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Abstract

Electrical Impedance Imaging would suffer a serious obstruction
if for two different conductivities the potential and current measured
at the boundary were the same. The Calder6n’s problem is to decide
whether the conductivity is indeed uniquely determined by the data at
the boundary. In RY, for d = 5,6, we show that uniqueness holds when
the conductivity is in Wit P(Q), for d < p < co. This improves
on recent results of Haberman, and of Ham, Kwon and Lee. The main
novelty of the proof is an extension of Tao’s bilinear Theorem.
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1 Introduction

Electrical Impedance Imaging is a technique to reconstruct the inner struc-
ture of a body from measurements of potential and current at the boundary.
At least since the 30, geophysicists have used this technique to identify differ-
ent layers of earth underground [22]|. In pioneering work, Calderon [7] posed
the problem of deciding whether the conductivity is uniquely determined
by measurements at the boundary. Calderén went on to show uniqueness,
roughly, when the conductivity is close to one.

The electrical potential v in a bounded domain @ < R? with Lipschitz
boundary satisfies the differential equation

Ly :=div(yVu) =0,

U|aQ=f,

(1)



where 7 is the conductivity and f the potential at the boundary. We assume
that v € L®(Q) and that v > ¢ > 0. If f € HY?(0Q), then a solution
u e H'(Q) exists. The electrical current at the boundary is yd,u |sq, where
v is the outward-pointing normal, and the operator A, : u|sq — Y0,u |aq is
called the Dirichlet-to-Neumann map; we can define the map A, rigorously
as

(A frg) = f VY-V, 2)

where u solves (1) and v € HY(Q) is any extension of g € HY2(0Q); hence
A, HY2(0Q) — H™Y2(092). If we choose v such that L,v = 0, then we see
that A, is symmetric. Uniqueness fails if two different conductivities v, and
72 satisfy A,, = A,,; this were the case, for every fi, fo € H %(89) we would
have

0= (A, — M) oo o) = Lm W)V Vi, (3)

where L., u; = 0 and L.,,us = 0 are extensions of f; and f, respectively. Most
of the proofs of uniqueness show that the collection of functions {Vu; - Vi o}
is dense, so 7; and 7, cannot be different.

Kohn and Vogelius [16] showed that for smooth conductivities v; and s,
uniqueness holds at the boundary to all orders, so ANy, = v at Q for
every integer N. In particular, if the conductivities are analytic, then v; = 5
in ().

In [24], Sylvester and Uhlmann introduced the method that most of the
proofs follow nowadays. If u; solve the equation (1) for 7;, then the function

1 1

1 11
w; 1= 77 u; solves the equation (—A + g;)w; = 0 with ¢; = v; *Av7, and the
relationship (3) is replaced by

JRd((h — g2)wiwy = 0; (4)

then, they had to prove that the collection of function {wjws,} is dense. The
integral is evaluated over R? because the functions +; and 7, are extended
to the whole space, and are arranged so that v, = 7, = 1 outside a ball
containing €). Since e¢* is harmonic when ¢ € C? satisfies (- = 0, then they
used the ansatz w; = €5%7(1 + 1);), expecting that ¢; is somehow negligible
for (1], |¢2] — 0. These solutions w; are called Complex Geometrical Optics
(CGO) solutions. Sylvester and Uhlmann selected ¢; and ¢, such that (; +
(o = i€ for £ € RY then, on the assumed smallness of 1, for |1}, |Ce| — oo,
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equation (4) means that ¢ = @, and this implies that 73 = 75. Their
argument works well for conductivities in C?(€2).

In R?, Astala and Piivirinta 1] proved that uniqueness holds in L (),
the best possible result. In higher dimensions, Brown [4| proved uniqueness
for conductivities in C2* (), and this was improved to W 224+ (Q) by Brown
and Torres [6]. By analogy with unique continuation, it is conjectured that
the lowest possible regularity is W14((Q).

The function v in the CGO solution w = €¢%(1+1)) satisfies the equation

Acp = A+ 2¢- Vi = q(1 + 7). (5)

Then, it is necessary to prove that a solution exists and is small. In [12],
Haberman and Tataru introduced a Bourgain-type space adapted to p¢(§) =
—]5\2 + 2iC - €, the symbol of A.. The space is defined as

~ (ul lully = | AP de < o
Rd

and it follows immediately that ||A; 1|| = 1. The dual of X bis X -,

1
2

XC

im

— qu, then the existence of ¢
< ¢ < 1, and the smallness of

If we define the multiplication operator

follows from |AZ M| 1 1 < [[M,]|
X2—>X2 X

1y follows from the smallness of HqH

1
—>X2

: Usmg these spaces Haberman and

“N\»—A

1
7
Tataru proved uniqueness for Llpschltz conductivities close to one.

Caro and Rogers [8] proved uniqueness for Lipschitz conductivities with-
out further restriction. They used Carleman estimates, in the spirit of [15]
and [9].

After an observation in [21], Haberman refined in [11] the method of
Bourgain spaces, and proved uniqueness for conductivities in W13(Q) for

d = 3, and WH%’]”(Q) for p > d and d = 4,5,6. He argued as follows: for

71 and 7, he wanted to show that ||M,, H e and HqJHX_% are small for
¢ G
some (; and (, that satisfy (; + (o = i€, so Habejrman proved that there exist
sequences {C1} and {Cox} for which || M, || e and ”%’HX—% tend to
c] ko Sk Cjik

zero as |C1 x|, [Cox| — 0. To find the sequences, he proved that the expected
value of both norms goes to zero as ||, |(2| — 0.



Theorem 1 (Haberman [11]). Let us write ((U,7) := 7(Uey — iUes) for

7 =1 and U € Oy a rotation. If V1og~y, and Vlog~ys are in W%’p(Rd) for
d<p<ow, orin L3(R?) ford =3, then

M”H By v and—”u%n |, dvdr M=%,
M Og Xewn = Xewn MOy X

The idea is that, when |(;| is large, the set of bad pairs (¢, (3) for which

| M, || __1 or |lg;ll ._1 is large has measure close to zero, then it is
J . 2 X 2
Ca ko Sk Chik

possible to extract sequences such that these norms are small and such that

G+ G =18

The estimates of Haberman are very good, and most of the argument
works well just for v € Wh4(Q). The bottle-neck is to get a strong upper
bound of || Mo, || .4 .~y > where f € W*P for some s > 0.

dwn =X
In Section 2 we proof the next theorem.
Theorem 2 (Vanishing of the Expected Value). Let us write ((U,T) :=
T(Uey —iUey) forT =1 and U € Od e rotation. Suppose that f is a function

supported in the unit ball. If f e W 2» 2 TP(RY) for d < p < oo, then

— | Mo, ¢l .1 1 dUdr —= 0. (6)
M Xwn=Xedm
M Oy

The main consequence of this theorem is the next improvement on Calderén’s
problem.

Theorem 3. For d = 5,6 suppose that Q < R? is a bounded domain with
d—>5

Lipschitz boundary. If v and v, are in W' 2% TP(Q) A L® ford < p < o,

and if y1,72 = ¢ > 0, then

A, = A, implies v = .

We write 7y € WHdZ;;J“p(Q) N L* to emphasize that v € L*, but it fol-
lows from Sobolev embedding for domains with Lipschitz boundaries. We
note that Theorem 2 holds for d > 3, and the restriction d = 5,6 in Theo-
rem 3 seems technical; in fact, we can state the following consequence of the
vanishing of the expected value.



Theorem 4. For d > 7 suppose that Q < R? is a bounded domain with
d—>5

Lipschitz boundary. If y1 and vo are in WHW”’(Q) N L% ford <p< o,

if O,y1 = Oy at 082, and if y1,7v2 = ¢ > 0, then

A, = A,, implies v = 7.

By the trace theorem the normal derivative 0,7 is well-defined. The
proof of Theorem 3 and Theorem 4 has been already summarized in this
introduction, and we provide some more details in Section 2. We refer the
reader to the literature to reconstruct the whole argument, in particular to
Haberman [11] and to Ham, Kwon and Lee [13].

We have added an appendix with an example that shows that averaging
is necessary.

1.1 Restriction Theory

Ham, Kwon and Lee [13] applied deep estimates from restriction theory to
improve on Harberman results, and we will follow most of their arguments.
We give here a brief introduction to restriction theory and the way it comes in
Calderén’s problem; a detailed exposition of restriction theory can be found
in [20, part IV].

We control the norm || Mp, || .

1
X2

_3 by duality, so we need an upper
wn T W

bound of
1
{0:f)u,v) = Rd(ﬁif)uv dz  foru,ve X7 . (7)
The contribution coming from frequencies close the null set of p¢(€) = —|€|° +

2i¢ - £, which we call the characteristic set X¢, is the hardest part we have to
deal with.

The characteristic set ¥¢ is a (d — 2)-sphere, and we have to control the
duality pairing when the Fourier transform of v and v is concentrated close to
Y¢. This is just the setting for which restriction theory has been developed;
a few classical examples of applications are [10, 14, 2, 3].

In restriction theory, we seek to prove the best possible bounds || f s
I, < C||f[l,, where S is a manifold or just a set. One of earliest and most
important result is due to Tomas [27| and Stein (unpublished); for the proof
see e.g. [23, chp. 9.



Theorem 5. (Tomas-Stein Inequality) Suppose that S < R™ is a compact

surface with non-vanishing curvature. If f € LP(R™) for 1 < p < 22—1;, then

£ 1sll, < ClI£1,. (8)

The dual operator is called the extension operator, and it is the Fourier
transform of a measure fdS supported on the set S. The function (fdS)Y is
the prototype of a function with frequencies highly concentrated close to S.
In the dual side, the Tomas-Stein inequality is

1
o<y <o, (9)

||(de)v||LP/(]Rn) < C||f||L2(S) fOl" 2

n —

Since the earliest days of restriction theory, a kind of stability of bilinear
estimates was exploited; for example, the bound ||(fdS)" || jage) < ClIf|l, is
false, but the bound ||(f1dS1)Y (f2dS2)" | 2 ey < Cllfilloll f2]l; is true, when-
ever the lines S; and Sy are transversal; curvature is not required. This
stability of bilinear estimates was clarified and refined by Tao, Vargas and
Vega [26].

If we are to expect some improvement of a bilinear estimate, we have
to require a separation condition on the surfaces S; and S involved. For
example, if [[(f1dS1)Y (f2dS2)" |22y < Cllfillollf2]l, were true in any case,
then just setting S; = S, would provide a linear estimate, a false one in
this case. One of the key outcomes of [26] is a general strategy to get linear
bounds from bilinear bounds, and we will follow this strategy in Section 3.1.

If we are to use the bilinear strategy, we need strong bilinear upper
bounds. For some time, the bilinear analogue of the Tomas-Stein inequality
in R", for n > 3, was known as Klainerman-Machedon conjecture. Wolff
made the first big progress, proving the conjecture when the surfaces are
subsets of the cone [30]. Subsequently, Tao refined the method and proved
the conjecture when the surfaces are subsets of a surface with positive curva-
ture [25]. Vargas [29] and Lee [18] proved the conjecture when the surfaces
are subsets of the hyperboloid, dealing with unusual obstructions.

Since we are interested in the sphere, we need to prove the bilinear the-
orem for this case. To avoid antipodal points in the bilinear inequality, we
restrict ourselves to the surface

11
Si={(€,&) [ & =1—1/1— ¢ and [¢] < 10 (10)

Following [26], we define also surfaces of elliptic type.
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Definition 6. (Surfaces of Elliptic Type) A surface S is of e-elliptic type if:
e The surface is the graph of a O function ® : B; « R"! — R.
e &(0) =0 and V&(0) = 0.
e The eigenvalues of D*®(z) lie in [1 — &, 1 + ] for every x € B;.

For every ¢ > 0 and for every point in a surface with positive curvature,
we can find a sufficiently small neighborhood U so that U is of e-elliptic type,
up to a linear transformation.

We prove in Section 4 the next extension of Tao’s bilinear theorem.

Theorem 7 (Bilinear Theorem). Suppose that Si,Ss < R™ are two open
subsets of a surface of elliptic type or the hemisphere in (10), and suppose
that their diameter is < 1 and they lie at distance ~ 1 of each other. If f,
and g, are functions with Fourier transforms supported in a p-neighborhood
of S1 and a v-neighborhood of Sy respectively, for p < v < ,LL% < 1, then for
every 6 > 0 it holds that

n
n—1

n_g§5 1_§
1 fugully < Cop>» ™ v\ fullllgully,  for 1<p' < (11)
For surfaces of e-elliptic type, the constant Cs may depend on € and on the
semi-norms || 0N ®||.. The inequalities are best possible in pu and v, up to
d-losses.

Unexpected phenomena appear: when p is much smaller than v, 7.e. when
p,% < v, then bilinearity does not play any role; moreover, the curvature of
the support of ¢, is of no importance, and the bounds that Tomas-Stein
yield cannot be improved. If we try to get bilinear bounds for f,, and g, by
averaging over translations of the surface and then applying Tao’s bilinear
theorem, we do not reach the optimal result (11), except when p = v.

The reader can consult the symbols and notations we use at the end of
the article.
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2  QOutline of the Proof

The proof that Theorem 2 implies Theorem 3 is long, and many steps are
already well described in the literature. We refer the reader to [11, 13| for
details.

First, we extend carefully +; and 5 to the whole space. By the def-
inition of W*P(2), we can extend 7; to a function in W*P(R?). Since
v; € W1+d2;175+’p(§2), then by a theorem of Brown in [5] we have that v = o
at 0Q0ift A, = A,,. Now we define the function

_ Yo —m it Q
0 if Qe.

Since 7 is zero at 02 and @+ < 1 , then 7 € WH%E)JF”’(Rd) (see [19,
Theorem 1]); this explains the Condltlon d < 6 in Theorem 3. We can thus

define the extension v, := vy + 7 € Wit e (RY). Finally, we arrange the
extensions so that 7, = 75 = 1 outside a ball containing (2. For d > 7 we are
in the case ‘12—54— > %, and we need additionally the condition 0,71 = d,7
at 082 to be able to extend the conductivities. This is the condition that we
included in Theorem 4. L

For all wy, w, € Hy, (R?) that solve (—=A + ¢;)w; = 0 with g¢; = 7, 2Ay7,
we want to show that the collection of functions {wjwsy} is dense, which
implies that v; = 79; see 6] for a rigorous justification. Notice that ¢; is
compactly supported.

For ¢; - ¢; = 0, the function w; = ¢%*(1 + 1);) is a CGO solution. The

function v, € Hﬁ)C(Rd) has to satisfy the equation
(=A¢ + ;)Y = —q;. (12)
If we choose (; and (5 such that {; + (o = i€ and replace in (4), then we get

L{J% — gp)eT = Jeig.x%% _ feig'z¢1Q1+
! J A - Jeig'%Acwl. (13)



We expect that the functions 1); are negligible, so if we ignore them, we would
get that g1(€) = G@(€) for every € € R which implies v; = 7».
The space HL_(R?) does not seem to be the best suited space to solve

(12). Following Haberman and Tataru [12], we use the spaces X 2 and X?.

Since the inclusion X ;< Hy (R?) holds true, then we have

loc

(—Ac+q): X2 > X

The goal is to find a pair of sequences {(ix} and {Cox} that satisfy the
following conditions:

o (1 + G =i and |(j | — 0 as k — .

1
e There exist solutions ¢, € X2 of the equation (12).

° ||¢j,k;||X% — 0 as k — 0.
C.

g,k

To solve (12) we write (I — Aglq)w = Ac_lq. To invert the operator

(I — Agqu), where M, : u — qu, it suffices to prove that ”MqHXC%—»X;% <
¢ < 1. We also have the upper bound

S 1_6\\61”5{;%-

1
I P

3
X¢

-1
Then, we can rewrite the goal as: to find a pair of sequences {(; x} and {(ox}
that satisfy the following conditions:

® (1 + G =i and |(j | — 0 as k — .

o || M, HX% 3 < ¢ <1 for sufficiently large k.
Sk Sk

. quHX_% — (0 as k — 0.
Cik
To find the sequences {(;x} and {(3;}, Haberman proved that the ex-
pected value of HM'”HX% and H%HX’% over || ~ M =1 is small; see

1
2
Theorem 1. The reader can see in [11, sec. 7] how to find the sequences from
the vanishing of the expected value.



To prove the vanishing of the expected value of ||Qj||X; 3, it suffices to
assume that Vlogy; € L4R?), so we will not turn our attention to it.

To control ||Mq”'||X§~X£% we write ¢ = %Alogv—hﬂVlogﬂQ = idiv (f)+
%\f|2, where the components of f = (f*,..., f") belong to W 1?(R4). We

can divide M, into the terms Mjp,; and M| 2 Haberman proved that the

expected value of HM\fIQHX% goes to zero if f e L4Y(R?), so we are left
¢

with [|Ma,f]] i}

L1
2

X,

X’%

The estlmates for || M, fH are not strong enough to get the van-

1
2
ishing in the limit for f € Ld. To prove Theorem 2, we assume the following
theorem, which we will prove in the next section.

Theorem 8. Suppose that f is supported in the unit ball. If f e W 2z o5 TP (RY)
ford < p < o, then

J[f oy dUdr <O flls (14)
C(UT) ¢(U,T)

<

Proof of Theorem 2. Since f is compactly supported, then || M, fHX2 % 1
_1; see [12, Lemma 2.2(3-4)]. We estimate M, by duahty as
¢

1
X<2—>X
1
Kgu, v)| < llgllllulloflvlly < EHQH@HUHXC% HUHXC%-

For some A < 1 to be fixed later, we define g = P<a0;f, where P<y is the
projection to frequencies < A. By Young inequality for convolutions we get

1 A?
IMgll 3 -3 < 7 llglle = =1 lla
xEext T e T g

The expected value is thus bounded as

J(J 4y dUdrs —HfHd ]fj L, dUdr
CUT>_’X<<U,T> Xéom=Xedm)
AQ
S M la +I1P-afllesy
If we choose A = M1 and let M — o0, then we get the vanishing. O
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3 Upper Bounds for the Expected Value

In this and the next section, we use duality to get an upper bound of

Mol 4 1 intermsof f, U and 7. We want to get an upper bound
Xwn=Xewn
(@l = @puodsl < AC Nl Wl g (09
Rd o W)

with a constant A(U, 7, f) depending on some quantity related to || f||,; .., for
s=%2+ andd <p <.

The characteristic set X¢ of pc(€) = —|€[° + 2i¢ - &, the symbol of A, is
a (d — 2)-sphere in the hyperplane {{ | (Uey, &) = 0}, with center TUes and
radius 7 > 1. If d(&, X) denotes the distance from £ to 2., then

e (6)] ~ Td(¢,5¢), for d(€,5¢) < &,
¢ 24 ¢ for d(€, %) > 2

1—07'

We break up the frequencies accordingly into characteristics and non-characteristics,
and define the corresponding projections as

(Quf)M(€) = C(r71d(E, Z)) F(€)
(Qnf)" () := (1 — (77 (&, 20))) F (),

where ¢ € C*(R) is supported inside (—+=, ). It follows that

T 10010
1Qnully < 77 Hull_y (16)
¢U,T)
10;Qnully < flull 4 (17)
<(U,T)

In Lemma 3.3 of [11] Haberman proved, using Tomas-Stein inequality,
that
ull 2o < flull 3 (18)
d=2 XE(U,T)
With the help of inequalities (16), (17) and (18), we can control in (15) all

the terms involving non-characteristic frequencies. In fact,

{05 F)us vy = (05 F)Qnu, Quvy + (05 f)Qnu, Q)+
+ {(051)Quu, Quu) + (0 f)Quu, Quv).
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For the first term at the right, after integration by parts, we have

(05N Qnu; @uvp| < || f1l4([10;@nully|Qnoll 22 +
+ [ @null 24 [10;@nvlly)

S I fllallwll g Mol 4 (19)
C(UT) ¢(U,)
For the mixed terms we have
€(0;.)@nu, Quop| < [ f1] 410 Qnullo | Quvl] 2 +
+ [ Quull 10, Quel] 22)
S I fllallull g Mol 3 (20)
C(U‘r) ¢(U,T)

2/\

where we used the localization of Qv to frequencies < 57, so that ||0;Q;v|| 2 20
T||Qiv]| 24 ; this follows from Young inequality. We are left then with the
d—2

characteristic frequencies.
We assume that the support of the Fourier transform of u and v lie in a
io—neighborhood of ¥¢. We define the transformation

urp(z) = 7% (1 U ), (21)

so that the frequencies of u.yy are supported in a 15 nelghborhood of the S42
sphere centered at ey in the hyperplane normal to e1. The Fourier transform
of ury is U,y (§) = u(tUE), and the Xé’(UT)—norm scales as

442
Hu”Xg(U o =T2 ||U'TUHXC(1) e (22)

We change variables in the pairing (15) to get

(05 f)u vy = 7 J (051) (r U )u(r Uz)o(r—"Ux) da

2d+1 a f’T‘U UryUry dx
B,

= 72d+1 (aUej fTU)uTUa UTU>7 (23)

where we used the identity
(0 1) (7~ Ux) = f&jf(&)ei(ﬂm)f d¢ = 7" (Oye, frv) ().
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Therefore, we assume that the characteristic sphere S%2 lies in the normal
plane to e;, has radius 1 and is centered at e;. We assume also that the
function f is supported in B;(0).

We apply the Hardy-Littlewood decomposition to f = >, ._, P\f, and
decompose u and v into dyadic projections u,, and v,, where (u,)" = ((p~'d(&, X¢))u
and ¢ € CX(R) is supported in (3,2). Then, the pairing (15) gets into

<(awf)uv U> = Z <<awP)\,sup(u,y)f)u,ua Uu>

LR O WIRZS |

. L@uPruPlupvy+ Y e, (24)

7711 71
Tlpugrsl rigus>vsi

where 0y, is the derivative in some direction w, and P gup(y,.) is the projection
to frequencies || ~ X and |&]| < sup(u,v). By symmetry, we can assume
that p < v.

We use Toma-Stein to control the low frequency terms, A < 1/%, and the
terms with very different characteristic regions, /ﬁ <.

Theorem 9. If f, and g, are functions in R", and their Fourier transform
are supported in a pu- and v-neighborhood of S™! respectively, where p < v,
then

ugolly < 15l fori<p <™t (25)

Proof. We use Holder to get
17690l < 1l sy 19l (26)
Since 1 < p < ™ then 2 < 2p//(2 — p/) < 22%1, and the latter is the

Tomas-Stein exponent. To bound the term || f,||,., for r = %, we interpolate

n+1
n—1"

between p’ = 2 and p’ = 2

n+1

~, we write f, as an average

The point p’ = 2 is immediate. For p’ = 2
over spheres

fulz) = J pr=1 L Fulr®)e((ra, 0)) dodr = f P frdS) (ra) dr

We apply Minkowski, Tomas-Stein and Cauchy-Schwarz to find || f,||;ne1 <
n—1
Cu%HfMHQ; this leads to

n+1
n—1

ntlel 1
full, < 77 @720 fully, for2<r<2
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We replace it in (26) to get

n4l
1 fugoll,y < w2 || fullallgnllss
which is what we wanted. O

By Holder, we can bound each term in (24) as

[<(OwPrw )t 00| < A Prw f I lugavw - (27)

To bound the bilinear term, we begin by writing it as

J|uuv,,] dx—f \w, (21, Z)v, (21, T)|P " didx,. (28)

We fix z; as a parameter and define the function wjj'(Z) = u,(z,7); its
Fourier transform is the term in parentheses in the formula

wilon ) = [ ([ Bulo)et e e )€ = [ @e?

The support of 47" lies in a p-neighborhood of the sphere S%2 < R*.
Hence, we can apply Theorem 9 with n = d — 1 to the inner integral at the
right of (28) to get

/ ’ d / /
j o do < 1'% f letu(s, M o (I . (20)

Since %, is supported in the p-neighborhood of the hyperplane normal to
ey, then we can use the formula w, = u, * ¢,, where ¢,(v) = p¢(puz) and
¢ : R — R, is a smooth function whose Fourier transform equals one in a
p-neighborhood of the origin. Hence, by Minkowski we have

1/2
Nuu(z1, )|y = f Juu — 1, 2) (1 dyl‘ dx)

< j (1 — 91, M) din
= (2 #1 6)(an).

This fact and the next lemma allow us to bound the integral at the right of
(29).
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Lemma 10. Let a and b be two functions in the real line, then
1
(@ x ¢u)bll,, < Curllall,llblly, — for1<p <2 (30)
The inequality is best possible in p.
Proof. We use Holder and Young inequalities to get
@ * @u)blly < lla* dullyy 2y 10lly < l@ull,llally o2

where [[¢,[|, = ,u%||¢1||p,. The example a = b = 1(_,-1 ,-1) shows that the

constant u% is best possible. O

With the aid of Lemma 10 and ||u,|, < /f%HuHX , we continue (29)

1
2
as ‘yr
d+2 d+2_1 1
lwpoully < w2 fluallollonlly < w2 2v 2 lull g loll g - (31)
OBV Ca/r

Furthermore, when we are restricted to low frequencies A < V%, we can use
this bound and (27) in the pairing (24) to get for p = d

i 1
K@uhmols (X M Bl g el g+
len<yd OB OB
T—ls\u%’ﬁ
1_1
<(X W HBRA L, el
iersy OB SEORYE
<X MBIl el
~len<l Xoam  Xewar
1
(X 1)l y lell
~len<l Xoam  Xemar
Sy ell g e (32)

)17 {),1/r
On the other hand, when the characteristic frequencies are very different, 1.e.
1
pu? < v, again by (31) and (27) in the pairing (24), we get
d+2 1 _1
K@uDunl < (X S R HBLI g ol e

2
e Xy

-

rv2 <A<l
T’1<M<I/2§1

(33)
We are left thus with the case of high frequencies A = V%, and similar char-
acteristic frequencies p < v < ,u%.
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&3 &3

&2

&2

transversal— non-transversal

Figure 1: The decomposition of the p- and the v-neighborhoods of the sphere
S92 4 ey into caps o and f.

3.1 Bilinear Strategy

In this section we assume that p < v < ,u%, so that the bilinear inequality
in Theorem 7 give us a small improvement over Tomas-Stein inequality. To
pass from bilinear to linear inequalities, we follow the strategy in [26].

Using smooth partitions of unity {¢,}. and {¢s}s we decompose, respec-
tively, the - and the v-neighborhoods of the sphere S%2 + e, into caps a
and [ of radius py « 1; see Figure 1. If the angle between the normal vectors
to two caps a and [, respectively, is 2 pg, then we call them transversal
and denote it by a ~ 3; otherwise the caps are not transversal, a # 3. For
transversal caps we can use the Bilinear Theorem 7 for the sphere. We define
Upyo = Pall, and 0, 3 1= g0, and write so the bilinear term as

uﬂﬁ’/ = Zu‘u,aq_}y’ﬁ = Z u“7a/ﬁyzﬁ + Z uu7a/ﬁy7ﬁ-
B a~p arp

Since we cannot apply the Bilinear Theorem to non-transversal caps, we
decompose them again into caps of radius p; = %po, and we still denote
the smaller caps as a and (. If the angle between the normal vectors to
two caps a and f3, respectively, is ~ p;, then we call them transversal and
denote it again by a ~ [; otherwise the caps are not transversal, a » [.
For transversal caps we will use a rescaled version of the Bilinear Theorem 7
for surfaces of elliptic type, choosing py sufficiently small. We continue the
process of subdivision of non-transversal caps until the radius of the caps is

16



Figure 2: Two neighboring, transversal caps.

1 .
p ~ vz, and write

by = 3 | Y Pt )+

+ Y CuPra s | (39

axf

where the sum over non-transversal terms is at scale p* ~ v3. The superscript
in uf , is to keep track of the radius of the caps a.

The support of the inverse Fourier transform of uf, ,v}, ; has some special
properties, and they determine when the pairing <(6 P)\ y f Jub o5 vy B> either
vanishes or not. Recall that the support of the convolution al v% 5 lies
in the Minkowski sum of the sets —a > suppd/, , and 8 > supp @5,,33 see
Figure 2. The reader will find easier to evaluate the Minkowski sum of
—a + ey and [ — eq.

When the caps a and § have radius py and are transversal, then we have
that

2
F p
—a+ B {(&.€) 5 <[] < ——0, 61| < 2v);
Hence, all the terms <(6wP,\7Vf)ul’j° , y5> vanish for A\ < ¢py.

When the caps have radius p < pg, we have to distinguish between neigh-

boring and antipodal caps. Two caps are neighboring if there exists a ball

17



Figure 3: The Minkowski sum of two antipodal, transversal caps at scale p.

of radius 2py that contains both of them, and two caps are antipodal if they
lie in different and opposite balls of radius 2py,. We refer to neighboring and
antipodal, transversal caps as a ~,, 5 and a ~,  respectively.

If two caps of radius Vi < p < po are neighboring and transversal, then
for the Minkwoski sum we get

—a+ B {8l ~p |&] <2}

Hence, only the terms {(0w Py, f)uf, ,, v}, 5) for which A ~ p survive. When
the caps are non-transversal, the Minkowski sum lies in {|¢| < cv2}, but we
already considered the low frequency terms A < 3 in the previous section,
50 {(OwPru f )uﬁfa, UZ:;> alvxlfays vanishes.

If two caps of radius vz < p < p, are antipodal and transversal, then for
the Minkwoski sum we get

—a+Bc S, ={&2-&~p |&a] <2v) (35)

Only the terms ((0y Py, f)uf, v} 5) for which A ~ 1 survive, but now we
need more detailed information about —a + [3; see Figure 3. We can see

18



that —a + 8 forms a cap of radius ~ p lying in the p*-neighborhood of the
sphere with radius 2 — p? centered at zero, which we called S, ,. Fixing p, the
collection of all the the caps {—a + §}, where a ~, 3, is an almost disjoint
covering of S, ,. In fact, let  be a point in S, ,, ¢, be the center of o and cg
be the center of ; if x and —c, + e; make an angle = p, since a ~, 3 then
the sum —a+ (8 necessarily lies away from z. Hence, only the caps —a+ (3 for
which o and 8 make an angle < p with x can cover it. For future reference
let us write it down as a lemma.

Lemma 11. For fized p, v and Ve < p < po, let o and B denote caps at
scale p, then
Z 17Q+IB < Cd]lSu,pv <36>

a~qf3

where S, , is defined in (35), and Cy does not depend either on p, on v or
on p.

A similar statement holds for non-transversal caps at scale 1/%, but the
caps —a + 3 lie now in a v-neighborhood of 25972,

We will follow the argument of the previous section to bound the terms
{(OwPru f)U, o, V), 5); however, the Bilinear Theorem is only stated for transver-
sal caps at scale ~ 1 ~ pg. To remedy this situation, we use parabolic
rescaling.

Theorem 12. Let f,, and g,p be two functions with Fourier transform
supported in a p- and v-neighborhood of S™ . If the caps o and B are
transversal at scale p < pg, then for 1 < p' < ”TH it holds that

1l »n_. 1__ _1
1 fnagvslly < Cep™rp2 e fuallollgnslly  for p>wvu=2, (37)
1

ntl 1 _1
[ fuaGuslly < Crz || fuallollgusll, forv: <p<wvpz.

Proof. The case pg ~ 1 = V,u_% is Theorem 7 for the sphere, so we assume
that p < pg. By conjugation and modulation, we assume further that both
caps lie in the hypersurface given by the graph of

p(€) =1~ /T [EF = I¢' + O(IE),

where £ = (£,€,) € R™; we assume also that the center of the caps are
symmetrically placed in the axis &. Since the caps are at distance ~ p

19



of each other, after applying the scaling & — (p~'&, p~2&,), the support of

the new functions F(§) 1= f,.(p&,p?¢,) and G, := §,5(p€, p*E,) lie at
distance ~ 1 of each other, and the hypersurface transforms accordingly to
the graph of

ool€) = o %0lpE) = % —afp 1o 1E[ = ZIEP + ORIET)

If p < po is sufficiently small, then the semi-norms |[0"¢p,||, are uniformly
bounded, and the bilinear theorem holds uniformly. The rescaled functions
F and G are

F(x) = p7" " fualp™' ', p%,)
G(r) = pinilgv,B(Pilxla /)723%)

Since the Fourier transforms of ' and G are supported now in sets of width
p~ 2 and p~2v respectively, then we should apply the Bilinear Theorem 7
whenever p~2v < (p*Q,u)%, and Tomas-Stein otherwise.

If p> Vu_%, then we apply the Bilinear Theorem to F' and G to find

2(n+1)—241
1 fnagosll,y = o™ 0N FG,
n+1l

< P2 L E e PG,

1 n_ . 1
= Cep Pl 'z EHfu,aHQ”gVﬁHQ;

if we use Tomas-Stein instead, then we get the result for p < I/,M_% O
If we define the quantity
K., ()= sup | fuagusl,, (38)
| fi,alla=1
llg.plla=1

where the supremum runs over functions f, , and g, g with Fourier transform
supported in caps at scale p, then we can restate Theorem 12 as

1 n 1
C.p rpz “vr ° for p>vu~
K%@@<{‘Lf S
Cu2r for vz < p<wvu

NG

N
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By Lemma 10 and Theorem 12, for n = d — 1, we get

1
2l ol slly < n KL, D luallslloslly

a~f3 a~f3
1
< 1 K [[ugll ool

< pr T Kl o]l
Xéyar

1
2
(1), 1/

o]

Now let us consider only transversal, neighboring caps at scale p. By the
decomposition (34) we get

[(Cwf)u, v)| < Z D1 K(OuwPry )l 0] ) + -

}L<l/<,LL% o¢~nﬁ
Z AM;‘EV—EHPMfH Z K[j,y||u||X% Hv||X§
1/2 <)\ v1/2<p~ A ¢(1),1/7 ¢(1),1/7
M<V<u2
d+2_ 1 1
§e< Z A 2r 2y 2||P>\Vf||+
l/%s)\$1/‘u %
H<V<lu,%
1—1 d+1 1 1_1_
N T P A ) )y ol 3
-3 ¢(1),1/7 ¢<(),1/7
vu~2<AS1
M<V<M%
(39)

The operator P, , is the projection to frequencies [¢| ~ A and |& ] < v.

When the caps a and  are antipodal, we have to refine the projection
P, ., so we project also to the cap —a + 3 and denote this projection as
Py ,.5.- We argue as above to get

(ufyuwl <Y (Zk@ﬁhﬁ 1 Vo)) + [P Pl o))

A~1 1/2
% Oé"a/B
1
}: AMP 2V 2 }: SUPHF&uaﬁfH|h4| ”UHX%
V2, ()1/T
p<v <u%
(40)
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We have already bounded all the contributions, and we can say that for
some functional A’(f) we got an upper bound

[ fus o)l < (I flla + AUNNell 5 ol g

2
o X

OBV
If we return to the original variables, and replace u and v by u,y and vy,
and w by Ue;, then by (21), (22) and (23) we get

<(ajf)u7 U> = 7—2d+1<(awaU)u‘rU7 /UTU>

< T2d+1<HfTU”d+A,(fTU))”U/TUHX;/2) HUTU||X1/2

¢(1),1/7
d—1
= (Iflla+ 7 A FoD Il Illgre

If my . is the multiplier of Py, , g, then
(Prvapfro) (@) = (Mapap() f(TU)) @)
_Tid(P)\TVa,Bf)( 1U.§L’),

where the multiplier of PV is m(U~1¢). Hence,

1Pvasfrill, = 7 7 IP% a1,

We collect all the estimates (19), (20), (32), (33), (39) and (40) to conclude
this section with the following theorem.

Theorem 13. Ford < p < o, the norm of the operator M.y : u € X

cwn)

(0jf)ue X 2 ) has the upper bound

||Ma f”Xl/2 )'_’Xg_(l/Q) <e ||f||d+7—p (7-7 U7 f)v (41>
where

A(T> U7 f) = Z ()\ w, v )” TA TVpr+
V%S}\Sl
771SMSV
+ Z /\:U’p 2V 2 Z Sup H )\TVOLIBfH . (42>
A~1 1 1/1/2<p
HSY<p?

The constant K, , is defined in (38), and

sV

A *%u%*%u%’ﬁ% for A > v~z and v < pz
QA pv) =94 a2 1 '
PV otherwise.
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3.2 End of the Proof

In this section we average the norm || Mg, f|| c12 | 172
) e 0)

follow the method of Haberman [11] and of Ham, Kwon and Lee [13).
By Theorem 13 we have

1

over 7 and U. We

1/2 X 1/2 dUdr < Hf“d—l-

vE<asgt
M~l<pu<v
d_q 1_1 1
+ MY A Supll s, dUdT. (43)
A~1 1/2<p

The first average at the right has been already bounded by Haberman.

Lemma 14. (Haberman, Lemma 5.1 in [11]) Let PY, , be the projection to

frequencies €| ~ TX and to frequencies |[(Uey, &)| < 27v. If f € LP(R?), then

([, 1Phestpar) <c(3)151,  for2<psoe )

The second average at the right of (43) has been already bounded by
Ham, Kwon and Lee.

Lemma 15. (Ham, Kwon and Lee, Lemma 4.3 in [13]) For fited 772 < vz <

p<poand 771 < X\ <1, let a and B denote all the transversal, antipodal
1

caps at scale p, or all the non transversal, antipodal caps at scale ~ vz, as

described in Section 3.1. If PY, _, ., 5 is the projection to frequencies |£] ~ T,
|KUey, )| <21v and {£ | £ e TU(—a + B)}, then

1 1
D V\p 2
(f, | swlPhastipavar)” <o(5) o, forz<p<o
' (15)
45

Sketch of the proof. The proof is by interpolation. Since —« + (3 forms a cap
of dimensions p x -+ x p x p?, then for the point p = o0 we get

Sllp H )\ﬂ/a,BfHoo ~ Hf”

o,B,U,
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Let us denote by mY, _, , 5 the multiplier of PY _, 5. For p = 2 we get

Jf f S8 FI2 dUdr =

Od o8
J17©P], [, Simossnst*(ele) irac

By Lemma 11 we have that Zaﬁ Mrrrvapl? < 1:s,,, where S, , is defined
n (35). The set 75, is a (d — 2)-sphere of radius 7(2 — p?), width 27v in
the direction ey, and width 7p? in {£; = 0}. For fixed ¢ we get

4 _
f |3 o eke) dudr < 1ggean3otigar
B a~af3

which leads to

[ Sithsfibavar < 5o [ i

Od o3 {I€I~}
v 2
S
and then (45) follows. O

We use Lemma 14, Lemma 15 and Hélder in (43) to get

Mo, S dUdT <
J[fodn ajf||Xclf3,U>*’X<<IT{2U) 7 Se 1/ llat

V%§A§1
M~l<pu<v
1 1 1 1 1
FATE N N T YT KL pr [ PannS
A~1 vi/2<p
pr<p2

~e 1 lla + Ar+ Ay
To bound A; we use the definition of Q(A, i, v) in Theorem 13:

1 d+1_ 1 1 1 1

AN g 2 27 for A>wvpT2and v < p
Q()Vﬂ? V) = { 1 .
W 2 otherwise.

N
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We sum first in v, then in g and finally in A to get

w2 =<y ususu% HSVSY
1 d+2 1 i1
:(Z)\ P P2 yr 24
1 1 2
TR n2 <v<A
1_1 di2_1 11
Sy enEs y A
1 1
w2 <A A2 <v<min(A2,u2)
1—2 d+l1_ 1 2_1 ,_1
CYRED T R,
1
p2 <A BSVSAUZ
_1 d+3 3 1 d+3 3
(X T X S
M™I<A AT M-i<xn  KSM

_d+5 _2 d_
- MR )M Pus S,

During the summation we used the condition p > d > 5. At the end we get

A <OM= 3 AP, < C /|

WT+p
M™Z<A<1
We bound now A,, recalling that:
1 od-1 o1, 1
o () Cep Pp2e vr for p > vpu2
(D) < 4 1 1
Cur for vz < p<wvu 2,

We sum first in p, then in v, in p and finally in \ to get
A2 Se M%*l Z AlfiludTpli%yifécu% Z p% —{—V%i Z p%)HPM)\pr

A~1 1 y%< <v -3 v~ 2 <p<l
H<V<M§ <p<vp B 2<p<
+1_ 1 2_1_
<- Z)\ e ||PMAfH

[N

USUSU

< MY ZHPMAfH
<e Hf|’Wd2;+p

The statement of Theorem 8 follows.
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4 The Bilinear Theorem

In this section we prove the bilinear theorem for two open subsets of the
paraboloid. The paraboloid is technically simpler, so the exposition runs
more smoothly. After concluding the proof, we explain how we should modify
the proof to get Theorem 7. The proof follows closely the ideas presented by
Tao in [25], and we include here the argument for the sake of completeness.

Theorem 7°. Suppose that Sy and S5 are two open subsets of the paraboloid
in R™ with diameter < 1 and at distance ~ 1 of each other. If f,, and g, are
functions with Fourier transforms supported in a p-neighborhood of Sy and a
v-neighborhood of Sy respectively, for p < v < ,u% < 1, then for every e > 0
it holds that

n
n—1

n_ . 1_
1fugull,y < Cop2 ™ ve || fullollgullys  for 1<p' < (46)

The inequalities are best possible, up to e-losses, in pu and v.

We can restate the theorem in terms of the quantity

K,LL,I/(Z),) = Sup Hf/,ng/Hp/'
I Fullz=llgo ll2=1

We get the upper bound of K, ,(p’) by an argument of induction in scales.
With some examples, we show that the upper bound K, ,(p') is the best
possible, up to e-losses.

When ,u% < v, the separation between supports does not yield any im-
provement over Theorem 9, at least in the range 1 < p’ < "TH

Example 16 (Case 2 < v). Let N,(S1) and N, (Ss) be neighborhoods of
two open subsets of the paraboloid with diameter ~ 1 and at distance ~ 1 of
each other. In N,(51) let C; be a cap of radius 2 and width g. In N, (Ss)
let Cy := C; +a < N,(S5;) for some vector a; this is possible owing to the
hypothesis ,u% < v. After replacing for 4, = 1¢, and v, = 1¢, in the bilinear
inequality, we get K, ,(p") > cu%l.

Theorem 7 holds in R? without e-losses. The proof is by averaging over
translations of the parabola; see for example Lemma 2.4 in [17].
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I3
o)

L1

Figure 4: The construction of the cap Cj.

Example 17 (Case R and p < v < p2). Let N,(S1) and N, (S2) be sepa-
rated in the parabola as in Theorem 7°. In N, (57) let C be a cap of diameter
v and width p. In N, (Ss) let Cy := Cy + a = N,(S3) for some vector a. Af-
ter replacing for u, = 1¢, and v, = 1¢, in the bilinear inequality, we get
Kuw(p) = curvs.

In higher dimensions we consider as example a modification of the squashed
caps in Section 2.7 of [26].

Example 18 (Case n > 3 and p < v < p%). Let N,(S1) and N,(S2) be
separated in the paraboloid as in Theorem 7’. Let L, < R"! be a ,u%—
neighborhood of the plane {xl = .- =12, _9=0}. In L, choose a box C of

dimensions v x /ﬁ X e X uz so that its lift to the parabolmd lies i in S1, and
thicken it in N, (51) Creatlng so a cap (] of dimensions v x ;m X+ X ,uz X [ see
Flgure 4. Now, let Cy := C 4+ a < N, (S5) for some vector a. After replacing
for u Sy = 1¢, and U, = 1¢, in the bilinear inequality, we get K, ,(p") >

CILLQP yp

The rest of this section is devoted to the proof of the inequality (46) in
Theorem 7’. We do first some reductions.
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By Galilean and rotational symmetry, we can assume that
1
S = {51 €' = cren] < 2}

S = (€51 I + el < o)

the constant C. in (46) depends on ¢; and cs.
It suffices to prove the local inequality

n_ . 1_
1£ugoll o,y < Con® =2 fullollgwlly (47)

In fact, cover R" with balls B,-1 and choose a bump function ¢ Bl ™ 1in
B,,-1 so that supp 63_1 c B,(0). Then,

”fugVH S Z ”fugl/HLp (B,-1)
2 1 Coe) ¥ @ * o) Naw s,

The width of the supports of f,L # C B! and g, * 5 B! are essentially p and v
respectively. Hence, we can apply the local bilinear inequality (47) to get

1 fugoll,y < Cep?o™ WEZHMB LllllgnCs,

H—l

1

no_ o 1 2 2

<t (X5, ) (S lats, 1 I2)’
Bu,l B;FI

n_ . 1_
< G~ v | fullyllgully,

which is what we wanted to prove.
At scale p~! the function f, looks like (fdS)¥ for some function f in the
paraboloid, so it suffices to prove the next theorem.

Theorem 19. Suppose that Sy and Sy are two open subsets of the paraboloid
i R™ with diameter ~ 1 and at distance ~ 1 of each other. If fdS is a
measure supported in S and g, a function with Fourier transform supported
in a v-neighborhood of Ss, then for 1 < R: <v'<Rand for every e > 0
it holds

lq_n 1_
1(fdS)* gull o sy < C=RE 4072 Fll o5l 90l (48)

n

where 1 < p' < 5.
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In fact, after a change of variables £ — (¢, %|§'|2 + t) we can write f, as

fule) = [ ([ Rt 316 + Dot € + e ) de) et

_ J C (FdS)” elant) dt, (49)

—p
where f“,t is a parabolic slice of fﬂ To bound the local bilinear inequality
(47) we use Minkowski to get

19

Hfugl/”LP'(Bu—l) = JH||(f“7tdS)ng||Lp’(Bu1) dt.
Then, writing ! = R, we can use Theorem 19 and Cauchy-Schwarz in-
equality to get

Lin_qy_o 1_ ,u
Vol < CopbG0e3 f Vonello dt llg0l,

—H
E
< Cop® =0 ™| fullollgo -

Therefore, we must prove now Theorem 19.
The point p’ = 1 of Theorem 19 can be proven readily. By Cauchy-
Schwarz and by the trace inequality ||(fdS)|, < CRz 11l 225y We get

1C£dS)" gull 13y < CR2| flallg [l

Hence, it suffices to prove the inequality (48) at the point p' = .

We begin the proof in the next section with the wave packet decomposi-
tion. This decomposition is nowadays a classical change of basis, so we only
outline it.

4.1 Wave Packet Decomposition

Let f be a function in R*!, and decompose the space into caps « of radius
R~ and center co € R"™1. Choose a smooth partition of unity {¢,} adapted
to the caps « so that >, (2 = 1. Use Fourier series adapted to each a to
expand f(, into frequencies w, and develop f as

F6) = lal ™ Y ala, w)Ca(€)e((w, € — ca)),

a,w
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where w = R2Z"~!. The coefficients a satisfy the next properties:
1
o) = | Faeltin — ey, (50)
o
D lala, )l = I f115- (51)

By the linearity of the extension operator, we can write (fdS)" as
(fds>v (iL’) = Z CL(OC, w)(bT(a,w)?

where ¢r is a function essentially supported in a tube T of dimensions
1 1 . .

Rz x .-+ x R2 x R; the angle and position of T" are determined by a and w

respectively. Furthermore,

1

7)| < CyR™ "z -
[ér(@)l M (R72 (2" + w + xTpcy))

w7 for [a,| < R;
so ¢r is concentrated in a tube 7' of direction (—c,,1) whose main axis
passes through (—w,0). We deduce also that for 6 > 0, for z ¢ R°T, and for
|z,| < R it holds

o7 (z)] < CsR™", (52)

where possibly Cs — o0 as § — 0.

The function g, can be written similarly. We decompose N, (Ss) into
rectangles [ of dimensions v x R™2 x -+ x B2 and center cg € R", where
cs is now a point in Sy. Arguing as before we have

3.(6) = 18172 D b(er, ) (E)e((w, € — cs)),
B,w

where w belongs to some rotation of the grid v~'Z x R2Z""!. Again, we get

1
b(B,w)=—+ | g.(se(—w,& —cp)) dE 53
(5= 7 [ tae( 6 =) (53
Slb(s.) = ] 54

Bw

By the linearity of the Fourier transform, we can write g, as

9y = Z 6(57 w)¢T(ﬁ,w)7
B,w
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. : _ 1 1 .
where T' are now tubes of dimensions 7! x R2 x --- x R2. Again, we get

n—1 1
or(z)| < CyvR™ 2 - ,
[or(z)] " (R72]2" + W' + 2] + vz, + w, DY
|pp(x)| < CsyR™1" for z ¢ R°T and for § > 0. (55)

We replace the wave packet decomposition into the bilinear inequality
(48), so we must prove that for ||al|, = 1 and [|b]|, = 1 we have

1
| Z aT1bT2¢T1¢T2||Ln%I(BR) < C.Rvn~¢.
T, T>

Since |¢7,| and |¢r,| decay strongly outside the tubes, then we can ignore all
the tubes that do not intersect the ball 10Bg, so the number of tubes in each
group is < RO™; recall that v=! > R2.

Now, for all the terms that satisfy |az,| or |bp,| < R™" the contribution
to the bilinear inequality is negligible, so we can ignore all these terms and do
pigeonholing in |az,| and |by,|; here, we introduce logarithmic losses. Hence,
for two collections of tubes T; and Ty that intersect the ball 10Bgz we must
prove that

e L _¢ 1 1
| Y onoml e, < C-Rv [Ty T2, (56)

T1€T1,T2€T2

The proof of this inequality begins with an induction on scales in the next
section.

4.2 Induction on Scales

We want to control the quantity

Ky(R):= sup  [|(fdS)"gull 1o (-

||f||2=ng||2=1

Rough estimates show that K, ,(R) is finite, thus well defined, and we want
to prove that K, ,(R) < C.Revn=.

The induction on scales seeks to control K, ,(R) in terms of K, ,(R'™°)
for some ¢ > 0, which we keep fixed in what follows, so we lower scales and
stop at scale ~ 71, when Tao’s bilinear theorem provides the best possible
upper bound, up to e-losses. From now on, we write R’ for R'°.
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We begin the induction by breaking up the ball By into balls Br.. Now,
we define a relationship between balls and tubes, so that a tube is related to
a ball if the contribution of ¢ to the bilinear term is large in that ball. We
need first decompose Bp into balls ¢ of radius R%, and now we introduce the
following group of definitions for a dyadic number pus:

To(q) := {Th e Ty | R°Ty nq # &} (57)
q(p2) == {q < Br | p2 < |Tao(q)] < 2p2} (58)
/\(Tl,/,LQ,BR/) = |{q S q(/LQ) | q BR’ and R5T1 N q # @H (59)

Definition 20 (Relation between tubes and balls). For every number p5 and
every tube 77 € Ty choose a ball B}, (i, T1), if it exists, that satisfies

MTh, p2, Bry) = max AT, po, Brr) > 0.
R/

We say that a tube T € T, is related to a ball B < Bg, or T} ~ Bp, if
Br < 10B3,(pe, T1) for some p5. The negation of T} ~ Bp is 11 # Bp.
Symmetrically, we can define a relation between tubes T5 € Ty and balls Bp.

Every tube in T; intersects a number < RY of balls By < Bpg, but
each tube is related only to < log R balls. This follows from the condition
1< < R%l+06-

Now, we bound the bilinear term as

1Y} ondnlley < D, 1)) ¢nonlws,,

TheT1 BR/CBR T1,T>

TQETQ
<Y Y ononle,t

BR/CBR T1~BR/,T2~BR/

+ ” Z ¢T1¢T2HLP’(BR,) + H Z ¢T1¢T2||LP’(BR,)>'
T17CBR/,T2 T1~BR/,T27¢BR/

=T+ 11411 (60)

For the first term I at the right we use the inductive hypothesis, Cauchy-
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Schwarz, and the bound [{Bg | T; ~ Br/}| < log R to get
1 1
22 ononlw, S K®R) D, W~ Bell2{T> ~ Bu}l®

BR/CBR T1~BR/ BR,CBR
To~Bpgr
: :
Rl)( Z 1{T1~BR/}> < Z ]1{T2~BR/}>
Bpi, Th Bri, T
< C(log R)K(R)|Ty|?|Ts|>. (61)

We have bounded so the main contribution with an acceptable logarithmic
loss.

We turn now to II in (60); the term III can be similarly controlled, so we
will not describe it. We bound the L#T-norm by interpolation between the
points p’ = 1 and p’ = 2. For p’ = 1 we use Cauchy-Schwarz and the trace
inequality to get

1 1 1
Y, ¢nonlliis,) S R2IT?(Ta|; (62)
Ty #Bp,Ts
recall that .. By ¢, = (fdS)" for some function f in S, and >, ¢7, = g,
for some function g,, so we only applied the trace theorem to (fdS)", and
used (51) and (54). We are left with the point p’ = 2.
If we are to prove (56) by interpolation, we must get the upper bound

| Y en0nliam,) Ss ROTDOUITL T,

Ty % B g T
This inequality is in general false, if we do not put constrains over the tubes.
The simple example f = 1 and g, = 1 in N,(Ss) is enough, and worst
examples can be given. Hence, we have to exploit the special structure of
the tubes T} # Bg.

We use the decomposition of Bg into cubes ¢ of radius R2 and the defi-

nition (58) to write the L*-norm as

> ¢T1¢T2||L2(BR,) N o101, 172,
T17‘BR/ T H2 geq(u2) Th#Bp,To

By pigeonholing, it suffices to control the norm for a fixed u,. We introduce
now the definitions

MTh, p2) := g € q(uz) | BTy 0 q # &} (63)
Tl[ﬂg, ] {Tl € Tl ‘ )\1 < (Tl,lug) < 2)\1} (64)
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Since 1 < A\ < R%+C‘5, by pigeonholing again it suffices to prove

2| > Or,91l[12) S5 B ETOUTI||Ta|. (65)
qeq(ug) T17¢BR/,T71—‘€T1[,LLQ,)\1]
2

The case A(T1, u2) = 0 is handled with (52). In the next section, we use the
special nature of the L?-norm to decouple the frequencies.

4.3 Decoupling at Scale Rz

We need first a L? upper bound of the bilinear operator. Recall that the
extension operator is defined as

(FaS) (@) = | FOU €D + auple) e

where ¢(¢&') = ]§’| and & = (£',&,). For an open subset S; of the paraboloid,
we denote by W(Sl) its projection to R™~1.
We need also the Radon transform of a function, and we define it as

RIE.0)= [ €+ ma(n.0))

the Radon transform Rf (&', 0) is the integral over the hyperplane with normal
0 that passes through &'

Lemma 21. Let S and Sy be two open subsets of the paraboloid with radius
~ 1 and at distance ~ 1 of each other. Suppose that fdS and gdS are
measures with support in S1 and Sy respectively. Then, it holds that

1(fdS)* (9dS)* I3 < ClIfll, sup RIfI(¢, 6, 5”)||9||1||9||oo (66)
gﬁew((gl) |£ 5 |

Proof. We compute the square of the extension operator as

(Fasy @I = | s+ )T e
e((a', &) + malpl€ + &) — (&) del e
- [ ([ #e+ )7 @36 + &) - el — ey )elca ) des
= F(2),
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where F'is the function in parentheses. Thus, we get

I(fdS)* (9dS) |5 = J(F* G)"(x)dr = (F = G)*(0).

We develop the convolution and change variables, so that
I(£d5)*(9a3)" 3 = [ €9 (&)

| 7@+ a(es+ 066160 - o(6s + )+ ,0)60(E0 +€0) — 0l ~ 1) ds
d&dgs.

We can use Fubini to put inside the integral with respect to &; ,,, so that after
the change of variables &, — &1, + (& + &) — p(&5) we get

. f 5p(E)) — (€L + E0) + E)S (€ + E) — (E) — £0,) dbvs
— 5(EL & — ).

Then, the L? norm gets into

1(fdS)* (9dS)"|l5 < f\f\(ﬁé)\g\( é’)f\f\(fﬁﬁi)\fﬂ( 5 +81)0(C61, & — &5)) d€1d&ydEy

(67)

< £l Mgl Nl sup J|f|(£’2 +£1)0((&, & — ) d&y.

Finally, by the identity d(at) = a~'d(t), and the condition of separation
between S; and Ss, we get

/ / 1ot " / / 5/ — &
1116+ €t & — ) aes < RN =),
2 762
which concludes the proof. O

We use now Lemma 21 to bound each term at the left side of the inequality
(65). To simplify, let us define T} := {1} # Br'} n Ti[p2, \1]. By (50) and
(53) we can neglect the contribution from tubes such that R°T nq = &. We
define so the functions

JAGE 2 Y Ga(€)ew, € — ca)

TleT’ (9)

Ga© =182 Y GlO)el(w, € — ca)).

T>€T2o (q)
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We write g,, as an average over paraboloids as in (49), and by Minkowski
and Cauchy-Schwarz we get

| D 01,07 1720 < 1(fadS)" gl

Tle’ll"l (q),TQETQ( )
< (7dS)" | (@S)elant) at]
< v {145 @, d9)" s d

We apply Lemma 21 to the integrand, using the inequalities

I£.ll, < BT [T} (q)]

138l < v RRTTTa(g)l, bl < v ERT
to get
2 —n=l o8 , 5/ o g//
D bnonliag < CvR™T YOIT()lTalg)| sup RIf (€, 5—>)-
/ E’Eﬂ(sl) |§ _§ |
T1€Ty(q) Erem($))
TQETQ(q) 2
(68)

Let T (q)(&', ¢ —&") denote the collection of tubes in T (gq ) such that the
corresponding cap « intersects the hyperplane with normal (£ —&”)/[¢" — £”|
that passes through ¢’. Then,

é’/ _ 5// a1 1
sup  RIf| (€, 2 —2) S BT 72 sup [Ti(g)(€,¢ &)
g'en(S1) & —¢&"| gen(Sy)
5”671'(52) 5”671'(52)

= R_%+%V(q7 Hoy A1)

we choose the last definition with the same notation as Tao in [25]. We
replace in (68) to find

Y 01,07 | 72() < CvR'”5 0 (q, pia, M) Ty (9)] T2 (g)],

Ty ETll (q) ,TQ €Ty (q)

where T := {11 # Bgr} n T1[u2, A1]. Summing over all the cubes ¢ € q(u2)
we get

2 01,01 |72 < CVR'™EF 30 w(g, o, AT (a)l T2 (a) -

qeq(u2) T1€T)(q),T2€T2(q) qeq(p2)

(69)
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The term at the right does not involve oscillations, so we achieved a decou-
pling of the oscillating tubes at the left. To conclude the proof of (65), we
must get an upper bound of v(q, u2, A1), which we do in the next section.

4.4 A Kakeya-type Estimate
In this section we aim to prove the inequality
T, |
a) < O T2l 70
v(qo, 2, A1) Lo (70)

for some fixed gy € q(p2), p2 and Ay. For any & € w(S;) and £” € 7(95,) we
consider then the following bilinear expression

B = J > Lopsr, Y. oo,

qeq(u2) T1€T(q0) (&€& —¢€") T5€eT,

Br\10B

By the definition of ¢(us) we get

B Z M2 Z quq(uz) ]]'2R5T1'
TieT} (q0)(£",6'—€") “ BR\10B

Since for Ty € {Ty #* Br} N Ti[p2, \1] it holds that |{q € q(u2) | R°T} N q #
T} ~ A1, we see that

|{q € q(IMQ) | q BR\loBR/ and R6T1 Nq # @H =z R76>\1.

Then,
B2 R2\pis| T (o) (€, € =€) (71)
To get an upper bound of B, we re-order the summations so that
B < Z f ]12R5T2 Z ]12R5T1‘
TheTs BRr\10Bp/ TieT! (qo) (&€ —¢")

Since all the tubes intersect gy © B/, we see that

> Toper, (z) S RY for x € BR\10Bg.
T1eT’ (q0)(€',€'—¢€")
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The tubes in T (qo) (£, & — £") have directions (—cq, 1), where ¢, lies at dis-
tance < R™2 from a hyperplane with normal direction £ — £” that passes
through &. Then, the main axis of all the tubes in T} (go)(¢', &' — £”) make
an angle < R~2 with a hyperplane with normal direction (& —=¢" ¢ -
¢”)) that passes through ¢o. It amounts to saying that the support of
ZTleT,l (qo)(&'.¢'—¢eny Larory, lies inside the R+ neighborhood of a hyperplane
that passes through ¢o. Furthermore, every tube from T, intersects the hy-
perplane transversally, making an angle > ¢ uniformly. Then,

B < R2TOTy|. (72)
We use (71) and (72) to conclude that
T ao)(€' € — €] < R
At

which is what we wanted to prove.

4.5 End of the Proof

In this section we reap all the bounds we have obtained. We plug (70) into
(69) to get

DoY) bndnlliag <vRTEFCT Y A T2, Ml(g)]

qeq(p2) T1€T)(q) qeq(p2)
TQETg(q)
< VR 2Ty Z A Z Liry nrsgzz)
T1€T1[A1,p2] qeq(p2)

< VRO Ty || Ty,

This concludes the proof of (65).
We interpolate the bilinear norm between the points p’ = 1 in (62) and
p' =2 1in (65) to get

1kl
|| Z ¢T1¢T2||L”%I(BR/) < C5(logR)0RC(SV"|T1|2|T2|2-
Tl’?"BRI7T2
This bound joins the inequalities (60) and (61) to yield
1 1 1
IS 6161, ) < Collog R UL(R) + RO Tl Tl

Tl ETl
TQGTQ
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in other words,
K,(R) < Cs(log R)° (K, (R) + R%vw).
When we iterate, we get at the N-th step
K,(R) < CY(log R)NC(K,(RVD") + NRyw).
We stop when R0 < p=1 < RO=9"""" the number of steps is

1
N<——r——o+1<20h.
log(1 —0) -

If r < v 1, then we can average over translations of the paraboloid and apply
n+2+

Tao’s bilinear to get K, (r) < Cor'™ "2 12, We have thus that
K,(R) < CsRO (v 552 4 ) < CyR v

This concludes the proof of Theorem 19, which implies Theorem 7.

4.5.1 Additional Remarks

We indicate here the changes we need to do for surfaces of elliptic type or
the hemisphere. The argument is sufficiently robust to admit perturbations.
For surfaces of e-elliptic type, the semi-norms |0~ ®|| , enter in the con-
stants Cs of (52) and (55). Since the eigenvalues of D*® are close to one,
then the tubes have approximately the same length.
The delta function in (67) gets into

0(P(&) — P(&1 + &) + P& + &) — (&) = S(CA(GL — &), €1)

for some matrix A with eigenvalues in [1 —¢,1+¢]. Then [(A(& —&5), &) —
(& — &5, &) < Ok, and instead of an integral over the hyperplane H with
normal direction &, — &) that passes through &), we integrate over a (n — 2)-
surface H that lies in a e-neighborhood of H and passes through &,

A tube associated with a cap with center ¢, has velocity (—V®(c,), 1).
If P R"is a (n — 1)-cone with center in a cube ¢ generated by all the lines
with directions (—V®(7), 1) for n € H, then we must verify that all the tubes
coming from the separated set Sy are transversal to P. In fact, notice that
for any point &, + &) € H, a vector v tangent to H satisfies the equation

(VO(&] + &) = VO(§ +&),v) =0
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hence, (A(&y — &;),v) = 0 for some matrix A close to I. Then, the vectors
normal to P have the form (A(&] — &), (V®(&+ &), A(&S —&5))). If we take
the inner product of these vectors with (—=V®(1,),1) for 1y € 7(Ss), then we
get

(A& = &), V(& + &) = VO(n2)) = (A& — &), A/(& + & — m2));

hence, the inner product is basically equal to {n, — n2,n] — n}) for all the
pairs my,m) € w(S1) and 19, n5 € 7(Sa), and |[(n; — m2,m} — Mhy| = ¢ > 0, then
P is uniformly transversal to all the tubes coming from S,. The estimates
hold uniformly in € « 1.

The case of the hemi-sphere is similar. The term (67) is almost as simple
as for the paraboloid. By symmetry, we can assume that & = —ae; and
&) = aey for some 0 < a < \/LE + 15. Then, the (n — 2)-surface H is again
a hyperplane H with normal direction e; that passes through &,. The cone
P is a translation of a portion of the quadratic cone {€ | €2 = a2|¢]*}. It is
intuitively clear that the portion of the cone generated by direction from S
is uniformly transversal to tubes from S5.

Appendix: Non-averaged Upper Bounds

We may wonder whether it is really necessary to average, or we just have not
pushed as much as possible the estimates for HM@””X% =y We show that
¢

averaging is indeed necessary.

Theorem 22. If f € WdQ;pz’p(R”), ford < p < 0, is a function with support
mn By, then
|

where C' does not depend on (. The inequality is best possible, in the sense
that it is not possible to lower the reqularity of f.

| Mo, g

=< Clflsz,y (73)

1
2
XC —>XC

Proof. Tt is not necessary to use bilinear theory to get (73), the computations
of Haberman in Section 4 of [11] are enough. To see that the result is best
possible, we fix ¢ = 7(e; — ies) and consider the 7 2-neighborhood of a
2-plane of side-length 1 lying in the plane (z1,x2), and denote this set by
F. We define f(z) := e?™?7221 (1), where @p is a smooth cut-off function

of I —see Figure 5(a), and we have that | f[[, , ~ 7% . To estimate the
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L1 wave-length = (27)7!

7-_%// =z A TA}
L2 T [ 52
»-1-<
/
S
b)

Figure 5: (a) Representation of the function f, and (b) of the Fourier trans-
forms of u and v.

operator norm of 0, f we consider the box B of dimensions 1 x 1 x TEX--XT2
centered at zero, and take 4 = pp and 0 = pg(- — 27ey), for which ||u||X

||v||X% — 74, see Figure 5(b). The duality pairing gives (3 fu,v)| = 72. If

)

¢
K is the best constant in (73), then we get

d d=2 d
T2 S K7°7 % 72
if K is to be uniformly bounded in {, then necessarily s > dQ;pz. O

If we did not need bilinearity to get the sharp upper bound (73), where
does the gain of bilinearity come from? It comes mainly from Lemma 15.
Where does bilinearity fail to improve over (73)? At the second term at the
right of (42).

Notations

e Relations: AL, BifA<SCB;, A~BifA<B<A A«1ifA<e,
where c is chosen sufficiently small.

e Various: e(z) := 2™, (z) = (1 + |z|*)2. B,(x) a ball of radius r with
center at x. §, dr := %S?WM dr. a+ :=a+¢efore « 1. If E is a set,
then 1 is the characteristic function of the set, and | F| is its measure,
where the measure can be deduced from the context. If 7" is a tube
with main axis [, then AT is a dilation of T by a factor A > 0 and
same main axis /.
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e Multipliers: m(D)f = (mf)Y, where m stands for multiplier; Pf =
m(D)f, where m is a smooth cut-off for a set of frequencies where we
want to project to.

e The operator A¢ := A + ¢ - V has symbol p(€) := —|€]* + 2iC - € and
characteristic X := {£ | pc(§) = 0}.

o ((U,T):=7(Uey —iUey), where {e;} is the canonical basis, 7 > 1 and
U € Oy is a rotation.

o l[ull%y = Slpc(©)1*[a(€)[* de.

o [ullks, = §pe(©)] + o)A dé for o > 0; Jlull e = llully -

e Sobolev-Slobodeckij spaces: For 1 < p < oo, W*P(R?) is the space of
distributions f such that

||f||s,p = Z ||Daf||p < o for s integer.

la|<s
1

If1,, = [ P<fll, + (2 25kp||Pkf||£) P <0 for 0 < s # integer.
k>0

For a domain Q) = RY, we define W*P(Q) := {f|q | f € W*P(RY)}. The
space W*P(Q) is the completion in W*P(R?) of test functions D(Q) :=
{p e C®(Q) | supp ¢ € Q}. For further details, see e.g. |28, 19].

o (fdS)Y(z) = Sz [(§e((d!, &) + xnp(§)) dE, where S is the graph of
¢ and (2/,x,) € R™.
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