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Abstract. In this note we present some simple counterexamples, based
on quadratic forms in infinitely many variables, showing that the impli-

cation f ∈ C(∞(Tω) =⇒
∑
p̄∈Z∞ |f̂(p̄)| <∞ is false. There are functions

of the class C(∞(Tω) (depending on an infinite number of variables)
whose Fourier series diverges absolutely. This fact establishes a signifi-
cant difference to what happens in the finite dimensional case.

1. Introduction

In the following result it is established a sufficient condition of smooth-

ness on a function defined on the n-dimensional torus Tn (n ≥ 1) for the

absolute convergence of its Fourier series:

Theorem 1.1 ([13, p. 249]). If f ∈ C(k(Tn), k > n/2, then∑
m∈Zn

∣∣f̂(m)
∣∣ <∞.

When f ∈ C(∞(Tn), more conclusive results are verified, for example

(see [12, Th. 7.25, p. 202]):

Theorem 1.2. If f ∈ C(∞(Tn), then∑
m∈Zn

(1 + |m|)N
∣∣f̂(m)

∣∣ <∞ ∀N = 0, 1, . . . , |m| =
(∑n

i=1m
2
i

)1/2

.

This same result holds for cylindrical infinitely smooth functions defined

on the infinite dimensional torus Tω, which is the compact abelian group

consisting of the complete direct sum of countably many copies of T ' R/Z.

Let us remember that f(x) is a cylindrical function on Tω if f depends only

on a finite number of variables, i.e., if ∃ gn : Ωn → C, with Ωn ⊆ Tn, such

that f = gn ◦ πn, being πn : Tω → Tn the canonical projection and n ≥ 1.

The space of cylindrical functions of the class C(∞ in Tω (see Definition 2.3)
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is defined ([1, p. 73–75]) by

D(Tω) =
∞⋃
n=1

{
gn ◦ πn|gn ∈ C(∞(Tn)

}
so that, if f ∈ D(Tω), then there exists p ∈ N and gp ∈ C(∞(Tp) such that

f = gp ◦ πp.
The dual group of Tω, denoted by Z∞, is the direct sum of countably

many copies of Z, formed by the finitely nonzero sequences of integer num-

bers. Denote by dx the normalized Haar measure in Tω. If f ∈ L1(Tω), then

the function f̂ defined on Z∞ by

f̂(n̄) =

∫
Tω
f(x)e−2πin̄·x dx (n̄ ∈ Z∞)

is the Fourier transform of f , the Fourier series of f being the formal series

(observe that Z∞ is a countable set)

∑
n̄∈Z∞

f̂(n̄)e2πin̄·x.

By using the ideas in the proof of Theorem 1.2, the following result could

be proved (see also [2, Proposition 1]):

Theorem 1.3. If φ ∈ D(Tω), then∑
p̄∈Z∞

(1 + |p̄|)N
∣∣φ̂(p̄)

∣∣ <∞ ∀N = 0, 1, . . . , |p̄| =
(∑∞

i=1 p
2
i

)1/2

.

In May 2016, in a private communication to the second author, Pro-

fessor A. D. Bendikov conjectured that the implication f ∈ C(∞(Tω) ⇒∑
p̄∈Z∞ |f̂(p̄)| < ∞, which holds, as we have said, for functions depending

only on a finite number of variables, is in general false. This fact establishes

a significant difference to what happens in the finite dimensional case.

In order to support the statement of Bendikov, we show in this note

some counterexamples via quadratic forms depending on an infinite number

of variables. The construction of such counterexamples is based on classical

results of Toeplitz [14], Littlewood [10] and Bohnenblust and Hille [4]1.

The main result in this note is the following.

Theorem 1.4. There exist functions of the class C(∞(Tω) (depending on

an infinite number of variables) whose Fourier series diverges absolutely.

1In the same private communication, Prof. Bendikov suggested that a counterexample
could be constructed through an appropriate Jacobi Theta function in an infinite number
of variables. The construction via quadratic forms that we show in the present note does
not follow the path indicated by Bendikov.
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Although we restrict ourselves to the case of the infinite dimensional

torus, we point out that Bendikov and L. Saloff-Coste have studied, in [3],

several scales of smooth functions in the more general setting of connected

infinite-dimensional compact groups.

In Section 2 we introduce some definitions and show several basic results.

We present in Section 3 a detailed account of the bilinear and quadratic

forms in infinite number of variables used to construct our counterexamples.

The proof of Theorem 1.4 and the counterexamples are contained in Section

4.

2. Premilinary definitions and results

We will begin by providing some basic principles.

Definition 2.1 ([5, p. 130]). The function f : Tω → C is continuous at the

point x(0) = (x0
1, x

0
2, . . .) if ∀ε > 0 there is a positive integer m and a number

δ > 0 such that, in each point (x1, x2, . . .) ∈ Tω verifying the m inequalities∣∣xj − x0
j

∣∣ < δ (j = 1, 2, . . . ,m), it holds∣∣f(x1, x2, . . .)− f(x0
1, x

0
2, . . .)

∣∣ < ε.

Since Tω is compact, the vector space

C(0(Tω) = {f : Tω → C | f is continuous at all x ∈ Tω}

is a Banach space with the norm ‖f‖∞ = maxx∈Tω |f(x)|.

Lemma 2.2. Let ϕ(t) ∈ C(0(T) and
∑∞

j=1 aj be an absolutely convergent

series of complex numbers. Then, the function Ψ(x) =
∑∞

j=1 ajϕ(xj) is

continuous on Tω.

Proof. We can suppose that ϕ is not zero, otherwise the statement would

be trivial. In which follows, let x(0) ∈ Tω be fixed. Given ε > 0, since the

series
∑∞

j=1 |aj| converges, there exists m1 ∈ N such that

N∑
j=m1+1

|aj| <
ε

4 ‖ϕ‖∞

for all N > m1. On the other hand, for each j = 1, . . . ,m1, the continuity of

ϕ in x
(0)
j ensures the existence of a number δj > 0 such that, if

∣∣xj−x(0)
j

∣∣ < δj,

then ∣∣ϕ(xj)− ϕ(x
(0)
j )
∣∣ < ε

2m1 |aj|
.
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Let δ = min1≤j≤m1 δj. If x is a point of Tω verifying
∣∣xj − x

(0)
j

∣∣ < δ for

j = 1, . . . ,m1, then we have, for all N > m1,∣∣∣∣ N∑
j=1

ajϕ(xj)−
N∑
j=1

ajϕ(x
(0)
j )

∣∣∣∣ =

∣∣∣∣ N∑
j=1

aj
(
ϕ(xj)− ϕ(x

(0)
j )
)∣∣∣∣

≤
m1∑
j=1

|aj|
∣∣ϕ(xj)− ϕ(x

(0)
j )
∣∣+

N∑
j=m1+1

|aj|
∣∣ϕ(xj)− ϕ(x

(0)
j )
∣∣

≤
m1∑
j=1

|aj| ·
ε

2m1 |aj|
+ 2 ‖ϕ‖∞

N∑
j=m1+1

|aj|

<
ε

2
+
ε

2
= ε.

Moreover, we have that
∑∞

j=1 |ajϕ(xj)| ≤ ‖ϕ‖∞
∑∞

j=1 |aj| for all x ∈ Tω.

Therefore, the series defining the function Ψ(x) is absolutely convergent,

thus the function Ψ(x) is defined for all x ∈ Tω and there exists m2 = m2(ε)

such that, if N > m2, then

∣∣Ψ(x)−
N∑
j=1

ajϕ(xj)
∣∣ < ε ∀x ∈ Tω.

Consequently, taking M = max{m1,m2}, we have

∣∣Ψ(x)−Ψ(x(0))
∣∣ ≤ ∣∣Ψ(x)−

M∑
j=1

ajϕ(xj)
∣∣+

∣∣∣∣ M∑
j=1

ajϕ(xj)−
M∑
j=1

ajϕ(x
(0)
j )

∣∣∣∣
+
∣∣Ψ(x(0))−

M∑
j=1

ajϕ(x
(0)
j )
∣∣

< 3ε

if x ∈ Tω verifies
∣∣xj−x(0)

j

∣∣ < δ for j = 1, . . . ,M , and therefore the function

Ψ(x) is continuous at the point x(0). �

Definition 2.3. Let f(x) be a function defined on Tω. For each multiindex

α = (α1, α2, . . .) finitely nonzero, that is, such that αj 6= 0 for only finitely

many j, it is defined the partial differentiation operator by

Dαf = D
αj1
j1
· · ·Dαjm

jm
f =

∂αj1

∂x
αj1
j1

· · · ∂
αjm

∂x
αjm
jm

f if αj = 0 ∀j /∈ {j1, . . . , jm}.

The total order of α is |α| = αj1 + . . .+ αjm . When |α| = 0, Dαf = f .

For each k, the space C(k(Tω) is defined as the class of the functions

f with continuous everywhere partial derivatives up to the k-th order, i.e.,

such that Dαf ∈ C(0(Tω) for all multiindex α finitely nonzero such that
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|α| ≤ k. With the norm

‖f‖(k) = sup
0≤|α|≤k

‖Dαf‖∞

where ‖Dαf‖∞ = maxx∈Tω |(Dαf)(x)| for each fixed α, C(k(Tω) is a Banach

space ([7, 2.2.4]). The space of the infinitely differentiable functions is the

intersection C(∞(Tω) =
⋂∞
k=0 C

(k(Tω) and it is a Fréchet space ([7, 12.1]).

Double series. (See [6, p. 72–76]; also [11].) Consider a double series of

complex numbers, as

(2.1)
∞∑

m,n=1

amn.

The rectangular partial (finite) sums of (2.1) are

sMN :=
M∑
m=1

N∑
n=1

amn, (M,N) ∈ N2.

It is said that the series (2.1) converges to the sum s ∈ C in Pringsheim’s

sense when ∀ε > 0 ∃µ such that

|sMN − s| < ε if M,N ≥ µ.

A necessary and sufficient condition for the convergence of (2.1) in Pring-

sheim’s sense is the following:

(2.2)

∀ε > 0 ∃µ such that |sPQ − sMN | < ε if P > M ≥ µ and Q > N ≥ µ.

When the series
∑

m,n amn and
∑

m,n bmn converge in Pringsheim’s sense,

then the same happens to the series
∑

m,n(amn + bmn), and

(2.3)
∑
m,n

(amn + bmn) =
∑
m,n

amn +
∑
m,n

bmn.

Hardy [8, p. 88] introduced the notion of regular convergence of a double

series as follows: the series (2.1) is said to converge regularly to the sum

s ∈ C if it converges to s in Pringsheim’s sense and, in addition, each of its

row and column series,
∑∞

n=1 amn for each m = 1, 2, . . ., and
∑∞

m=1 amn for

each n = 1, 2, . . ., respectively, also converges as a single series.

A double series absolutely convergent is also regularly convergent, but

the regular convergence is sufficient to

∞∑
m,n=1

amn =
∞∑
m=1

∞∑
n=1

amn =
∞∑
n=1

∞∑
m=1

amn

hold ([11, Th. 1]).
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3. Bilinear and quadratic forms in an infinite number of

variables

Let us denote by S :=
{

(zn)∞n=1 | zn ∈ C, |zn| ≤ 1 ∀n ∈ N
}

the infinite

dimensional polydisc (the closed unit ball of `∞(N)). Analogously to Tω,

we will consider the space S with the topology of the cartesian product

of infinitely many closed unit circles of the complex plane. Particularly, if

x ∈ Tω, then

z = e2πix :=
(
e2πix1 , . . . , e2πixn , . . .

)
∈ S.

We define a bilinear form in S (in principle only formally) by the ex-

pression

(3.1) Q(x, y) :=
∞∑

m,n=1

amnxmyn (amn ∈ C, x, y ∈ S).

The bilinear character and the very existence of the functionQ(x, y) depends

on the convergence of the double series above.

Definition 3.1. The series (3.1) is completely bounded in S if there is a

constant H such that

(3.2)

∣∣∣∣ M∑
m=1

N∑
n=1

amnxmyn

∣∣∣∣ ≤ H ∀x, y ∈ S, ∀M,N ∈ N.

The following property is immediately deduced.

Lemma 3.2. Suppose that the series (3.1) is completely bounded in S.

Then, the series
∑∞

n=1 |amn| for each m ∈ N, and
∑∞

m=1 |amn| for each

n ∈ N, are convergent.

Proof. For M,N ∈ N, let QMN(x, y) denote the rectangular partial sums

(or sections) of Q(x, y), i.e.,

QMN(x, y) :=
M∑
m=1

N∑
n=1

amnxmyn (x, y ∈ S).

The section QMN(x, y) only depends on the M first components of x and on

the N first components of y, and thus we can consider it as a bilinear form

defined on DM ×DN , where D denotes the closed unit disc of the complex

plane. Let us write

x(M) := (x1, . . . , xM), y(N) := (y1, . . . , yN).

Therefore, by hypothesis we have∣∣QMN

(
x(M), y(N)

)∣∣ ≤ H if
∥∥x(M)

∥∥
∞,
∥∥y(N)

∥∥
∞ ≤ 1.
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Let, for example, n0 ∈ N be fixed (we proceed in a similar way when we

fix m0 ∈ N). Consider the points

ξn0 :=
( a1n0

|a1n0|
, . . . ,

amn0

|amn0|
, . . .

)
and ηn0 := (δ1n0 , . . . , δmn0 , . . .)

(δij is the Kronecker’s symbol). Obviously, ξn0 and ηn0 belongs to S, and,

for each M ∈ N such that M > n0, it holds

M∑
m=1

|amn0 | = QMM

(
ξ(M)
n0

, η(M)
n0

)
= QMM(ξn0 , ηn0) = |QMM(ξn0 , ηn0)| ≤ H

with H independent of M . Consequently the series
∑∞

m=1 |amn0 | is conver-

gent. �

The theorem which follows is due to Littlewood ([10, p. 166–168]).

Theorem 3.3. If the series (3.1) is completely bounded in S by a constant

H, then it converges in Pringsheim’s sense, uniformly in S2, to a bilinear

form Q(x, y) which verifies |Q(x, y)| ≤ H ∀x, y ∈ S (and it is said, then,

that the bilinear form Q(x, y) is completely bounded in S).

Observe that Q(x, y) is a bilinear form if ∀x, x′, y, y′ ∈ S it is verified

(3.3)

Q(x, y + y′) = Q(x, y) +Q(x, y′) and Q(x+ x′, y) = Q(x, y) +Q(x′, y).

When the bilinear form Q(x, y) is completely bounded in S it is verified,

in particular, that given ε > 0, there exists ν1 = ν1(ε) such that
∣∣Q(x, y)−

Qνν(x, y)
∣∣ < ε ∀(x, y) ∈ S2 if ν ≥ ν1. From here, it follows easily:

Corollary 3.4. A bilinear form Q(x, y) completely bounded in S defines a

continuous function in S2.

Proof. Let (x0, y0) ∈ S2 be fixed and ε > 0. First, as we just said above,

there exists ν1(ε) such that∣∣Q(x, y)−Qνν(x, y)
∣∣ < ε

3
∀(x, y) ∈ S2

if ν ≥ ν1. On the other hand, the bilinear form defined on Dν1 ×Dν1 by

Qν1ν1

(
x(ν1), y(ν1)

)
=

ν1∑
m=1

ν1∑
n=1

amnxmyn

is continuous at the point
(
x

(ν1)
0 , y

(ν1)
0

)
. Then, there exists δ > 0 (depending

on (x0, y0) and ε) such that, if max1≤j≤ν1
{
|xj − x0j|, |yj − y0j|

}
< δ, then∣∣Qν1ν1

(
x(ν1), y(ν1)

)
−Qν1ν1

(
x

(ν1)
0 , y

(ν1)
0

)∣∣ < ε

3
.
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Thus, for every (x, y) ∈ S2 verifying max
{
|xj − x0j|, |yj − y0j|

}
< δ for

j = 1, . . . , ν1, we have∣∣Q(x, y)−Q(x0, y0)
∣∣ ≤ ∣∣Q(x, y)−Qν1ν1(x, y)

∣∣
+
∣∣Qν1ν1(x, y)−Qν1ν1(x0, y0)

∣∣+
∣∣Qν1ν1(x0, y0)−Q(x0, y0)

∣∣
<
ε

3
+
ε

3
+
ε

3
= ε

(we have used that Qν1ν1(x, y) = Qν1ν1

(
x(ν1), y(ν1)

)
for all (x, y) ∈ S2), and

the continuity of Q(x, y) at the point (x0, y0) is proved. �

Some more definitions and remarks. Let Q(x, y) =
∑∞

m,n=1 amnxmyn

be a bilinear form completely bounded by a constant H in S, and which

defines, according to Corollary 3.4, a continuous function on S2. Let

C(x) := Q(x, x) =
∞∑

m,n=1

amnxmxn

for x ∈ S. The quadratic form C(x) is also called completely bounded in S,

because it is verified

|CM(x)| =
∣∣∣∣ M∑
m=1

M∑
n=1

amnxmxn

∣∣∣∣ ≤ H ∀x ∈ S, ∀M ∈ N.

When the bilinear form Q(x, y) is completely bounded in S, then its

partial derivatives are well defined (see [9, p. 128]). Writing, for each p ∈ N,

ep = (δpn)∞n=1 ∈ S, and applying (3.3), we have

∂Q

∂yp
(x, y) = lim

t→0

Q(x, y + tep)−Q(x, y)

t
= Q(x, ep) =

∞∑
m=1

ampxm,

∂Q

∂xp
(x, y) = lim

t→0

Q(x+ tep, y)−Q(x, y)

t
= Q(ep, y) =

∞∑
n=1

apnxn,

and thus these partial derivatives are bounded linear forms. According to

Lemma 3.2, the series
∑∞

n=1 |apn| y
∑∞

m=1 |amp| are convergent for all p, and

from here it is possible to deduce that the functions ∂Q
∂xp

(x, y) and ∂Q
∂yp

(x, y)

are continuous in S2 by applying a result (in S2) analogous to Lemma 2.2

(in Tω).

Corollary 3.5. (a) If the bilinear form Q(x, y) is completely bounded in S,

then the quadratic form C(x) = Q(x, x) belongs to the the class C(∞(S).

(b) If the quadratic form C(x) = Q(x, x) is completely bounded in S,

then it belongs to the class C(∞(S).
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Proof. (a) The quadratic form C(x) = Q(x, x) is continuous in S according

to Corollary 3.4. For each p ∈ N we have

∂C

∂xp
(x) =

∂Q

∂xp
(x, x) +

∂Q

∂yp
(x, x)

=
∞∑
n=1

apnxn +
∞∑
m=1

ampxm

=
∞∑
j=1

(apj + ajp)xj

due to the absolute convergence of each series. Then, by applying Lemma

2.2, the linear form ∂C
∂xp

(x) is continuous in S, and its partial derivatives are

constant functions.

(b) From the identity

Q(x, y) = Q
(

1
2
(x+ y), 1

2
(x+ y)

)
−Q

(
1
2
(x− y), 1

2
(x− y)

)
it follows that the bilinear form Q(x, y) is completely bounded in S. Then

apply part (a) and it is done. �

4. Functions in C(∞(Tω) whose Fourier series diverges

absolutely

In this section, we prove Theorem 1.4. In 1913, Toeplitz [14, p. 427]

introduced a quadratic form

(4.1) C(z) =
∞∑

m,n=1

amnzmzn (z ∈ S)

in infinitely many variables, symmetric (i.e., such that amn = anm), com-

pletely bounded in S in the above defined sense, and such that the series∑∞
m,n=1 |amn| diverges. This quadratic form will be described below. We will

simply replace in Toeplitz’s form z = e2πix (i.e., zj = e2πixj for all j) with

x ∈ Tω, and consider the function

(4.2) F (x) = C(e2πix) =
∞∑

m,n=1

amne
2πi(xm+xn), x = (xj)

∞
j=1 ∈ Tω.

From Corollary 3.5 (b) it follows that F ∈ C(∞(Tω). In particular, F is

integrable.

Let us calculate now the Fourier coefficients of the function F . For this,

we will use that F (x) = limM→∞ FM(x), where

FM(x) =
∑

m,n=1,...,M

amne
2πi(xm+xn).
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Due to the fact that the quadratic form (4.1) is completely bounded in S,

i.e., |C(z)| ≤ H for all z ∈ S, we have that |FM(x)| ≤ H for all M ∈ N and

x ∈ Tω. This allows to apply Vitali’s convergence theorem to write, for any

p̄ ∈ Z∞ fixed:

F̂ (p̄) =

∫
Tω

( ∞∑
m,n=1

amne
2πi(xm+xn)

)
e−2πip̄·x dx

=

∫
Tω

(
lim
M→∞

∑
m,n=1,...,M

amne
2πi(xm+xn)

)
e−2πip̄·x dx

=

∫
Tω

lim
M→∞

( ∑
m,n=1,...,M

amne
2πi(xm+xn)e−2πip̄·x

)
dx

= lim
M→∞

∑
m,n=1,...,M

amn

∫
Tω
e2πi((xm+xn)−p̄·x) dx

2

=
∞∑

m,n=1

amn

∫
Tω
e2πi((xm+xn)−p̄·x) dx

=


amn + anm = 2amn if p̄ = ēm + ēn, m 6= n

amm if p̄ = 2ēm,

0 otherwise,

where we denote by ēq the element (δqj)
∞
j=1 belonging to Z∞.

Thus, the above expression (4.2), which defines F (x), is indeed its Fourier

series,
∑

p̄∈Z∞ F̂ (p̄)e2πip̄·x. Therefore we will have

∑
p̄∈Z∞

∣∣F̂ (p̄)
∣∣ =

∞∑
m,n=1

|amn|

and, since
∑∞

m,n=1 |amn| =∞, our function F is a counterexample showing

that the implication f ∈ C(∞(Tω) =⇒
∑

p̄∈Z∞ |f̂(p̄)| <∞ is false.

Let us proceed to describe the quadratic form C(z). We first show an

auxiliary lemma. Toeplitz [14, p. 423–426] gave it for real orthogonal matri-

ces. In what follows, D denotes the closed unit disc of the complex plane.

2In fact, denoting by M0 the greatest nonzero index of p̄, i.e., the index such that
pj = 0 for all j > M0, we have

∞∑
m,n=1

amn

∫
Tω

e2πi((xm+xn)−p̄·x) dx =
∑

m,n=1,...,M0

amn

∫
Tω

e2πi((xm+xn)−p̄·x) dx.
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Lemma 4.1 (Littlewood, [10, p. 171]. See also [4, p. 609]). Let A =

(amn)N×N be a unitary matrix, i.e., a matrix for which the following holds

N∑
n=1

arnasn = δrs ∀r, s = 1, . . . , N,

and define QNN(x) := N−1
∑N

m,n=1 amnxmxn for x ∈ DN . Then, it is verified

|QNN(x)| ≤ 1 ∀x ∈ DN .

Toeplitz’s quadratic form. Toeplitz begins by defining C1(z1, . . . , z4) as

the quadratic form in D4 whose coefficients matrix is

C1 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

The real symmetric matrix C1 verifies C2
1 = 4I, and so, by applying Lemma

4.1 it results ∣∣C1(z1, . . . , z4)
∣∣ ≤ 43/2 = 8

in D4 (this maximum value is attained for z1 = . . . = z4 = 1).

Next, he defines C2(z1, . . . , z42) as the quadratic form in D42 whose co-

efficients matrix is

C2 =


−C1 C1 C1 C1

C1 −C1 C1 C1

C1 C1 −C1 C1

C1 C1 C1 −C1

 .

From Lemma 4.1 it results∣∣C2(z1, . . . , z42)
∣∣ ≤ (42)3/2 = 82

in D42 (and the maximum modulus is attained for z1 = . . . = z42 = 1).

Inductively, from the quadratic form in 4α variables (α ≥ 1) with matrix

Cα, one can construct the quadratic form in 4α+1 variables and matrix

Cα+1 =


−Cα Cα Cα Cα
Cα −Cα Cα Cα
Cα Cα −Cα Cα
Cα Cα Cα −Cα

 .

According to Lemma 4.1 we have that, for all α ∈ N, it holds∣∣Cα(z1, . . . , z4α)
∣∣ ≤ (4α)3/2 = 8α
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in D4α . Finally, for x ∈ S, Toeplitz defines

(4.3) C(x) =
µ1

8
C1(x1, . . . , x4) +

µ2

82
C2(x4+1, . . . , x4+42)

+
µ3

83
C3(x42+4+1, . . . , x42+4+43) + · · ·

where (µα)∞α=1 is a sequence of positive numbers determined below, and he

shows the following Lemma (see [14, p. 426–427]):

Lemma 4.2. If µα > 0 are chosen so that the series
∑
µα is convergent,

then the quadratic form (4.3) is completely bounded in S.

Moreover, the sum of the moduli of all coefficients of the form C(x) is∑
2αµα. It is easy to choose µα so that

∑
µα < ∞ and

∑
2αµα = ∞ (for

example, µα = 1
α2 , µα = 2−α, etc.). Thus, the function

F (x) = C(e2πix) (x ∈ Tω)

constructed with these µα is our first announced counterexample.

Littlewood’s quadratic forms. From [10, p. 171–173] and [4, p. 609–612]

we can get a variety of counterexamples that generalize the preceding, based

on quadratic forms in S for which not all the coefficients are real.

For example, let N > 2 be a fixed integer, and consider the infinite

collection of matrices

M1 =
(
e2πi rs

N

)
N×N , r, s = 1, . . . , N,

Mµ =
(
e2πi rs

N ·Mµ−1

)
Nµ×Nµ , r, s = 1, . . . , N, if µ > 1.

All entries in Mµ are N -th roots of unity, and Mµ is an unitary matrix, for

all µ ∈ N. Let us denote by Mµ

(
x

(µ)
1 , . . . x

(µ)
Nµ

)
the quadratic form associated

with the matrix Mµ and the variables of a generic point x ∈ S on which it

acts, and then define the quadratic form in infinitely many variables

M(x) = N−3/2M1(x1, . . . , xN) +
1

4
N−3M2(xN+1, . . . , xN+N2)

+
1

9
N−9/2M3(xN+N2+1, . . . , xN+N2+N3) + · · ·

=
∞∑
µ=1

N−3µ/2

µ2
Mµ

(
x

(µ)
1 , . . . x

(µ)
Nµ

)
.

According to Lemma 4.1 we have∣∣∣Mµ

(
x

(µ)
1 , . . . x

(µ)
Nµ

)∣∣∣ ≤ N3µ/2,

from where we get now

|M(x)| ≤
∞∑
µ=1

1

µ2
<∞.



ABSOLUTE DIVERGENCE IN THE INFINITE TORUS 13

Thus, M(x) is completely bounded and, applying Corollary 3.5 (b), it be-

longs to the class C(∞ in S. But, if we denote M(x) =
∑∞

m,n=1 amnxmxn,

since all the moduli of the nonzero coefficients are equal to 1, we have
∞∑

m,n=1

|amn| = N−3/2 ·N2 +
1

4
N−3 ·N4 +

1

9
N−9/2 ·N6 + . . . =

∞∑
j=1

N j/2

j2
=∞

and so, the Fourier series of the function G(x) = M(e2πix), x ∈ Tω, diverges

absolutely.

Bohnenblust and Hille ([4, p. 608–614]) generalized for m-ic forms (m >

2) the results of Littlewood. This would provide new counterexamples, this

time based on m-ic forms (m > 2) in infinitely many variables.
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[9] D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integral-

gleichungen, Fortschritte der Mathematischen Wissenschaften in Mono-

graphien Heft 3, B. G. Teubner, Leipzig und Berlin, 1912.

[10] J. E. Littlewood, On bounded bilinear forms in an infinite number

of variables, Quarterly Journal of Mathematics (Oxford Series) 1 (1930),

164–174.
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