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Abstract

Electrical Impedance Imaging would suffer a serious obstruction
if for two different conductivities the potential and current measured
at the boundary were the same. The Calderón’s problem is to decide
whether the conductivity is indeed uniquely determined by the data at
the boundary. In Rd, for d “ 5, 6, we show that uniqueness holds when
the conductivity is in W

1` d´5
2p
`,p
pΩq, for d ď p ă 8. This improves

on recent results of Haberman, and of Ham, Kwon and Lee. The main
novelty of the proof is an extension of Tao’s bilinear Theorem.
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1 Introduction
Electrical Impedance Imaging is a technique to reconstruct the inner struc-
ture of a body from measurements of potential and current at the boundary.
At least since the 30’, geophysicists have used this technique to identify differ-
ent layers of earth underground [22]. In pioneering work, Calderón [7] posed
the problem of deciding whether the conductivity is uniquely determined
by measurements at the boundary. Calderón went on to show uniqueness,
roughly, when the conductivity is close to one.

The electrical potential u in a bounded domain Ω Ă Rd with Lipschitz
boundary satisfies the differential equation

Lγu :“ div pγ∇uq “ 0,

u|BΩ “ f,
(1)
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where γ is the conductivity and f the potential at the boundary. We assume
that γ P L8pΩq and that γ ě c ą 0. If f P H1{2pBΩq, then a solution
u P H1pΩq exists. The electrical current at the boundary is γBνu |BΩ, where
ν is the outward-pointing normal, and the operator Λγ : u|BΩ ÞÑ γBνu |BΩ is
called the Dirichlet-to-Neumann map; we can define the map Λγ rigorously
as

xΛγf, gy :“

ż

Ω

γ∇u ¨∇v̄, (2)

where u solves (1) and v P H1pΩq is any extension of g P H1{2pBΩq; hence
Λγ : H1{2pBΩq ÞÑ H´1{2pBΩq. If we choose v such that Lγv “ 0, then we see
that Λγ is symmetric. Uniqueness fails if two different conductivities γ1 and
γ2 satisfy Λγ1 “ Λγ2 ; this were the case, for every f1, f2 P H

1
2 pBΩq we would

have
0 “ xpΛγ1 ´ Λγ2qf1, f2y “

ż

Ω

pγ1 ´ γ2q∇u1 ¨∇u 2, (3)

where Lγ1u1 “ 0 and Lγ2u2 “ 0 are extensions of f1 and f2 respectively. Most
of the proofs of uniqueness show that the collection of functions t∇u1 ¨∇u 2u

is dense, so γ1 and γ2 cannot be different.
Kohn and Vogelius [16] showed that for smooth conductivities γ1 and γ2,

uniqueness holds at the boundary to all orders, so BNν γ1 “ BNν γ2 at BΩ for
every integer N . In particular, if the conductivities are analytic, then γ1 “ γ2

in Ω.
In [24], Sylvester and Uhlmann introduced the method that most of the

proofs follow nowadays. If uj solve the equation (1) for γj, then the function
wj :“ γ

1
2
j ui solves the equation p´∆` qjqwj “ 0 with qj “ γ

´ 1
2

j ∆γ
1
2
j , and the

relationship (3) is replaced by
ż

Rd
pq1 ´ q2qw1w2 “ 0; (4)

then, they had to prove that the collection of function tw1w2u is dense. The
integral is evaluated over Rd because the functions γ1 and γ2 are extended
to the whole space, and are arranged so that γ1 “ γ2 “ 1 outside a ball
containing Ω. Since eζ¨x is harmonic when ζ P Cd satisfies ζ ¨ζ “ 0, then they
used the ansatz wj “ eζj ¨xp1 ` ψjq, expecting that ψj is somehow negligible
for |ζ1|, |ζ2|Ñ 8. These solutions wj are called Complex Geometrical Optics
(CGO) solutions. Sylvester and Uhlmann selected ζ1 and ζ2 such that ζ1 `

ζ2 “ iξ for ξ P Rd; then, on the assumed smallness of ψj for |ζ1|, |ζ2| Ñ 8,
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equation (4) means that pq1 “ pq2, and this implies that γ1 “ γ2. Their
argument works well for conductivities in C2pΩq.

In R2, Astala and Päivärinta [1] proved that uniqueness holds in L8pΩq,
the best possible result. In higher dimensions, Brown [4] proved uniqueness
for conductivities in C

3
2
`pΩq, and this was improved to W

3
2
,2d`pΩq by Brown

and Torres [6]. By analogy with unique continuation, it is conjectured that
the lowest possible regularity is W 1,dpΩq.

The function ψ in the CGO solution w “ eζ¨xp1`ψq satisfies the equation

∆ζψ :“ ∆ψ ` 2ζ ¨∇ψ “ qp1` ψq. (5)

Then, it is necessary to prove that a solution exists and is small. In [12],
Haberman and Tataru introduced a Bourgain-type space adapted to pζpξq “
´|ξ|2 ` 2iζ ¨ ξ, the symbol of ∆ζ . The space is defined as

9Xb
ζ :“ tu | ‖u‖2

9Xb
ζ

:“

ż

Rd
|pζpξq|2b|pu|2 dξ ă 8u,

and it follows immediately that ‖∆´1
ζ ‖ 9X

´ 1
2

ζ Ñ 9X
1
2
ζ

“ 1. The dual of 9Xb
ζ is 9X´b

ζ .

If we define the multiplication operator Mq : u ÞÑ qu, then the existence of ψ
follows from ‖∆´1

ζ Mq‖
9X
1
2
ζ Ñ

9X
1
2
ζ

ď ‖Mq‖
9X
1
2
ζ Ñ

9X
´ 1

2
ζ

ď c ă 1, and the smallness of

ψ follows from the smallness of ‖q‖
9X
´ 1

2
ζ

. Using these spaces Haberman and

Tataru proved uniqueness for Lipschitz conductivities close to one.
Caro and Rogers [8] proved uniqueness for Lipschitz conductivities with-

out further restriction. They used Carleman estimates, in the spirit of [15]
and [9].

After an observation in [21], Haberman refined in [11] the method of
Bourgain spaces, and proved uniqueness for conductivities in W 1,3pΩq for
d “ 3, and W 1` d´4

2p
,p
pΩq for p ě d and d “ 4, 5, 6. He argued as follows: for

γ1 and γ2 he wanted to show that ‖Mqj‖ 9X
1
2
ζj
Ñ 9X

´ 1
2

ζj

and ‖qj‖
9X
´ 1

2
ζj

are small for

some ζ1 and ζ2 that satisfy ζ1` ζ2 “ iξ, so Haberman proved that there exist
sequences tζ1,ku and tζ2,ku for which ‖Mqj‖ 9X

1
2
ζj,k

Ñ 9X
´ 1

2
ζj,k

and ‖qj‖
9X
´ 1

2
ζj,k

tend to

zero as |ζ1,k|, |ζ2,k|Ñ 8. To find the sequences, he proved that the expected
value of both norms goes to zero as |ζ1|, |ζ2|Ñ 8.
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Theorem 1 (Haberman [11]). Let us write ζpU, τq :“ τpUe1 ´ iUe2q for
τ ě 1 and U P Od a rotation. If ∇ log γ1 and ∇ log γ2 are in W

d´4
2p

,p
pRdq for

d ď p ă 8, or in L3pRdq for d “ 3, then

1

M

2M
ż

M

ż

Od

‖Mqj‖
p

9X
1
2
ζpU,τq

Ñ 9X
´ 1

2
ζpU,τq

dUdτ and
1

M

2M
ż

M

ż

Od

‖qj‖2

9X
´ 1

2
ζpU,τq

dUdτ
MÑ8
ÝÝÝÝÑ 0.

The idea is that, when |ζj| is large, the set of bad pairs pζ1, ζ2q for which
‖Mqj‖ 9X

1
2
ζj,k

Ñ 9X
´ 1

2
ζj,k

or ‖qj‖
9X
´ 1

2
ζj,k

is large has measure close to zero, then it is

possible to extract sequences such that these norms are small and such that
ζ1 ` ζ2 “ iξ.

The estimates of Haberman are very good, and most of the argument
works well just for γ P W 1,dpΩq. The bottle-neck is to get a strong upper
bound of ‖MBif‖ 9X

1
2
ζpU,τq

Ñ 9X
´ 1

2
ζpU,τq

, where f P W s,p for some s ě 0.

In Section 2 we proof the next theorem.

Theorem 2 (Vanishing of the Expected Value). Let us write ζpU, τq :“
τpUe1´ iUe2q for τ ě 1 and U P Od a rotation. Suppose that f is a function
supported in the unit ball. If f P W

d´5
2p
`,p
pRdq for d ď p ă 8, then

1

M

2M
ż

M

ż

Od

‖MBif‖ 9X
1
2
ζpU,τq

Ñ 9X
´ 1

2
ζpU,τq

dUdτ
MÑ8
ÝÝÝÝÑ 0. (6)

The main consequence of this theorem is the next improvement on Calderón’s
problem.

Theorem 3. For d “ 5, 6 suppose that Ω Ă Rd is a bounded domain with
Lipschitz boundary. If γ1 and γ2 are in W 1` d´5

2p
`,p
pΩq X L8 for d ď p ă 8,

and if γ1, γ2 ě c ą 0, then

Λγ1 “ Λγ2 implies γ1 “ γ2.

We write γ P W 1` d´5
2p
`,p
pΩq X L8 to emphasize that γ P L8, but it fol-

lows from Sobolev embedding for domains with Lipschitz boundaries. We
note that Theorem 2 holds for d ě 3, and the restriction d “ 5, 6 in Theo-
rem 3 seems technical; in fact, we can state the following consequence of the
vanishing of the expected value.

4



Theorem 4. For d ě 7 suppose that Ω Ă Rd is a bounded domain with
Lipschitz boundary. If γ1 and γ2 are in W 1` d´5

2p
`,p
pΩq X L8 for d ď p ă 8,

if Bνγ1 “ Bνγ2 at BΩ, and if γ1, γ2 ě c ą 0, then

Λγ1 “ Λγ2 implies γ1 “ γ2.

By the trace theorem the normal derivative Bνγ is well-defined. The
proof of Theorem 3 and Theorem 4 has been already summarized in this
introduction, and we provide some more details in Section 2. We refer the
reader to the literature to reconstruct the whole argument, in particular to
Haberman [11] and to Ham, Kwon and Lee [13].

We have added an appendix with an example that shows that averaging
is necessary.

1.1 Restriction Theory

Ham, Kwon and Lee [13] applied deep estimates from restriction theory to
improve on Harberman results, and we will follow most of their arguments.
We give here a brief introduction to restriction theory and the way it comes in
Calderón’s problem; a detailed exposition of restriction theory can be found
in [20, part IV].

We control the norm ‖MBif‖ 9X
1
2
ζpU,τq

Ñ 9X
´ 1

2
ζpU,τq

by duality, so we need an upper

bound of
xpBifqu, vy “

ż

Rd
pBifquv dx for u, v P 9X

1
2

ζpU,τq. (7)

The contribution coming from frequencies close the null set of pζpξq “ ´|ξ|2`
2iζ ¨ ξ, which we call the characteristic set Σζ , is the hardest part we have to
deal with.

The characteristic set Σζ is a pd ´ 2q-sphere, and we have to control the
duality pairing when the Fourier transform of u and v is concentrated close to
Σζ . This is just the setting for which restriction theory has been developed;
a few classical examples of applications are [10, 14, 2, 3].

In restriction theory, we seek to prove the best possible bounds ‖ pf |S
‖p ď C‖f‖q, where S is a manifold or just a set. One of earliest and most
important result is due to Tomas [27] and Stein (unpublished); for the proof
see e.g. [23, chp. 9].
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Theorem 5. (Tomas-Stein Inequality) Suppose that S Ă Rn is a compact
surface with non-vanishing curvature. If f P LppRnq for 1 ď p ď 2n`1

n`3
, then

‖ pf |S‖2 ď C‖f‖p. (8)

The dual operator is called the extension operator, and it is the Fourier
transform of a measure fdS supported on the set S. The function pfdSq_ is
the prototype of a function with frequencies highly concentrated close to S.
In the dual side, the Tomas-Stein inequality is

‖pfdSq_‖Lp1 pRnq ď C‖f‖L2pSq for 2
n` 1

n´ 1
ď p1 ď 8. (9)

Since the earliest days of restriction theory, a kind of stability of bilinear
estimates was exploited; for example, the bound ‖pfdSq_‖L4pR2q

ď C‖f‖2 is
false, but the bound ‖pf1dS1q

_pf2dS2q
_‖L2pR2q

ď C‖f1‖2‖f2‖2 is true, when-
ever the lines S1 and S2 are transversal; curvature is not required. This
stability of bilinear estimates was clarified and refined by Tao, Vargas and
Vega [26].

If we are to expect some improvement of a bilinear estimate, we have
to require a separation condition on the surfaces S1 and S2 involved. For
example, if ‖pf1dS1q

_pf2dS2q
_‖L2pR2q

ď C‖f1‖2‖f2‖2 were true in any case,
then just setting S1 “ S2 would provide a linear estimate, a false one in
this case. One of the key outcomes of [26] is a general strategy to get linear
bounds from bilinear bounds, and we will follow this strategy in Section 3.1.

If we are to use the bilinear strategy, we need strong bilinear upper
bounds. For some time, the bilinear analogue of the Tomas-Stein inequality
in Rn, for n ě 3, was known as Klainerman-Machedon conjecture. Wolff
made the first big progress, proving the conjecture when the surfaces are
subsets of the cone [30]. Subsequently, Tao refined the method and proved
the conjecture when the surfaces are subsets of a surface with positive curva-
ture [25]. Vargas [29] and Lee [18] proved the conjecture when the surfaces
are subsets of the hyperboloid, dealing with unusual obstructions.

Since we are interested in the sphere, we need to prove the bilinear the-
orem for this case. To avoid antipodal points in the bilinear inequality, we
restrict ourselves to the surface

S :“ tpξ1, ξnq | ξn “ 1´

b

1´ |ξ1|2 and |ξ1| ă 1
?

2
`

1

10
u (10)

Following [26], we define also surfaces of elliptic type.
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Definition 6. (Surfaces of Elliptic Type) A surface S is of ε-elliptic type if:

• The surface is the graph of a C8 function Φ : B1 Ă Rn´1 Ñ R.

• Φp0q “ 0 and ∇Φp0q “ 0.

• The eigenvalues of D2Φpxq lie in r1´ ε, 1` εs for every x P B1.

For every ε ą 0 and for every point in a surface with positive curvature,
we can find a sufficiently small neighborhood U so that U is of ε-elliptic type,
up to a linear transformation.

We prove in Section 4 the next extension of Tao’s bilinear theorem.

Theorem 7 (Bilinear Theorem). Suppose that S1, S2 Ă Rn are two open
subsets of a surface of elliptic type or the hemisphere in (10), and suppose
that their diameter is À 1 and they lie at distance „ 1 of each other. If fµ
and gν are functions with Fourier transforms supported in a µ-neighborhood
of S1 and a ν-neighborhood of S2 respectively, for µ ď ν ă µ

1
2 ă 1, then for

every δ ą 0 it holds that

‖fµgν‖p1 ď Cδµ
n
2p
´δν

1
p
´δ‖fµ‖2‖gν‖2, for 1 ď p1 ď

n

n´ 1
. (11)

For surfaces of ε-elliptic type, the constant Cδ may depend on ε and on the
semi-norms ‖BNΦ‖

8
. The inequalities are best possible in µ and ν, up to

δ-losses.

Unexpected phenomena appear: when µ is much smaller than ν, i.e. when
µ

1
2 ď ν, then bilinearity does not play any role; moreover, the curvature of

the support of gν is of no importance, and the bounds that Tomas-Stein
yield cannot be improved. If we try to get bilinear bounds for fµ and gν by
averaging over translations of the surface and then applying Tao’s bilinear
theorem, we do not reach the optimal result (11), except when µ “ ν.

The reader can consult the symbols and notations we use at the end of
the article.
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2 Outline of the Proof
The proof that Theorem 2 implies Theorem 3 is long, and many steps are
already well described in the literature. We refer the reader to [11, 13] for
details.

First, we extend carefully γ1 and γ2 to the whole space. By the def-
inition of W s,ppΩq, we can extend γ1 to a function in W s,ppRdq. Since
γj P W

1` d´5
2p
`,p
pΩq, then by a theorem of Brown in [5] we have that γ1 “ γ2

at BΩ if Λγ1 “ Λγ2 . Now we define the function

η :“

#

γ2 ´ γ1 if Ω

0 if Ωc.

Since η is zero at BΩ and d´5
2p
` ď 1

p
, then η P W 1` d´5

2p
`,p
pRdq (see [19,

Theorem 1]); this explains the condition d ď 6 in Theorem 3. We can thus
define the extension γ2 :“ γ1 ` η P W 1` d´5

2p
`,p
pRdq. Finally, we arrange the

extensions so that γ1 “ γ2 “ 1 outside a ball containing Ω. For d ě 7 we are
in the case d´5

2p
` ą 1

p
, and we need additionally the condition Bνγ1 “ Bνγ2

at BΩ to be able to extend the conductivities. This is the condition that we
included in Theorem 4.

For all w1, w2 P H
1
locpRdq that solve p´∆` qjqwj “ 0 with qj “ γ

´ 1
2

j ∆γ
1
2
j ,

we want to show that the collection of functions tw1w2u is dense, which
implies that γ1 “ γ2; see [6] for a rigorous justification. Notice that qj is
compactly supported.

For ζj ¨ ζj “ 0, the function wj “ eζj ¨xp1 ` ψjq is a CGO solution. The
function ψj P H1

locpRdq has to satisfy the equation

p´∆ζ ` qjqψj “ ´qj. (12)

If we choose ζ1 and ζ2 such that ζ1 ` ζ2 “ iξ and replace in (4), then we get
ż

Rd
pq1 ´ q2qe

iξ¨x
“

ż

eiξ¨xψ2q2 ´

ż

eiξ¨xψ1q1`

`

ż

eiξ¨xψ1∆ζψ2 ´

ż

eiξ¨xψ2∆ζψ1. (13)
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We expect that the functions ψj are negligible, so if we ignore them, we would
get that pq1pξq “ pq2pξq for every ξ P Rd, which implies γ1 “ γ2.

The space H1
locpRdq does not seem to be the best suited space to solve

(12). Following Haberman and Tataru [12], we use the spaces 9Xb
ζ and Xb

ζ .

Since the inclusion 9X
1
2
ζ Ă H1

locpRdq holds true, then we have

p´∆ζ ` qq : 9X
1
2
ζ Ñ

9X
´ 1

2
ζ .

The goal is to find a pair of sequences tζ1,ku and tζ2,ku that satisfy the
following conditions:

• ζ1,k ` ζ2,k “ iξ and |ζj,k|Ñ 8 as k Ñ 8.

• There exist solutions ψj,k P 9X
1
2
ζj,k

of the equation (12).

• ‖ψj,k‖
9X
1
2
ζj,k

Ñ 0 as k Ñ 8.

To solve (12) we write pI ´ ∆´1
ζ qqψ “ ∆´1

ζ q. To invert the operator
pI ´∆´1

ζ Mqq, where Mq : u ÞÑ qu, it suffices to prove that ‖Mq‖
9X
1
2
ζ Ñ

9X
´ 1

2
ζ

ď

c ă 1. We also have the upper bound

‖ψ‖
9X
1
2
ζ

ď ‖pI ´∆´1
ζ Mqq

´1‖
9X
1
2
ζ Ñ

9X
1
2
ζ

‖q‖
9X
´ 1

2
ζ

ď
1

1´ c
‖q‖

9X
´ 1

2
ζ

.

Then, we can rewrite the goal as: to find a pair of sequences tζ1,ku and tζ2,ku

that satisfy the following conditions:

• ζ1,k ` ζ2,k “ iξ and |ζj,k|Ñ 8 as k Ñ 8.

• ‖Mqj‖ 9X
1
2
ζj,k

Ñ 9X
´ 1

2
ζj,k

ď c ă 1 for sufficiently large k.

• ‖qj‖
9X
´ 1

2
ζj,k

Ñ 0 as k Ñ 8.

To find the sequences tζ1,ku and tζ2,ku, Haberman proved that the ex-
pected value of ‖Mqj‖ 9X

1
2
ζ Ñ

9X
´ 1

2
ζ

and ‖qj‖
9X
´ 1

2
ζ

over |ζ| „ M ě 1 is small; see

Theorem 1. The reader can see in [11, sec. 7] how to find the sequences from
the vanishing of the expected value.
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To prove the vanishing of the expected value of ‖qj‖
9X
´ 1

2
ζ

, it suffices to

assume that ∇ log γj P L
dpRdq, so we will not turn our attention to it.

To control ‖Mqj‖ 9X
1
2
ζ Ñ

9X
´ 1

2
ζ

we write q “ 1
2
∆ log γ` 1

4
|∇ log γ|2 “ 1

2
div pfq`

1
4
|f |2, where the components of f “ pf 1, . . . , fnq belong to W s´1,ppRdq. We

can divide Mq into the terms MBif and M|f |2 . Haberman proved that the
expected value of ‖M|f |2‖ 9X

1
2
ζ Ñ

9X
´ 1

2
ζ

goes to zero if f P LdpRdq, so we are left

with ‖MBif‖ 9X
1
2
ζ Ñ

9X
´ 1

2
ζ

.

The estimates for ‖MBif‖ 9X
1
2
ζ Ñ

9X
´ 1

2
ζ

are not strong enough to get the van-

ishing in the limit for f P Ld. To prove Theorem 2, we assume the following
theorem, which we will prove in the next section.

Theorem 8. Suppose that f is supported in the unit ball. If f P W
d´5
2p
`,p
pRdq

for d ď p ă 8, then

´

ż

M

ż

Od

‖MBif‖
X

1
2
ζpU,τq

ÑX
´ 1

2
ζpU,τq

dUdτ ď C‖f‖ d´5
2p
`,p. (14)

Proof of Theorem 2. Since f is compactly supported, then ‖MBif‖ 9X
1
2
ζ Ñ

9X
´ 1

2
ζ

À

‖MBif‖
X

1
2
ζ ÑX

´ 1
2

ζ

; see [12, Lemma 2.2(3-4)]. We estimate Mg by duality as

|xgu, vy| ď ‖g‖
8
‖u‖2‖v‖2 ď

1

|ζ|
‖g‖

8
‖u‖

X
1
2
ζ

‖v‖
X

1
2
ζ

.

For some A ď 1 to be fixed later, we define g “ PďABif , where PďA is the
projection to frequencies À A. By Young inequality for convolutions we get

‖Mg‖
X

1
2
ζ ÑX

´ 1
2

ζ

ď
1

|ζ|
‖g‖

8
À
A2

|ζ|
‖f‖d.

The expected value is thus bounded as

´

ż

M

ż

Od

‖MBif‖
X

1
2
ζpU,τq

ÑX
´ 1

2
ζpU,τq

dUdτ À
A2

M
‖f‖d `´

ż

M

ż

Od

‖MPąABif‖
X

1
2
ζpU,τq

ÑX
´ 1

2
ζpU,τq

dUdτ

À
A2

M
‖f‖d ` ‖PąAf‖ d´5

2p
`,p.

If we choose A “M
1
4 and let M Ñ 8, then we get the vanishing.
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3 Upper Bounds for the Expected Value
In this and the next section, we use duality to get an upper bound of
‖MBjf‖

X
1
2
ζpU,τq

ÑX
´ 1

2
ζpU,τq

in terms of f , U and τ . We want to get an upper bound

|xpBjfqu, vy| “ |
ż

Rd
pBjfquv̄ dx| ď ApU, τ, fq‖u‖

X
1
2
ζpU,τq

‖v‖
X

1
2
ζpU,τq

, (15)

with a constant ApU, τ, fq depending on some quantity related to ‖f‖W s,p for
s “ d´5

2p
` and d ď p ă 8.

The characteristic set Σζ of pζpξq “ ´|ξ|2 ` 2iζ ¨ ξ, the symbol of ∆ζ , is
a pd ´ 2q-sphere in the hyperplane tξ | xUe1, ξy “ 0u, with center τUe2 and
radius τ ě 1. If dpξ,Σq denotes the distance from ξ to Σζ , then

|pζpξq| „

#

τdpξ,Σζq, for dpξ,Σζq ď
1
10
τ,

τ 2 ` |ξ|2, for dpξ,Σζq ą
1
10
τ

We break up the frequencies accordingly into characteristics and non-characteristics,
and define the corresponding projections as

pQlfq
^
pξq :“ ζpτ´1dpξ,Σζqq

pfpξq

pQhfq
^
pξq :“ p1´ ζpτ´1dpξ,Σζqqq

pfpξq,

where ζ P C8c pRq is supported inside p´ 1
10
, 1

10
q. It follows that

‖Qhu‖2 ď τ´1‖u‖
X

1
2
ζpU,τq

(16)

‖BjQhu‖2 ď ‖u‖
X

1
2
ζpU,τq

. (17)

In Lemma 3.3 of [11] Haberman proved, using Tomas-Stein inequality,
that

‖u‖ 2d
d´2
À ‖u‖

X
1
2
ζpU,τq

. (18)

With the help of inequalities (16), (17) and (18), we can control in (15) all
the terms involving non-characteristic frequencies. In fact,

xpBjfqu, vy “ xpBjfqQhu,Qhvy ` xpBjfqQhu,Qlvy`

` xpBjfqQlu,Qhvy ` xpBjfqQlu,Qlvy.

11



For the first term at the right, after integration by parts, we have

|xpBjfqQhu,Qhvy| ď ‖f‖dp‖BjQhu‖2‖Qhv‖ 2d
d´2
`

` ‖Qhu‖ 2d
d´2
‖BjQhv‖2q

À ‖f‖d‖u‖
X

1
2
ζpU,τq

‖v‖
X

1
2
ζpU,τq

. (19)

For the mixed terms we have

|xpBjfqQhu,Qlvy| ď ‖f‖dp‖BjQhu‖2‖Qlv‖ 2d
d´2
`

` ‖Qhu‖2‖BjQlv‖ 2d
d´2
q

À ‖f‖d‖u‖
X

1
2
ζpU,τq

‖v‖
X

1
2
ζpU,τq

, (20)

where we used the localization ofQlv to frequenciesď 5τ , so that ‖BjQlv‖ 2d
d´2
À

τ‖Qlv‖ 2d
d´2

; this follows from Young inequality. We are left then with the
characteristic frequencies.

We assume that the support of the Fourier transform of u and v lie in a
1
10
-neighborhood of Σζ . We define the transformation

uτUpxq :“ τ´dupτ´1Uxq, (21)

so that the frequencies of uτU are supported in a 1
10
-neighborhood of the Sd´2

sphere centered at e2 in the hyperplane normal to e1. The Fourier transform
of uτU is puτUpξq “ pupτUξq, and the Xb

ζpU,τq-norm scales as

‖u‖Xb
ζpU,τq

“ τ
d
2
`2b‖uτU‖Xb

ζp1q,1{τ
. (22)

We change variables in the pairing (15) to get

xpBjfqu, vy “ τ´d
ż

pBjfqpτ
´1Uxqupτ´1Uxqv̄pτ´1Uxq dx

“ τ 2d`1

ż

Bτ

pBjfτUquτU v̄τU dx

“ τ 2d`1
xpBUejfτUquτU , vτUy, (23)

where we used the identity

pBjfqpτ
´1Uxq “

ż

ξj pfpξqe
ipτ´1Uxq¨ξ dξ “ τ d`1

pBUejfτUqpxq.

12



Therefore, we assume that the characteristic sphere Sd´2 lies in the normal
plane to e1, has radius 1 and is centered at e2. We assume also that the
function f is supported in Bτ p0q.

We apply the Hardy-Littlewood decomposition to f “
ř

τ´1ďλ Pλf , and
decompose u and v into dyadic projections uµ and vν , where puµq^ “ ζpµ´1dpξ,Σζqqpu
and ζ P C8c pRq is supported in p1

2
, 2q. Then, the pairing (15) gets into

xpBwfqu, vy “
ÿ

τ´1ďλ,µ,νÀ1

xpBwPλ,suppµ,νqfquµ, vνy

“
ÿ

τ´1ďλÀ1
τ´1ďµďνÀ1

xpBwPλ,νfquµ, vνy `
ÿ

τ´1ďλÀ1
τ´1ďµąνÀ1

¨ ¨ ¨ , (24)

where Bw is the derivative in some direction w, and Pλ,suppµ,νq is the projection
to frequencies |ξ| „ λ and |ξ1| À suppµ, νq. By symmetry, we can assume
that µ ď ν.

We use Toma-Stein to control the low frequency terms, λ À ν
1
2 , and the

terms with very different characteristic regions, µ
1
2 ď ν.

Theorem 9. If fµ and gν are functions in Rn, and their Fourier transform
are supported in a µ- and ν-neighborhood of Sn´1 respectively, where µ ď ν,
then

‖fµgν‖p1 À µ
n`1
2p ‖fµ‖2‖gν‖2, for 1 ď p1 ď

n` 1

n
. (25)

Proof. We use Hölder to get

‖fµgν‖p1 ď ‖fµ‖2p1{p2´p1q‖gν‖2. (26)

Since 1 ď p1 ď n`1
n

, then 2 ď 2p1{p2 ´ p1q ď 2n`1
n´1

, and the latter is the
Tomas-Stein exponent. To bound the term ‖fµ‖r, for r “

2p1

2´p1
, we interpolate

between p1 “ 2 and p1 “ 2n`1
n´1

.
The point p1 “ 2 is immediate. For p1 “ 2n`1

n´1
, we write pfµ as an average

over spheres

fµpxq “

ż

rn´1

ż

Sn´1

pfµprθqepxrx, θyq dθdr :“

ż

rn´1
pf rµdSq

_
prxq dr

We apply Minkowski, Tomas-Stein and Cauchy-Schwarz to find ‖fµ‖2n`1
n´1

ď

Cµ
1
2‖fµ‖2; this leads to

‖fµ‖r À µ
n`1
2
p 1
2
´ 1
r
q‖fµ‖2, for 2 ď r ď 2

n` 1

n´ 1
.

13



We replace it in (26) to get

‖fµgν‖p1 À µ
n`1
2p ‖fµ‖2‖gν‖2,

which is what we wanted.

By Hölder, we can bound each term in (24) as

|xpBwPλ,νfquµ, vνy| ď λ‖Pλ,νf‖p‖uµvν‖p1 . (27)

To bound the bilinear term, we begin by writing it as
ż

|uµvν |
p1 dx “

ĳ

|uµpx1, x̃qvνpx1, x̃q|
p1 dx̃dx1. (28)

We fix x1 as a parameter and define the function ux1µ px̃q “ uµpx1, x̃q; its
Fourier transform is the term in parentheses in the formula

uµpx1, x̃q “

ż

´

ż

puµpxqe
ix1¨ξ1 dξ1

¯

eix̃¨ξ̃ dξ̃ “

ż

pux1µ pξ̃qe
ix̃¨ξ̃ dξ̃.

The support of pux1µ lies in a µ-neighborhood of the sphere Sd´2 Ă Rd´1.
Hence, we can apply Theorem 9 with n “ d ´ 1 to the inner integral at the
right of (28) to get

ż

|uµvν |
p1 dx ď µp

1 d
2p

ż

‖uµpx1, ¨q‖p
1

2 ‖vνpx1, ¨q‖p
1

2 dx1. (29)

Since puµ is supported in the µ-neighborhood of the hyperplane normal to
e1, then we can use the formula uµ “ uµ ˚1 φµ, where φµpxq “ µφpµxq and
φ : R ÞÑ R` is a smooth function whose Fourier transform equals one in a
µ-neighborhood of the origin. Hence, by Minkowski we have

‖uµpx1, ¨q‖2 “

´

ż

ˇ

ˇ

ˇ

ż

uµpx1 ´ y1, x̃qφµpy1q dy1

ˇ

ˇ

ˇ

2

dx̃
¯1{2

ď

ż

‖uµpx1 ´ y1, ¨q‖2φµpy1q dy1

“ p‖uz1µ ‖L2
x̃
˚1 φµqpx1q.

This fact and the next lemma allow us to bound the integral at the right of
(29).

14



Lemma 10. Let a and b be two functions in the real line, then

‖pa ˚ φµqb‖p1 ď Cµ
1
p‖a‖2‖b‖2, for 1 ď p1 ď 2. (30)

The inequality is best possible in µ.
Proof. We use Hölder and Young inequalities to get

‖pa ˚ φµqb‖p1 ď ‖a ˚ φµ‖2p1{p2´p1q‖b‖2 ď ‖φµ‖p1‖a‖2‖b‖2,

where ‖φµ‖p1 “ µ
1
p‖φ1‖p1 . The example a “ b “ 1p´µ´1,µ´1q shows that the

constant µ
1
p is best possible.

With the aid of Lemma 10 and ‖uµ‖2 À µ´
1
2‖u‖

X
1
2
ζp1q,1{τ

, we continue (29)
as

‖uµvν‖p1 ď µ
d`2
2p ‖uµ‖2‖vν‖2 À µ

d`2
2p
´ 1

2ν´
1
2‖u‖

X
1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

. (31)

Furthermore, when we are restricted to low frequencies λ À ν
1
2 , we can use

this bound and (27) in the pairing (24) to get for p “ d

|xpBwfqu, vy| À
´

ÿ

τ´1ďλÀν
1
2

τ´1ďµďνÀ1

λµ
1
dν´

1
2‖Pλf‖d

¯

‖u‖
X

1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

` ¨ ¨ ¨

À

´

ÿ

τ´1ďλÀν
1
2

λν
1
d
´ 1

2‖Pλf‖d
¯

‖u‖
X

1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

À

´

ÿ

τ´1ďλÀ1

λ
2
d‖Pλf‖d

¯

‖u‖
X

1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

À

´

ÿ

τ´1ďλÀ1

‖Pλf‖dd
¯

1
d‖u‖

X
1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

À ‖f‖d‖u‖
X

1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

` ¨ ¨ ¨ . (32)

On the other hand, when the characteristic frequencies are very different, i.e.
µ

1
2 ď ν, again by (31) and (27) in the pairing (24), we get

|xpBwfqu, vy| ď
´

ÿ

ν
1
2ÀλÀ1

τ´1ďµďν2À1

λµ
d`2
2p
´ 1

2ν´
1
2‖Pλ,νf‖p

¯

‖u‖
X

1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

`¨ ¨ ¨ .

(33)
We are left thus with the case of high frequencies λ Á ν

1
2 , and similar char-

acteristic frequencies µ ď ν ď µ
1
2 .
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11

transversal non-transversal

Figure 1: The decomposition of the µ- and the ν-neighborhoods of the sphere
Sd´2 ` e2 into caps α and β.

3.1 Bilinear Strategy

In this section we assume that µ ď ν ă µ
1
2 , so that the bilinear inequality

in Theorem 7 give us a small improvement over Tomas-Stein inequality. To
pass from bilinear to linear inequalities, we follow the strategy in [26].

Using smooth partitions of unity tϕαuα and tϕβuβ we decompose, respec-
tively, the µ- and the ν-neighborhoods of the sphere Sd´2 ` e2 into caps α
and β of radius ρ0 ! 1; see Figure 1. If the angle between the normal vectors
to two caps α and β, respectively, is Á ρ0, then we call them transversal
and denote it by α „ β; otherwise the caps are not transversal, α  β. For
transversal caps we can use the Bilinear Theorem 7 for the sphere. We define
ûµ,α :“ ϕαûµ and v̂ν,β :“ ϕβ v̂ν , and write so the bilinear term as

uµv ν “
ÿ

α,β

uµ,αv̄ν,β “
ÿ

α„β

uµ,αv̄ν,β `
ÿ

αβ

uµ,αv̄ν,β.

Since we cannot apply the Bilinear Theorem to non-transversal caps, we
decompose them again into caps of radius ρ1 “

1
2
ρ0, and we still denote

the smaller caps as α and β. If the angle between the normal vectors to
two caps α and β, respectively, is „ ρ1, then we call them transversal and
denote it again by α „ β; otherwise the caps are not transversal, α  β.
For transversal caps we will use a rescaled version of the Bilinear Theorem 7
for surfaces of elliptic type, choosing ρ0 sufficiently small. We continue the
process of subdivision of non-transversal caps until the radius of the caps is
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Figure 2: Two neighboring, transversal caps.

ρ „ ν
1
2 , and write

xpBwfqu, vy “
ÿ

ν
1
2ÀλÀ1

µďνăµ
1
2

”

ÿ

ν1{2ăρÀ1
α„β

xpBwPλ,νfqu
ρ
µ,α, v

ρ
ν,βy`

`
ÿ

αβ

xpBwPλ,νfqu
ρ˚

µ,α, v
ρ˚

ν,βy

ı

, (34)

where the sum over non-transversal terms is at scale ρ˚ „ ν
1
2 . The superscript

in uρµ,α is to keep track of the radius of the caps α.
The support of the inverse Fourier transform of uρµ,αv

ρ
ν,β has some special

properties, and they determine when the pairing xpBwPλ,νfquρµ,α, v
ρ
ν,βy either

vanishes or not. Recall that the support of the convolution quρµ,α ˚ pv
ρ
ν,β lies

in the Minkowski sum of the sets ´α Ą supp quρµ,α and β Ą supp pvρν,β; see
Figure 2. The reader will find easier to evaluate the Minkowski sum of
´α ` e2 and β ´ e2.

When the caps α and β have radius ρ0 and are transversal, then we have
that

´α ` β Ă tpξ1, ξ̃q |
ρ0

2
ď |ξ̃| ď 2´

ρ2
0

2
, |ξ1| ď 2νu;

Hence, all the terms xpBwPλ,νfquρ0µ,α, v
ρ0
ν,βy vanish for λ ď cρ0.

When the caps have radius ρ ă ρ0, we have to distinguish between neigh-
boring and antipodal caps. Two caps are neighboring if there exists a ball

17



Figure 3: The Minkowski sum of two antipodal, transversal caps at scale ρ.

of radius 2ρ0 that contains both of them, and two caps are antipodal if they
lie in different and opposite balls of radius 2ρ0. We refer to neighboring and
antipodal, transversal caps as α „n β and α „a β respectively.

If two caps of radius ν
1
2 ď ρ ă ρ0 are neighboring and transversal, then

for the Minkwoski sum we get

´α ` β Ă tpξ1, ξ̃q | |ξ̃| „ ρ, |ξ1| ď 2νu.

Hence, only the terms xpBwPλ,νfquρµ,α, v
ρ
ν,βy for which λ „ ρ survive. When

the caps are non-transversal, the Minkowski sum lies in t|ξ̃| ď cν
1
2 u, but we

already considered the low frequency terms λ À ν
1
2 in the previous section,

so xpBwPλ,νfquρ
˚

µ,α, v
ρ˚

ν,βy always vanishes.
If two caps of radius ν

1
2 ď ρ ă ρ0 are antipodal and transversal, then for

the Minkwoski sum we get

´α ` β Ă Sν,ρ :“ tpξ1, ξ̃q | 2´ |ξ̃| „ ρ2, |ξ1| ď 2νu. (35)

Only the terms xpBwPλ,νfquρµ,α, v
ρ
ν,βy for which λ „ 1 survive, but now we

need more detailed information about ´α ` β; see Figure 3. We can see
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that ´α ` β forms a cap of radius „ ρ lying in the ρ2-neighborhood of the
sphere with radius 2´ρ2 centered at zero, which we called Sν,ρ. Fixing ρ, the
collection of all the the caps t´α ` βu, where α „a β, is an almost disjoint
covering of Sν,ρ. In fact, let x be a point in Sν,ρ, cα be the center of α and cβ
be the center of β; if x and ´cα ` e2 make an angle Á ρ, since α „a β then
the sum ´α`β necessarily lies away from x. Hence, only the caps ´α`β for
which α and β make an angle À ρ with x can cover it. For future reference
let us write it down as a lemma.

Lemma 11. For fixed µ, ν and ν
1
2 ă ρ ă ρ0, let α and β denote caps at

scale ρ, then
ÿ

α„aβ

1´α`β ď Cd1Sν,ρ , (36)

where Sν,ρ is defined in (35), and Cd does not depend either on µ, on ν or
on ρ.

A similar statement holds for non-transversal caps at scale ν
1
2 , but the

caps ´α ` β lie now in a ν-neighborhood of 2Sd´2.
We will follow the argument of the previous section to bound the terms

xpBwPλ,νfqu
ρ
µ,α, v

ρ
ν,βy; however, the Bilinear Theorem is only stated for transver-

sal caps at scale „ 1 „ ρ0. To remedy this situation, we use parabolic
rescaling.

Theorem 12. Let fµ,α and gν,β be two functions with Fourier transform
supported in a µ- and ν-neighborhood of Sn´1. If the caps α and β are
transversal at scale ρ ď ρ0, then for 1 ď p1 ď n`1

n
it holds that

‖fµ,αgν,β‖p1 ď Cερ
´ 1
pµ

n
2p
´εν

1
p
´ε‖fµ,α‖2‖gν,β‖2 for ρ ą νµ´

1
2 ,

‖fµ,αgν,β‖p1 ď Cµ
n`1
2 ‖fµ,α‖2‖gν,β‖2 for ν

1
2 ď ρ ď νµ´

1
2 .

(37)

Proof. The case ρ0 „ 1 Á νµ´
1
2 is Theorem 7 for the sphere, so we assume

that ρ ă ρ0. By conjugation and modulation, we assume further that both
caps lie in the hypersurface given by the graph of

ϕpξ1q “ 1´
a

1´ |ξ1|2 “
1

2
|ξ1|2 `Op|ξ1|4q,

where ξ “ pξ1, ξnq P Rn; we assume also that the center of the caps are
symmetrically placed in the axis ξ1. Since the caps are at distance „ ρ
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of each other, after applying the scaling ξ ÞÑ pρ´1ξ̄, ρ´2ξdq, the support of
the new functions pF pξq :“ pfµ,αpρξ

1, ρ2ξnq and pGν,β :“ pgν,βpρξ
1, ρ2ξnq lie at

distance „ 1 of each other, and the hypersurface transforms accordingly to
the graph of

ϕρpξ
1
q :“ ρ´2ϕpρξ1q “ ρ´2

´

b

ρ´4 ´ |ρ´1ξ̄|2 “
1

2
|ξ1|2 `Opρ2

0|ξ
1
|
4
q.

If ρ ă ρ0 is sufficiently small, then the semi-norms ‖BNϕρ‖8 are uniformly
bounded, and the bilinear theorem holds uniformly. The rescaled functions
F and G are

F pxq “ ρ´n´1fµ,αpρ
´1x1, ρ´2xnq

Gpxq “ ρ´n´1gν,βpρ
´1x1, ρ´2xnq.

Since the Fourier transforms of F and G are supported now in sets of width
ρ´2µ and ρ´2ν respectively, then we should apply the Bilinear Theorem 7
whenever ρ´2ν ă pρ´2µq

1
2 , and Tomas-Stein otherwise.

If ρ ą νµ´
1
2 , then we apply the Bilinear Theorem to F and G to find

‖fµ,αgν,β‖p1 “ ρ
2pn`1q´n`1

p1 ‖FG‖p1

ď Cερ
2pn`1q´n`1

p1
´n`2

p µ
n
2p
´εν

1
p
´ε‖F‖2‖G‖2

“ Cερ
´ 1
pµ

n
2p
´εν

1
p
´ε‖fµ,α‖2‖gν,β‖2;

if we use Tomas-Stein instead, then we get the result for ρ ď νµ´
1
2

If we define the quantity

Kρ
µ,νpp

1
q :“ sup

‖fµ,α‖2“1
‖gν,β‖2“1

‖fµ,αgν,β‖p1 , (38)

where the supremum runs over functions fµ,α and gν,β with Fourier transform
supported in caps at scale ρ, then we can restate Theorem 12 as

Kρ
µ,νpp

1
q ď

#

Cερ
´ 1
pµ

n
2p
´εν

1
p
´ε for ρ ą νµ´

1
2

Cµ
n`1
2p for ν

1
2 ď ρ ď νµ´

1
2
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By Lemma 10 and Theorem 12, for n “ d´ 1, we get
ÿ

α„β

‖uρµ,αv
ρ
ν,β‖p1 À µ

1
pKρ

µ,ν

ÿ

α„β

‖uµ,α‖2‖vν,β‖2

À µ
1
pKρ

µ,ν‖uµ‖2‖vν‖2

À µ
1
p
´ 1

2ν´
1
2Kρ

µ,ν‖u‖
X

1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

.

Now let us consider only transversal, neighboring caps at scale ρ. By the
decomposition (34) we get

|xpBwfqu, vy| ď
ÿ

ν
1
2Àλ

µďνăµ
1
2

ÿ

ν1{2ďρ„λ
α„nβ

|xpBwPλ,νfquρµ,α, v
ρ
ν,βy|` ¨ ¨ ¨

À
ÿ

ν
1
2Àλ

µďνăµ
1
2

λµ
1
p
´ 1

2ν´
1
2‖Pλ,νf‖p

ÿ

ν1{2ďρ„λ

Kρ
µ,ν‖u‖

X
1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

Àε

´

ÿ

ν
1
2Àλďνµ´

1
2

µďνăµ
1
2

λµ
d`2
2p
´ 1

2ν´
1
2‖Pλ,νf‖p`

ÿ

νµ´
1
2ďλÀ1

µďνăµ
1
2

λ1´ 1
pµ

d`1
2p
´ 1

2ν
1
p
´ 1

2
´ε‖Pλ,νf‖p

¯

‖u‖
X

1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

.

(39)

The operator Pλ,ν is the projection to frequencies |ξ| „ λ and |ξ1| À ν.
When the caps α and β are antipodal, we have to refine the projection

Pλ,ν , so we project also to the cap ´α ` β and denote this projection as
Pλ,ν,α,β. We argue as above to get

|xpBwfqu, vy| ď
ÿ

λ„1

µďνăµ
1
2

´

ÿ

ν1{2ăρ
α„aβ

|xpBwPλ,νfquρµ,α, v
ρ
ν,βy|` |xpBwPλ,νfqu

ρ˚

µ,α, v
ρ˚

ν,βy|
¯

À
ÿ

λ„1

µďνăµ
1
2

λµ
1
p
´ 1

2ν´
1
2

ÿ

ν1{2ďρ

Kρ
µ,ν sup

α„aβ
‖Pλ,ν,α,βf‖p‖u‖

X
1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

` ¨ ¨ ¨ .

(40)
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We have already bounded all the contributions, and we can say that for
some functional A1pfq we got an upper bound

|xpBwfqu, vy| ď p‖f‖d ` A
1
pfqq‖u‖

X
1
2
ζp1q,1{τ

‖v‖
X

1
2
ζp1q,1{τ

If we return to the original variables, and replace u and v by uτU and vτU ,
and w by Uej, then by (21), (22) and (23) we get

xpBjfqu, vy “ τ 2d`1
xpBwfτUquτU , vτUy

À τ 2d`1
p‖fτU‖d ` A

1
pfτUqq‖uτU‖X1{2

ζp1q,1{τ

‖vτU‖X1{2
ζp1q,1{τ

“ p‖f‖d ` τ
d´1A1pfτUqq‖u‖X1{2

ζpτ,Uq

‖v‖
X

1{2
ζpτ,Uq

.

If mλ,ν,α,β is the multiplier of Pλ,ν,α,β, then

pPλ,ν,α,βfτUqpxq “ pmλ,ν,α,βp¨q
pfpτU ¨qqqpxq

“ τ´dpPU
τλ,τν,α,βfqpτ

´1Uxq,

where the multiplier of PU is mpU´1ξq. Hence,

‖Pλ,ν,α,βfτU‖p “ τ
´ d
p1 ‖PU

τλ,τν,α,βf‖p
We collect all the estimates (19), (20), (32), (33), (39) and (40) to conclude
this section with the following theorem.

Theorem 13. For d ď p ď 8, the norm of the operator MBjf : u P X
1
2

ζpU,τq ÞÑ

pBjfqu P X
´ 1

2

ζpU,τq has the upper bound

‖MBjf‖X1{2
ζpτ,Uq

ÞÑX
´1{2
ζpτ,Uq

Àε ‖f‖d ` τ
d
p
´1Apτ, U, fq, (41)

where

Apτ, U, fq :“
ÿ

ν
1
2ÀλÀ1

τ´1ďµďν

Qpλ, µ, νq‖PU
τλ,τνf‖p`

`
ÿ

λ„1

µďνăµ
1
2

λµ
1
p
´ 1

2ν´
1
2

ÿ

ν1{2ďρ

Kρ
µ,ν sup

α„aβ
‖PU

τλ,τν,α,βf‖p. (42)

The constant Kρ
µ,ν is defined in (38), and

Qpλ, µ, νq :“

#

λ1´ 1
pµ

d`1
2p
´ 1

2ν
1
p
´ 1

2
´ε for λ ą νµ´

1
2 and ν ď µ

1
2

λµ
d`2
2p
´ 1

2ν´
1
2 otherwise.
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3.2 End of the Proof

In this section we average the norm ‖MBjf‖ 9X
1{2
ζpτ,Uq

ÞÑ 9X
´1{2
ζpτ,Uq

over τ and U . We

follow the method of Haberman [11] and of Ham, Kwon and Lee [13].
By Theorem 13 we have

´

ż

M

ż

Od

‖MBif‖X1{2
ζpτ,Uq

ÞÑX
´1{2
ζpτ,Uq

dUdτ Àε ‖f‖d`

`M
d
p
´1

ÿ

ν
1
2ÀλÀ1

M´1ďµďν

Qpλ, µ, νq´

ż

M

ż

Od

‖PU
τλ,τνf‖p dUdτ`

`M
d
p
´1

ÿ

λ„1

µďνăµ
1
2

λµ
1
p
´ 1

2ν´
1
2

ÿ

ν1{2ďρ

Kρ
µ,ν´

ż

M

ż

Od

sup
α,β
‖PU

τλ,τν,α,βf‖p dUdτ. (43)

The first average at the right has been already bounded by Haberman.

Lemma 14. (Haberman, Lemma 5.1 in [11]) Let PU
τλ,τν be the projection to

frequencies |ξ| „ τλ and to frequencies |xUe1, ξy| ď 2τν. If f P LppRdq, then
´

ż

Od

‖PU
τλ,τνf‖

p
p dU

¯
1
p
ď C

´ν

λ

¯
1
p‖f‖p for 2 ď p ď 8. (44)

The second average at the right of (43) has been already bounded by
Ham, Kwon and Lee.

Lemma 15. (Ham, Kwon and Lee, Lemma 4.3 in [13]) For fixed τ´
1
2 ď ν

1
2 ă

ρ ă ρ0 and τ´1 ď λ ď 1, let α and β denote all the transversal, antipodal
caps at scale ρ, or all the non-transversal, antipodal caps at scale „ ν

1
2 , as

described in Section 3.1. If PU
τλ,τν,α,β is the projection to frequencies |ξ| „ τλ,

|xUe1, ξy| ď 2τν and tξ | ξ P τUp´α ` βqu, then
´

´

ż

M

ż

Od

sup
α„aβ
‖PU

τλ,τν,α,βf‖
p
p dUdτ

¯
1
p
ď C

´ν

λ

¯
1
p
ρ

2
p‖f‖p for 2 ď p ď 8.

(45)

Sketch of the proof. The proof is by interpolation. Since ´α`β forms a cap
of dimensions ρˆ ¨ ¨ ¨ ˆ ρˆ ρ2, then for the point p “ 8 we get

sup
α,β,U,τ

‖PU
τλ,τν,α,βf‖8 À ‖f‖8.
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Let us denote by mU
τλ,τν,α,β the multiplier of PU

τλ,τν,α,β. For p “ 2 we get

´

ż

M

ż

Od

ÿ

α,β

‖mU
τλ,τν,α,β f̂‖

2
2 dUdτ “

ż

|f̂pξq|2´

ż

M

ż

Sd´1

ÿ

α,β

|mτλ,τν,α,β|
2
p|ξ|ωq dωdτdξ.

By Lemma 11 we have that
ř

α,β |mτλ,τν,α,β|
2 À 1τSν,ρ , where Sν,ρ is defined

in (35). The set τSν,ρ is a pd ´ 2q-sphere of radius τp2 ´ ρ2q, width 2τν in
the direction e1, and width τρ2 in tξ1 “ 0u. For fixed ξ we get

´

ż

M

ż

Sd´1

ÿ

α„aβ

|mτλ,τν,α,β|
2
p|ξ|ωq dωdτ À 1t|ξ|„Mu

ν

λ
ρ2
|ξ|M´1,

which leads to

´

ż

M

ż

Od

ÿ

α,β

‖mU
τλ,τν,α,β f̂‖

2
2 dUdτ À

ν

λ
ρ2

ż

t|ξ|„Mu

|f̂ |2dξ

ď
ν

λ
ρ2‖f‖2

2,

and then (45) follows.

We use Lemma 14, Lemma 15 and Hölder in (43) to get

´

ż

M

ż

Od

‖MBjf‖X1{2
ζpτ,Uq

ÞÑX
´1{2
ζpτ,Uq

dUdτ Àε ‖f‖d`

`M
d
p
´1

ÿ

ν
1
2ÀλÀ1

M´1ďµďν

Qpλ, µ, νqν
1
pλ´

1
p‖PMλf‖p`

`M
d
p
´1

ÿ

λ„1

µďνăµ
1
2

λ1´ 1
pµ

1
p
´ 1

2ν
1
p
´ 1

2

ÿ

ν1{2ďρ

Kρ
µ,νρ

2
p‖PMλf‖p

„ε ‖f‖d ` A1 ` A2.

To bound A1 we use the definition of Qpλ, µ, νq in Theorem 13:

Qpλ, µ, νq :“

#

λ1´ 1
pµ

d`1
2p
´ 1

2ν
1
p
´ 1

2
´ε for λ ą νµ´

1
2 and ν ď µ

1
2

λµ
d`2
2p
´ 1

2ν´
1
2 otherwise.
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We sum first in ν, then in µ and finally in λ to get

A1 “

´

ÿ

ν
1
2ďλď1

µ
1
2ďν

`
ÿ

ν
1
2ďλďνµ´

1
2

µďνďµ
1
2

`
ÿ

νµ´
1
2ďλď1

µďνďµ
1
2

¯

Qpλ, µ, νqν
1
pλ´

1
pM

d
p
´1‖PMλf‖p

“

´

ÿ

µ
1
4ďλ

λ1´ 1
pµ

d`2
2p
´ 1

2

ÿ

µ
1
2ďνďλ2

ν
1
p
´ 1

2`

`
ÿ

µ
1
2ďλ

λ1´ 1
pµ

d`2
2p
´ 1

2

ÿ

λµ
1
2ďνďminpλ2,µ

1
2 q

ν
1
p
´ 1

2`

`
ÿ

µ
1
2ďλ

λ1´ 2
pµ

d`1
2p
´ 1

2

ÿ

µďνďλµ
1
2

ν
2
p
´ 1

2
´
¯

M
d
p
´1‖PMλf‖p

À

´

ÿ

M´ 1
4ďλ

λ1´ 1
p
“

ÿ

µďλ4

µ
d`3
2p
´ 3

4
‰

`
ÿ

M´ 1
2ďλ

λ
1
2

“

ÿ

µďλ2

µ
d`3
2p
´ 3

4
‰

`

`M1´ d`5
2p
`
ÿ

λ

λ1´ 2
p

¯

M
d
p
´1‖PMλf‖p

During the summation we used the condition p ě d ě 5. At the end we get

A1 ď CM
d´5
2p
`

ÿ

M´ 1
2ÀλÀ1

λ
1
2‖PMλf‖p ď Cε‖f‖

W
d´5
2p `,p

.

We bound now A2, recalling that:

Kρ
µ,νpp

1
q ď

#

Cερ
´ 1
pµ

d´1
2p ν

1
p
´ε for ρ ą νµ´

1
2

Cµ
d
2p for ν

1
2 ď ρ ď νµ´

1
2 ,

We sum first in ρ, then in ν, in µ and finally in λ to get

A2 Àε M
d
p
´1

ÿ

λ„1

µďνďµ
1
2

λ1´ 1
pµ

d`1
2p
´ 1

2ν
1
p
´ 1

2

´

µ
1
2p

ÿ

ν
1
2ďρďνµ´

1
2

ρ
2
p ` ν

1
p
´

ÿ

νµ´
1
2ďρď1

ρ
1
p

¯

‖PMλf‖p

Àε

ÿ

λ„1

λ1´ 1
pµ

d`1
2p
´ 1

2

ÿ

µďνďµ
1
2

ν
2
p
´ 1

2
´‖PMλf‖p

Àε M
d´5
2p
`
ÿ

λ„1

‖PMλf‖p

Àε ‖f‖
W

d´5
2p `,p

.

The statement of Theorem 8 follows.
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4 The Bilinear Theorem
In this section we prove the bilinear theorem for two open subsets of the
paraboloid. The paraboloid is technically simpler, so the exposition runs
more smoothly. After concluding the proof, we explain how we should modify
the proof to get Theorem 7. The proof follows closely the ideas presented by
Tao in [25], and we include here the argument for the sake of completeness.

Theorem 7’. Suppose that S1 and S2 are two open subsets of the paraboloid
in Rn with diameter À 1 and at distance „ 1 of each other. If fµ and gν are
functions with Fourier transforms supported in a µ-neighborhood of S1 and a
ν-neighborhood of S2 respectively, for µ ď ν ă µ

1
2 ă 1, then for every ε ą 0

it holds that

‖fµgν‖p1 ď Cεµ
n
2p
´εν

1
p
´ε‖fµ‖2‖gν‖2, for 1 ď p1 ď

n

n´ 1
. (46)

The inequalities are best possible, up to ε-losses, in µ and ν.

We can restate the theorem in terms of the quantity

Kµ,νpp
1
q :“ sup

‖fµ‖2“‖gν‖2“1

‖fµgν‖p1 .

We get the upper bound of Kµ,νpp
1q by an argument of induction in scales.

With some examples, we show that the upper bound Kµ,νpp
1q is the best

possible, up to ε-losses.
When µ

1
2 ď ν, the separation between supports does not yield any im-

provement over Theorem 9, at least in the range 1 ď p1 ď n`1
n

.

Example 16 (Case µ
1
2 ď ν). Let NµpS1q and NνpS2q be neighborhoods of

two open subsets of the paraboloid with diameter „ 1 and at distance „ 1 of
each other. In NµpS1q let C1 be a cap of radius µ

1
2 and width µ. In NνpS2q

let C2 :“ C1 ` a Ă NνpS2q for some vector a; this is possible owing to the
hypothesis µ

1
2 ď ν. After replacing for puµ “ 1C1 and pvν “ 1C2 in the bilinear

inequality, we get Kµ,νpp
1q ě cµ

n`1
2p .

Theorem 7 holds in R2 without ε-losses. The proof is by averaging over
translations of the parabola; see for example Lemma 2.4 in [17].
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Figure 4: The construction of the cap C1.

Example 17 (Case R2 and µ ď ν ď µ
1
2 ). Let NµpS1q and NνpS2q be sepa-

rated in the parabola as in Theorem 7’. In NµpS1q let C1 be a cap of diameter
ν and width µ. In NνpS2q let C2 :“ C1 ` a Ă NνpS2q for some vector a. Af-
ter replacing for puµ “ 1C1 and pvν “ 1C2 in the bilinear inequality, we get
Kµ,νpp

1q ě cµ
1
pν

1
p .

In higher dimensions we consider as example a modification of the squashed
caps in Section 2.7 of [26].

Example 18 (Case n ě 3 and µ ď ν ď µ
1
2 ). Let NµpS1q and NνpS2q be

separated in the paraboloid as in Theorem 7’. Let Lµ Ă Rn´1 be a µ
1
2 -

neighborhood of the plane tx1 “ ¨ ¨ ¨ “ xn´2 “ 0u. In Lµ choose a box rC1 of
dimensions νˆµ

1
2 ˆ ¨ ¨ ¨ˆµ

1
2 , so that its lift to the paraboloid lies in S1, and

thicken it inNµpS1q creating so a cap C1 of dimensions νˆµ
1
2ˆ¨ ¨ ¨ˆµ

1
2ˆµ; see

Figure 4. Now, let C2 :“ C1` a Ă NνpS2q for some vector a. After replacing
for puµ “ 1C1 and pvν “ 1C2 in the bilinear inequality, we get Kµ,νpp

1q ě

cµ
n
2pν

1
p .

The rest of this section is devoted to the proof of the inequality (46) in
Theorem 7’. We do first some reductions.
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By Galilean and rotational symmetry, we can assume that

S1 “ tpξ
1,

1

2
|ξ1|2q | |ξ1 ´ c1e1| ď c2u

S2 “ tpξ
1,

1

2
|ξ1|2q | |ξ1 ` c1e1| ď c2u;

the constant Cε in (46) depends on c1 and c2.
It suffices to prove the local inequality

‖fµgν‖Lp1 pBµ´1 q
ď Cεµ

n
2p
´εν

1
p
´ε‖fµ‖2‖gν‖2. (47)

In fact, cover Rn with balls Bµ´1 and choose a bump function ζB´1
µ
„ 1 in

Bµ´1 so that supp pζB´1
µ
Ă Bµp0q. Then,

‖fµgν‖p1 ď
ÿ

Bµ´1

‖fµgν‖Lp1 pBµ´1 q

À
ÿ

Bµ´1

‖p pfµ ˚ pζB´1
µ
q
_
ppgν ˚ pζB´1

µ
q
_‖Lp1 pBµ´1 q

The width of the supports of pfµ ˚ pζB´1
µ

and pgν ˚ pζB´1
µ

are essentially µ and ν
respectively. Hence, we can apply the local bilinear inequality (47) to get

‖fµgν‖p1 ď Cεµ
n
2p
´εν

1
p
´ε

ÿ

Bµ´1

‖fµζBµ´1‖2‖gνζBµ´1‖2

ď Cεµ
n
2p
´εν

1
p
´ε
´

ÿ

Bµ´1

‖fµζBµ´1‖
2
2

¯
1
2
´

ÿ

Bµ´1

‖gνζBµ´1‖
2
2

¯
1
2

ď Cεµ
n
2p
´εν

1
p
´ε‖fµ‖2‖gν‖2,

which is what we wanted to prove.
At scale µ´1 the function fµ looks like pfdSq_ for some function f in the

paraboloid, so it suffices to prove the next theorem.

Theorem 19. Suppose that S1 and S2 are two open subsets of the paraboloid
in Rn with diameter „ 1 and at distance „ 1 of each other. If fdS is a
measure supported in S1 and gν a function with Fourier transform supported
in a ν-neighborhood of S2, then for 1 ă R

1
2 ď ν´1 ď R and for every ε ą 0

it holds

‖pfdSq_gν‖Lp1 pBRq ď CεR
1
2
p1´n

p
q`εν

1
p
´ε‖f‖L2pSq‖gν‖2, (48)

where 1 ď p1 ď n
n´1

.
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In fact, after a change of variables ξ ÞÑ pξ1, 1
2
|ξ1|2 ` tq we can write fµ as

fµpxq “

µ
ż

´µ

´

ż

pfµpξ
1,

1

2
|ξ|2 ` tqepxx1, ξ1y ` xn

1

2
|ξ1|2q dξ

¯

epxntq dt

“

ż µ

´µ

p pfµ,tdSq
_epxntq dt, (49)

where pfµ,t is a parabolic slice of pfµ. To bound the local bilinear inequality
(47) we use Minkowski to get

‖fµgν‖Lp1 pBµ´1 q
ď

ż µ

´µ

‖p pfµ,tdSq_gν‖Lp1 pBµ´1 q
dt.

Then, writing µ´1 “ R, we can use Theorem 19 and Cauchy-Schwarz in-
equality to get

‖fµgν‖p1 ď Cεµ
1
2
pn
p
´1q´εν

1
p
´ε

ż µ

´µ

‖fµ,t‖2 dt ‖gν‖2

ď Cεµ
n
2p
´εν

1
p
´ε‖fµ‖2‖gν‖2.

Therefore, we must prove now Theorem 19.
The point p1 “ 1 of Theorem 19 can be proven readily. By Cauchy-

Schwarz and by the trace inequality ‖pfdSq_‖2 ď CR
1
2‖f‖L2pSq we get

‖pfdSq_gν‖L1pBRq
ď CR

1
2‖f‖2‖gν‖2.

Hence, it suffices to prove the inequality (48) at the point p1 “ n
n´1

.
We begin the proof in the next section with the wave packet decomposi-

tion. This decomposition is nowadays a classical change of basis, so we only
outline it.

4.1 Wave Packet Decomposition

Let f be a function in Rn´1, and decompose the space into caps α of radius
R´

1
2 and center cα P Rn´1. Choose a smooth partition of unity tζαu adapted

to the caps α so that
ř

α ζ
2
α “ 1. Use Fourier series adapted to each α to

expand fζα into frequencies ω, and develop f as

fpξq “ |α|´
1
2

ÿ

α,ω

apα, ωqζαpξqepxω, ξ ´ cαyq,
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where ω “ R
1
2Zn´1. The coefficients a satisfy the next properties:

apα, ωq “
1

|α|
1
2

ż

fζαep´xω, ξ ´ cαyq dξ, (50)

ÿ

α,ω

|apα, ωq|2 “ ‖f‖2
2. (51)

By the linearity of the extension operator, we can write pfdSq_ as

pfdSq_pxq “
ÿ

α,ω

apα, ωqφT pα,ωq,

where φT is a function essentially supported in a tube T of dimensions
R

1
2 ˆ ¨ ¨ ¨ ˆ R

1
2 ˆ R; the angle and position of T are determined by α and ω

respectively. Furthermore,

|φT pxq| ď CMR
´n´1

2
1

xR´
1
2 px1 ` ω ` xncαqy

M
, for |xn| ď R;

so φT is concentrated in a tube T of direction p´cα, 1q whose main axis
passes through p´ω, 0q. We deduce also that for δ ą 0, for x R RδT , and for
|xn| ď R it holds

|φT pxq| ď CδR
´100n, (52)

where possibly Cδ Ñ 8 as δ Ñ 0.
The function gν can be written similarly. We decompose NνpS2q into

rectangles β of dimensions ν ˆ R´
1
2 ˆ ¨ ¨ ¨ ˆ R´

1
2 and center cβ P Rn, where

cβ is now a point in S2. Arguing as before we have

pgνpξq “ |β|´
1
2

ÿ

β,ω

bpα, ωqζβpξqepxω, ξ ´ cβyq,

where ω belongs to some rotation of the grid ν´1ZˆR 1
2Zn´1. Again, we get

bpβ, ωq “
1

|β|
1
2

ż

pgνζβep´xω, ξ ´ cβyq dξ (53)

ÿ

β,ω

|bpβ, ωq|2 “ ‖gν‖2
2. (54)

By the linearity of the Fourier transform, we can write gν as

gν “
ÿ

β,ω

bpβ, ωqφT pβ,ωq,
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where T are now tubes of dimensions ν´1 ˆR
1
2 ˆ ¨ ¨ ¨ ˆR

1
2 . Again, we get

|φT pxq| ď CMνR
´n´1

2
1

xR´
1
2 |x1 ` ω1 ` xnc1β|` ν|xn ` ωn|y

M
,

|φT pxq| ď CδνR
´100n, for x R RδT and for δ ą 0. (55)

We replace the wave packet decomposition into the bilinear inequality
(48), so we must prove that for ‖a‖2 “ 1 and ‖b‖2 “ 1 we have

‖
ÿ

T1,T2

aT1bT2φT1φT2‖L n
n´1 pBRq

ď CεR
εν

1
n
´ε.

Since |φT1| and |φT2 | decay strongly outside the tubes, then we can ignore all
the tubes that do not intersect the ball 10BR, so the number of tubes in each
group is À RCn; recall that ν´1 ě R

1
2 .

Now, for all the terms that satisfy |aT1| or |bT2 | À R´Cn the contribution
to the bilinear inequality is negligible, so we can ignore all these terms and do
pigeonholing in |aT1| and |bT2|; here, we introduce logarithmic losses. Hence,
for two collections of tubes T1 and T2 that intersect the ball 10BR we must
prove that

‖
ÿ

T1PT1,T2PT2

φT1φT2‖L n
n´1 pBRq

ď CεR
εν

1
n
´ε|T1|

1
2 |T2|

1
2 . (56)

The proof of this inequality begins with an induction on scales in the next
section.

4.2 Induction on Scales

We want to control the quantity

KνpRq :“ sup
‖f‖2“‖gν‖2“1

‖pfdSq_gν‖Lp1 pBRq.

Rough estimates show that Kµ,νpRq is finite, thus well defined, and we want
to prove that Kµ,νpRq ď CεR

εν
1
n
´ε.

The induction on scales seeks to control Kµ,νpRq in terms of Kµ,νpR
1´δq

for some δ ą 0, which we keep fixed in what follows, so we lower scales and
stop at scale „ ν´1, when Tao’s bilinear theorem provides the best possible
upper bound, up to ε-losses. From now on, we write R1 for R1´δ.
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We begin the induction by breaking up the ball BR into balls BR1 . Now,
we define a relationship between balls and tubes, so that a tube is related to
a ball if the contribution of φT to the bilinear term is large in that ball. We
need first decompose BR into balls q of radius R

1
2 , and now we introduce the

following group of definitions for a dyadic number µ2:

T2pqq :“ tT2 P T2 | R
δT2 X q ‰ Hu (57)

qpµ2q :“ tq Ă BR | µ2 ď |T2pqq| ă 2µ2u (58)
λpT1, µ2, BR1q :“ |tq P qpµ2q | q Ă BR1 and RδT1 X q ‰ Hu|. (59)

Definition 20 (Relation between tubes and balls). For every number µ2 and
every tube T1 P T1 choose a ball B˚R1pµ2, T1q, if it exists, that satisfies

λpT1, µ2, B
˚
R1q “ max

BR1
λpT1, µ2, BR1q ą 0.

We say that a tube T1 P T1 is related to a ball BR1 Ă BR, or T1 „ BR1 , if
BR1 Ă 10B˚R1pµ2, T1q for some µ2. The negation of T1 „ BR1 is T1  BR1 .
Symmetrically, we can define a relation between tubes T2 P T2 and balls BR1 .

Every tube in Tj intersects a number À Rδ of balls BR1 Ă BR, but
each tube is related only to À logR balls. This follows from the condition
1 ď µ2 À R

n´1
2
`Cδ.

Now, we bound the bilinear term as

‖
ÿ

T1PT1
T2PT2

φT1φT2‖Lp1 pBRq ď
ÿ

BR1ĂBR

‖
ÿ

T1,T2

φT1φT2‖Lp1 pBR1 q

ď
ÿ

BR1ĂBR

´

‖
ÿ

T1„BR1 ,T2„BR1

φT1φT2‖Lp1 pBR1 q`

` ‖
ÿ

T1BR1 ,T2

φT1φT2‖Lp1 pBR1 q ` ‖
ÿ

T1„BR1 ,T2BR1

φT1φT2‖Lp1 pBR1 q
¯

.

“ I` II` III (60)

For the first term I at the right we use the inductive hypothesis, Cauchy-
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Schwarz, and the bound |tBR1 | Tj „ BR1u| À logR to get
ÿ

BR1ĂBR

‖
ÿ

T1„BR1
T2„BR1

φT1φT2‖Lp1 pBR1 q ď KpR1q
ÿ

B
R1
ĂBR

|tT1 „ BR1u|
1
2 |tT2 „ BR1u|

1
2

ď KpR1q
´

ÿ

BR1 ,T1

1tT1„BR1u

¯
1
2
´

ÿ

BR1 ,T2

1tT2„BR1u

¯
1
2

ď CplogRqKpR1q|T1|
1
2 |T2|

1
2 . (61)

We have bounded so the main contribution with an acceptable logarithmic
loss.

We turn now to II in (60); the term III can be similarly controlled, so we
will not describe it. We bound the L

n
n´1 -norm by interpolation between the

points p1 “ 1 and p1 “ 2. For p1 “ 1 we use Cauchy-Schwarz and the trace
inequality to get

‖
ÿ

T1BR1 ,T2

φT1φT2‖L1pBR1 q
À R

1
2 |T1|

1
2 |T2|

1
2 ; (62)

recall that
ř

T1BR1
φT1 “ pfdSq

_ for some function f in S, and
ř

T2
φT2 “ gν

for some function gν , so we only applied the trace theorem to pfdSq_, and
used (51) and (54). We are left with the point p1 “ 2.

If we are to prove (56) by interpolation, we must get the upper bound

‖
ÿ

T1BR1 ,T2

φT1φT2‖L2pBR1 q
Àδ R

1
2
p1´n

2
q`Cδν

1
2 |T1|

1
2 |T2|

1
2 .

This inequality is in general false, if we do not put constrains over the tubes.
The simple example f “ 1 and gν “ 1 in NνpS2q is enough, and worst
examples can be given. Hence, we have to exploit the special structure of
the tubes T1  BR1 .

We use the decomposition of BR into cubes q of radius R
1
2 and the defi-

nition (58) to write the L2-norm as

‖
ÿ

T1BR1 ,T2

φT1φT2‖
2
L2pBR1 q

“
ÿ

µ2

ÿ

qPqpµ2q

‖
ÿ

T1BR1 ,T2

φT1φT2‖
2
L2pqq.

By pigeonholing, it suffices to control the norm for a fixed µ2. We introduce
now the definitions

λpT1, µ2q :“ |tq P qpµ2q | R
δT1 X q ‰ Hu| (63)

T1rµ2, λ1s :“ tT1 P T1 | λ1 ď λpT1, µ2q ă 2λ1u. (64)
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Since 1 ď λ1 À R
1
2
`Cδ, by pigeonholing again it suffices to prove

ÿ

qPqpµ2q

‖
ÿ

T1BR1 ,T1PT1rµ2,λ1s
T2

φT1φT2‖
2
L2pqq Àδ R

1´n
2
`Cδν|T1||T2|. (65)

The case λpT1, µ2q “ 0 is handled with (52). In the next section, we use the
special nature of the L2-norm to decouple the frequencies.

4.3 Decoupling at Scale R
1
2

We need first a L2 upper bound of the bilinear operator. Recall that the
extension operator is defined as

pfdSq_pxq “

ż

Rn´1

fpξqepxx1, ξ1y ` xnϕpξ
1
qq dξ1,

where ϕpξ1q “ 1
2
|ξ1|2 and ξ “ pξ1, ξnq. For an open subset S1 of the paraboloid,

we denote by πpS1q its projection to Rn´1.
We need also the Radon transform of a function, and we define it as

Rfpξ1, θq :“

ż

Rn´1

fpξ1 ` ηqδ
`

xη, θy
˘

dη;

the Radon transform Rfpξ1, θq is the integral over the hyperplane with normal
θ that passes through ξ1.

Lemma 21. Let S1 and S2 be two open subsets of the paraboloid with radius
„ 1 and at distance „ 1 of each other. Suppose that fdS and gdS are
measures with support in S1 and S2 respectively. Then, it holds that

‖pfdSq_pgdSq_‖2
2 ď C‖f‖1 sup

ξ1PπpS1q

ξ2PπpS2q

R|f |
`

ξ1,
ξ1 ´ ξ2

|ξ1 ´ ξ2|
˘

‖g‖1‖g‖8 (66)

Proof. We compute the square of the extension operator as

|pfdSq_pxq|2 “
ż

R2pn´1q

fpξ11 ` ξ
1
2qf pξ

1
2q

epxx1, ξ11y ` xnpϕpξ
1
1 ` ξ

1
2q ´ ϕpξ

1
2qqq dξ

1
1dξ

1
2

“

ż

´

ż

fpξ11 ` ξ
1
2qf pξ

1
2qδpϕpξ

1
1 ` ξ

1
2q ´ ϕpξ

1
2q ´ tq dξ

1
2

¯

epxx, ξ1yq dξ1

:“ qF pxq,
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where F is the function in parentheses. Thus, we get

‖pfdSq_pgdSq_‖2
2 “

ż

pF ˚Gq_pxq dx “ pF ˚Gq_p0q.

We develop the convolution and change variables, so that

‖pfdSq_pgdSq_‖2
2 “

ż

fpξ12qg pξ
2
2q

ż

f pξ12`ξ
1
1qgpξ

2
2`ξ

1
1qδpϕpξ

1
2q´ϕpξ

1
1`ξ

1
2q`ξ1,nqδpϕpξ

1
1`ξ

2
2q´ϕpξ

2
2q´ξ1,nq dξ1

dξ12dξ
2
2 .

We can use Fubini to put inside the integral with respect to ξ1,n, so that after
the change of variables ξ1,n ÞÑ ξ1,n ` ϕpξ

1
1 ` ξ

2
2q ´ ϕpξ

2
2q we get

I :“

ż

δpϕpξ12q ´ ϕpξ
1
1 ` ξ

1
2q ` ξ1,nqδpϕpξ

1
1 ` ξ

2
2q ´ ϕpξ

2
2q ´ ξ1,nq dξ1,n

“ δpxξ11, ξ
1
2 ´ ξ

2
2yq.

(67)

Then, the L2 norm gets into

‖pfdSq_pgdSq_‖2
2 ď

ż

|f |pξ12q|g|pξ22q
ż

|f |pξ12 ` ξ11q|g|pξ22 ` ξ11qδpxξ11, ξ12 ´ ξ22yq dξ11dξ12dξ22

ď ‖f‖1‖g‖1‖g‖8 sup
ξ12,ξ

2
2

ż

|f |pξ12 ` ξ11qδpxξ11, ξ12 ´ ξ22yq dξ11.

Finally, by the identity δpatq “ a´1δptq, and the condition of separation
between S1 and S2, we get

ż

|f |pξ12 ` ξ11qδpxξ11, ξ12 ´ ξ22yq dξ11 ď CR|f |
`

ξ12,
ξ12 ´ ξ

2
2

|ξ12 ´ ξ22 |
˘

,

which concludes the proof.

We use now Lemma 21 to bound each term at the left side of the inequality
(65). To simplify, let us define T11 :“ tT1  BR1u X T1rµ2, λ1s. By (50) and
(53) we can neglect the contribution from tubes such that RδT X q “ H. We
define so the functions

fqpξq :“ |α|´
1
2

ÿ

T1PT11pqq

ζαpξqepxω, ξ ´ cαyq

pgν,qpξq :“ |β|´
1
2

ÿ

T2PT2pqq

ζβpξqepxω, ξ ´ cβyq.
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We write gν,q as an average over paraboloids as in (49), and by Minkowski
and Cauchy-Schwarz we get

‖
ÿ

T1PT11pqq,T2PT2pqq

φT1φT2‖
2
L2pqq ď ‖pfqdSq

_gν,q‖2
2

ď ‖pfqdSq_
ż

ppgtν,qdSq
_epxntq dt‖2

2

ď ν

ż

‖pfqdSq_ppgtν,qdSq_‖
2
2 dt

We apply Lemma 21 to the integrand, using the inequalities

‖fq‖1 ď R´
n´1
4 |T11pqq|

‖pgtν,q‖1 ď ν´
1
2R´

n´1
4 |T2pqq|, ‖pgtν,q‖8 ď ν´

1
2R

n´1
4
`Cδ,

to get

‖
ÿ

T1PT11pqq
T2PT2pqq

φT1φT2‖
2
L2pqq ď CνR´

n´1
4
`Cδ|T11pqq||T2pqq| sup

ξ1PπpS1q

ξ2PπpS2q

R|fq|
`

ξ1,
ξ1 ´ ξ2

|ξ1 ´ ξ2|
˘

.

(68)
Let T11pqqpξ1, ξ1´ ξ2q denote the collection of tubes in T11pqq such that the

corresponding cap α intersects the hyperplane with normal pξ1´ ξ2q{|ξ1´ ξ2|
that passes through ξ1. Then,

sup
ξ1PπpS1q

ξ2PπpS2q

R|fq|
`

ξ1,
ξ1 ´ ξ2

|ξ1 ´ ξ2|
˘

ď R´
n´1
4
` 1

2 sup
ξ1PπpS1q

ξ2PπpS2q

|T11pqqpξ1, ξ1 ´ ξ2q|

:“ R´
n´1
4
` 1

2νpq, µ2, λ1q;

we choose the last definition with the same notation as Tao in [25]. We
replace in (68) to find

‖
ÿ

T1PT11pqq,T2PT2pqq

φT1φT2‖
2
L2pqq ď CνR1´n

2
`Cδνpq, µ2, λ1q|T11pqq||T2pqq|,

where T11 :“ tT1  BR1u X T1rµ2, λ1s. Summing over all the cubes q P qpµ2q

we get
ÿ

qPqpµ2q

‖
ÿ

T1PT11pqq,T2PT2pqq

φT1φT2‖
2
L2pqq ď CνR1´n

2
`Cδ

ÿ

qPqpµ2q

νpq, µ2, λ1q|T11pqq||T2pqq|.

(69)
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The term at the right does not involve oscillations, so we achieved a decou-
pling of the oscillating tubes at the left. To conclude the proof of (65), we
must get an upper bound of νpq, µ2, λ1q, which we do in the next section.

4.4 A Kakeya-type Estimate

In this section we aim to prove the inequality

νpq0, µ2, λ1q À RCδ |T2|
µ2λ1

, (70)

for some fixed q0 P qpµ2q, µ2 and λ1. For any ξ1 P πpS1q and ξ2 P πpS2q we
consider then the following bilinear expression

B :“

ż

qPqpµ2q
BRz10BR1

ÿ

T1PT11pq0qpξ1,ξ1´ξ2q

12RδT1

ÿ

T2PT2

12RδT2 .

By the definition of qpµ2q we get

B Á µ2

ÿ

T1PT11pq0qpξ1,ξ1´ξ2q

ż

qPqpµ2q
BRz10BR1

12RδT1 .

Since for T1 P tT1  BR1u X T1rµ2, λ1s it holds that |tq P qpµ2q | R
δT1 X q ‰

Hu| „ λ1, we see that

|tq P qpµ2q | q Ă BRz10BR1 and RδT1 X q ‰ Hu| Á R´δλ1.

Then,
B Á R

n
2
´Cδλ1µ2|T11pq0qpξ

1, ξ1 ´ ξ2q| (71)

To get an upper bound of B, we re-order the summations so that

B ď
ÿ

T2PT2

ż

BRz10BR1

12RδT2

ÿ

T1PT11pq0qpξ1,ξ1´ξ2q

12RδT1 .

Since all the tubes intersect q0 Ă BR1 , we see that
ÿ

T1PT11pq0qpξ1,ξ1´ξ2q

12RδT1pxq À RCδ for x P BRz10BR1 .
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The tubes in T11pq0qpξ
1, ξ1 ´ ξ2q have directions p´cα, 1q, where cα lies at dis-

tance ă R´
1
2 from a hyperplane with normal direction ξ1 ´ ξ2 that passes

through ξ1. Then, the main axis of all the tubes in T11pq0qpξ
1, ξ1 ´ ξ2q make

an angle ă R´
1
2 with a hyperplane with normal direction pξ1 ´ ξ2, xξ1, ξ1 ´

ξ2yq that passes through q0. It amounts to saying that the support of
ř

T1PT11pq0qpξ1,ξ1´ξ2q
12RδT1 lies inside the R

1
2
`δ-neighborhood of a hyperplane

that passes through q0. Furthermore, every tube from T2 intersects the hy-
perplane transversally, making an angle ą c uniformly. Then,

B À R
n
2
`Cδ|T2|. (72)

We use (71) and (72) to conclude that

|T11pq0qpξ
1, ξ1 ´ ξ2q| À RCδ |T2|

λ1µ2

,

which is what we wanted to prove.

4.5 End of the Proof

In this section we reap all the bounds we have obtained. We plug (70) into
(69) to get
ÿ

qPqpµ2q

‖
ÿ

T1PT11pqq
T2PT2pqq

φT1φT2‖
2
L2pqq ď νR1´n

2
`Cδ|T2|

ÿ

qPqpµ2q

λ´1
1 |T1rµ2, λ1spqq|

À νR1´n
2
`Cδ|T2|

ÿ

T1PT1rλ1,µ2s

λ´1
1

ÿ

qPqpµ2q

1tT1XRδq‰Hu

À νR1´n
2
`Cδ|T1||T2|,

This concludes the proof of (65).
We interpolate the bilinear norm between the points p1 “ 1 in (62) and

p1 “ 2 in (65) to get

‖
ÿ

T1BR1 ,T2

φT1φT2‖L n
n´1 pBR1 q

ď CδplogRqCRCδν
1
n |T1|

1
2 |T2|

1
2 .

This bound joins the inequalities (60) and (61) to yield

‖
ÿ

T1PT1
T2PT2

φT1φT2‖L n
n´1 pBRq

ď CδplogRqCpKνpR
1
q `RCδν

1
n q|T1|

1
2 |T2|

1
2 ;
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in other words,

KνpRq ď CδplogRqCpKνpR
1´δ
q `RCδν

1
n q.

When we iterate, we get at the N -th step

KνpRq ď CN
δ plogRqNCpKνpR

p1´δqN
q `NRCδν

1
n q.

We stop when Rp1´δqN ď ν´1 ă Rp1´δq
N´1 ; the number of steps is

N ď ´
1

logp1´ δq
` 1 ď 2δ´1.

If r ď ν´1, then we can average over translations of the paraboloid and apply
Tao’s bilinear to get Kνprq ď Cεr

1´n`2
2p
`εν

1
2 . We have thus that

KνpRq ď CδR
Cδ
pν´1`n`2

2n
` 1

2 ` ν
1
n q ď CδR

Cδν
1
n .

This concludes the proof of Theorem 19, which implies Theorem 7’.

4.5.1 Additional Remarks

We indicate here the changes we need to do for surfaces of elliptic type or
the hemisphere. The argument is sufficiently robust to admit perturbations.

For surfaces of ε-elliptic type, the semi-norms ‖BNΦ‖
8

enter in the con-
stants Cδ of (52) and (55). Since the eigenvalues of D2Φ are close to one,
then the tubes have approximately the same length.

The delta function in (67) gets into

δpΦpξ12q ´ Φpξ11 ` ξ
1
2q ` Φpξ11 ` ξ

2
2q ´ Φpξ22qq “ δpxApξ12 ´ ξ

2
2q, ξ

1
1yq

for some matrix A with eigenvalues in r1´ ε, 1` εs. Then |xApξ12´ ξ22q, ξ11y´
xξ12 ´ ξ22 , ξ

1
1y| ď Cε, and instead of an integral over the hyperplane H with

normal direction ξ12 ´ ξ22 that passes through ξ12, we integrate over a pn´ 2q-
surface H̃ that lies in a ε-neighborhood of H and passes through ξ12.

A tube associated with a cap with center cα has velocity p´∇Φpcαq, 1q.
If P̃ Ă Rn is a pn´ 1q-cone with center in a cube q generated by all the lines
with directions p´∇Φpηq, 1q for η P H̃, then we must verify that all the tubes
coming from the separated set S2 are transversal to P̃ . In fact, notice that
for any point ξ12 ` ξ11 P H̃, a vector v tangent to H̃ satisfies the equation

x∇Φpξ11 ` ξ
2
2q ´∇Φpξ11 ` ξ

1
2q, vy “ 0;
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hence, xApξ22 ´ ξ12q, vy “ 0 for some matrix A close to I. Then, the vectors
normal to P̃ have the form pApξ22 ´ ξ

1
2q, x∇Φpξ12` ξ

1
1q, Apξ

2
2 ´ ξ

1
2qyq. If we take

the inner product of these vectors with p´∇Φpη2q, 1q for η2 P πpS2q, then we
get

xApξ22 ´ ξ
1
2q,∇Φpξ12 ` ξ

1
1q ´∇Φpη2qy “ xApξ

2
2 ´ ξ

1
2q, A

1
pξ12 ` ξ

1
1 ´ η2qy;

hence, the inner product is basically equal to xη1 ´ η2, η
1
1 ´ η12y for all the

pairs η1, η
1
1 P πpS1q and η2, η

1
2 P πpS2q, and |xη1 ´ η2, η

1
1 ´ η12y| ě c ą 0, then

P̃ is uniformly transversal to all the tubes coming from S2. The estimates
hold uniformly in ε ! 1.

The case of the hemi-sphere is similar. The term (67) is almost as simple
as for the paraboloid. By symmetry, we can assume that ξ12 “ ´ae1 and
ξ22 “ ae1 for some 0 ă a ď 1?

2
` 1

10
. Then, the pn ´ 2q-surface H̃ is again

a hyperplane H with normal direction e1 that passes through ξ12. The cone
P̃ is a translation of a portion of the quadratic cone tξ | ξ2

1 “ a2|ξ|2u. It is
intuitively clear that the portion of the cone generated by direction from S1

is uniformly transversal to tubes from S2.

Appendix: Non-averaged Upper Bounds
We may wonder whether it is really necessary to average, or we just have not
pushed as much as possible the estimates for ‖MBif‖

X
1
2
ζ ÑX

´ 1
2

ζ

. We show that

averaging is indeed necessary.

Theorem 22. If f P W
d´2
2p

,p
pRnq, for d ď p ă 8, is a function with support

in B1, then
‖MBif‖

X
1
2
ζ ÑX

´ 1
2

ζ

ď C‖f‖ d´2
2p

,p, (73)

where C does not depend on ζ. The inequality is best possible, in the sense
that it is not possible to lower the regularity of f .

Proof. It is not necessary to use bilinear theory to get (73), the computations
of Haberman in Section 4 of [11] are enough. To see that the result is best
possible, we fix ζ “ τpe1 ´ ie2q and consider the τ´

1
2 -neighborhood of a

2-plane of side-length 1 lying in the plane px1, x2q, and denote this set by
F . We define fpxq :“ e2πip2τqx2ϕF pxq, where ϕF is a smooth cut-off function
of F —see Figure 5(a), and we have that ‖f‖s,p „ τ s´

d´2
2p . To estimate the

40



1

1

a) b)

Figure 5: (a) Representation of the function f , and (b) of the Fourier trans-
forms of u and v.

operator norm of B2f we consider the box B of dimensions 1ˆ1ˆτ
1
2ˆ¨ ¨ ¨ˆτ

1
2

centered at zero, and take û “ ϕB and v̂ “ ϕBp¨ ´ 2τe2q, for which ‖u‖
X

1
2
ζ

“

‖v‖
X

1
2
ζ

“ τ
d
4 ; see Figure 5(b). The duality pairing gives |xB2fu, vy| Á τ

d
2 . If

K is the best constant in (73), then we get

τ
d
2 À Kτ s´

d´2
2p τ

d
2 ;

if K is to be uniformly bounded in ζ, then necessarily s ě d´2
2p

.

If we did not need bilinearity to get the sharp upper bound (73), where
does the gain of bilinearity come from? It comes mainly from Lemma 15.
Where does bilinearity fail to improve over (73)? At the second term at the
right of (42).

Notations

• Relations: A Àε B if A ď CεB; A „ B if A À B À A; A ! 1 if A ď c,
where c is chosen sufficiently small.

• Various: epzq :“ e2πiz. xxy “ p1` |x|2q 12 . Brpxq a ball of radius r with
center at x. ´

ş

M
dτ :“ 1

M

ş2M

M
dτ . a` :“ a ` ε for ε ! 1. If E is a set,

then 1E is the characteristic function of the set, and |E| is its measure,
where the measure can be deduced from the context. If T is a tube
with main axis l, then AT is a dilation of T by a factor A ą 0 and
same main axis l.
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• Multipliers: mpDqf “ pm pfq_, where m stands for multiplier ; Pf “
mpDqf , where m is a smooth cut-off for a set of frequencies where we
want to project to.

• The operator ∆ζ :“ ∆ ` ζ ¨∇ has symbol pζpξq :“ ´|ξ|2 ` 2iζ ¨ ξ and
characteristic Σζ :“ tξ | pζpξq “ 0u.

• ζpU, τq :“ τpUe1 ´ iUe2q, where teiu is the canonical basis, τ ě 1 and
U P Od is a rotation.

• ‖u‖2
9Xb
ζ

:“
ş

|pζpξq|2b|pupξq|2 dξ.

• ‖u‖2
Xb
ζ,σ

:“
ş

p|pζpξq|` σq2b|pupξq|2 dξ for σ ą 0; ‖u‖Xb
ζ
“ ‖u‖Xb

ζ,|ζ|
.

• Sobolev-Slobodeckij spaces: For 1 ă p ă 8, W s,ppRdq is the space of
distributions f such that

‖f‖s,p :“
ÿ

|α|ďs

‖Dαf‖p ă 8 for s integer.

‖f‖s,p :“ ‖Pď1f‖p `
´

ÿ

ką0

2skp‖Pkf‖pp
¯

1
p
ă 8 for 0 ă s ‰ integer.

For a domain Ω Ă Rd, we define W s,ppΩq :“ tf |Ω | f P W
s,ppRdqu. The

space
˝

W s,ppΩq is the completion in W s,ppRdq of test functions DpΩq :“
tϕ P C8pΩq | suppϕ Ť Ωu. For further details, see e.g. [28, 19].

• pfdSq_pxq :“
ş

Rn´1 fpξqepxx
1, ξy ` xnϕpξqq dξ, where S is the graph of

ϕ and px1, xnq P Rn.

References
[1] K. Astala and L. Päivärinta. Calderón’s inverse conductivity problem

in the plane. Ann. of Math. (2), 163(1):265–299, 2006.

[2] J. Bourgain. Refinements of Strichartz’ inequality and applications to
2D-NLS with critical nonlinearity. Internat. Math. Res. Notices, (5):253–
283, 1998.

42



[3] J. Bourgain, C. Demeter, and L. Guth. Proof of the main conjecture in
Vinogradov’s mean value theorem for degrees higher than three. Ann.
of Math. (2), 184(2):633–682, 2016.

[4] R. Brown. Global uniqueness in the impedance-imaging problem for less
regular conductivities. SIAM J. Math. Anal., 27(4):1049–1056, 1996.

[5] R. Brown. Recovering the conductivity at the boundary from the Dirich-
let to Neumann map: a pointwise result. J. Inverse Ill-Posed Probl.,
9(6):567–574, 2001.

[6] R. Brown and R. Torres. Uniqueness in the inverse conductivity problem
for conductivities with 3{2 derivatives in Lp, p ą 2n. J. Fourier Anal.
Appl., 9(6):563–574, 2003.

[7] A. Calderón. On an inverse boundary value problem. In Seminar on
Numerical Analysis and its Applications to Continuum Physics (Rio de
Janeiro, 1980), pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.

[8] P. Caro and K. Rogers. Global uniqueness for the Calderón problem
with Lipschitz conductivities. Forum Math. Pi, 4:e2, 28, 2016.

[9] D. Dos Santos Ferreira, C. Kenig, M. Salo, and G. Uhlmann. Limit-
ing Carleman weights and anisotropic inverse problems. Invent. Math.,
178(1):119–171, 2009.

[10] C. Fefferman. A note on spherical summation multipliers. Israel J.
Math., 15:44–52, 1973.

[11] B. Haberman. Uniqueness in Calderón’s problem for conductivities with
unbounded gradient. Comm. Math. Phys., 340(2):639–659, 2015.

[12] B. Haberman and D. Tataru. Uniqueness in Calderón’s problem with
Lipschitz conductivities. Duke Math. J., 162(3):496–516, 2013.

[13] S. Ham, Y. Kwon, and S. Lee. Uniqueness in the Calderón problem and
bilinear restriction estimates. arXiv:1903.09382v2 [math.AP], 2019.

[14] C. Kenig, A. Ruiz, and C. Sogge. Uniform Sobolev inequalities and
unique continuation for second order constant coefficient differential op-
erators. Duke Math. J., 55(2):329–347, 1987.

43



[15] C. Kenig, J. Sjöstrand, and G. Uhlmann. The Calderón problem with
partial data. Ann. of Math. (2), 165(2):567–591, 2007.

[16] R. Kohn and M. Vogelius. Determining conductivity by boundary mea-
surements. Comm. Pure Appl. Math., 37(3):289–298, 1984.

[17] S. Lee. Improved bounds for Bochner-Riesz and maximal Bochner-Riesz
operators. Duke Math. J., 122(1):205–232, 2004.

[18] S. Lee. Bilinear restriction estimates for surfaces with curvatures of
different signs. Trans. Amer. Math. Soc., 358(8):3511–3533, 2006.

[19] J. Marschall. The trace of Sobolev-Slobodeckij spaces on Lipschitz do-
mains. Manuscripta Math., 58(1-2):47–65, 1987.

[20] P. Mattila. Fourier analysis and Hausdorff dimension, volume 150 of
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 2015.

[21] H. Nguyen and D. Spirn. Recovering a potential from Cauchy data
via complex geometrical optics solutions. arXiv:1403.2255v2 [math.AP],
2014.

[22] A. Seagar, D. Barber, and B. Brown. Electrical impedance imaging.
IEE Proceedings, 134(2):201–210, 1987.

[23] E. Stein. Harmonic analysis: real-variable methods, orthogonality,
and oscillatory integrals, volume 43 of Princeton Mathematical Series.
Princeton University Press, Princeton, NJ, 1993. With the assistance of
Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[24] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse
boundary value problem. Ann. of Math. (2), 125(1):153–169, 1987.

[25] T. Tao. A sharp bilinear restrictions estimate for paraboloids. Geom.
Funct. Anal., 13(6):1359–1384, 2003.

[26] T. Tao, A. Vargas, and L. Vega. A bilinear approach to the restriction
and Kakeya conjectures. J. Amer. Math. Soc., 11(4):967–1000, 1998.

[27] P. Tomas. A restriction theorem for the Fourier transform. Bull. Amer.
Math. Soc., 81:477–478, 1975.

44



[28] H. Triebel. Theory of function spaces, volume 78 of Monographs in
Mathematics. Birkhäuser Verlag, Basel, 1983.

[29] A. Vargas. Restriction theorems for a surface with negative curvature.
Math. Z., 249(1):97–111, 2005.

[30] T. Wolff. A sharp bilinear cone restriction estimate. Ann. of Math. (2),
153(3):661–698, 2001.

Address: BCAM - Basque Center for Applied Mathematics,
Mazarredo, 14 E48009 Bilbao, Basque Country – Spain.

e-mail: fponce@bcamath.org

45


