezvous problem and dynamic damping ratio. Standard Particle
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Swarm Optimization (PSO) and Genetic Algorithm (GA) are also taken into

account for comparison.

Since each space rendezvous mission with a distinct impulse limit generates

a different optimization problem, the problems will have different complexities

and a different number of optimization variables due to the various necessary

numbers of impulses. Therefore, the common parameters of the algorithms have

been chosen in such a way that a fair comparison between the performance of

each algorithm is achieved. For each problem, the number of populations and

the number of generations for all algorithms are set as 10n and 20n respectively,

where n is the number of optimization variables for that space rendezvous mis-

sion. Regarding the three versions of the proposed approach, HSAEA, SAEA-I

and SAEA-II, all algorithm parameters are tuned automatically for each prob-

lem according to the presented process in Section 4. For PSO, the values of

1.8 and 2.0 are chosen for personal and global learning coefficients respectively.

Also, the inertial weight is set to 1.0 with the damping ratio of 0.95 per gen-

eration. For GA, crossover percentage and crossover range factor are chosen

as 0.6 and 0.3 respectively. Also, the mutation percentage and the mutation

range are selected as 0.4 and 0.2 respectively. The reason for choosing these

parameters for PSO and GA is that they are statistically shown to have the

best performance for these algorithms in most of the space rendezvous missions

with the current setup. Since the proposed algorithms benefits from the auto-

matic tuning of parameters, the best settings of the two selected EAs are chosen

for performance comparison. Although tuning the algorithm parameters is an-

other optimization problem itself, the effort in this research is to use the best

performance of PSO and GA for comparison as these values outperform other

combinations in most instances of space rendezvous missions.

For this analysis, HIPATIA cluster setup of BCAM is used with 18 nodes

including 624 cores (Processor Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz)

and 4352 GB RAM. Having 100 space rendezvous problems, each problem is

solved with the 5 aforementioned algorithms (HSAEA, SAEA-I, SAEA-II, PSO,

GA) and each algorithm is run 10 times. Therefore, a total number of 5000 jobs
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are submitted to the cluster to run the optimizations in parallel. The solutions

obtained are saved for each algorithm and the best solution between all of the

runs is assumed to be the global best solution for each rendezvous mission. Then,

for each problem, the relative score of the all solutions obtained is calculated

as:

γi,j = Ji,j − Jbest
J∗ − Jbest

(31)

where Ji,j is the objective function obtained for the ith run of the jth algorithm

(0 < i ≤ Nr, 0 < j ≤ Na), considering 10 runs (Nr = 10) for the 5 aforemen-

tioned algorithms (Na = 5). J∗ is the objective function obtained by the simple

feasible solution, and Jbest is the best obtained solution between all of the runs,

which is assumed to be the global best for the rendezvous mission as:

Jbest = arg min[Ji,j ] (i = 1, ..., Nr, j = 1, ..., Na) (32)

The reason of considering such a type of score is that different rendezvous mis-

sions with various impulse limits will have different values of objective functions,

and therefore it is difficult to make a comparison between different instances.

This definition scales the performance of algorithms in each run into a dimen-

sionless score between 0 and 1, where 0 indicates that the algorithm successfully

reached the global solution, while 1 shows that the algorithm did not make any

improvement over the simple feasible solution and could not decrease the ob-

jective function within the optimization process. Any score value in this range

shows how much improvement the algorithm obtained in reaching the global

best solution. Having all of the scores for the algorithms, an insight to the over-

all performances can be achieved. Fig. 22 shows the performance comparison

between the algorithms.

Fig. 22 indicates the absolute score of the algorithms applied to different

space rendezvous problems. This figure shows the results for 5000 obtained

scores (10 runs for each of the 5 algorithms in 100 instances). This score gives
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Figure 22: Absolute scores of the algorithms for multi-impulse space rendezvous.

an insight into the performance of the algorithms. However, it does not con-

vey the average performance of the algorithms for each instance. The average

performance of an algorithm is the mean value of all obtained solutions out of

the optimization runs for that algorithm regarding a specific problem. It can

be simply calculated as:

γ′j = 1
Nr

Nr∑
i=1

γi,j (33)

where γ′j is the average performance of the jth algorithm considering all opti-

mization runs. The relative performances of the algorithms based on this score

are illustrated in Fig. 23.

Regarding the results, the HSAEA has superior advantage over the rest of

the cases, showing the effectiveness of the proposed algorithm when comparing

to the standard EAs. Noticing the best scores for each algorithm indicates that

only HSAEA and SAEA-I reached the scores of 0 (global best) while SAEA-II,

PSO and GA failed to achieve the global best in any of the instances, leading to

the conclusion that hybridization of the algorithm with the proposed NLP and

regeneration of populations near the fuel-optimal region is necessary to achieve

36



 

Figure 23: Relative scores of the algorithms for multi-impulse space rendezvous.

the global best. The comparison between HSAEA and SAEA-I also shows that

both algorithms most likely have reached the global optimal solution in the

majority of space rendezvous missions and the difference is the probability of

reaching the optimal solution. Therefore, it can be implicitly concluded that

hybridization with NLP increases the rate of reaching the global optimal solution

in different optimization runs, while regeneration of populations near the fuel-

optimal region within the optimization process guarantees the convergence to

the global optimal point. Comparing the results from SAEA-II and PSO shows

that, although the general performance of two algorithms is almost the same, the

SAEA-II has a slight advantage in some of the cases over PSO due to dynamic

damping ratio. Also, the standard PSO itself outperforms the standard GA in

all of the cases, leading to the conclusion that hybridization of GA with the

proposed NLP probably does not outperform the presented HSAEA since the

proposed HSAEA is generally based on an improved PSO.

While the effectiveness and reliability of the algorithms are compared by

showing how close the algorithms get to the best solution, their efficiency can

be evaluated by comparing their running time. For the sake of completeness

in this research, the speed of the algorithms is measured and compared in ten
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selective instances of space rendezvous missions. Results are tabulated in Table

4.

Table 4: Comparison of dimensionless running time (running time relative to the one associate
with GA [s/s(GA)]) of the algorithms, omitting the time of cost function evaluations.

Instance HSAEA SAEA-I SAEA-II PSO
1 7.3198 2.0986 1.1328 1.0898
2 6.2147 2.2233 1.1143 1.0165
3 4.2777 2.0138 1.0457 1.0348
4 5.2043 1.2076 1.0404 1.0274
5 5.3826 1.3224 1.2031 1.0966
6 4.3526 3.1734 1.1279 1.0967
7 6.4117 2.4191 1.0880 1.0501
8 7.1940 2.3722 1.1475 1.0825
9 3.3919 2.5298 1.1231 1.0833
10 4.0869 1.7127 1.1404 1.0682
Average 5.3836 2.1073 1.1163 1.0646

In this comparison, the running time of GA is considered as the base score

for the speed of other algorithms, since GA has the minimum processing time in

this set of algorithms. The time of objective function evaluations are neglected

and the calculated running time for each algorithm is divided by the base time

of GA for each instance. It has been shown that typical PSO has the least

running time as it does not involve any modifications described in this research.

SAEA-II, which benefits from automatic parameter tuning and dynamic damp-

ing ratio during optimization, requires slightly more time compared to PSO. The

comparison of speed between SAEA-I and SAEA-II shows the effect of diversity

correction within the optimization. Since regeneration of new individuals is trig-

gered when the diversity of the population is not satisfactory, its occurrence is

largely due to the randomness of movement of individuals. Finally, the HSAEA

has the slowest process as the NLP employment for improving the quality of the

individuals requires more iterations and calculations. It can be observed that

the running time is significantly high for HSAEA in comparison to the other

algorithms. However, it has the highest possibility to end up finding the best

possible solution.
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6. Conclusions

The long-range space rendezvous problem was addressed using the proposed

evolutionary discretized Lambert approach in this paper. In this research, all

objectives, including fuel, time and impulse limit were considered. The pro-

posed approach attempts to find the global optimal solutions which satisfy the

impulse limit while minimizing the fuel and time simultaneously. The fuel-

optimal region is identified by means of a discretized approach in which the

minimum necessary number of impulses is achieved by dividing the impulses

within the intersection of trajectories between two sequential Lambert prob-

lems. The obtained solution is utilized to generate near-optimal solutions for

seeding the optimization algorithm in order to find the optimal sequence of

impulses which results in minimum-time minimum-fuel orbit transfer. The de-

veloped self-adaptive algorithm is a hybrid method, combined with auto-tuning

techniques and an intelligent individual refinement procedure. The approach is

used to solve some multi-impulse rendezvous problems. Results confirm the fea-

sibility of the approach and show that it successfully improves the the optimality

of the solution in terms of fuel and time without violating the impulse limit. The

percentage of optimality is significant when the approach is used with the de-

veloped self-adaptive algorithm. Also, the robustness of the approach is tested

by applying the proposed method in different types of rendezvous problems.

Comparing the obtained results with the output of standard non-adaptive algo-

rithms indicates the superiority of the developed algorithm. It has been shown

that the probability of reaching optimal solutions is significantly higher with the

current approach in comparison to other algorithms, since the approach benefits

from self-adaptive tuning and hybridization. However, the running time bur-

den is relatively high when the NLP is involved with the optimization process.

Increasing the optimality of the solution and the robustness of the technique

by means of considering more tuning techniques will be the next step in future

research.
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