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Abstract

Variational space-time formulations for partial differential equations have
been of great interest in the last decades, among other things, because
they allow to develop mesh-adaptive algorithms. Since it is known that
implicit time marching schemes have variational structure, they are often
employed for adaptivity. Previously, Galerkin formulations of explicit meth-
ods were introduced for ordinary differential equations employing specific
inexact quadrature rules. In this work, we prove that the explicit Runge-
Kutta methods can be expressed as discontinuous-in-time Petrov-Galerkin
methods for the linear diffusion equation. We systematically build trial
and test functions that, after exact integration in time, lead to one, two,
and general stage explicit Runge-Kutta methods. This approach enables us
to reproduce the existing time-domain (goal-oriented) adaptive algorithms
using explicit methods in time.

Keywords: linear diffusion equation, discontinuous Petrov-Galerkin
formulations, dynamic meshes, Runge-Kutta methods

1. Introduction

Adaptive algorithms for partial differential equations (PDEs) produce
optimal grids that seek to minimize the computational cost. For time depen-
dent problems, it is common to employ time-marching schemes and adapt
the time step size and/or the spatial mesh size employing a posteriori error
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estimates [11, 12, 38]. Alternatively, there exist adaptive strategies based on
space-time finite element methods (FEM). In some algorithms, the authors
assume a space-time tensor-product of the trial and test functions. Then,
employing discontinuous-in-time basis functions, the space-time FEM can be
reinterpreted as a time-marching scheme [43, 45]. Here, the approximation
orders (in space and time) as well as the mesh size and the time-step size
can be adapted [46, 50]. That is, space-time FEM can build unstructured
space-time meshes [1, 2, 19, 36].

To perform goal-oriented adaptivity [6, 7, 10, 44, 47, 51], we require
a space-time variational formulation of the problem. In this kind of algo-
rithms, we represent the error in the quantity of interest as an integral over
the whole space-time domain that is subsequently expressed as a sum of
local element contributions, which we use for adaptivity. A full space-time
variational formulation allows such representation [17]. However, the most
used space-time variational formulations for PDEs lead to implicit methods
in time when they are thought as time marching schemes. For that rea-
son, adaptive strategies based in space-time FEM as well as time-domain
goal-oriented adaptive processes employ implicit methods in time.

Our focus is to design goal-oriented adaptive algorithms employing ex-
plicit methods in time since in many instances they can be computationally
cheaper than implicit ones. Nevertheless, explicit methods are conditionally
stable and the Courant-Friedrichs-Lewy (CFL) condition must be satisfied
to ensure stability. To cope with this, in [37] we proposed an explicit-in-time
goal-oriented adaptive algorithm employing the Forward Euler method that
adapts locally the time grid based on the CFL condition.

To solve time-dependent PDEs, we commonly discretize independently
the spatial and temporal variables (also called semidiscretization or method
of lines) [42]. First, the spatial variable is discretized by the finite element
method to obtain a system of ODEs. The resulting system is subsequently
solved employing time stepping schemes. The alternative idea of using varia-
tional space-time methods was well established in the late eighties and early
nineties [4, 20, 25, 34]. Hughes and Hulbert [30, 31] proposed a stabilized
space-time FEM for hyperbolic problems. They showed that the oscillations
present in the solutions were considerably reduced by employing space-time
variational formulations rather than using semidiscretizations. Nowadays, it
is well known that some low-order space-time FEM are algebraically equiva-
lent to some semidiscretizations [5]. For example, the discontinuous Galerkin
method using constant functions in time (usually denoted by dG(0)) leads
to the Backward Euler method. The continuous Petrov-Galerkin method
in time with linear trial and constant test functions (denoted cGP(1)) is
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equivalent to the Crank-Nicholson method. Recently, higher order dG(k)-
and cGP(k)-methods have been developed and analyzed for parabolic and
hyperbolic problems [3, 21, 33, 35].

There also exist variational formulations of time marching schemes in
the context of Ordinary Differential Equations (ODEs) [8]. Delfour et. al.
[14, 15] and Hulme [32] showed that it is possible to obtain classical schemes
like Runge-Kutta methods by employing Galerkin methods for initial value
problems together with quadrature formulas. Estep and French [22, 23]
derived error bounds for the continuous and discontinuous Galerkin meth-
ods to efficiently adapt the time step size. More recently, Estep and Stu-
art studied the dynamical behavior of discontinuous Galerkin methods for
ODEs in [24] and Tang et. al. provided in [48] a unified framework of finite
element methods in time. In [26, 48], the variational formulation of sym-
plectic time integrators are studied for Hamiltonian systems. There also
exist some works describing variational formulations of explicit methods for
ODEs. In [52], the authors derived some low order explicit Runge-Kutta
methods by selecting specific quadrature rules and test functions. However,
they claimed that with the formulation they proposed, it is not possible
to reproduce second-order Runge-Kutta methods with null weights in the
Butcher tableau (bj = 0). In [13], Collins et. al. also proposed a variational
formulation for explicit schemes by inserting some operators in the equa-
tion together with quadrature rules. They also derived an a posteriori error
estimation of explicit schemes in the goal-oriented approach. In this case,
the errors committed by using the operators and the quadratures must be
included in the error representation. In both settings [13, 52], it is possible
to recover some explicit Runge-Kutta methods but only on a case-by-case
basis and not in a constructive way.

In this work, we propose a constructive method to derive variational
formulations of explicit Runge-Kutta schemes of any stage. We apply it to
parabolic problems, but its extension to other linear and some nonlinear
problems is straightforward. Given a Butcher tableau, we systematically
build the corresponding trial and test basis functions integrating analytically
in time. In particular, we characterize all the second-order and two-stage
explicit Runge-Kutta methods. As we fully define the trial and test spaces,
we can naturally represent the error in the quantity of interest in the same
way as for implicit methods [6, 44]. Such error representation allows us
to design explicit-in-time (and consequently cheaper) goal-oriented adaptive
algorithms. The presented formulation is also useful to build new time-
stepping schemes of Runge-Kutta type or more general ones, and also to
extend the existing space discretizations like IGA [27, 29, 49], DPG [16] and
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Trefftz [18], to time domain problems.
First, we derive a discontinuous-in-time Petrov-Galerkin formulation of

the problem that allows us to use discontinuous trial and test functions
in time. In order to obtain an explicit method, we define the jumps of
the solution using a downwind approximation across each time interface
instead of an upwind approximation as in classical discontinuous Galerkin
methods in time. We prove that by selecting piecewise-constant trial and test
functions, we recover the Forward Euler method. This construction supports
dynamic meshes in space, i.e, we allow different spatial discretizations per
time interval. In order to obtain square mass matrices, we displace in time
the spatial discrete spaces of the test space with respect to the trial space.
This displacement leads to a Petrov-Galerkin method both in space and
time.

For a general number of Runge-Kutta stages, we define families of piece-
wise polynomials that are discontinuous-in-time for both trial and test spaces.
By substituting them into the variational formulation and treating the coeffi-
cients of the polynomials as unknowns, we obtain integrals of the products of
trial and test functions. Then, we establish some conditions that these time
integrals must satisfy. First, we state the necessary orthogonality conditions
needed to obtain an explicit method. We also define non-orthogonality con-
ditions by matching the remaining integrals with the entries of the Butcher’s
tableau that define the Runge-Kutta methods. Finally, performing analytic
integration, we obtain a system of nonlinear equations. By solving this sys-
tem, we obtain the coefficients of the trial and test functions for any stage
Runge-Kutta method. We define the corresponding trial and test spaces as
the span of these functions. However, for a large number of stages (above
5) the system becomes hard to solve.

This article is organized as follows. Section 2 describes the strong and
weak formulations of the linear diffusion equation we use to develop the
theory. In Section 3, we derive a discontinuous-in-time Petrov-Galerkin for-
mulation of the problem. In Section 4, we build the trial and test functions
for the one, two, and general s-stage Runge-Kutta methods, providing some
examples. Expert readers may directly go to Section 4.3, while those inter-
ested on low-order methods only, may have a more accessible presentation
by reading Sections 4.1 and 4.2. In Section 5, we explain how to apply
our constructions to goal-oriented error estimation. Section 6 describes the
conclusions and the possible extensions of this work. Finally, in Appendix
A, we express in matrix form the nonlinear system of equations we need to
solve to obtain any explicit Runge-Kutta method. Appendix B provides a
MATLAB code to solve it.
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2. Model Problem

In this section, we state both the strong and weak formulations of the
model problem we employ to develop the discontinuous-in-time Petrov-
Galerkin formulations.

2.1. Strong formulation

Let Ω ⊂ Rd, where d ∈ {1, 2, 3}, and I = (0, T ] ⊂ R. We consider the
linear heat (diffusion) equation

ut −∆u = f in Ω× I,
u = 0 on ∂Ω× I,

u(0) = u0 in Ω,

(1)

where ut := ∂u/∂t, ∆u = div(grad(u)) is the Laplacian of u and ∂Ω denotes
the boundary of the spatial domain Ω. The solution u(x, t) of (1) could
represent the temperature distribution in a body. The source term f(x, t)
and the initial temperature distribution u0(x) are given data. For arbitrary
Dirichlet (geometric) boundary conditions, we can modify the source term
accordingly, thus making (1) a general statement.

2.2. Weak formulation

In order to obtain the weak formulation of (1), we multiply the diffusion
equation by test functions v of a suitable space V and we integrate over the
whole domain Ω× I∫

I

∫
Ω

(
vut − v∆u

)
dΩ dt =

∫
I

∫
Ω
vf dΩ dt, ∀v ∈ V.

Integrating by parts in space the diffusion term and selecting test functions
vanishing on ∂Ω we obtain∫

I

∫
Ω

(
vut +∇v · ∇u

)
dΩ dt =

∫
I

∫
Ω
vf dΩ dt, ∀v ∈ V. (2)

A sufficient condition for the above integrals to make sense is if all factors in
the above products are in L2 in both space and time. For the space integrals,
taking into account the diffusion term in (2), it seems natural that u and v
should be in

V := H1
0 (Ω) := {u ∈ L2(Ω) | ∇u ∈ L2(Ω), u = 0 on ∂Ω},
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and therefore, to guarantee integrability of the weak formulation, ut and f
should belong to V ′ := H−1(Ω), which is the dual space of V. In time, it is
enough to ensure that all the functions in (2) are in L2.

In the remaining of this article, we omit the spatial dependence of the
functions, i.e., we write u(t) instead of u(x, t). We consider u(t) and v(t) as
functions in time that take values in suitable Hilbert spaces [41], so in view
of the sufficient integrability conditions discussed in the previous paragraph,
we construct the following test space

V := L2(I;V ) =

{
u : I −→ V | u is V -measurable and

∫
I
||u(t)||2

V
dt < +∞

}
,

which is the space of all integrable functions in time that take values in V .
On the other hand, for the solution, we need u ∈ V and ut ∈ V ′ :=

L2(I;V ′), so we define the following trial space

U := {u ∈ V | ut ∈ V ′}.

Finally, assuming that f ∈ V ′ and u0 ∈ L2(Ω) and imposing the initial
condition in weak form, the weak formulation of problem (1) reads: Find
u ∈ U such that

∫
I
〈v, ut〉 dt+

∫
I
(∇v,∇u)dt =

∫
I
〈v, f〉 dt, ∀v ∈ V,

(v̂, u(0)) = (v̂, u0), ∀v̂ ∈ L2(Ω),

(3)

where 〈·, ·〉 denotes the duality pairing between the spaces V and V ′, and
(·, ·) is the inner product in L2(Ω). We now define

B(v, u) :=

∫
I
〈v, ut〉 dt+

∫
I
(∇v,∇u)dt. (4)

3. Discontinuous-in-time Petrov-Galerkin formulation

In this section, we derive discontinuous-in-time Petrov-Galerkin formu-
lations that are equivalent to explicit Runge-Kutta methods in time.

We perform a partition of the time interval Ī = [0, T ] as

0 = t0 < t1 < . . . < tm−1 < tm = T,

and denote Ik := (tk−1, tk), τk := tk−tk−1, ∀k = 1, . . . ,m and τ := max
1≤k≤m

τk.

Now, we select the following semi-discrete spaces

Uτ := {u ∈ L2(I;V ) |u|[tk−1,tk)
∈ Pq([tk−1, tk) ;V ), ∀k = 1, . . . ,m, u(T ) ∈ V },

Vτ := {v ∈ L2(I;V ) | v|(tk−1,tk]
∈ Pr((tk−1, tk] ;V ), ∀k = 1, . . . ,m, v(0) ∈ V },

(5)
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where Pr(Ik;V ) denotes the space of polynomials of degree less than or equal
to r taking values in V . The functions in Uτ and Vτ could be discontinuous
at each time step tk. Moreover, the trial functions are right-discontinuous
while the test functions are left-discontinuous in time [48] (see Figure 1).
Therefore, both Uτ and Vτ are subspaces of V. However, Uτ 6⊂ U (because
functions in Uτ are discontinuous) and U 6⊂ Uτ (since functions in Uτ are
piecewise polynomials).

tk−1 tk tk+1 tk−1 tk tk+1

uτ (t) vτ (t)

Figure 1: Discontinuous trial and test functions.

As we consider discontinuous functions in time and different trial and
test spaces, we need a discontinuous-in-time Petrov-Galerkin formulation of
problem (3). We define the jump of a function v at each time interface tk
as JvKk = v(t+k ) − v(t−k ), where v(t±k ) := lim

ε→0+
v(tk ± ε). Now, we integrate

by parts in time the bilinear form (4) over each subinterval Ik

−
∫
Ik

〈vt, u〉 dt+

∫
Ik

(∇v,∇u)dt+ (v(t−k ), u(t−k ))− (v(t+k−1), u(t+k−1)).

At each time interface, instead of performing an upwind approximation of
the solution like in the standard DG approach, we perform a downwind
approximation in order to obtain an explicit method. That is, we substitute
u(t−k ) by u(t+k ) in the above formula. Then, integrating by parts again, we
obtain∫

Ik

〈v, ut〉 dt+

∫
Ik

(∇v,∇u)dt+ (v(t−k ), u(t+k ))− (v(t−k ), u(t−k )). (6)

We define two subspaces Ũτ ⊂ Uτ and Ṽτ ⊂ Vτ as

Ũτ := {u ∈ L2(I;V ) |u|[tk−1,tk)
∈ P incuq ([tk−1, tk) ;V ), ∀k = 1, . . . ,m, u(T ) ∈ V },

Ṽτ := {v ∈ L2(I;V ) | v|(tk−1,tk]
∈ P incvr ((tk−1, tk] ;V ), ∀k = 1, . . . ,m, v(0) ∈ V },

(7)

where P incuq (Ik;V ) (and P incvr (Ik;V )) are (possibly) incomplete spaces of
polynomials of degree less than or equal to q (and r, respectively) taking

7



values in V . We define explicitly these incomplete spaces of polynomials in
the next section.

Now, summing the expression (6) over all intervals, and adding the initial
condition, we obtain the following discontinuous-in-time Petrov-Galerkin
formulation of (3):{

Find uτ ∈ Ũτ ⊂ Uτ such that

BDG(vτ , uτ ) = F (vτ ), ∀vτ ∈ Ṽτ ⊂ Vτ ,
(8)

where BDG(v, u) := B(v, u) +
m∑
k=1

(
v(t−k ), JuKk

)
+ (v(0), u(0)) is a bilinear

form that admits discontinuous-in-time functions and

F (v) :=

∫
I
〈v, f〉 dt+ (v(0), u0).

In space, we employ either a spectral element method (SEM) or a finite
element method (FEM) [40]. We allow dynamic meshes in space so we define
a finite dimensional subspace of V for each time step, i.e., V k

h ⊂ V, ∀k =
0, . . . ,m, where h is the largest element diameter of each dynamic mesh.

Finally, we introduce two new subspaces Ũτh ⊂ Ũτ and Ṽτh ⊂ Ṽτ . Here,
to obtain the Forward Euler method, we assume that the basis functions
generating the subspaces Ũτh and Ṽτh can be expressed as Cartesian product
of space and time functions. However, in more general cases, we lose such
structure in order to obtain compatible schemes allowing dynamic meshes
in space. We define the fully discrete problem as:{

Find uτh ∈ Ũτh ⊂ Ũτ such that

BDG(vτh, uτh) = F (vτh), ∀vτh ∈ Ṽτh ⊂ Ṽτ .
(9)

We will determine subspaces Ũτh and Ṽτh in the next section so we recover
explicit Runge-Kutta methods for (9).

4. Explicit Runge-Kutta methods

In this section, to facilitate the understanding of the construction we
propose in this article, we first derive the Forward Euler method. Then, we
construct the subspaces for some two-stage and second-order explicit Runge-
Kutta methods and finally, we generalize the process to any s-stage explicit
Runge-Kutta method.
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4.1. Forward Euler method

In (5), we select piecewise constant functions in time, i.e. q = r = 0 and
we define the subspaces in (9) as

Ũτh := {u ∈ L2(I;V ) |u|[tk−1,tk)
∈ P0([tk−1, tk) ;V k−1

h ), ∀k = 1, . . . ,m, u(T ) ∈ V m
h }.

Ṽτh := {v ∈ L2(I;V ) | v|(tk−1,tk]
∈ P0((tk−1, tk] ;V k

h ), ∀k = 1, . . . ,m, v(0) ∈ V 0
h }.

(10)

In particular, the subspaces defined in (7) coincide with the spaces defined
in (5) with q = r = 0, i.e., Ũτ = Uτ and Ṽτ = Vτ .

We express the solution of (9) as follows

uτh(t) =

m+1∑
k=1

uk−1
h φk−1(t), (11)

where uk−1
h ∈ V k−1

h , ∀k = 1, . . . ,m+ 1 and the trial functions are

φk−1(t) =

{
1, t ∈ [tk−1, tk),

0, elsewhere,
φm(t) =

{
1, t = tm,

0, elsewhere.
(12)

We select the following test functions

vkhϕ
k(t), ∀k = 0, . . . ,m, (13)

where vkh ∈ V k
h , ∀k = 0, . . . ,m and

ϕ0(t) =

{
1, t = t0,

0, elsewhere,
ϕk(t) =

{
1, t ∈ (tk−1, tk],

0, elsewhere.
(14)

In this section, we assume that the trial and test functions can be ex-
pressed as a Cartesian product of functions in time and space. We will
show in the next sections that, in order to allow dynamic meshes in space,
we lose such Cartesian product structure of the test space Ṽτ . We com-
mit a slight abuse of notation by omitting the constants in (11) because we
can express each function ukh as a linear combination of basis functions in
V k
h , ∀k = 0, . . . ,m.

Theorem 1. (Forward Euler method) Selecting trial and test functions as
in (11) and (13), problem (9) leads to the following scheme
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Find u0
h ∈ V 0

h and ukh ∈ V k
h , ∀k = 1, . . . ,m, such that

(
vkh, u

k
h

)
=
(
vkh, u

k−1
h

)
− τk

(
∇vkh,∇uk−1

h

)
+

∫
Ik

〈
vkh, f

〉
dt, ∀vkh ∈ V k

h ,

(
v0
h, u

0
h

)
=
(
v0
h, u0

)
, ∀v0

h ∈ V 0
h ,

(15)
which is an explicit method that is a variant of the Forward Euler method
in time.

Proof. From the first test function of (13), vτh(t) = v0
hϕ

0(t), and substituting
it into (9), we obtain

(v0
h, u

0
h) = (v0

h, u0), ∀v0
h ∈ V 0

h ,

which is the L2-projection in space of the initial condition u0 on V 0
h ⊂ V .

Then, for k = 1, . . . ,m, each test function of the form vτh(t) = vkhϕ
k(t)

has local support in (tk−1, tk], so problem (9) reads∫
Ik

〈vτh, uτh,t〉 dt+

∫
Ik

(∇vτh,∇uτh)dt+ (vτh(t−k ), JuτhKk) =

∫
Ik

〈vτh, f〉 dt.

Now, as both trial and test functions are piecewise constant in time, each
term of the previous formula becomes∫

Ik

〈vτh, uτh,t〉 dt = (vkh, u
k−1
h )

∫
Ik

ϕk
∂

∂t
φk−1dt = 0,

∫
Ik

(∇vτh,∇uτh)dt = (∇vkh,∇uk−1
h )

∫
Ik

ϕkφk−1dt = τk(∇vkh,∇uk−1
h ),

(vτh(t−k ), JuτhKk) = (vkhϕ
k(t−k ), ukhφ

k(t+k )− uk−1
h φk−1(t−k )) = (vkh, u

k
h − uk−1

h ),∫
Ik

〈vτh, f〉 dt =

∫
Ik

〈
vkh, f

〉
dt.

Finally, we obtain(
vkh, u

k
h

)
=
(
vkh, u

k−1
h

)
− τk

(
∇vkh,∇uk−1

h

)
+

∫
Ik

〈
vkh, f

〉
dt.
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Scheme (15) is the Forward Euler method in time except for the source
term. A standard difference between variational forms and difference meth-
ods is that variational forms include an integral measure rather than a point-
wise sample of the forcing terms. In space, we can then employ the spectral
element method, which leads to a diagonal mass matrix for arbitrary dimen-
sional problems using arbitrary geometrical mappings [40].

Remark 1. To obtain an expression whose form is identical to the classical
Forward Euler method, we can interpolate the source term as

f(x, t) =
m+1∑
k=1

fk−1(x)φk−1(t),

where we identify fk(x) with f(x, tk). Then, the source term in (15) becomes∫
Ik

〈
vkh, f

〉
dt =

∫
Ik

〈
vkh, f

k−1φk−1
〉
dt = τk

〈
vkh, f

k−1
〉
.

Remark 2. In the subspaces defined in (10), as vkh ∈ V k
h , ∀k = 0, . . . ,m,

the spatial discrete spaces in the test space Ṽτh are displaced in time with
respect to the trial space Ũτh, which leads to a Petrov-Galerkin method. This
is needed to obtain invertible square mass matrices on the left-hand-side of
(15). Figure 2 illustrates this displacement of the spaces.

t0 t1 t2

. . .

tm−1 tm

V 0
h V 1

h V 2
h V m−1

h
V m
h

t0 t1 t2

. . .

tm−1 tm

V 0
h V 1

h V 2
h V m−1

h
V m
h

Figure 2: Illustration of the displacement in time of the trial (top) and test (bottom)
discrete spaces for the lowest order case q = r = 0.

4.2. Two-stage Runge-Kutta methods

In this section, following a similar derivation as in Section 4.1, we build
trial and test functions that generate the subspaces in (9) to obtain equiva-
lent methods to some two-stage second-order Runge-Kutta methods.
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We introduce a test function for the initial condition vhϕ
0(t) with vh ∈

V 0
h and being ϕ0(t) the function defined in (14). We also introduce two test

functions per temporal element Ik

vh,1ϕ
k
1(t), vh,2ϕ

k
2(t), (16)

where vh,1 ∈ V k
h , vh,2 ∈ V

k−1
h , ∀k = 1, . . . ,m. Then, we express the solution

of (9) as

uτh(t) =

m∑
k=1

uk−1
h,1 φ

k−1
1 (t) + uk−1

h,2 φ
k−1
2 (t) + umh φ

m(t), (17)

where uk−1
h,1 , u

k−1
h,2 ∈ V k−1

h , ∀k = 1, . . . ,m, umh ∈ V m
h and φm(t) is the

function defined in (12).
As before, the trial and test functions are piecewise polynomials defined

in Ik and globally discontinuous across the time interfaces. We define the
subspaces in (9) following a similar construction as in [44]

Ũτh := {u ∈ L2(I;V ) |u|[tk−1,tk)
∈ Ũk−1

τh , ∀k = 1, . . . ,m, u(T ) ∈ V m
h },

Ṽτh := {v ∈ L2(I;V ) | v|(tk−1,tk]
∈ Ṽkτh, ∀k = 1, . . . ,m, v(0) ∈ V 0

h },

where we define the following discrete subspaces in each interval

Ũk−1
τh := span

{
uk−1
h,1 φ

k−1
1 (t), uk−1

h,2 φ
k−1
2 (t) | uk−1

h,1 , u
k−1
h,2 ∈ V

k−1
h

}
,

Ṽkτh := span
{
vh,1ϕ

k
1(t), vh,2ϕ

k
2(t) | vh,1 ∈ V k

h , vh,2 ∈ V k−1
h

}
.

With this construction, we have that Ũk−1
τh ⊂ P incuq ([tk−1, tk) ;V ) and Ṽkτh ⊂

P incvr ((tk−1, tk] ;V ) and therefore, Ũτh ⊂ Ũτ and Ṽτh ⊂ Ṽτ . Here, we set the
orders of the polynomials equal to the number of stages, i.e., p = r = 2.

Remark 3. In order for the discrete system to make sense and obtain in-
vertible square mass matrices at each stage, we need the test functions (16)
to satisfy

vh,1 ∈ V k
h , vh,2 ∈ V k−1

h ,

so while both test functions are polynomials in time, in space they belong to
different spaces. Figure 3 illustrates this choice of the test functions.

We assume that each trial function is associated with a coefficient (as in
Figure 4). Thus, we impose {

φk−1
1 (t+k−1) = 1,

φk−1
2 (t+k−1) = 0,

(18)

12



ϕk
1 ϕk

2

V k−1
h

V k
h

Figure 3: Non-Cartesian space-time structure of the test functions inside each time interval
Ik.

tk−1 tk

1

φk−1
1 φk−1

2

t

Figure 4: Trial functions of arbitrary order inside each element Ik.

so uk−1
h,1 ∈ V

k−1
h is the value of uτh(t) at t+k−1.

We first substitute (17) and the first test function vhϕ
0(t) into (9) and

we obtain
(vh, u

0
h,1) = (vh, u0), ∀vh ∈ V 0

h .

Now, if we substitute (17) into (9), as each test function has local support
in Ik, we have that

BDG(vh,jϕ
k
j , u

k−1
h,1 φ

k−1
1 ) +BDG(vh,jϕ

k
j , u

k−1
h,2 φ

k−1
2 ) = F (vh,jϕ

k
j ), (19)

where j ∈ {1, 2}. In the above equation, we know that the jump of uτh(t)
at tk is

JuτhKk = uτh(t+k )− uτh(t−k )

= ukh,1φ
k
1(t+k ) + ukh,2φ

k
2(t+k )− uk−1

h,1 φ
k−1
1 (t−k )− uk−1

h,2 φ
k−1
2 (t−k )

= ukh,1 − uk−1
h,1 φ

k−1
1 (t−k )− uk−1

h,2 φ
k−1
2 (t−k ),

13



∀k = 1, . . . ,m− 1 and, in particular, for the last time step, we have:

JuτhKm = uτh(t+m)− uτh(t−m)

= umh φ
m(t+m)− um−1

h,1 φm−1
1 (t−m)− um−1

h,2 φm−1
2 (t−m)

= umh − um−1
h,1 φm−1

1 (t−m)− um−1
h,2 φm−1

2 (t−m).

Equivalently, we write equation (19) as(
vh,j , u

k−1
h,1

)∫
Ik

ϕkj
∂

∂t
φk−1

1 dt+
(
vh,j , u

k−1
h,2

)∫
Ik

ϕkj
∂

∂t
φk−1

2 dt

+
(
∇vh,j ,∇uk−1

h,1

)∫
Ik

ϕkjφ
k−1
1 dt+

(
∇vh,j ,∇uk−1

h,2

)∫
Ik

ϕkjφ
k−1
2 dt

+
(
vh,jϕ

k
j (t
−
k ), ukh,1 − uk−1

h,1 φ
k−1
1 (t−k )− uk−1

h,2 φ
k−1
2 (t−k )

)
=

∫
Ik

〈
vh,jϕ

k
j , f
〉
dt.

(20)

Now, reorganizing the terms in (20) we obtain(
vh,j , u

k−1
h,1

)(∫
Ik

ϕkj
∂

∂t
φk−1

1 dt− ϕkj (t−k )φk−1
1 (t−k )

)
+
(
vh,j , u

k−1
h,2

)(∫
Ik

ϕkj
∂

∂t
φk−1

2 dt− ϕkj (t−k )φk−1
2 (t−k )

)
+
(
∇vh,j ,∇uk−1

h,1

)∫
Ik

ϕkjφ
k−1
1 dt

+
(
∇vh,j ,∇uk−1

h,2

)∫
Ik

ϕkjφ
k−1
2 dt

+(vh,j , u
k
h,1)ϕkj (t

−
k ) =

∫
Ik

〈
vh,jϕ

k
j , f
〉
dt.

(21)

We build the trial and test functions to guarantee the satisfaction of
some design conditions. We need the following orthogonality conditions in
order to obtain an explicit method:

ϕk2(t−k ) = 0,∫
Ik

ϕk2φ
k−1
2 dt = 0.

(22)

In (21) we have two equations (one per test function) and uk−1
h,1 is a

known value from the previous step. By imposing (22), we can calculate

14



explicitly uk−1
h,2 from uk−1

h,1 and then compute ukh,1 from uk−1
h,1 and uk−1

h,2 . To
obtain a Runge-Kutta method, we need to impose further conditions on the
system. Indeed, the general expression of the two-stage and second-order
explicit Runge-Kutta method we want to obtain is

(vh,1, u
k
h,1) −(vh,1, u

k−1
h,1 ) +

τk
2α

(∇vh,1,∇uk−1
h,2 )

+

(
1− 1

2α

)
τk(∇vh,1,∇uk−1

h,1 ) =

∫
Ik

〈
vh,1ϕ

k
1, f
〉
dt,

(vh,2, u
k−1
h,2 )−(vh,2, u

k−1
h,1 ) + ατk(∇vh,2,∇uk−1

h,1 )=

∫
Ik

〈
vh,2ϕ

k
2, f
〉
dt,

(23)

where α ∈ R − {0} and its corresponding Butcher tableau is described in
Table 1.

0 0 0

α α 0

1− 1
2α

1
2α

Table 1: Butcher tableau for the two-stage and second-order Runge-Kutta method.

In order to obtain (23) from (21), in addition to the orthogonality con-
ditions (22), we need to impose also the following conditions from the first
equation of (23):

ϕk1(t−k ) = 1,∫
Ik

ϕk1
∂

∂t
φk−1

2 dt− ϕk1(t−k )φk−1
2 (t−k ) = 0,∫

Ik

ϕk1
∂

∂t
φk−1

1 dt− ϕk1(t−k )φk−1
1 (t−k ) = −1,∫

Ik

ϕk1φ
k−1
2 dt =

τk
2α
,∫

Ik

ϕk1φ
k−1
1 dt =

(
1− 1

2α

)
τk,

(24)

15



and also from the second equation of (23):

∫
Ik

ϕk2
∂

∂t
φk−1

2 dt− ϕk2(t−k )φk−1
2 (t−k ) = 1,∫

Ik

ϕk2
∂

∂t
φk−1

1 dt− ϕk2(t−k )φk−1
1 (t−k ) = −1,∫

Ik

ϕk2φ
k−1
1 dt = ατk.

(25)

Finally, from (18), (22), (24) and (25), the conditions that the trial
and test functions must satisfy to obtain the general 2-stage Runge-Kutta
method (23) are

ϕk1(t−k ) = 1, ϕk2(t−k ) = 0,

φk−1
1 (t+k−1) = 1, φk−1

2 (t+k−1) = 0,∫
Ik

ϕk1
∂

∂t
φk−1

1 dt− φk−1
1 (t−k ) = −1,

∫
Ik

ϕk1
∂

∂t
φk−1

2 dt− φk−1
2 (t−k ) = 0,∫

Ik

ϕk2
∂

∂t
φk−1

1 dt = −1,

∫
Ik

ϕk2
∂

∂t
φk−1

2 dt = 1,∫
Ik

ϕk1φ
k−1
1 dt =

(
1− 1

2α

)
τk,

∫
Ik

ϕk1φ
k−1
2 dt =

τk
2α
,∫

Ik

ϕk2φ
k−1
1 dt = ατk,

∫
Ik

ϕk2φ
k−1
2 dt = 0.

(26)
For the trial and test functions, which are polynomials of arbitrary order,

conditions (26) become a system of nonlinear equations. In particular, if we
select linear trial and test functions, we obtain no solutions. However, if we
select quadratic functions, we have a system of 12 nonlinear equations with
12 unknowns, which has two solutions. We solve the resulting system in
the master element [0, 1] using the MATLAB code we describe in Appendix
B (see Table 2), and we obtain different sets of trial and test functions
depending on the value of α.

Example 1: Explicit trapezoidal rule

When α = 1, (23) is equivalent to the explicit trapezoidal rule [28].
Figure 5 shows the trial and test functions of both solutions over the master
element.

16



Solution 1 Solution 2

φk−1
1 (t) − 1

α t+ 1 − 6
α t

2 + 3
α t+ 1

φk−1
2 (t) 1

α t
6
α t

2 − 3
α t

ϕk1(t) 1 1

ϕk2(t) 12αt2 − 18αt+ 6α −2αt+ 2α

Table 2: Trial and test functions defined over the master element [0, 1] that lead to the
two-stage Runge-Kutta method.

0 1
0

1

t

(a) Trial functions of the first solution.

0 1

0

1

6

t

(b) Test functions of the first solution.

0 1
−2

0

1

3

t

(c) Trial functions of the second solution.

0 1
0

1

2

t

(d) Test functions of the second solution.

Figure 5: Trial and test functions over the master element [0, 1] when α = 1.

Example 2: Explicit midpoint rule

When α = 1
2 , we obtain the explicit midpoint rule [28]. Figure 6 shows

the trial and test functions of both solutions over [0, 1].
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0 1
−1

0

1

2

t

(a) Trial functions of the first solution.

0 1

0

1

3

t

(b) Test functions of the first solution.

0 1

−4

0
1

6

t

(c) Trial functions of the second solution.

0 1
0

1

t

(d) Test functions of the second solution.

Figure 6: Trial and test functions over the master element [0, 1] when α = 1
2
.

Remark 4. As in Section 4.1, to obtain expressions whose form is identical
to standard Runge-Kutta methods, we can interpolate the source term in the
trial space as∫

Ik

〈
vh,1ϕ

k
1, f
〉
dt =

∫
Ik

〈
vh,1ϕ

k
1, f

k−1
1 φk−1

1 + fk−1
2 φk−1

2

〉
dt

=

(
1− 1

2α

)
τk

〈
vh,1, f

k−1
1

〉
+
τk
2α

〈
vh,1, f

k−1
2

〉
,∫

Ik

〈
vh,2ϕ

k
2, f
〉
dt =

∫
Ik

〈
vh,2ϕ

k
2, f

k−1
1 φk−1

1 + fk−1
2 φk−1

2

〉
dt = ατk

〈
vh,2, f

k−1
1

〉
,

which is the general two-stage Runge-Kutta method in time. Here, we iden-
tify fk−1

1 (x) := f(x, tk−1) and fk−1
2 (x) := f(x, tk−1 + ατk).

In these examples, we set q = r = 2 in (7) and we have two possibilities
for the subspaces in problem (9). In the first solution of Table 2, the trial

18



space Ũτh is the complete space of linear polynomials, while in the second
solution it is an incomplete space of quadratic polynomials that only repro-
duces constant functions in time. Both solutions are nodally equivalent to
the same two-stage and second-order explicit Runge-Kutta method. We will
focus on the first solution in Table 2 so we can rely on approximation theory
results inside the temporal intervals.

4.3. General s-stage Runge-Kutta Methods

In this section, we generalize the constructions of Sections 4.1 and 4.2,
to the general s-stage explicit Runge-Kutta Method.

The general method we want to obtain is of the form

(vh,1, u
k
h,1) − (vh,1, u

k−1
h,1 ) + τk

s∑
i=1

bi(∇vh,1,∇uk−1
h,i ) = τk

s∑
i=1

bi

〈
vh,1, f

k−1
i

〉
,

(vh,i, u
k−1
h,i ) − (vh,i, u

k−1
h,1 ) + τk

i−1∑
j=1

aij(∇vh,i,∇uk−1
h,j ) = τk

i−1∑
j=1

aij

〈
vh,i, f

k−1
j

〉
,

(27)
∀i = 2, . . . , s, where

fk−1
i (x) := f(x, tk−1 + ciτk), ∀i = 1, . . . , s. (28)

The coefficients aij , bi, ci, with i, j ∈ {1, . . . , s}, are the ones corresponding
to the Butcher tableau (see Table 3) [9]. As (27) is an explicit method, we
have that

aij = 0, ∀j ≥ i.

0 0 0 0 . . . 0

c2 a21 0 0 . . . 0

c3 a31 a32 0 . . . 0
...

...
...

. . .
. . .

...

cs as1 as2 . . . as,s−1 0

b1 b2 . . . bs−1 bs

Table 3: Butcher tableau.

We consider s trial functions per time interval

φk−1
1 (t), . . . , φk−1

s (t),
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so we express the solution in (9) as

uτh(t) =

m∑
k=1

s∑
i=1

uk−1
h,i φ

k−1
i (t) + umh φ

m(t).

We also consider s test functions per time interval

vh,1ϕ
k
1(t), vh,2ϕ

k
2(t), . . . , vh,sϕ

k
s(t),

∀k = 1, . . . ,m and we define the subspaces in (9) as

Ũτh := {u ∈ L2(I;V ) |u|[tk−1,tk)
∈ Ũk−1

τh , ∀k = 1, . . . ,m, u(T ) ∈ V m
h },

Ṽτh := {v ∈ L2(I;V ) | v|(tk−1,tk]
∈ Ṽkτh, ∀k = 1, . . . ,m, v(0) ∈ V 0

h },

where we define

Ũk−1
τh := span

{
uk−1
h,i φ

k−1
i (t) | uk−1

h,i ∈ V
k−1
h , ∀i = 1, . . . , s

}
,

Ṽkτh := span
{
vh,1ϕ

k
1(t), vh,jϕ

k
j (t) | vh,1 ∈ V k

h , vh,j ∈ V k−1
h , ∀j = 2, . . . , s

}
.

Remark 5. Again, to properly define solvable discrete systems, we seek to
obtain square mass matrices in (27). Thus, we need test functions satisfying

vh,1 ∈ V k
h , vh,j ∈ V k−1

h , ∀j = 2, . . . , s.

Figure 7 illustrates this choice of the test functions.

ϕk
1 ϕk

2 ϕk
3

. . .
ϕk
s

V k−1
h

V k
h

Figure 7: Non-Cartesian space-time structure of the test functions inside each time interval
Ik.
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As before, to obtain an expression whose form is identical to the classical
Runge-Kutta methods, we can interpolate the source term using the trial
functions as

f(x, t) =
m+1∑
k=1

s∑
i=1

fk−1
i (x)φk−1

i (t).

Following the same logic as in Section 4.2, we generalize conditions (26)
to s-stages as follows

ϕk1(t−k ) = 1, ϕkj (t
−
k ) = 0, ∀j = 2, . . . , s,

φk−1
1 (t+k−1) = 1, φk−1

i (t+k−1) = 0, ∀i = 2, . . . , s,∫
Ik

ϕk1
∂

∂t
φk−1

1 dt− φk−1
1 (t−k ) = −1,

∫
Ik

ϕk1
∂

∂t
φk−1
i dt− φk−1

i (t−k ) = 0, ∀i = 2, . . . , s,∫
Ik

ϕkj
∂

∂t
φk−1

1 dt = −1,

∫
Ik

ϕkj
∂

∂t
φk−1
i dt =

{
1, if i = j

0, if i 6= j
, ∀i, j = 2, . . . , s,∫

Ik

ϕk1φ
k−1
i dt = τkbi, ∀i = 1, . . . , s,∫

Ik

ϕkjφ
k−1
i dt = τkaji, ∀i = 1, . . . , s, ∀j = 2, . . . , s.

(29)
Appendix A gives an explicit matrix form for (29).

Remark 6. We can extend this construction to ODEs of the form u̇ =
f(t, u(t)), u(0) = u0 by interpolating the right-hand-side as follows

f(t, u(t)) '
m+1∑
k=1

s∑
i=1

f(tk−1 + τkci, u
k−1
h,i )φk−1

i (t),

where span{φk−1
i }si=1 is a complete space of polynomials.

Example 1: Three-stage Runge-Kutta

We calculate the trial and test functions of the three-stage and third
order Runge-Kutta method that has the Butcher tableau as in Table 4 [9].

If we consider cubic polynomials (q = r = 3) in (7), we obtain four
possible solutions for the trial and test basis functions in the subspaces
(9): two of them with real coefficients (see Table 5) and the remaining two
solutions with complex conjugate coefficients (see Table 6). In Table 6, zj
and z̄j denote the following complex numbers and their conjugates.
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0 0 0 0
1
2

1
2 0 0

1 −1 2 0

1
6

2
3

1
6

Table 4: Butcher tableau of the three-stage Runge-Kutta method.

z1 = (9− i
√

66)/7, z6 = (34 + 3i
√

66)/7,

z2 = (11− 2i
√

66)/7, z7 = (16 + i
√

66)/7,

z3 = (12 + i
√

66)/7, z8 = (30 + i
√

66)/7,

z4 = (5 + i
√

66)/7, z9 = (89 + 6i
√

66)/7,

z5 = (2− i
√

66)/7, z10 = (39 + 2i
√

66)/7.

Here, the four solutions are nodally equivalent to the three stage and
third order explicit Runge-Kutta method defined in Table 4. However, the
utility of the complex solutions is unknown for us and an open area of
research. Figure 8 shows the trial and test functions of the first real solution
over the master element [0, 1]. In this case, the trial space Ũτh is a complete
space of quadratic polynomials.

Solution 1 Solution 2

φk−1
1 (t) 1

2 t
2 − 2t+ 1 110t3 − 130t2 + 30t+ 1

φk−1
2 (t) −t2 + 2t −120t3 + 140t2 − 32t

φk−1
3 (t) 1

2 t
2 10t3 − 10t2 + 2t

ϕk1(t) 1 1

ϕk2(t) −30t3 + 60t2 − 36t+ 6 3
2 t

2 − 3t+ 3
2

ϕk3(t) 420t3 − 780t2 + 408t− 48 −6t2 + 6t

Table 5: Trial and test functions with real coefficients over the master element [0, 1] that
lead to a three-stage Runge-Kutta method.

Example 2: Four-stage Runge-Kutta

Now, we consider the four-stage and fourth order Runge-Kutta method
with the Butcher tableau as in Table 7 [9]. In order to reduce the number
of unknowns, and taking into account the solutions we obtained for one and
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Solution 3 Solution 4

φk−1
1 (t) 10

3 z1t
3 − 2z2t

2 − z3t+ 1 10
3 z̄1t

3 − 2z̄2t
2 − z̄3t+ 1

φk−1
2 (t) −20

3 z1t
3 + 4z2t

2 + 2z4t −20
3 z̄1t

3 + 4z̄2t
2 + 2z̄4t

φk−1
3 (t) 10

3 z1t
3 − 2z2t

2 + z5t
10
3 z̄1t

3 − 2z̄2t
2 + z̄5t

ϕk1(t) 1 1

ϕk2(t) −10z̄1t
3 + 6z6t

2 − 9z7t+ z8 −10z1t
3 + 6z̄6t

2 − 9z̄7t+ z̄8

ϕk3(t) 40z̄1t
3 − 24z6t

2 + 6z9t− 2z10 40z1t
3 − 24z̄6t

2 + 6z̄9t− 2z̄10

Table 6: Trial and test functions with complex coefficients over the master element [0, 1]
that lead to a three-stage Runge-Kutta method.

0 1
−0.5

0

0.5

1

t

(a) Trial functions of the first real solution.

0 1

−45

1

15

t

(b) Test functions of the first real solution.

Figure 8: Trial and test functions over the master element [0, 1] for the real solutions of
the three-stage Runge-Kutta method.

two stages, we solve the nonlinear system considering non-symmetric choices
for the order of polynomials in (7): q = 3, r = 4 and q = 4, r = 3. Table
8 shows two real solutions for this method and Figure 9 shows the solution
for which the trial space Ũτh is a complete space of cubic polynomials.

5. Goal-oriented error estimation

The construction presented in this paper could be used to represent the
error in the quantity of interest in order to design explicit in time goal-
oriented adaptive algorithms.

First, note that problem (3) holds for every subspace of V. So selecting
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0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

Table 7: Butcher tableau of the four-stage Runge-Kutta method.

Solution 1 Solution 2

φk−1
1 (t) 2

3 t
3 − 2t+ 1 −2800

3 t4 + 1610t3 − 810t2 + 320
3 t+ 1

φk−1
2 (t) −2t2 + 2t 4480

3 t4 − 2520t3 + 1230t2 − 470
3 t

φk−1
3 (t) −4

3 t
3 + 2t2 −1820

3 t4 + 980t3 − 450t2 + 160
3 t

φk−1
4 (t) 2

3 t
3 140

3 t4 − 70t3 + 30t2 − 10
3 t

ϕk1(t) 1 1

ϕk2(t) 140t4 − 350t3 + 300t2 − 100t+ 10 −2t3 + 6t2 − 6t+ 2

ϕk3(t) −910t4 + 2170t3 − 1725t2 + 500t− 35 2t3 − 3t2 + 1

ϕk4(t) 4480t4 − 10360t3 + 7890t2 − 2150t+ 140 −6t2 + 6t

Table 8: Trial and test functions with real coefficients over the master element [0, 1] that
lead to a four-stage Runge-Kutta method.

0 1
−0.3

0

0.6

1

t

(a) Trial functions of the first real solution.

0 1

−40

1

40

140

t

(b) Test functions of the first real solution.

Figure 9: Trial and test functions over the master element [0, 1] for the real solutions of
the four-stage Runge-Kutta method.

Vτ ⊂ V and adding both equations in (3), we have that

B(vτ , u) + (vτ (0), u(0)) = BDG(vτ , u), ∀vτ ∈ Vτ ,
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where BDG(·, ·) is the bilinear form defined in (8). Since u ∈ U is a glob-
ally continuous function in time, the jumps at each time interface are zero.
Therefore, we consider the following primal problems:

Find u ∈ U and uτh ∈ Ũτh such that

BDG(vτ , u) = F (vτ ), ∀vτ ∈ Vτ ⊂ V,
BDG(vτh, uτh) = F (vτh), ∀vτh ∈ Ṽτh.

(30)

Now, as we explained in Section 3, Uτ 6⊂ U and U 6⊂ Uτ . Then, we define
the following space

Ûτ := {u ∈ V | u|Ik ∈ L
2(Ik;V ), ut|Ik

∈ L2(Ik;V
′), ∀k = 1, . . . ,m},

which is the minimum subspace of V containing Uτ and U [39].
In the goal-oriented approach, given a linear functional L(·) : U ⊂ V → R

of the form

L(v) =

∫
I
〈v, g〉 dt+ (v(T ), zT ), (31)

the following dual problem is introduced: Find z ∈ U such that−
∫
I
〈v, zt〉 dt+

∫
I
(∇v,∇z)dt =

∫
I
〈v, g〉 dt, ∀v ∈ V,

(v̂, z(T )) = (v̂, zT ), ∀v̂ ∈ L2(Ω),

(32)

where g ∈ V ′ and zT ∈ L2(Ω) are given functions. It is well known that due
to integration by parts in time, the dual problem runs backwards in time
[5].

Similarly as for the primal problem, (32) holds for every subspace of V.
So selecting Ûτ ⊂ V, adding both equations of (32) and taking into account
that the jumps of z at each time interface are zero, we consider:{

Find z ∈ U such that

B∗
DG

(v̂τ , z) = L(v̂τ ), ∀v̂τ ∈ Ûτ ⊂ V,
(33)

where B∗
DG

(·, ·) is the adjoint operator of BDG(·, ·) obtained after integration
by parts in time. Now, we define the error of the primal problem as e =
u−uτh and we represent the error in the quantity of interest in the following
theorem.

Theorem 2. (Error representation) Let BDG(·, ·) be the bilinear form de-
fined in Eq. (8), L(·) the linear output functional defined in Eq. (31) and
e = u− uτh the error of the primal problem. It holds that

L(e) = BDG(z − vτh, e) = F (z − vτh)−BDG(z − vτh, uτh), ∀vτh ∈ Ṽτh.
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Proof. We have that u ∈ U ⊂ Ûτ and uτh ∈ Ũτh ⊂ Uτ ⊂ Ûτ so e = u−uτh ∈
Ûτ . Substituting e into (33) and integrating by parts in time, we obtain

L(e) = B∗
DG

(e, z) = BDG(z, e). (34)

Now, as Ṽτh is a subspace of Vτ , the first equation of (30) also holds for
all functions in Ṽτh. Therefore, substituting vτh in (30) and subtracting
both equations, we obtain the following consistency result (commonly called
Galerkin orthogonality of the error)

BDG(vτh, e) = 0, ∀vτh ∈ Ṽτh. (35)

Finally, subtracting (35) from (34) and employing the definition of problem
(30), we obtain

L(e) = BDG(z−vτh, e) = F (z−vτh)−BDG(z−vτh, uτh), ∀vτh ∈ Ṽτh. (36)

Formula (36) is the error in the quantity of interest represented as an
integral over the whole space-time domain Ω × I. This quantity is usually
bounded by the sum of local element contributions which will drive the goal-
oriented adaptive process. However, (36) involves the analytical solutions
of the primal and dual problems that are usually unknown. There exist
several strategies in the literature [5, 7, 17, 44, 47] to define computable local
error contributions of equation (36). For example, following [37, 47], we can
employ the Forward Euler method (constant trial and test functions in time)
to solve both primal and dual problems, where we solve the dual problem
in a finer mesh in space z ∼ zτ h

2
. Then, we can localize the error estimator

to the basis of each spatial mesh V k
h
2

, ∀k = 0, . . . ,m. Another option is to

follow a similar strategy to [6]. We can solve the primal and dual problems
(uτh and zτh) with a second-order Runge-Kutta method (linear trial and
incomplete quadratic test functions). Then, we could perform a local high-
order post-processing both in space and time of zτh to approximate z, and
choose vτh as the constant-in-time nodal interpolation of zτh.

In conclusion, with the construction of the variational formulation and
corresponding goal-oriented error representation described in this paper, we
could reproduce most existing goal-oriented adaptive algorithms using ex-
plicit Runge-Kutta methods in time to solve the primal and dual problems.
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Example: Effectivity index

In order to verify numerically that the error representation (36) can be
employed for goal-oriented adaptivity, we calculate the effectivity index

Ieff =
Est

L(e)
, (37)

where L(e) is the true error in the quantity of interest and Est is the es-
timated error when we approximate the exact primal and dual solutions in
(36). It is desirable to have an effectivity index close to 1.

In (1), we consider the test case where d = 1, Ω = (0, 1), T = 0.05,
f = 0, and u0(x) = sin(πx). Then, the exact solution is

u(x, t) = e−πtsin(πx).

We select the quantity of interest defined in (31) with g = 0 and zT =
sin(πx), i.e.,

L(u) = (u(T ), zT ).

In (36), we choose zτh as the solution of the dual problem in a coarse mesh
and we approximate the exact primal and dual solutions in a finer mesh in
space and time. Then, we obtain

L(e) ∼ Est = BDG(eτh, ετh),

where
eτh = u τ

2
h
2
− uτh, ετh = z τ

2
h
2
− zτh.

In Table 9, we show the effectivity index (37) when performing global
space-time refinements. In order to fulfill the CFL condition, when we dou-
ble the number of space elements in space we increase the number of time
steps by four. For the discretization in space, we employ a FEM with piece-
wise linear functions. In time, we solve both primal and dual problems
with the Forward Euler method and the explicit trapezoidal rule (or Heun’s
method, a two-stage explicit Runge-Kutta method). Figure 10 shows the
convergence of the true and the estimated errors for both methods in time.

Elements in space Time steps IEff Forward Euler IEff Explicit Trapezoidal

4 20 0.70978 0.75706

8 80 0.70366 0.75173

16 320 0.70212 0.75043
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32 1,280 0.70174 0.75011

64 5,120 0.70164 0.75003

128 20,480 0.70162 0.75001

Table 9: Effectivity index for the Forward Euler method and the explicit trapezoidal rule
when performing uniform space-time refinements.
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Figure 10: Convergence of the true and the estimated errors for the Forward Euler method
(left) and the explicit trapezoidal rule (right).

We observe that, for this test case, the effectivity index for the Forward
Euler method is Ieff ∼ 0.7 and for the explicit trapezoidal rule is Ieff ∼ 0.75.

We now select an example with larger variations in time. We consider
the test case where d = 1, Ω = (0, 1), T = 0.05 and the initial condition u0

and the source f in such a way that the exact solution is

u(x, t) = cos(100πt) sin(πx).

In Table 10, we show the effectivity index (37) when performing global
space-time refinements. Figure 11 shows the convergence of the true and the
estimated errors for the Forward Euler and the explicit trapezoidal methods.

Elements in space Time steps IEff Forward Euler IEff Explicit Trapezoidal

4 20 0.50483 0.73029

8 80 0.50073 0.73033

16 320 0.49943 0.73909
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32 1,280 0.49908 0.74624

64 5,120 0.499 0.74896

128 20,480 0.49897 0.74973

Table 10: Effectivity index for the Forward Euler method and the explicit trapezoidal rule
when performing uniform space-time refinements.
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Figure 11: Convergence of the true and the estimated errors for the Forward Euler method
(left) and the explicit trapezoidal rule (right).

We conclude that, in this example, the effectivity index for the For-
ward Euler method is Ieff ∼ 0.5 and for the explicit trapezoidal rule is
Ieff ∼ 0.75. Therefore, it seems the error representation (36) could be
successfully employed to construct and apply explicit-in-time goal-oriented
adaptive algorithms.

6. Conclusions

We propose a discontinuous-in-time Petrov-Galerkin formulation of the
linear diffusion equation that, after exact integration in time, leads to ex-
plicit Runge-Kutta methods. We define families of piecewise polynomials
for trial and test functions for any stage Runge-Kutta method where the
trial and test spaces are defined as the span of certain polynomial functions.
We provide explicit examples for Runge-Kutta methods of up to four stages.
When the trial functions are polynomials of order p in time, then the test
space is formed by incomplete polynomial spaces of order p + 1. Alterna-
tively, we can define the test space to be a complete polynomial space of
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order p and the resulting trial space will contain some polynomials of order
p+1, but in this case we loose approximability of the solution. Methods with
more than two stages result in systems which have solutions with complex
coefficients for the polynomial basis, thus leading to equivalent Runge-Kutta
methods of the appropriate order.

We present a constructive method to systematically build trial and test
functions corresponding to explicit Runge-Kutta methods in time. Employ-
ing this formulation, we can naturally represent the error in the quantity
of interest. Therefore, this variational structure reproduces the existing
goal-oriented space-time adaptive algorithms but employing explicit-in-time
Runge-Kutta schemes. A limitation of our method is that, for a large num-
ber of stages, we end up with large nonlinear systems of equations that
are difficult to solve. However, following the same construction, we could
fix the basis functions of the trial space (being or not a complete space of
piecewise-discontinuous polynomials). Then, we would obtain a linear sys-
tem for the coefficients of the test functions. Finally, defining the minimum
orthogonality conditions to obtain an explicit method, we can compute test
functions that might lead to new families of explicit methods (not necessarily
Runge-Kutta ones).

As future work, we plan to design explicit-in-time goal-oriented adaptive
strategies for parabolic problems. We will also analyze the stability of the
new time marching schemes arising from our Galerkin construction in or-
der to build more stable explicit methods. The presented formulation could
be useful to study the variational structure of other implicit and explicit
methods such as Adams-Bashforth, Adams-Moulton or Backward Differen-
tiation Formulas (BDF). Finally, we will explore ideas from the DPG [16]
community to the construction presented in this article.

Appendix A. Matrix form of the nonlinear system

In this section we express (29) in matrix form. We consider, for example,
s-stages and trial and test functions of order s over the master element [0, 1]

φ1(t) = c10 + c11t+ . . .+ c1st
s,

...

φs(t) = cs0 + cs1t+ . . .+ csst
s,

ϕ1(t) = d10 + d11t+ . . .+ d1st
s,

...

ϕs(t) = ds0 + ds1t+ . . .+ dsst
s.
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To simplify notation, we collect the entries into the following matrices

C :=


c10 c11 · · · c1s

...
...

. . .
...

cs0 cs1 · · · css

 ,

D :=


d10 d11 · · · d1s

...
...

. . .
...

ds0 ds1 · · · dss

 ,
thus, we can write conditions (29) in matrix form as

C e1,s+1 = e1,s,

D 1s+1 = e1,s,

DACT −BCT = E,

DFCT = G,

(A.1)

where

e1,s+1 :=
[
1 0 · · · 0

]T
, 1s+1 :=

[
1 1 · · · 1

]T
,

A :=



0 1 · · · 1 1

0 1/2 · · · (s− 1)/s s/(s+ 1)
...

...
. . .

...
...

0 1/s · · · 1/2 s/(2s− 1)

0 1/(s+ 1) · · · (s− 1)/(2s− 1) 1/2


,

B :=


1 1 · · · 1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , E :=


−1 0 · · · 0

−1 1 · · · 0
...

...
. . .

...

−1 0 · · · 1

 ,
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F :=



1 1/2 · · · 1/s 1/(s+ 1)

1/2 1/3 · · · 1/(s+ 1) 1/(s+ 2)
...

...
. . .

...
...

1/s 1/(s+ 1) · · · 1/(2s− 1) 1/2s

1/(s+ 1) 1/(s+ 2) · · · 1/2s 1/(2s+ 1)


,

G :=


b1 b2 · · · bs

a21 a22 · · · a2s

...
...

. . .
...

as1 as2 . . . ass

 .
We compute the entries in the matrices A and F from

A =

∫ 1

0



1

t
...

ts−1

ts


[
0 1 · · · (s− 1)ts−2 sts−1

]
dt

=

∫ 1

0



0 1 · · · (s− 1)ts−2 sts−1

0 t · · · (s− 1)ts−1 sts

...
...

. . .
...

...

0 ts−1 · · · (s− 1)t2s−3 st2s−2

0 ts · · · (s− 1)t2s−2 st2s−1


dt

=



0 1 · · · 1 1

0 1/2 · · · (s− 1)/s s/(s+ 1)
...

...
. . .

...
...

0 1/s · · · 1/2 s/(2s− 1)

0 1/(s+ 1) · · · (s− 1)/(2s− 1) 1/2


,
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F =

∫ 1

0



1

t
...

ts−1

ts


[
1 t · · · ts−1 ts

]
dt

=

∫ 1

0



1 t · · · ts−1 ts

t t2 · · · ts ts+1

...
...

. . .
...

...

ts−1 ts · · · t2s−2 t2s−1

ts ts+1 · · · t2s−1 t2s


dt

=



1 1/2 · · · 1/s 1/(s+ 1)

1/2 1/3 · · · 1/(s+ 1) 1/(s+ 2)
...

...
. . .

...
...

1/s 1/(s+ 1) · · · 1/(2s− 1) 1/2s

1/(s+ 1) 1/(s+ 2) · · · 1/2s 1/(2s+ 1)


.

Appendix B. MATLAB Code

In this section we provide a MATLAB code to solve system (29) in matrix
form for a general number of stages.

1 %S c r i p t to c a l c u l a t e the t r i a l and t e s t f u n c t i o n s o f
Runge−Kutta methods

2 %Import data
3 [ n fun , p t r i a l , p t e s t , V tr iv , V deriv , V grad ]= data ;
4 %I n i t i a l i z e the s o l u t i o n
5 S t r i a l=c e l l ( n fun , p t r i a l +1) ;
6 S t e s t=c e l l ( n fun , p t e s t +1) ;
7 %Write the c o e f f i c i e n t s
8 c o e f t r i a l=sym( ’ c%d%d ’ , [ n fun p t r i a l +1]) ;
9 c o e f t e s t=sym( ’d%d%d ’ , [ n fun p t e s t +1]) ;
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10 %Write the c o n d i t i o n s
11 [ C tr iv , C deriv , C grad ]= c o n d i t i o n s ( n fun , c o e f t r i a l ,

c o e f t e s t , p t r i a l , p t e s t ) ;
12 %Solve the non l in ea r system
13 [ S t r i a l {1 : end } , S t e s t {1 : end}]= s o l v e ( [ C t r i v C der iv

C grad ]==[ V tr iv V der iv V grad ] , [ c o e f t r i a l
c o e f t e s t ] ) ;

1 f unc t i on [ n fun , p t r i a l , p t e s t , V tr iv , V deriv , V grad ]
= data ( )

2 %Function to wr i t e the data
3 %Number o f t r i a l and t e s t f u n c t i o n s and t h e i r order
4 n fun =2;
5 p t r i a l =2;
6 p t e s t =2;
7 %The value o f the c o n d i t i o n s . For example :
8 %2−s tage Runge−Kutta method
9 V tr iv =[1 1 ; 0 0 ] ;

10 V deriv=[−1 0;−1 1 ] ;
11 alpha =1;
12 V grad =[1−1/(2∗ alpha ) 1/(2∗ alpha ) ; alpha 0 ] ;
13 %Forward Euler method
14 %V tr iv =[1 1 ] ;
15 %V deriv=−1;
16 %V grad=1;
17 end

1 f unc t i on [ C tr iv , C deriv , C grad ]= c o n d i t i o n s ( n fun ,
c o e f t r i a l , c o e f t e s t , p t r i a l , p t e s t )

2 %Function to wr i t e the c o n d i t i o n s in matrix form the
t r i a l and t e s t f u n c t i o n s must s a t i s f y

3 C t r i a l=c o e f t r i a l ∗ eye ( p t r i a l +1 ,1) ;
4 C tes t=c o e f t e s t ∗ ones ( p t e s t +1 ,1) ;
5 C tr iv =[ C t r i a l C te s t ] ;
6

7 C=repmat ( ( 1 : p t e s t +1) ’ , 1 , p t r i a l +1)+repmat ( 0 : p t r i a l ,
p t e s t +1 ,1) ;

8 C=1./C;
9 C grad=c o e f t e s t ∗C∗ c o e f t r i a l . ’ ;
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11 B=[ ones (1 , p t r i a l +1) ; z e r o s ( n fun −1, p t r i a l +1) ] ;
12 A=repmat ( 0 : p t r i a l , p t e s t +1 ,1) . ∗ [ z e r o s ( p t e s t +1 ,1) C

( : , 1 : end−1) ] ;
13 C der iv=c o e f t e s t ∗A∗ c o e f t r i a l . ’−B∗ c o e f t r i a l . ’ ;
14 end
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